
User Manual
Schematic Entry

August 1994 090-0602-001

Data I/O has made every attempt to ensure that the information in this document is
accurate and complete. Data I/O assumes no liability for errors, or for any incidental,
consequential, indirect or special damages, including, without limitation, loss of use,
loss or alteration of data, delays, or lost profits or savings, arising from the use of this
document or the product which it accompanies.

No part of this document may be reproduced or transmitted in any form or by any
means, electronic or mechanical, for any purpose without written permission from
Data I/O.

Data I/O Corporation
10525 Willows Road N.E., P.O. Box 97046
Redmond, Washington 98073-9746 USA
(206) 881-6444

Acknowledgments:

Data I/O is a registered trademark and Synario and ABEL-HDL are trademarks of
Data I/O Corporation.

Data I/O Corporation acknowledges the trademarks of other organizations for their
respective products or services mentioned in this document.

© 1994 Data I/O Corporation
All rights reserved

Synario Capture System User Manual iii

Table of Contents

Preface

8VLQJ�7KLV�0DQXDO ��� [LLL

6\QDULR�&DSWXUH�6\VWHP�%DVLFV��&KDSWHUV���DQG�� [LLL

+RZ�WR�8VH�WKH�6\QDULR�&DSWXUH�6\VWHP��&KDSWHU���WKURXJK�$SSHQGL[�%� ���������������������������������� [LLL

2WKHU�'RFXPHQWV��� [LLL

&KDSWHU�&RQWHQWV ���[LY

6&6�&RPSRQHQWV���[YL

1. Getting Started

,I�<RX
UH�D�&XUUHQW�(&6�8VHU �� ���

2. Inside SCS

6\PEROV�� ���

6\PERO�/LEUDULHV ��� ���

:KDW�'RHV�D�6\PERO�&RQVLVW�2I" ��� ���

$WWULEXWHV�� ���

$WWULEXWH�7\SHV�� ���

$WWULEXWH�&RPSRQHQWV�� ���

&UHDWLQJ�1HZ�$WWULEXWHV �� ���

Schematic Elements . 2-5
Symbols . 2-6
Wires . 2-7
I/O Markers . 2-8
Graphics . 2-8
Text . 2-8

Schematics Relation to Netlists . 2-9
Using Netlists . 2-9

3. Introduction to Hierarchical Design
What Is a Hierarchy? . 3-1
Advantages of Hierarchical Design 3-2
Approaches to Hierarchical Design 3-2

Top-Down Design . 3-3
Bottom-Up Design . 3-3
Inside-Out (“Mixed”) Design 3-3

What is Hierarchical Organization? 3-4
Symbols, Schematics, and Hierarchy 3-4
Hierarchical Design Structure . 3-5
Hierarchical Naming . 3-6
Nets in the Hierarchy . 3-7

Automatic Aliasing of Nets . 3-8

4. Basic Operation
What SCS Can Do . 4-1
SCS Programs . 4-3
Using the SCS Executive . 4-4

Running the Editors or Hierarchy Navigator 4-4
Editing Files . 4-4
Schematic Exchange/Conversion Utilities 4-5
Setup Utilities . 4-5

Table of Contents

iv Synario Capture System User Manual

Customizing the Executive with the pcshell.ini File 4-6
pcshell.ini Format . 4-7
The SCS Executive Command Line 4-9

SCS Command Structure . 4-10
Using the Mouse . 4-10

Right Mouse Button Functions 4-11
Prompting and Error Messages . 4-11

Error Recovery . 4-12
Network Operation . 4-12
Naming Design Files . 4-13
Saving the Schematic or Symbol . 4-14
Printing and Plotting . 4-14

Windows . 4-14
UNIX/Motif . 4-15

The INI Editor . 4-16

5. Using the Schematic Editor
Chapter Contents . 5-1
What Is a Schematic? . 5-2

Schematic Sheets Versus Hierarchical Levels 5-3
Schematic Components . 5-3

Symbols . 5-3
Wires . 5-3
Attributes . 5-4
Graphics and Text . 5-4

Adding Schematic Elements . 5-5
Selecting a Symbol . 5-5
Placing the Symbol . 5-6

Wiring the Schematic . 5-9
Drawing Wires . 5-9

Nets and Buses . 5-10

Table of Contents

Synario Capture System User Manual v

Net Names . 5-10
Entering Net Names . 5-11
Placing the Net Name . 5-11
Renaming a Net . 5-13
Specifying Signal Direction . 5-13
Buses . 5-14
Bus Pins . 5-17

Wiring Constraints . 5-19
Modifying the Schematic . 5-20

Clipboard Commands . 5-20
Non-Clipboard Commands . 5-20

Debugging and Verifying a Schematic 5-21
“Unconnected Pin” Message . 5-22

Schematic Editor Display Options 5-23
Schematic Sheets . 5-23
Grids . 5-24
Controlling Display and Graphics Options 5-24

Setting Attribute Values . 5-26
Pin Attributes . 5-26
Symbol Attributes . 5-26
Net Attributes . 5-27
Attribute Windows . 5-28

6. Using the Symbol Editor
Symbol Components . 6-2

Graphics . 6-2
Pins . 6-2
Attributes . 6-2

Symbol Types . 6-2
Component and Gate Symbols 6-3
Cell Symbols . 6-3

Table of Contents

vi Synario Capture System User Manual

Block Symbols . 6-3
Pin Symbols . 6-3
Graphic Symbols . 6-4
Master Symbols . 6-4

Creating Symbols . 6-4
Starting the Symbol Editor . 6-5
Grids . 6-5
Drawing Graphics and Fixed Text 6-6
Saving a Symbol . 6-8
Printing the Symbol . 6-8
Editing Symbols . 6-8

Preparing Symbols for Schematics 6-9
Pins . 6-9
Bus Pins . 6-11
Attributes . 6-12
Checking Symbols . 6-14
“Unconnected Pin” Message . 6-15

Creating Block Symbols in the Schematic Editor 6-15
Making a Block Symbol for the Loaded Schematic 6-16

7. Using the Hierarchy Navigator
Hierarchy Navigator Functions . 7-2
Navigating a Design . 7-2

Updating Schematics . 7-3
Push/Pop . 7-3

Tracing Signals . 7-4
Mark . 7-4
Query . 7-4

Setting and Overriding Attributes 7-6
Pin Attributes . 7-6
Symbol Attributes . 7-7

Table of Contents

Synario Capture System User Manual vii

Net Attributes . 7-7
Attribute Windows . 7-7

Additional Hierarchy Navigator Features 7-8
Analysis Tools . 7-10

ERC and PCB Checkers . 7-11
Types of Analysis Performed by the Checkers 7-14
Operating the Electrical Rules Checker 7-15
Operating the PCB Checker . 7-18

The View Report Utility . 7-19
Viewing Critical Paths . 7-20
Netlists and Interfaces . 7-21
The Packager . 7-22

8. Attributes
Attribute Functions . 8-1
Attribute Types . 8-2
Attribute Components . 8-2

Attribute Name . 8-2
Attribute Number . 8-2
Attribute Value . 8-3
Attribute Modifier . 8-3
Attribute Window . 8-3

Modifying Attributes . 8-4
Symbol Attributes . 8-4
Pin Attributes . 8-4
Net Attributes . 8-4

Creating New Attributes . 8-4
Attribute Names . 8-6
Attribute Modifiers . 8-7
Assigning Values to Simple Attributes 8-8
Changing Attribute Values in the Schematic Editor 8-9

Table of Contents

viii Synario Capture System User Manual

Removing Attributes from a Netlist 8-9
Displaying Attribute Values on a Schematic 8-9
Reassigning Attribute Windows 8-9

Number Notation in Attributes . 8-12
Derived Attributes . 8-13

Example of Derived Attributes 8-18

9. The SCS INI Editor
The binary.ini File . 9-1
Custom INI Files . 9-2
INI Editor Menus . 9-4

Controls Menu . 9-4
System Controls . 9-4
Display Controls . 9-6
Symbol Controls . 9-8
Graphic Options . 9-9
Sheet Layout . 9-10
Sheet Sizes . 9-11
Wave Controls . 9-12
Global Nets . 9-12
Colors . 9-14
Wave Colors . 9-15
Print Controls . 9-17

Tools Menu . 9-17
Symbol Tools . 9-18
Schematic Tools . 9-19
Navigator Tools . 9-19
Navigator Processes . 9-19

Attributes Menu . 9-20
Symbol, Pin, and Net Attributes 9-20
Example Attributes . 9-23

Table of Contents

Synario Capture System User Manual ix

Global Attributes . 9-30
Search Paths Menu . 9-31

Project, Model, and Symbol Libraries 9-31
Libraries and Directory Structures 9-33

Program Directories . 9-34
User Directories . 9-34
Library Directories . 9-34

10. PCB Design Considerations
Configuring for PCB Design . 10-1
Differences between IC and PCB Design 10-2
PCB Attributes . 10-2

Symbol Attributes . 10-2
Pin Attributes . 10-4

Symbol Types . 10-5
DeMorgan-Equivalent Gates . 10-6
Instance Names and Reference Designators 10-6

Reference Designators . 10-6
Instance Names . 10-7
Assigning Reference Designators 10-8
Gate Assignment . 10-10
Pin Swapping . 10-11

Example PCB Design . 10-12
System Configuration . 10-12
Creating a Gate Symbol . 10-12
Create the Latch Schematic . 10-14

Auto Packaging of PCB Devices 10-15
Configuration Information . 10-16
Query Packaging . 10-16
Check Packaging . 10-17
Clear Packaging . 10-18

Table of Contents

x Synario Capture System User Manual

Auto Package . 10-18
Reference Designator . 10-19
Pin Number . 10-20

PCB Back Annotation Interfaces 10-21
The Back Annotation Programs 10-21
PADS PCB-specific Features 10-23
RINF-specific Features . 10-24

PCB Netlisters . 10-25
Features Common to All PCB Netlisters 10-26
Attributes Needed for Netlisting 10-26
Preparing Schematics . 10-28
PCB Power Pins . 10-28
View Report Facility . 10-30
Error Messages . 10-30
PADS PCB-specific Features 10-31
RINF-specific Features . 10-32
PCAD-specific Features . 10-32
CADNETIX-specific Features 10-32
CADSTAR-specific Features 10-33
TANGO-specific Features . 10-33
Required Attributes . 10-33
Non-Homogeneous Gates Example 10-34
DeMorgan-Equivalent Gates Example 10-35
Netlisting Example . 10-35
 . 10-36
ASCII Netlist Format . 10-36

The Packlist Bill-of-Materials Program 10-42
What Packlist Does . 10-42
Command Line Options . 10-43
The packlist.ini File . 10-43

Table of Contents

Synario Capture System User Manual xi

Appendixes

A. Generic Interfaces
Archive Utility . A-1
ASCII Interface . A-2
EDIF Interfaces . A-15
Generic Netlists . A-22

B. Simulator Interfaces
SILOS . B-1
Timewave History File Format . B-16
Simulation Environment . B-18
SPICE . B-31
SPICE Format Conversions . B-37
Timemill . B-45
Verilog . B-53
VHDL Interface . B-67
Exporting the Stimulus File . B-89

Index

Table of Contents

xii Synario Capture System User Manual

Preface
This manual describes the Synario Capture System (SCS). It is divided into
two sections. The first section presents the “what” of SCS, the last section the
“how.” You don’t have to read the first section in order to use SCS. However,
it has background information that should increase your understanding of
SCS’s features and let you take fuller advantage of them. Chapter 4, "Basic
Operation," explains how to configure SCS.

Using This Manual

Synario Capture System Basics (Chapters 2 and 3)

This section gives a basic explanation of how SCS organizes symbol, schematic,
and netlist files, and the ways in which SCS manages your designs as you
enter them.

How to Use the Synario Capture System (Chapter 4 through Appendix B)

This section explains how to use the various Capture System components: the
Symbol and Schematic Editors, the Hierarchy Navigator, the INI Editor, and
the netlister programs.

Other Documents

See the SCS Command Reference for information on all commands available in
the Schematic Editor, Symbol Editor and Hierarchy Navigator.

See the Waveform Tools Manual for information on the Waveform Viewer or
Waveform Editor.

Synario Capture System User Manual xiii

3UHIDFH

6\QDULR�&DSWXUH�6\VWHP�8VHU�0DQXDO[LY

Chapter Contents

7KH�IROORZLQJ�LV�D�EULHI�RXWOLQH�RI�WKH�FRQWHQWV�RI�HDFK�FKDSWHU�

&KDSWHU����*HWWLQJ�6WDUWHG

7HOOV�\RX�KRZ�WR�JHW�VWDUWHG�LI�\RX�KDYH�6\QDULR�

&KDSWHU����,QVLGH�6&6

([SODLQV�ZKDW�DQ�6&6�V\PERO�LV��DQG�KRZ�LWV�FKDUDFWHULVWLFV�DQG�EHKDYLRU�DUH�FRQWUROOHG

E\�DWWULEXWHV��'HVFULEHV�WKH�FRPSRQHQWV�WKDW�PDNH�XS�DQ�6&6�VFKHPDWLF�DQG�KRZ�WKH\

UHODWH�WR�QHWOLVWV�

&KDSWHU����,QWURGXFWLRQ�WR�+LHUDUFKLFDO�'HVLJQ

6KRZV�KRZ�6&6�VFKHPDWLFV�FDQ�EH�FRPELQHG�LQWR�D�KLHUDUFKLFDO�VWUXFWXUH��DQG�GHVFULEHV

WKH�DGYDQWDJHV�RI�KLHUDUFKLFDO�GHVLJQ��7KUHH�DSSURDFKHV�WR�KLHUDUFKLFDO�GHVLJQ�DUH

H[SODLQHG���$OVR�GHVFULEHV�WKH�SULQFLSOHV�RI�KLHUDUFKLFDO�RUJDQL]DWLRQ�XVHG�LQ�WKH

6FKHPDWLF�(GLWRU�DQG�+LHUDUFK\�1DYLJDWRU�

&KDSWHU����%DVLF�2SHUDWLRQ

'LVFXVVHV�WKH�LQWHUIDFH�DQG�FRPPRQ�IHDWXUHV�RI�WKH�6FKHPDWLF�DQG�6\PERO�(GLWRUV��$OVR

H[SODLQV�KRZ�WR�FRQILJXUH�6&6�([HFXWLYH�SURJUDP�DQG�H[SODLQV�WKH�SULQFLSDO�IHDWXUHV�RI

6&6�

&KDSWHU����8VLQJ�WKH�6FKHPDWLF�(GLWRU

&RYHUV�PRVW�RI�ZKDW�\RX�QHHG�WR�NQRZ�WR�DGG�V\PEROV�DQG�ZLULQJ�WR�D�VFKHPDWLF�

([SODLQV�ZKDW�QHWV�DQG�EXVHV�DUH��KRZ�WR�FUHDWH�WKHP��DQG�KRZ�WR�QDPH�WKHP�

&KDSWHU����7KH�6\PERO�(GLWRU

6KRZV�KRZ�WR�FUHDWH�\RXU�RZQ�V\PEROV�DQG�DWWDFK�DWWULEXWHV�WR�WKHP��%ORFN�V\PEROV

�V\PEROV�WKDW�UHSUHVHQW�PRGXOHV�RU�VXE�FLUFXLWV��DUH�DOVR�GHVFULEHG�

&KDSWHU����+LHUDUFK\�1DYLJDWRU

6KRZV�KRZ�WR�YLHZ�DQG�SUREH�HDFK�OHYHO�RI�D�GHVLJQ�XVLQJ�WKH�+LHUDUFK\�1DYLJDWRU�

([SODLQV�WKH�RSHUDWLRQ�RI�WKH�(OHFWULFDO�5XOHV�&KHFNHU�DQG�WKH�&ULWLFDO�3DWK�9LHZHU�

Chapter 8, Attributes

Explains what an attribute is, and how attributes are assigned to symbols, pins,
and nets. Derived attributes, which permit dynamic modification of a design,
are also described.

Chapter 9, SCS INI Editor

Explains how the Schematic and Symbol Editors, Hierarchy Navigator,
Waveform Viewer and Waveform Editor are configured by changing values
and settings with the INI Editor.

Chapter 10, PCB Design Considerations

Explains the differences between PCB and IC designs. Shows how to create
netlist files in a variety of formats.

Appendix A, Generic Interfaces

Describes the general-purpose interfaces that are most often used to move the
design between systems.

Appendix B, Simulator Interfaces

Describes the interfaces used to output the design to a simulator.

Preface

Synario Capture System User Manual xv

SCS Components
This manual covers the following SCS/ECS components:

SCS Executive

The Executive is a shell for SCS, usually used with the UNIX version, but
available from Synario. You can run any of SCS components, as well as any
additional design tools of your own choosing, by selecting them from the
Executive.

Schematic Editor

The Schematic Editor is SCS’s schematic-capture tool. It creates schematic
(.sch) files that can represent a complete design, or any component of a
hierarchical design.

Symbol Editor

SCS comes with a standard symbol library for IC or PCB design. The Symbol
Editor is used to create symbols or primitive elements that represent an
independent schematic module. You can also create decorative symbols (such
as title blocks).

Hierarchy Navigator

The Hierarchy Navigator combines all the components of a multi-level design
for viewing and analysis. You can traverse the full design, viewing each
component in its full hierarchical context.

INI Editor

The INI Editor modifies SCS INI files, which control the appearance and
behavior of SCS. Using the INI Editor, you can set your own preferences for
how SCS environment looks and behaves. The INI Editor also manages
attributes, which define the electrical behavior of symbols, pins, and nets.

Waveform Viewer

The Waveform Viewer (optional with SCS/ECS standalone) is used to view
the results of simulation. You can display the waveform of any net in your
design. The Viewer is fully interactive with the Hierarchy Navigator; clicking
on a net in the schematic automatically displays the waveform. Waveform
Viewer operation is covered in the Waveform Tools Manual.

Waveform Editor

The Waveform Editor (optional with SCS/ECS standalone) lets you create the
stimulus waveforms for simulation graphically, by drawing directly on the
screen. The stimuli can be edited graphically, or by modifying values in dialog
boxes. The Editor then converts the waveforms into a stimulus file that your
simulator recognizes. Waveform files are also useful as input to automatic test
equipment, or as documentation of the circuit’s expected behavior. Waveform
Editor operation is covered in the Waveform Tools Manual.

Preface

xvi Synario Capture System User Manual

Chapter 1
Getting Started

If You're a Current ECS User
If you're upgrading from a previous version of the Engineering Capture System
(ECS), the Microsoft Write file schnotes.wri (in the Windows version) and the
schnotes text file (in the UNIX/Motif version) has information about new and
improved features, and anything you may need to take into account when
working with existing projects under the new software. It also has any
information that could not be included in the printed documentation.

Chapter 2

Inside SCS
SCS is a schematic capture system. Unless you’re using SCS just for
documentation, the schematics are actually the starting point of the
development process, not the goal. The schematic will eventually be used to
analyze the device’s behavior (using a simulator and the Waveform Viewer) or
to create a printed circuit board.

The schematic file describes your circuit in terms of the components used and
how they connect to each other. The schematic is in SCS’s own format, and can
be used to create netlists in different formats that are read by other
development tools, such as simulators and board layout programs.

Symbols are the most basic elements of a schematic. Symbols represent
primitive design elements, whether those elements are individual transistors,
complete gates, or a complex IC. A symbol can also be the hierarchical
representation of a subcircuit (a “Block” symbol).

This chapter explains what an SCS symbol is, and how symbols are combined
with wiring (connectivity) to produce useful schematics. It covers the
following topics:

♦ Symbols
♦ Attributes
♦ Schematic elements
♦ Schematics relation to netlists

Symbols
In this discussion, “symbol” refers to an electrical symbol, such as a gate or a
subcircuit. You can draw graphic-only symbols (such as title blocks) with the
Symbol Editor, but these have no electrical meaning.

Symbol Libraries

Symbol files are usually organized into libraries or library directories. The
basic SCS package comes with libraries of “generic” symbols. Any optional
device kits you purchase may come with their own symbol libraries.

Synario Capture System User Manual 2-1

Any symbols you create are usually stored in the same directory as the project
for which they were created. However, you might want to create your own
library directories for symbols used in more than one design. These libraries
can be added to the Symbol Libraries Search Paths using the INI Editor.

What Does a Symbol Consist Of?

Each SCS symbol is a file ending with a .sym extension, and may be included
in a library file with a .lib extension. The symbol file contains four types of
information: graphics, text, pins, and attributes.

♦ Graphics are instructions that tell the Symbol Editor, Schematic Editor, and
Hierarchy Navigator how to draw the symbol.

♦ Text labels the symbol, or adds supplemental information.
♦ Pins provide electrical connection between the symbol and the schematic’s

wiring.
♦ Attributes are parameters that describe the symbol’s electrical behavior, the

symbol’s component parts (for example, its pins), and a number of other
useful characteristics.

The following sections explain graphics, pins, and attributes in more detail.

Graphics

Graphics are pictures of the symbols. Symbol graphics have no electrical
meaning, showing only the position of the component in the circuit. The
electrical behavior of a symbol is defined by its attributes and pins, not the
graphics that represent it. Explanatory or descriptive text displayed with a
symbol is also considered “graphic” information without electrical meaning.

Pins

Symbol pins are the connecting points between the symbol and the schematic
wiring. If the symbol represents an individual component, the symbol pin
represents the physical pin where a conductor can be attached. If the symbol
represents a subcircuit (block symbol), the symbol pin represents a connection
to an internal net of the subcircuit.

Attributes

Attributes associate data items with symbols, pins, and nets. (“Nets” are
schematic wiring. Net attributes are explained in more detail later in this
manual.) The data items describe the electrical characteristics (or other
properties) of the symbols and their pins.

Inside SCS

2-2 Synario Capture System User Manual

An attribute has a name and a value. You can assign or change the values of
most attributes at any point in the development process. You can assign some
attributes fixed values that cannot change (for example, part numbers). Some
attribute values, such as the vendor’s part number and the simulation model,
are assigned when a symbol is created. These values are automatically applied
to all instances of that symbol. You can assign, change, or override other
attributes later in development. You can change individual attribute values to
achieve a more accurate simulation, since the model can reflect the exact circuit
conditions (such as loading and delay) of separate device instances.

A symbol’s attribute set is its single most important component. Without
attributes, simulation and modeling programs would know nothing about the
electrical behavior of the symbol. The second section of this chapter,
“Attributes,” introduces the characteristics of attributes and their use. For a full
discussion of attributes and attribute use, see the following pages and Chapter
8, “Attributes.”

Attributes
An attribute is a characteristic or property associated with a symbol, pin, or
net. Attributes can describe:

♦ Width or length of transistors
♦ Price of a resistor
♦ Size of a chip or a cell
♦ Number of connections to a Block symbol
♦ Delay from input to output
♦ Number of pins on a package
♦ Dielectric material of a capacitor
♦ Length of time taken to design a symbol
♦ Paint color of a resistor

In short, attributes can describe anything in a design.

Inside SCS

Synario Capture System User Manual 2-3

Attribute Types

There are four attribute types:

Global Global attributes are constants such as feature size, supply
voltage, or identification codes. These attributes are
accessible from every sheet of every schematic at every
level of hierarchy.

Symbol Symbol attributes describe features related to the whole
symbol. Examples are the width and length parameters of
transistors, or SPICE model characteristics. Symbol
attributes apply only to the symbol on which they appear.
Global attributes (which define such characteristics as
supply voltage) apply to all symbols in a design.

Pin Pin attributes describe features related to individual pins.
Polarity, lead number, drive capability, and loading are
typical pin attributes.

Net Net attributes describe characteristics associated with nets.
A good example is the stray capacitance of a net routed
across a chip. (Nets are part of schematics, not symbols.
Net attributes apply only to schematics.)

Attribute Components

An attribute has five components.

Name

An attribute’s name identifies it to the user. Width, Length,
ReferenceDesignator and PinNumber are examples of attribute names.

Number

The attribute’s number identifies it to the Editors and the Hierarchy Navigator.
SCS uses the number—not the name—to reference an attribute. This allows a
different name to be assigned without changing the meaning or use of the
attribute. (Attributes 0–99 are reserved for SCS, the Editors, the Hierarchy
Navigator, and simulation. Most of them have predefined meanings.)

Value and Value Modifier

Any attribute can be assigned a value. A value is usually a number or a text
string.

An attribute modifier specifies the conditions under which an attribute’s value
can be changed. Attribute modifiers are fully described in Chapter 9, “The SCS
INI Editor.”

Inside SCS

2-4 Synario Capture System User Manual

Window

Attribute values are displayed in attribute windows. Attribute values cannot be
displayed unless a symbol has at least one attribute window.

You add attribute windows to a symbol when you define it. Each window is
assigned a unique number and the default attribute that will be displayed in
that window. When the symbol is placed in a schematic, the value of the
assigned attribute appears in the window.

Note: Attribute windows do not have visible outlines. Rather, they are predefined
areas on or near the symbol.

Creating New Attributes

The generic symbols supplied with SCS (as well as device-specific symbols)
have all required attributes defined and given appropriate values.

In addition, each symbol has about 100 undefined attributes. You can define
these attributes for any purpose, such as providing additional information to a
netlister, or displaying device data in an attribute window.

If you create your own primitive symbols, you must define the attributes
needed by the netlister or simulator. Chapter 8, “Attributes,” and Chapter 9,
“The SCS INI Editor,” cover this in detail.

Schematic Elements
A schematic is composed of the following five items:

♦ Symbols These can be symbols from the standard SCS libraries,
symbols representing other schematics you have drawn
(Block symbols), or symbols you have created from
scratch.

♦ Wires Wires connect the symbols. They can be single-signal
(“nets”) or multiple-signal (“buses”).

♦ I/O Markers I/O markers show where signals enter or exit the
schematic, and the direction (“polarity”) of the signal (that
is, whether it’s an input, output, or bidirectional).

♦ Graphics &
Text

Graphics and text are usually added to display
explanatory data. They are optional and have no electrical
meaning.

Inside SCS

Synario Capture System User Manual 2-5

A schematic must contain the first three components—symbols, wires, and
I/O markers. A single, isolated component symbol cannot be the only element
in a schematic. The schematic must include I/O markers for the external
connections to the schematic, and these markers must be connected to the
symbol with wires. Figure 2-1 and Figure 2-2 are examples of valid and
invalid schematics, respectively.

The following sections discuss schematic elements in more depth.

Symbols

Symbols are graphic representations of components. They have no electrical
meaning.

As you place each symbol, the Schematic Editor automatically gives the
symbol a unique instance name of the form I_nn (where nn is an integer). The
instance name identifies the symbol to the Schematic Editor and netlister
programs. You can change the instance name, but the Editor won’t let you
repeat an existing name.

Some schematics (such as bit-slice designs) use repeated arrays of symbols
(such as registers or inverters). The Schematic Editor lets you define an iterated
instance in which a single symbol represents many instances of that symbol.

Symbol Attributes

Each symbol has a number of predefined attributes that describe its part
number, component type, and other unchanging characteristics. (These were
discussed briefly in the preceding section, “Symbols.”)

7400

1

2
3IN1

OUT
IN2

Figure 2-1
Valid Schematic

7400

1

2
3

Figure 2-2
Invalid Schematic (no wires or I/O markers)

Inside SCS

2-6 Synario Capture System User Manual

Other attributes can be given values after the symbol is placed in the
schematic. These attributes can have different values for each symbol instance.
This permits detailed customization of a design.

A good example of an attribute that permits customization is the attribute that
controls the speed/bandwidth characteristics of a macro cell. Cells driving
internal nodes might be set for full speed, whereas cells driving heavily loaded
external nodes might be set for a narrower bandwidth, to obtain greater drive
capability.

Wires

Wires are the lines that electrically connect the symbol pins. Symbol pins are
the only connection points for wires. You cannot connect wires to the symbol
body itself.

There are two types of wires: single-wire nets and multiple-wire buses. Buses
allow more than one signal to be routed as single line. (Nets and buses are
explained in more detail in Chapter 5, “Using the Schematic Editor.”)

Wire Names

Wires have names. These names identify the wires to the Schematic Editor and
netlister programs.

You would normally name all wires that connect to inputs or outputs and any
“internal” nets with signals you want to view during simulation. You can use
any name you like, but you usually choose a name that suggests the name or
function of the signal carried by that wire. If you don’t give a wire a name, the
Schematic Editor automatically supplies one, of the form N_n (where n is an
integer).

Multi-wire buses are created by giving a single wire a compound name. You
can then tap off any signal you want anywhere along the bus.

Buses are most often used to group related signals, such as a 16-bit data path.
However, a bus can be any combination of signals, related or not. Buses are
especially useful when you need to route a large number of signals from one
side of the schematic to the other.

Buses also make it possible for a single I/O marker to connect more than one
signal to a Block symbol. The signal names don’t have to match, but both pins
must carry the same number of signals.

Inside SCS

Synario Capture System User Manual 2-7

Net Attributes

Like symbols and symbol pins, nets (the wiring that connects symbols to each
other and makes external connections) can also have attributes. These
attributes include the net’s name (as assigned in the schematic), plus the net’s
length, width, unit capacitance, and so on. There are also net attributes that
pass parameters to other programs such as simulators or PCB layout programs.

I/O Markers

I/O markers mark the points at which signals leave or enter the schematic.
They are required. Any unconnected wire without an I/O marker will
eventually be flagged as an error when you try to create a netlist, run the
simulator, or load the design into the Hierarchy Navigator.

The I/O marker automatically takes the name of the wire it is attached to. If
the wire is a bus, the marker will have the same compound name as the bus.

When a Block symbol and its matching schematic are created, the I/O markers
for the signals that enter and leave the schematic must have the same names as
the corresponding pins on the Block symbol. The matching names identify
which signal attaches to which pin.

Graphics

Although symbols, wires, and I/O markers are visible, graphical items, they
also have a functional or electrical meaning. In this context, “graphics” refers
to the non-functional graphical parts of the schematic.

For example, you might add graphics showing the expected waveforms at
different points in the circuit. Or, you could draw the company’s logo and add
it to each schematic for identification.

The most common use of graphics is to create a title block. The block shows the
name and address of your company, and can include the company logo and
blank spaces for the project name, schematic sheet number, and so on.

Text

Text, like graphics, can provide additional information about the schematic or
its project. Text can be placed anywhere on a schematic, even if it overlaps
symbols or wires.

Inside SCS

2-8 Synario Capture System User Manual

Schematics Relation to Netlists
A netlist is a file listing all the components (symbols) in a schematic, and their
connectivity (how they are wired together).

There is no single, universally accepted netlist format. The Schematic Editor
stores a schematic in its own proprietary connectivity database format. This
database format can be converted to almost any netlist format. However, data
and data structures not supported by the target format will not appear in the
converted file.

The conversion is performed with netlister programs. SCS comes with several
that can convert schematics to and from a number of standard formats: ASCII,
EDIF, and a generic human-readable format. (Additional netlisters are
optional.) The ASCII format retains all the information in the original
schematic file.

Using Netlists

The netlist is the “interface” between your design and any other software that
needs to read or use the design. These programs include

♦ Simulators
♦ PCB layout programs
♦ IC place-and-route software
♦ Synthesis software
♦ Signal integrity tools

Inside SCS

Synario Capture System User Manual 2-9

Chapter 3

Introduction to
Hierarchical Design
SCS supports full hierarchical design. Hierarchical structuring permits a
design to be broken into multiple levels, either to clarify its function or permit
the easy reuse of functional blocks. This chapter covers the following topics:

♦ What is a Hierarchy?
♦ Advantages of Hierarchical Design
♦ Approaches to Hierarchical Design
♦ What is Hierarchical Organization?
♦ Symbols, Schematics, and Hierarchy
♦ Hierarchical Design Structure
♦ Hierarchical Naming
♦ Nets in the Hierarchy

What Is a Hierarchy?
A large, complex design does not have to been drawn as a single schematic.
The Schematic Editor lets you add as many sheets as needed, so that a design
can extend beyond the original sheet. However, regardless of how many
sheets you add, all the components of the design are still at a single level.

Another way to organize a design is to break it up into components or
modules. Circuitry for a specific function or interface can be drawn as a
separate schematic. A Block symbol is then created for this schematic, which
can be placed in other schematics as a single symbol.

The schematic represented by the Block symbol is said to be at one level below
the schematic in which the symbol appears. Or, the schematic is at one level
above the Block’s schematic. Regardless of how you refer to the levels, any
design with more than one level is called a hierarchical design. In SCS, there is
no limit to the number of hierarchical levels a design can contain.

Synario Capture System User Manual 3-1

Advantages of Hierarchical Design
The most obvious advantage of hierarchical design is that it encourages
modularity. A careful choice of the circuitry you select to be a module will give
you a Block symbol that can be reused.

Another advantage of hierarchical design is the way it lets you organize your
design into useful levels of abstraction and detail. For example, you can begin
a project by drawing a “top” schematic that consists of nothing but Block
symbols and their interconnections. This schematic shows how the project is
organized, but does not display the details of the modules (Block symbols).

You then draw the schematic for each Block symbol. These schematics can also
contain Block symbols that you have not yet drawn schematics for. This
process of decomposition can be repeated as often as required until all
components of the design have been fully described as schematics.

Breaking the schematic into modules adds a level of abstraction that lets you
focus on the functions (and their interaction) rather than on the hardware that
implements them. At the same time, you are free to view or modify an
individual module.

Although there are many ways of “breaking apart” a complex design, some
may be better than others. In general:

♦ Each module should have a clearly defined purpose or function and a
well-defined interface.

♦ Look for functions or component groupings that can be reused in other
projects.

♦ The way in which a design is divided into modules should clarify the
structure of the project, not obscure it.

When trying to decide what a module should contain, consider what Albert
Einstein might say: “A module should be as complex as it needs to be, but no
more complex.”

Approaches to Hierarchical Design
The Schematic Editor supports full hierarchical design. Project components can
be created in any order, then combined into a complete design. You can draw a
schematic first, then create a Block symbol for it, or specify the Block first, then
create the schematic for it later.

Hierarchical entry is a convenient way to enter a large design “one piece at a
time.” It is also a way of organizing and structuring your design and the
design process. The choice of the appropriate methodology can speed the
design process and reduce the chance of design or implementation errors.

Introduction to Hierarchical Design

3-2 Synario Capture System User Manual

There are three basic approaches to creating a multi-module hierarchical
design:

♦ Top-Down
♦ Bottom-Up
♦ Inside-Out (“mixed”)

The following three sections explain the philosophy and techniques of each
approach.

Top-Down Design

In top-down design, you do not have to know all the details of your project
when you start. You can begin at the “top,” with a general description of the
circuit’s functionality, then break the design into modules with the appropriate
functions. This approach is called “stepwise refinement”—you move, in order,
from a general description, to modularized functions, to the specific circuits
that perform those functions.

In a top-down design, the uppermost schematic usually consists of nothing but
Block symbols representing modules (plus any needed power, clocking, or
support circuitry). These modules are repeatedly broken down into simpler
modules (or the actual circuitry) until the entire design is complete.

Bottom-Up Design

In bottom-up design you start with the simplest modules, then combine them
in schematics at increasingly “higher” levels. Bottom-up design is ideal for
projects (such as interfaces) in which the top-level behavior cannot be defined
until the low-level behavior is established.

Inside-Out (“Mixed”) Design

Inside-out design is a hybrid of top-down and bottom-up design, combining
the advantages of both. You start wherever you want in the project, building
“up” and “down” as required.

SCS fully supports the “mixed” approach to design. This means that you can
work bottom-up on those parts of the project that must be defined in hardware
first, and top-down on those parts with clear functional definitions.

Regardless of the approach you choose, you start from those parts of the
design that are clearly defined and move up or down to those parts of the
design that need additional definition.

Introduction to Hierarchical Design

Synario Capture System User Manual 3-3

What is Hierarchical Organization?
The Schematic Editor uses a hierarchical system to organize complex designs.
Like a series of increasingly detailed maps, a hierarchy of schematics lets the
designer move from a general view (the entire country) to more-detailed views
(counties, cities, and neighborhoods).

At the top level in the hierarchy, the full design is represented as a complete
(but relatively undetailed) schematic. As you descend the hierarchy, you see
more-detailed views of smaller circuit elements. Primitive elements (library
symbols) are visible at the lowest level.

Although hierarchical designs are created in the Schematic Editor, a schematic
can be viewed in its full hierarchical context only from within the Hierarchy
Navigator. The Navigator lets you view each circuit component in its
hierarchical context, and move up and down in the hierarchy. See Chapter 7,
“Using the Hierarchy Navigator,” for a detailed explanation.

Symbols, Schematics, and Hierarchy
In the Schematic Editor’s hierarchy, a symbol at one level (a “functional
block”) represents a more-detailed schematic at the next-lower level.
Hierarchical symbols must meet the following three requirements:

1. The symbol must have the same base name as the schematic containing the
underlying circuitry. This associates the schematic with the symbol
representing it.

2. The pin names on the symbol must match the I/O marker names in the
underlying schematic.

3. The symbol should be a Block symbol. If the symbol used is in a model
directory, it can also be a Cell symbol.

The Block symbol is associated with its schematic by giving the schematic nets
the same names as the corresponding symbol pins. For example, a wire
connected to a pin named Q on the symbol is also connected to the net named
Q in the underlying schematic. The Consistency Check command of the
Schematic Editor and the ERC Check command in the Hierarchy Navigator
flag an error if a Block symbol has a pin without a corresponding net in the
related schematic.

In Figure Figure 3-1, pin D on the Block symbol corresponds to the net in the
schematic, which is named D. The other pins, Q and ENABLE, also correspond
to named nets in the schematic.

Introduction to Hierarchical Design

3-4 Synario Capture System User Manual

Hierarchical Design Structure
When a symbol is placed in a schematic, the component or sub-circuit the
symbol represents is added to the circuit. When you place a latch symbol (for
example) you are actually including the OR gate, inverter and two AND gates
from the latch’s schematic.

Figure 3-2 shows (on the left) a 4-bit register (REG4) constructed from four
latch symbols (latch.sym). The right side of the figure shows the underlying
components. The four latch symbols represent a total of eight AND gates, four
OR gates, and four inverters.

This hierarchical building process could be repeated by using the Schematic
Editor’s Matching Symbol command to create a symbol for schematic reg4,
then placing the reg4 symbol in a higher-level schematic. If you created a
schematic for a 16-bit register, reg16, by placing four copies of symbol reg4,
you would be defining a circuit with a total of 64 gates. But instead of having
to view 64 gates on a single level, you can work with symbols that represent
gates, at the appropriate level of detail.

LATCH

D
ENABLE Q

I1
O1

A2

A1
D

Q
ENABLE

LATCH

Figure 3-1
A Block Symbol and Its Underlying Schematic

Introduction to Hierarchical Design

Synario Capture System User Manual 3-5

Hierarchical Naming
In the latch schematic (Figure 3-2), the inverter has the instance name I1.
In schematic reg4, four copies of the symbol latch are placed and assigned
instance names L1 through L4. Schematic reg4 therefore contains four copies of
inverter I1.

The Hierarchy Navigator distinguishes among these otherwise identical
inverters by combining the inverter’s instance name with the instance name of
the latch containing it. The four inverters are therefore named (in the
Hierarchy Navigator):

L1.I1

L2.I1

L3.I1

L4.I1

L3

LATCH

D
ENABLE Q

L2

LATCH

D
ENABLE Q

L1

LATCH

D
ENABLE Q

L0

LATCH

D
ENABLE Q

I3

I2

I0

I1

O3

O2

O0

O1

A01

A31

A30

A21

A20

A00

A11

A10

D0

D0 Q0
Q0ENABLE ENABLE

D1

D1 Q1
Q1

D2

D2 Q2Q2

D3

D3 Q3Q3

Figure 3-2
Circuit REG4 and its Equivalent Circuit

Introduction to Hierarchical Design

3-6 Synario Capture System User Manual

If we created a 16-bit register by combining four reg4 symbols (as suggested
previously), the resulting schematic would represent a new hierarchical level,
containing four copies of reg4 (named R1 through R4). Each copy of reg4
contains the four inverters as named above. The Hierarchy Navigator would
then name the 16 inverters by combining the instance names of the four reg4
symbols with each of the four instance names of the inverters as follows:

R1.L1.I1, R1.L2.I1, R1.L3.I1, R1.L4.I1

R2.L1.I1, R2.L2.I1, R2.L3.I1, R2.L4.I1

R3.L1.I1, R3.L2.I1, R3.L3.I1, R3.L4.I1

R4.L1.I1, R4.L2.I1, R4.L3.I1, R4.L4.I1

When you view an individual latch schematic in the Schematic Editor, you see
the instance names of the gates, without the hierarchical context. When the
schematic becomes part of a larger design and is viewed in the Hierarchy
Navigator, the instance names include the hierarchical path (as shown above)
to assure their uniqueness.

Nets in the Hierarchy
The schematic definition for the latch circuit contains both local and external
nets. The output of the inverter is connected to the AND gate with a local net.
Two other local nets connect the outputs of the AND gates to the inputs of the
OR gate. Assume these nets have been named N1, N2, and N3. When the 16
copies of this circuit are combined in reg16, 16 copies of these local nets are
created.

The 16 local nets named N1 are individual nets, not branches of the same net,
so the Hierarchy Navigator creates a unique name for each. The local net name
(N1) is prefixed with the instance name of the schematic where the net is
defined. A dash separates the net and instance names. The 16 N1s then become:

R1.L1-N1, R1.L2-N1 … R4.L3-N1, R4.L4-N1

The latch schematic contains three external nets, D, ENABLE, and Q. The
symbol pins on the latch connect these nets to the hierarchical level above.

Introduction to Hierarchical Design

Synario Capture System User Manual 3-7

Automatic Aliasing of Nets

When a design is loaded into the Hierarchy Navigator, nets take the name of
the highest (“top”) net in the design. That is, the name of top-level net
propagates downward through the hierarchy to override the “local” name. By
forcing all nets to the same name, this “aliasing” feature greatly speeds signal
tracing in a multi-level design.

In the preceding example, the net name D from the latch is overridden by the
higher-level external reference to become D1, D2, D3…. This override becomes
the reference at all levels of the hierarchy. If, in the suggested 16-bit register
the D0, D1, D2… inputs were connected to wires named and marked Bit0, Bit1,
… Bit15, these new names take precedence and the D0, D1, D2… names would
no longer be accessible at any level of the hierarchy.

Introduction to Hierarchical Design

3-8 Synario Capture System User Manual

Chapter 4

Basic Operation
This chapter has basic information about the Synario Capture System. It covers
the following topics:

♦ What SCS Can Do
♦ SCS Programs
♦ Using the SCS Executive
♦ SCS Executive Features
♦ Schematic Exchange/Conversion Utilities
♦ Customizing the Executive with the pcshell.ini File
♦ SCS Command Structure
♦ Using the Mouse
♦ Prompting and Error Messages
♦ Error Recovery
♦ Network Operation
♦ Naming Design Files
♦ Saving Files
♦ Printing and Plotting
♦ The INI Editor

What SCS Can Do
SCS is a design entry and analysis package for schematic-based IC and PCB
designs. It features:

♦ Schematic Capture — The Schematic Editor captures your design logic
(either IC or PCB) in schematic form. You can use the schematic files solely
for documentation, or as sources for other software that fits your design
into ASICs or creates printed circuit boards.

The schematic file is continuously updated as you draw, so it is always
ready for analysis.

Synario Capture System User Manual 4-1

♦ Netlist Generation — Your design can be converted into
industry-standard EDIF or ASCII netlists for use by other design tools.
Additional netlisters are available as an option.

♦ Consistency Checking — You can check your schematics at any time for
such errors as unconnected wires or shorted nets. These checks greatly
increase the likelihood your design will be correct.

♦ Electrical Rules Checking — Electrical rules checks catch such errors as
having too many loads connected to one output. This checking prevents
electrical incompatibilities that would keep your design from working.

♦ Hierarchical Design — Designs are not limited to a single schematic. Block
symbols can represent a complete schematic or any subsection of a
schematic. These symbols can be used to create a hierarchical design, or to
create reusable function modules. There is no limit to the number of
hierarchical levels a design can contain.

♦ Hierarchical Viewer — The Hierarchy Navigator lets you view a multi-level
design in its full context. Back annotations can be added as comments or
modifications to the design.

♦ Symbol Creation — You can create your own electrical (or decorative)
symbols and give them whatever characteristics you want. Or, you can
convert a schematic into a Block symbol to make your design easier to
understand, or for reuse in other projects.

♦ Documentation — SCS comes with a complete set of generic symbols. You
can create schematics to document your design, or produce netlists (in
standard EDIF or ASCII formats) for use by other design tools.

♦ PCB Interface and Packaging — SCS can also be used for printed circuit
board design. Its packaging features include automatic package
assignment, consistency checking, and the ability to back annotate a design
with modifications or notes.

♦ Simulator Interface — Most simulators can be used with SCS. EDIF and
ASCII netlist generation is a standard feature. Optional netlisters for a
variety of simulator formats are available.

♦ Waveform Tools — The Waveform Viewer lets you view the results of
simulation. The waveform at any node in your design can be displayed.
Full cross-probing with the Hierarchy Navigator is supported. Click on a
node in the Navigator to view its waveform in the Viewer.

The Waveform Editing Tool (WET) lets you create input stimulus waveforms
for your design graphically, by clicking and dragging directly on the
screen. The waveform tools are described in the Waveform Tools Manual.

Basic Operation

4-2 Synario Capture System User Manual

SCS Programs
SCS is a program for entering and analyzing schematic-based designs. Designs
can be single-level (“flat”) or multi-level (“hierarchical”). In all cases, the full
design can be converted to a variety of netlist formats for use with other design
and production software.

SCS consists of the following principal components:

♦ The SCS Executive — (SCS/ECS Only) This shell program calls the other
SCS programs as you need them, and passes any required command line
options. It also executes a number of utilities, such as the initialization file
editor and netlist converters. You can customize the Executive.

♦ The Schematic Editor — Your schematic designs are captured by this tool.
Schematics can be drawn on multiple “sheets” and be of any size.

♦ The Symbol Editor — If you need a symbol that is not in the SCS library,
you can create it with the Symbol Editor. You can also design special
purpose non-component symbols (such as logos and title bars). The
Symbol editor can also create a symbol for any existing schematic, so that
that schematic can be used as a module in other schematics.

♦ The INI Editor — The INI Editor configures the initialization (“INI”) file
for SCS. All default settings and user preferences for the Editors, Hierarchy
Navigator, Waveform Viewer, and Waveform Editing Tool are set with the
INI Editor. It is also the editor for symbol, pin, and net attributes.

♦ The Hierarchy Navigator — All the elements and levels of a design are
combined by the Hierarchy Navigator for viewing and analysis. Analysis
is fully interactive. You can back annotate a design, then view the effects of
your changes.

♦ The Waveform Viewer — The Waveform Viewer works with the
Hierarchy Navigator to display the internal operation of your design. Once
you have simulated the design, you can display waveforms from any
schematic, at any level in the hierarchy. “Crossprobing” lets you jump at
any time between a signal line in the schematic (as displayed by the
Navigator) and the signal itself (as displayed by the Viewer).

♦ Waveform Editing Tool — The Waveform Editing Tool (or WET) lets you
create the stimulus waveforms for simulation graphically, by drawing
them directly on the screen. The stimuli can be edited graphically, or by
modifying values in dialog boxes. The WET then converts the waveforms
into a stimulus file that your simulator recognizes. Waveform files are also
useful as input to automatic test equipment, or as documentation of the
circuit’s expected behavior.

Basic Operation

Synario Capture System User Manual 4-3

Using the SCS Executive
(SCS/ECS Only) The SCS Executive is the first thing you see when you run
SCS. You can launch the Schematic Editor, Symbol Editor, or Hierarchy
Navigator directly from the Executive. The Executive also gives you easy
access to a number of utility programs, including schematic
exchange/conversion utilities and the INI Editor.

Running the Editors or Hierarchy Navigator

The most common use of the SCS Executive is to launch one of its three
principal applications.

1. Click the appropriate radio button: Navigate Hierarchy, Edit Schematic, or
Edit Symbol. The label of the edit box changes accordingly, as does the
default file extension (*.tre, *.sch, *.sym). The list box shows the
corresponding files in the current directory.

2. If you want a different file extension (or a specific file name), type it into
the edit box and press ENTER. The contents of the list box change to reflect
the new specification.

3. If you want a different directory, double-click on a directory or the double
dot [..] in the list box to change the directory.

4. Double-click on the file name you want to work with. Or highlight the
name and click on RUN. If you want to create a new schematic, symbol, or
hierarchy file, click on NEW instead.

You don’t have to use the SCS Executive; you can run these applications from
the command line or File Manager. However, the Executive simplifies the
process by automatically passing the selected file name to the program.

Editing Files

The SCS Executive can be used to search for a file you want to edit and load it
into the Notepad editor.

1. Choose the View menu. A list of wildcards for various file types is
displayed, along with the universal wild card (*.*).

2. Click on the file type you want to edit. The contents of the list box are
immediately updated to show files of the type you selected.

3. If the file you want is not in the current directory, double-click on a
directory or the double dot [..] in the list box to change the directory.

Basic Operation

4-4 Synario Capture System User Manual

4. Double-click on the file name you want to edit. Or highlight the name and
click on RUN. The Notepad is invoked and the selected file is loaded. If
you want to create a new text file (of any type), click on NEW instead.

Note: When you select one of the utility programs (such as the Notepad editor, or the
utilities described below), the radio button at the bottom of the window changes from
“Utilities” to the name of the selected utility. The name remains there until you select
another utility. You can call the Editors or Hierarchy Navigator, then click the bottom
button to return to the last-used utility without having to reselect it from the menus.

Schematic Exchange/Conversion Utilities

The conversion utilities work in much the same way as loading or editing a file.

1. Choose the Utilities menu.

2. Select the type of conversion you want to perform. The contents of the list
box change immediately to show only files of the appropriate source type.

3. If the file you want is not in the current directory, double-click on a
directory name or the double dot [..] in the list box to change the directory.

4. Highlight the name of the file you want to convert, then click on ONE. To
convert all files in the current directory, click on ALL. The converted files
are placed in the same directory as the source files.

Setup Utilities

With the Windows version, the setup menu gives you the option of setting the
current .ini file or of editing the current or master .ini file. (The default
initialization file is ecs.ini file from the config subdirectory. The INI Editor and
the ecs.ini file are described in Chapter 9, The SCS INI Editor.)

SCS uses a number of other initialization files. These are normally modified in
an ASCII text editor (such as Notepad). If an application uses an initialization
file, the file is described in the same chapter of this manual where the
application is described.

Basic Operation

Synario Capture System User Manual 4-5

Customizing the Executive with the pcshell.ini File
The pcshell.ini file is used only with the Windows version of SCS. If you are
using the UNIX/Motif version, you can skip this section.

The pcshell.ini file gives you complete control over the SCS Executive. You
can select the labeling and function of the radio buttons. You can also add or
remove any of the menus, and include whatever commands you want under
those menus (including applications not supplied with SCS). A typical
pcshell.ini file is shown below:

[Buttons]
Navigate Hierarchy=hiernav.exe,Design:,*.TRE,NAV,&F
Edit Schematic=schem.exe,Schematic:,*.SCH,NEW,&F
Edit Symbol=sym.exe,Symbol:,*.SYM,NEW,&F

[&Utilities]
Schem to ASCII=ascout.exe,Schematic:,*.SCH,ALL,&F
ASCII to Schem=ascin.exe,ASCII File:,*.ASC,ALL,&F
Update Schem=updatesc.exe,Schematic:,*.SCH,ALL,&F
Symbol to ASCII=asyout.exe,Symbol:,*.SYM,ALL,&F
ASCII to Symbol=asyin.exe,ASCII File:,*.SYM,ALL,&F
Write EDIF=edifout.exe,Symbol:,*.SYM,ALL,&F
Read EDIF=edifin.exe,EDIF File:,*.EDF,ALL,&F
Back-Annotate Schematic=scback.exe -pads, Schematic:,*.eco,all,&F

[&View]
Edit *.*=notepad.exe,Text File:,*.*,NEW,&F
Edit *.INI=notepad.exe,Text File:,*.INI,NEW,&F
Edit *.V=notepad.exe,Text File:,*.V,NEW,&F
Edit *.PC=notepad.exe,Text File:,*.PC,NEW,&F
Edit *.PTN=notepad.exe,Text File:,*.PTN,NEW,&F
Edit *.HDR=notepad.exe,Text File:,*.HDR,NEW,&F
Edit *.SCR=notepad.exe,Text File:,*.SCR,NEW,&F

[&Setup]
Set Current ini File=makeini.exe,Ini File:,*.ini,No,&F
Edit Current ini File=pcini.exe,,,,-current
Edit Master ini File=pcini.exe,,,,-master

Basic Operation

4-6 Synario Capture System User Manual

pcshell.ini Format

Buttons and Menu Entries

The [Buttons] section controls the labeling and function of the radio buttons.
The other sections add menus to the menu bar. You can define up to five
buttons and 20 menus. There can be no more than 200 items for all the buttons
and all the menus combined.

The [Buttons] section must be labeled “Buttons,” but the menu sections can
have any name you want. Place an ampersand (&) in front of the letter in the
section name that you want to be the accelerator key for that menu. For
example, if you add a [Verify] section, and you want ALT+F to be the accelerator
for the Verify menu, place an ampersand in front of the letter F: [Veri&fy].

Two menus can have the same accelerator key, but you have to press the key
twice to access the second menu. If you do not specify an accelerator key, the
menu is accessible only with the mouse, not from the keyboard.

The formats for the button items and the menu items are nearly identical. The
text to the left of the equals sign (=) is the label for the radio button, or the
command entry in a menu. The text to the right of the equals sign is the
command itself, plus additional display information for the SCS Executive.
Look at the second entry in the [&View] section:

Edit *.INI=notepad.exe,Text File:,*.INI,NEW,&F

There are five items on the right side of the equals sign, separated with
commas (,). If you omit an item, you must include the comma as a
placeholder. The table below lists each item and its use.

Item Use

notepad.exe The name of the application to run. You can also run .bat
or .pif files.

Text File: In the [Buttons] section, the label for the radio button. In
the menu sections, the label for the filename edit box. (This
is usually the file extension or file type.) If this item is
omitted (as in the [&Setup] section), the edit box is not
relabeled.

*.INI The default directory and file extension. The entry must
start with *., which represents the current directory (\)
and the wildcard for the base name (*.).

NEW The label for the second pushbutton at the bottom.

Basic Operation

Synario Capture System User Manual 4-7

"NEW" runs the program without passing a file name.
"ALL" runs the program and passes a file name of " * ".
"NAV" creates a Hierarchy Navigator .tre file for all
schematics in the directory.
"NO" disables the button.
If no label is specified, the program is run and no file
name is passed.

&F Any command line options (including none). If an
ampersand (&) appears in the command line, it is
replaced by the file name selected from the list box. A
letter following the ampersand specifies the format for the
file name:

B Base name (no drive, path, or extension)

F Base name plus extension (no drive or path)

E Extension only (including the dot (.)

D Drive plus path

P Drive plus path plus trailing backslash

R Drive plus path plus base name

W Current working directory

N Fully qualified pathname (drive, path, base name,
extension)

& If your command line requires a literal ampersand (not a
filename token), enter two ampersands (&&).

The command line options are not limited to those listed above. You can add
any options your application needs.

Path Specifiers

Your command line can include environment variables defined in the
Windows Registration Editor (RegEdit that comes with Windows), or in PATH
statements in your autoexec.bat file.

To use a variable specified in the Registration Editor, prefix the variable’s name
with a percent sign (%) and follow it with a backslash (\), for example,

%ROOT\

To use a path specified with the SET PATH command in autoexec.bat, prefix
the path’s name with a dollar sign ($) and follow it with a backslash (\), for
example,

Basic Operation

4-8 Synario Capture System User Manual

$my_directory\

In either case, the path identifier is interpreted as all the alphanumeric or
underscore (_) characters following the percent or dollar sign. The path
identifier terminates when the first non-alphanumeric character or
non-underscore is reached.

If your command line requires a literal dollar sign, enter two dollar signs ($$).
If your command line requires a literal percent sign, enter two percent signs
(%%).

Note: All pcshell.ini command lines and all command lines in the simulator
initialization files (described in Appendix B, “Simulator Interfaces”) use this same
format for path specification.

Additional pcshell.ini Features

If you want to add a separator line to a menu, add a line that starts with a
hyphen (–). The rest of the line is ignored.

You can add, edit, or delete items in pcshell.ini as you see fit. Changes do not
appear until the next time you run the SCS Executive.

The SCS Executive Command Line

When SCS is installed, the SCS Executive is added to the Synario program
group, with this default command line:

scs.exe

You can modify the Executive’s behavior with the following command line
options:

-ini config.ini The specified config.ini SCS initialization file is used
instead of ecs.ini or the file specified in the INIFILE
variable of the [SCS] section of win.ini.

-menu shell.ini The specified shell.ini shell configuration file is used
instead of pcshell.ini.

-path path The specified directory path becomes the working
directory, instead of the path specified in the SHELLPATH
variable of the [SCS] section of win.ini.

Basic Operation

Synario Capture System User Manual 4-9

SCS Command Structure
Like most Windows or Motif applications, SCS has a graphical interface, with
drop-down menus, dialog boxes, and a mouse-driven pointer to organize and
simplify the user interface.

This graphical interface means that all Windows or Motif applications have a
similar “look and feel.” So if you’re familiar with one application, you have a
basic understanding of how other applications work.

SCS applications use an action–object command structure. You select the action
you want to perform (usually from a menu), then the object you want to act on.

For example, to remove a symbol from a schematic, you first select the Delete
command from the Schematic Editor’s Edit menu. Then you point the mouse
cursor at the symbol and click the mouse button to delete the symbol.

Almost all commands remain in effect until you select a different command.
For example, if you select the Schematic Editor’s Add: Wire command, you can
continue to draw wires until you select a different command.

Using the Mouse
The mouse works the same as it does in other Windows or Motif applications.
The following is a brief summary of mouse terms and actions.

Point Move the mouse so the cursor touches a menu command
or the object you want to act on.

Click,
Click Left,
Click Right

Press the specified mouse button briefly and release it. If
no button is specified, the left button is assumed (that is,
“Click” is the same as “Click Left”).

Click On Point the mouse cursor at an item or object and click the
specified mouse button. If no button is specified, the left
button is assumed.

Double-click Click the left mouse button twice, quickly.

Drag Dragging is used to outline a selected area, or to draw an
object (a wire, a circle, a rectangle).

Point the mouse cursor at any corner of the area you want
to select, or at the starting point of the object you’re going
to draw. Press and hold the left mouse button. Then drag
the mouse to outline the area or draw the object. (The area
or object is shown as a dotted line.) The drawing or
selection operation is completed when you release the
mouse button.

Basic Operation

4-10 Synario Capture System User Manual

Right Mouse Button Functions

The right mouse button has its own set of functions. It:

♦ Resets most commands. For example, if you start drawing a wire but
change your mind about where it should go, clicking right deletes the
proposed wire (shown as a dotted line) without canceling the Add: Wire
command.

♦ Switches some commands to an alternate mode. For example, when
dragging the mouse diagonally to add a wire, clicking right changes the
wire’s routing.

♦ Cancels some commands. For example, if you start to paste the contents of
the Clipboard but change your mind, click right anywhere in the Editor’s
window to cancel the Paste command.

Some mice have a third, center button. SCS does not use this button.

Prompting and Error Messages
All commands that require additional information or another action will
prompt you for it. The prompt line is at the lower-left corner of the window.
Look at the prompt line whenever you’re not sure what to do. Figure Figure
4-1 shows a prompt line in the Schematic Editor.

The prompt line also displays what you type, such as the names of symbols
and signals. You can edit this information as you enter it, using the ARROW,
DEL, and BACKSPACE keys.

Immediately above the prompt line is the horizontal scroll bar. When minor
errors occur (such as those that prevent a command from completing its
action), the Editor replaces the scroll bar with an error window that describes the
error. (The prompt usually explains how to fix the error.) Major errors are
reported in pop-up message boxes.

prompt line
error window

Figure 4-1
Schematic Editor Error Window and Prompt Line

Basic Operation

Synario Capture System User Manual 4-11

Error Recovery

The Schematic and Symbol Editors have a feature that increases the chance of
fully recovering from a hardware or software malfunction (a “crash” or
“lockup”). The first time you save a new design, the Schematic Editor creates a
log file named design._sc (where design is the base name of the schematic file).
The Symbol Editor log file is named design._sy.

The Editors check for a log file before opening an existing schematic or symbol.
If the file exists, it means:

♦ Someone else on the network has this particular file currently open. (See
the following section on network operation.) Or …

♦ The last time the file was open, the user did not exit the Editor normally.

When either Editor finds a log file, the Editor displays a warning message that
asks you to verify that no one else is editing the target file. If someone else on
the network is editing the file, you should not edit it, as you would overwrite
each other’s changes. If you tell the Editor that someone else is editing the file,
the Editor will not load it.

If you respond that no one else is using the file, the Editor assumes the log file
is left from an interrupted editing session. The Editor then asks if you want to
recover the file. If you respond Yes, the Editor uses the log file to recover any
changes made to the schematic or symbol before the last editing session was
interrupted.

The log file is not named until you first save a schematic. Be sure to save new
schematics and symbols as soon as you start working on them, so an easily
identifiable log file will be available. (Until you save the file and name it, the
Editor gives the log file an arbitrary name.) Whenever you exit the Schematic
or Symbol Editor normally, the Editor updates the schematic or symbol file
(design.sch or design.sym) and erases the log file.

Network Operation
When schematics, symbol files, and other project components are shared on a
network, some form of overwrite protection is required. The system cannot
allow two people to work on the same file at the same time, continually
overwriting each other’s work.

The Schematic Editor uses the crash-recovery log file (described in the
preceding section) to ensure single-user access. If you try to open a file and the
Schematic Editor finds a log file for it, you’re asked if someone else is using the
file. If you answer Yes, you can’t access the file.

If you answer No, you’ll be allowed to open the file, even if someone else is
editing it. Check with anyone who might be using the file before answering No.

Basic Operation

4-12 Synario Capture System User Manual

Naming Design Files
When you name schematic or symbol files, observe the following rules:

♦ Observe DOS file naming conventions. The dollar sign ($) cannot be the
first letter of a filename, however.

♦ Don’t enter a filename extension; the Editor will add it automatically. If
you enter a non-standard extension, the Editor will replace it with the
correct extension (.sch for schematics, .sym for symbols).

♦ The system reserves several filename extensions for their own use. Avoid
using the following extensions when naming your own files:

. _ln Hierarchy Navigator log file

. _sc Schematic Editor log file

. _sy Symbol Editor log file

. _wt Waveform Editing Viewer log file

. _wv Waveform Viewer log file

. asc ASCII schematic file

. asy ASCII symbol file

. bin Binary waveform file

. edf EDIF netlist

. err Error OUTPUT file

. his Waveform Viewer history file

. nam Binary waveform name file

. net Generic netlist file

. pin Netlist file for generic netlist by pin

. sch Schematic Editor files

. sym Symbol Editor file

. tre Hierarchy Navigator file

. vtr Hierarchy Navigator temporary file

. wav Waveform Viewer waveforms and trigger information

. wdl Waveform Editing Tool database

. wet Waveform Editing Tool database

Basic Operation

Synario Capture System User Manual 4-13

Saving the Schematic or Symbol
The Save command from the File menu saves your most recent changes to the
schematic or symbol. If the schematic or symbol is new, you’re prompted for a
name. If the schematic or symbol already exits, changes are saved to the
existing file.

The extension .sch is automatically added to the schematic’s name. If you add
your own extension, the Schematic editor discards it and appends .sch instead.
(The Symbol Editor similarly forces the .sym extension.)

Schematics (and symbols) are independent files. A schematic can be stored in a
project library for use in many designs, or it can be kept in the design directory
for use in a specific design.

Printing and Plotting

Windows

All SCS programs are Windows/Motif applications, so the operating system
handles printing for whatever printer(s) you have installed. You print a
symbol, schematic, or the screen currently displayed by selecting the Print
command from the File menu.

Windows supports a wide range of printers. The drawing or screen display
will be printed at the highest quality the printer is capable of.

The default page layout is landscape (long side of the paper horizontal). Since
most symbol and schematic drawings are wider than they are tall, landscape
orientation gives a larger image. In cases where the image to be printed is taller
than it is wide, and vertical (portrait) orientation would make better use of the
paper, use the Print Setup dialog box from the File menu to change the
orientation to Portrait.

If you want to use a plotter to print your designs, attach it to the appropriate
port (usually COM1: or COM2:), then install and configure the appropriate
Windows driver using the Printers dialog box from the Windows Control
Panel. Select the plotter driver in the Printer Setup dialog box from the File
menu before you print.

Basic Operation

4-14 Synario Capture System User Manual

UNIX/Motif

UNIX/Motif requires a PostScript® printer. The printer setup information
must be supplied in the INI file. If it is not there, add it under the
[PostscriptPrinter] header. The INI Editor will not remove or alter these entries.

[PostscriptPrinter]
Orientation=Landscape
TypeFace=Helvetica-Narrow
SetupLine=
PrinterName=lpr
PaperWidth=8.5
PaperHeight=11.00
SideMargin=0.25
TopMargin=0.25

PostScript Setting Description

Orientation Landscape (top and bottom edges of schematic printed
along the length of the paper) or Portrait (top and bottom
edges printed along the height)

TypeFace The typeface to be used when printing. The specified font
must be listed in the file $ROOT/data/fontlist.ini. If no
font is listed, or the listed font is not in this file, the font
defaults to Courier.

SetupLine Special instructions to the printer. Anything on this line is
inserted in the printer command line:

statusdict begin setup_line end.

PrinterName The name of the printer. Usually lpr on a UNIX system. If
this field is blank or contains an asterisk (*), an
encapsulated PostScript (.eps) file is created on the disk,
rather than being sent to the printer.

PaperWidth The width of the paper in the printer.

PaperHeight The length of the paper in the printer.

SideMargin The side margin desired. Most laser printers cannot
printer closer than 0.25" to the edge of the paper.

TopMargin The top and bottom margins desired. Most laser printers
cannot printer closer than 0.25" to the top or bottom of the
paper.

Basic Operation

Synario Capture System User Manual 4-15

The INI Editor
An initialization (“INI”) file maintains a wide range of configuration and
display options for the Schematic Editor, Symbol Editor, Hierarchy Navigator,
Waveform Viewer, and Waveform Editing Tool. This file is in ASCII format
and is human-readable. You can modify it with any text editor, but the INI
Editor is the easiest and safest way to make changes. Chapter 9, “The SCS INI
Editor,” explains the options, and how to select or alter them.

The default initialization file is ecs.ini in the config subdirectory. You can,
however, modify this file, then save it under a different name to create
multiple, customized INI files.

Whenever you save a file (whether or not you modified it), the INI Editor asks
if you want to make the saved file the “current project.” If you respond Yes, the
new file becomes the default INI file. You can change the INI file in use at any
time by loading a different INI file into the INI Editor, then using the Save
command and responding Yes.

Basic Operation

4-16 Synario Capture System User Manual

Chapter 5

Using the Schematic Editor
The Schematic Editor has the following significant features:

♦ Connectivity is created and maintained automatically as you draw the
schematic. This allows the Editor to catch many common errors as they
occur.

♦ Multi-sheet schematics are supported. Nets with the same name on
different sheets are automatically connected.

♦ Full hierarchical design (top-down, bottom-up, or inside-out) is supported.
Schematics can be represented as Block symbols for inclusion in other
schematics.

♦ Symbols can be created without quitting the Schematic Editor. The
symbols are immediately available for placement in the schematic.

♦ Iterated instances, in which one symbol represents any number of identical
components, are supported.

♦ An unlimited number of “undos” and “redos” can be performed.
♦ The properties of components, pins, and nets can be queried at any time.
♦ Crash recovery is simple and transparent.

Chapter Contents
This chapter covers the following topics:

♦ What Is a Schematic?
♦ Sheets and hierarchical levels
♦ Schematic Components
♦ Adding Schematic Elements
♦ Instance Names
♦ Sequential and Iterated Instances
♦ Wiring the Schematic
♦ Nets and Buses
♦ Net Names
♦ Specifying Signal Direction

Synario Capture System User Manual 5-1

♦ Buses—Names, Types, and Creation
♦ Bus Taps
♦ Bus Pins
♦ Wiring Constraints
♦ Modifying the Schematic
♦ Debugging and Verifying a Schematic
♦ Schematic Editor Display Options

What Is a Schematic?
A schematic is a drawing that represents all or part of an electronic circuit. In
terms of SCS, a schematic consists of the following three things:

♦ References to symbols from the SCS symbol library (or user-created
symbols).

♦ The circuit’s connectivity: the wiring that interconnects the symbols and
links the circuit to “the outside world.” SCS automatically creates and
maintains the circuit’s connectivity as you add or remove symbols and
wiring. The schematic’s database is always ready for use, so no
post-processing is required.

♦ Attributes (values that define the electrical behavior (and other
characteristics) of the schematic’s components (both symbols and wiring)).

A schematic can also contain decorative graphics or text annotations.

For a simple circuit, a single schematic may be sufficient to show the entire
circuit in terms of its primitive elements. A schematic created in the Schematic
Editor can consist of more than one sheet, just as a hand-drawn schematic can
extend over more than one piece of drafting paper. You can add as many
sheets as you want to extend the original schematic, using the Sheet command
from the File menu. The only practical limit is the amount of free RAM.

A schematic can also contain block elements that represent other schematics. A
design using one or more block elements is said to be hierarchical, because it
has more than one level. Additional hierarchical levels can be added as the
design’s complexity increases.

Schematic Filenames

A schematic’s file name is the name of the schematic, plus the extension .sch.
Since Windows 3.x is limited by DOS conventions, the base name of the file
can have no more than eight characters. For file compatibility, the UNIX/Motif
version uses the same name conventions as DOS.

Using the Schematic Editor

5-2 Synario Capture System User Manual

Schematic Sheets Versus Hierarchical Levels

A complex design can be a single schematic consisting of multiple sheets, or a
hierarchy of two or more schematics. Schematic sheets are a “horizontal”
expansion of a design—all components are at the same level. Hierarchical
levels represent a “vertical” expansion of a design, with some levels “superior”
or “subordinate” to other levels.

Schematic sheets and hierarchical levels are two different ways of entering and
organizing a design. The choice depends on the complexity of the design, and
the relative ease of understanding the design’s function and organization.

For example, a design that uses a number of standard modules over and over,
or that combines simple modules into complex subsystems, might best be
represented hierarchically. On the other hand, a design with little repetition or
modularity would be easier to implement as a multi-sheet schematic. You can,
of course, freely mix both approaches within a given design.

Schematic Components
A schematic consists of five components: symbols, wires, attributes, graphics,
and text.

Symbols

Symbols represent most of the electrical components in a circuit—gates,
flip-flops, inverters, multiplexers, and so on.

The electrical connections to symbols are made through pins attached to the
symbols. Other than that, symbols have no electrical meaning. Their behavior
and characteristics are defined by attributes (described below) attached to each
symbol.

Wires

The electrical connections in a schematic are represented by lines called wires.
All pins touched by a wire are electrically connected. A set of interconnected
pins and wires is a net (“network”).

Every net has a name. If you don’t assign a name, the Editor assigns one when
you save the schematic. The Editor’s name consists of the letter N, followed by
an underscore (_) and a number from 1 to 232 – 1 (4,294,967,295).

A wire representing a single conductor is called a signal. A wire that represents
more than one signal is called a bus. (Buses are explained in more detail in a
later section of this chapter, “Nets and Buses.”) Wires can also be marked as
external connections to a schematic with I/O markers (see Add: I/O Markers
in the SCS Command Reference).

Using the Schematic Editor

Synario Capture System User Manual 5-3

Attributes

Each symbol, pin, and net in a schematic has attributes. Attributes can describe
any characteristic of a symbol, pin, or net, but are primarily used to define its
electrical behavior. Some attributes, like those for device type and instance
name, are automatically assigned when the symbol is created or placed in a
schematic. Other attributes (usually instance-specific data) are assigned by the
user.

Attributes are described in detail in Chapter 8, “Attributes.”

Graphics and Text

Graphics and text can add extra information to a schematic, such as clarifying
circuit operation, or the circuit’s relationship to other circuits in the design.
They can provide useful information for the reader, but they have no electrical
significance (or other meaning) for SCS.

Notes, labels, title boxes, and other symbolic information can be added with
the Add menu’s Rectangle, Line, Circle, Arc, and Text commands. These
commands are described in detail in the SCS Command Reference.

Figure 5-1 shows a simple schematic.

I1
O1

A2

A1
D

Q
EN

LATCH

Figure 5-1
A Simple Schematic

Using the Schematic Editor

5-4 Synario Capture System User Manual

Adding Schematic Elements
To begin a new design, select New from the File menu. You can then start
placing symbols. (If you want to work on an existing schematic, use the Open
command to load it.)

Selecting a Symbol

To place a symbol:

1. Select the Symbol command from the Add menu. You are prompted for
the symbol’s name.

2. If you know the symbol’s name, type it on the prompt line, then press
ENTER. (Type only the name of the symbol. Do not include the .sym file
extension.)

If you don’t know the symbol’s name, you can select it from the dialog
box displayed when the Add Symbol command is selected:

a. Click on a directory in the top list box. The bottom list box shows the
symbols in that directory. (The directories in the top list box are
specified in the INI Editor’s Symbol Libraries dialog box. The INI
Editor is described in detail in Chapter 8, "The SCS INI Editor.")

b. Click on the desired symbol in the bottom list box.

Figure 5-2
Symbol Library List Box

Using the Schematic Editor

Synario Capture System User Manual 5-5

The Schematic Editor searches the following places in the order listed to find
the specified symbol:

♦ the project directory
♦ the symbol library search path

The search stops at the first symbol with the specified name. The symbol is
then attached to the cursor.

To copy a symbol from the schematic:

If an instance of the symbol you want already appears in the schematic, select
the Add Symbol command, then click on the instance. A copy of that symbol is
attached to the cursor.

To select a symbol or symbols in the schematic:

♦ Click on the symbol.
♦ Shift-click to select additional symbols.
♦ Draf a box around the desired symbols.
♦ Use the Find button to select all symbols that match a specified criteria.

Placing the Symbol

Once the symbol is attached to the cursor, click at the desired location to place
it. The symbol remains attached to the cursor, so you can place multiple copies
without having to reselect the symbol.

The symbol can be mirrored or rotated before it is placed. Refer to the SCS
Command Reference for a description of the Mirror and Rotate commands.

If you pick the wrong symbol, or change your mind, click right anywhere in
the window to remove the symbol from the cursor. You can then select a
different symbol. (You do not have to reselect the Add: Symbol command.)

To replace an existing symbol, move the cursor so that at least 50% of the new
symbol covers the existing symbol. Click to delete the old symbol and place
the new one. (If the overlap is less than 50%, the old symbol is not deleted, and
the new symbol overlaps it.) None of the override attributes associated with
the previous symbol are transmitted to the new symbol.

Adding Instance Names

Schematic symbols are usually given identifiers to distinguish them. SCS
supports two types of identifiers: reference designators and instance names.

Reference designators are used most often to identify physical components.
For example, a 7404 IC with six inverters might be given a reference designator
of U42. The inverters within this IC are uniquely identified by their pin
numbers.

Using the Schematic Editor

5-6 Synario Capture System User Manual

Each symbol instance also has a unique instance name. Instances names are
fully hierarchical. Chapter 3, “Introduction to Hierarchical Design,” shows
how instance names from multiple levels are combined to specify a single gate.

By default, the Schematic Editor automatically adds instance names of the
form I_nn, (where nn is the next unused integer) each time you save the
schematic file. You can assign names of your own

To override the Editor-assigned names:

1. Select the Instance Name command from the Add menu.

2. Type the desired name and press ENTER. The name is attached to the
cursor.

3. Click on the symbol instance you want to name.

You do not need to assign your own instance names. However, carefully
chosen names make it easier to locate specific symbols in a hierarchical design.

Sequential Instances

If you want to add sequential instance names (AND1, AND2, … ANDn), start
by selecting the Instance Name command (or click right to reset it if the
command is already selected). Then

♦ Type the instance name. Add the first number of the sequence at the end
of the name, followed by a plus sign (+). Or, if you want the sequence to
start with 1, you can add just the plus sign, with no number.

INV3+ [starts with INV3]

INV+ [starts with INV1]

Press ENTER. The instance name with the number you entered (or the
number 1 if you used the plus sign) is attached to the cursor.

Or …
♦ Click on an existing instance. If the instance ends with a number, the same

name, with the number incremented, is attached to the cursor. If the
existing name does not end with a number, a numeric suffix of 1 is added
to the root name and both the name and suffix attached to the cursor.

You can now click on the instance(s) to be named. The number is automatically
incremented for each new instance. Any numbers already assigned to
instances with the same base name are automatically skipped.

For example, if you are numbering eight inverters starting at INV3, and INV7
and INV8 already exist, the inverters are given labels of INV3 to INV6 and
INV9 to INV12.

Using the Schematic Editor

Synario Capture System User Manual 5-7

Please refer to the Instance Name command in the SCS Command Reference for
a more detailed description of adding instance names.

Iterated Instances (Arrays)

Iterated instances allow a single symbol to represent multiple instances
connected in parallel. Figure 5-3 shows two ways of representing four parallel
buffers. On the right, four separate inverters are added to the schematic. On
the left, one symbol with the instance name of INV[0:3] represents the bank of
four inverters.

Both examples represent exactly the same circuit connectivity. The iterated
instance is a more compact way to represent repeating structures. Iteration is
useful in bit-slice designs, for example, where complex structures are repeated
many times. It is also convenient when connecting to a multi-bit interface.

A single instance is converted into an iterated instance by giving it a
compound instance name, of the form

INV[3-10]

In this case, eight instances of the symbol you’ve named INV are created—but
the symbol appears only once in the schematic.

The entry format for an iterated instance name is flexible. You can use brackets
[], parentheses (), or curly braces { } to delimit the numbers. And the numbers
can be separated by a hyphen (–) or colon (:). Any of the following six forms
can be used for entry:

INV[3-10] INV[3:10]

INV(3-10) INV(3:10)

INV{3-10} INV{3:10}

Regardless of which form you use for entry, the Editor converts it to brackets
and hyphens for display on the schematic.

INV3

INV2

INV1

INV0
IN0 OUT0

IN[0-3] OUT[0-3]

IN1 OUT1

IN2 OUT2

IN3 OUT3

INV[0:3]

Figure 5-3
Iterated and Non-Iterated Inverter Arrays

Using the Schematic Editor

5-8 Synario Capture System User Manual

You can also enter a list of instance names. A list is a mixture of single names
and ranges of names. For example, C1,C3,C(5:20),C22,C24 assigns the instance
names C1, C3, C5–C20, C22, C24 to twenty iterations.

Only Block, Cell, and Component symbol instances can be iteratively labeled.

Note: Although an iterated instance can be “pushed into” in the Hierarchy
Navigator, the “individual” symbols cannot be viewed separately. If you need to view
them separately, you must create a Block symbol containing individual symbols.

Supported Characters in Instance Names

The following characters are supported in instance names:

A–Z, a–z, 0–9 All alphanumeric characters. Names are not
case-sensitive. INV, Inv, and inv are considered the same
instance name.

’ Apostrophe (single quote)

_ Underscore (an underscore cannot be the first or the last
character of an instance name)

Wiring the Schematic
Wires electrically connect the symbols. The symbol pins are the connection
points for the wires.

Drawing Wires

Wires are added with the Wire command from the Add menu. The simplest
wiring is Point-to-Point:

1. Select the Wire command from the Add menu.

2. Click on the first point of the wire. Two dotted lines, one horizontal and
one vertical, stretch from the point selected to the cursor. As you move the
cursor, the lines change from horizontal to vertical (or vertical to
horizontal) depending on the position of the cursor relative to the first
point.

3. When the first dotted section has the length and direction you want, click
a second time. The first dotted section changes to the wire color and its
position is fixed. A new dotted section is now added to the “rubber band”
line. You can add additional wire segments by repeating steps 2 and 3.

4. To end the wire, click twice at the same point (or click right). The wire
terminates automatically if the point you click on falls on a pin terminal.

Using the Schematic Editor

Synario Capture System User Manual 5-9

Diagonal Wires

You can draw 45° wire segments by pressing SHIFT while clicking on the first
point. Hold down SHIFT to add additional segments at 45°.

If you drag diagonally from the first point to the last, you enable a special
wiring mode (called “Z and C connection”) that simplifies routing complex
wire paths. This mode (and other wiring techniques) are described in the SCS
Command Reference under Add: Wire.

Nets and Buses
Any single- or multi-wire connection between pins is called a net (“network”).
This section explains how nets are named, and how multi-wire nets (called
buses) are created and named.

Net Names

The nets (networks) form the electrical connections among the components.
Every net has a name, either assigned by you or by the Schematic Editor. Net
names have two principal functions, identification and interconnection.

Identification

Meaningful net identifiers make a design easier to understand. Nets are
usually given the names of the signals they carry.

If you don’t assign a name, the Schematic Editor automatically assigns a
unique name of the form N_nn, where nn is an integer between 1 and 232 – 1
(4,294,967,295) when you save the file.

You can override any Editor-assigned name by assigning one of your own. Use
the Net Name command from the Add menu.

Interconnection

If a wire segment attached to a symbol pin is given the name of a net or bus,
the pin is attached to that net or bus, even if you haven’t drawn the connection
on the schematic.

Two or more wires with no visible connection on the schematic are
automatically connected if they have the same net name. Each wire is called a
branch of that net. Inter-sheet connections are created in this way.

You can easily find implicit net connections with the Query command from the
Object menu. Click on any net or bus. All wires with the same name are
highlighted, on all sheets of the current schematic.

Nets with different names cannot be connected; the Editor will warn you if
you try to “short” them.

Using the Schematic Editor

5-10 Synario Capture System User Manual

Entering Net Names

Use the Net Name command from the Add menu to assign a name of your
own choosing to a net. Your name replaces any name the Schematic Editor
may already have assigned. If you assign the same name to two separate nets
(“branches”), they are connected, even though no connection appears on the
schematic. This feature makes it easy to connect widely spaced components
without having to draw long wires across the schematic.

Net names you assign are always displayed; Editor-assigned names are not
displayed. To avoid cluttering the schematic, you should name only those nets

♦ That connect to other schematics.
♦ Whose functions need documentation or clarification.
♦ Whose signals you want to view in the Hierarchy Navigator.
♦ Whose signals you want to reference in simulation or timing analysis.

There are many ways to enter net names. After selecting the Net Name
command:

♦ Type a single name and press ENTER. This name is attached to the cursor.
♦ Type a compound name and press ENTER. (Compound names are

explained in the section on buses later this chapter.) The full compound
name is attached to the cursor.

♦ Copy the name of an existing net or bus to the cursor by clicking on the
wire.

♦ Enter a name prefix with a number and a plus sign (+) to define an
auto-increment sequence for net names. The first name is attached to the
cursor and subsequent clicks attach sequential net names. See also Add:
Net Name in the command reference.

Placing the Net Name

Once a net name (or group of names) is attached to the cursor, there are three
ways to place it:

♦ Click on an empty point. (You can place all the net names first, then add
the wires later.) You will receive a warning message if a wire is not
eventually connected to the name.

♦ Click on a wire. A name placed at the end of a wire is left- or
right-justified. A name in the middle of a wire is centered.

The position of the name is determined by the segment ends at the time of
placement. If both ends are connected, the name is placed in the middle. If
neither end of the segment is connected, the name is placed at the starting
point. If only one end of the segment is connected, the name is placed at
the unconnected end.

Using the Schematic Editor

Synario Capture System User Manual 5-11

♦ Drag the mouse to simultaneously add a wire segment and its name to a
pin, wire, or bus. If either end of the segment connects at right angles to a
wire or bus, a bus tap is created at that end. If the wire is not already a bus,
it is promoted to a bus.

Once you drag the mouse to or from a pin, you can place subsequent net
names simply by clicking on a pin. (You don’t need to drag.) A wire segment
is automatically added, of the same length as previously dragged. The
name is attached as described above.

Individual elements of a compound name can be sequentially attached to
different nets:

1. Enter the compound name.

2. Select the Expanded Bus Name command from the Add menu (or click
right). The first name of the sequence is attached to the cursor.

3. Click on a net to place the name. The next name in the sequence then
appears on the cursor.

Repeat the process until all the names are assigned. Click right at any time to
stop adding names.

Regardless of how you attach the name, the Schematic Editor highlights the
net you’re attaching the name to as you click.

Legal Characters in Net Names

The following characters can be used in net names:

A–Z, a–z, 0–9 All alphanumeric characters. Case is not significant.

’ Apostrophe (single quote)

_ Underscore

Reserved Names

If B is the first character of a net name, the underscore cannot follow it as the
second character (as in B_). The underscore cannot be used in a net name of
the form N_nn (where nn is any integer). These names are reserved by the
Schematic Editor for nets that have not been named by the user.

Logical Inversion

When either the apostrophe or underscore is the first character of a net name,
the Schematic Editor draws the name with an overbar. (Overbars are often
used to suggest logical inversion.) The apostrophe or underscore is kept in the
name and appears in the netlist, but it is not displayed.

Using the Schematic Editor

5-12 Synario Capture System User Manual

Renaming a Net

To rename a net:

1. Select the Net Name command, or click right to reset the command (if it’s
already selected).

2. Type the new net name and press ENTER. The new name is attached to
the mouse cursor.

3. To rename the net (that is, all branches of the net, across all sheets), hold
down SHIFT as you click. You can click anywhere on the net.

If the renamed net has an I/O marker:

♦ The I/O marker is removed if you click to rename a specific branch.
♦ The I/O marker is kept if you hold down SHIFT to rename all branches.

Important! Remember that renaming a single branch disconnects that branch from
the rest of the net and connects it to the net (if any) with the new name.

Note: If the name of a branch is displayed two or more times on a single branch, you
cannot rename the branch. You must first use the Delete command to remove the extra
name(s).

Specifying Signal Direction

I/O Markers

An I/O marker is a special indicator that identifies a net name as an input,
output, or bidirectional signal. This establishes net polarity (direction of signal
flow) and indicates that the net is externally accessible.

The Schematic Editor’s Consistency Check command uses I/O markers to flag
any discrepancies in the polarity of marked signals and the symbol pins.
Discrepancies in polarity are also flagged each time you run the Hierarchy
Navigator.

Adding a Marker to a Net

To label a net as input, output, or bidirectional (or to change its polarity):

1. Select the I/O Marker command from the Add menu.

2. Select the desired polarity from the dialog box. (Or select None to remove
an existing I/O marker.)

Using the Schematic Editor

Synario Capture System User Manual 5-13

3. Click at the point where the I/O marker touches the end of a horizontal or
vertical wire segment or bus.

You can place, remove, or change several markers at one time by dragging a
box around the wire ends.

An I/O marker can only be added to net names at the end of a horizontal or
vertical segment of wire. A net should only have one I/O marker per sheet.

Buses

A bus combines two or more signals into a single wire. Buses are a convenient
way to group related signals. This grouping can produce a less cluttered,
functionally clearer drawing and clarify the connection between the main
circuit and a Block symbol. Figure 5-4 shows how a circuit appears before and
after a bus has replaced individual wires. The two schematics are electrically
equivalent.

The following sections explain the creation and use of buses.

Bus Types

There are two types of buses: ordered and unordered.

Ordered Buses

An ordered bus has a compound name consisting of the names of the signals
that comprise the bus. Any signals can be combined into an ordered bus,
whether or not they are related.

G_DEC4

D0
D1

O0
O1
O2
O3

G_DEC4

D0
D1

O0
O1
O2
O3

G_DEC4

D0
D1

O0
O1
O2
O3

G_DEC4

D0
D1

O0
O1
O2
O3 O0 O0

O1 O1
O2 O6
O3 O7

O2
O3
O4
O4
O0
O1
O5
O4

O4 O2
O5 O3
O6 O6
O7 O7

Figure 5-4
Same Circuit Without and With an Unordered Bus

Using the Schematic Editor

5-14 Synario Capture System User Manual

A net becomes an ordered bus when it is given a compound name. The net is promoted
to an ordered bus containing the nets listed in the compound name. (The net is
redrawn at twice its regular thickness to indicate that it’s now a bus.)

A compound name is a list of two or more net names, separated by commas.
For example:

READ,WRITE,MYNAME

represents the three signals READ, WRITE, and MYNAME. Spaces in
compound names are ignored.

A compound name can also be formed by adding a sequence of numbers to a
name. The sequence is specified as a starting number, an ending number, and
an optional increment (default = 1). The numbers are positive integers, and are
delimited by commas (,), dashes (–), or colons (:). The sequence is enclosed
in brackets [], parentheses (), or curly braces { }.

The following are examples of sequential compound names:

Sequential Name Signals

DATA[0-7] DATA[0] DATA[1] … DATA[7]

ADDR(0,14,2) ADDR(0) ADDR(2) ADDR(4) … ADDR(14)

IO{4:23:3} IO{4} IO{7} IO{10} … IO{22}

If the increment is greater than one, the ending number will not appear in the
sequence if it does not equal the starting number plus an integral multiple of
the increment (as in the third example above).

A compound name can also combine individual names and compound names
in any order:

Sequential Name Signals

CS,DATA{0:7},WR CS DATA{0} DATA{1} … DATA{7} WR

The order of the signals in the bus is the same as the order in which they are
specified. The order is significant only when the bus is connected to a bus pin.
(Bus pins are described in a later section, “Bus Pins.”)

Unordered Buses

An unordered bus is nothing more than an unnamed wire with bus taps. A net
with a single name (or any unnamed wire) is promoted to an unordered bus
by attaching one or more bus taps to it. The order of the signals within an
unordered bus is not defined and has no significance.

Using the Schematic Editor

Synario Capture System User Manual 5-15

Although the order of the signals in an unordered bus has no significance, you
must name the wires connecting to the bus taps, because the Schematic Editor
would otherwise have no way of determining which symbol pin at one end
connects to which symbol pin at the other end.

The bus shown in Figure 5-4 is an unordered bus. Unordered buses provide a
convenient way to route signals through the schematic with a minimum of
visual clutter. They have no other function.

Unordered buses cannot connect to bus pins, because bus pins represent an
ordered sequence of signals.

Bus Taps

Signals enter (or exit) a bus at points called bus taps. A bus tap can be added to
any existing bus, net, or wire. If a net or wire is not already a bus, adding the
tap automatically promotes it to a bus. To add a tap:

1. Select the Bus Tap command from the Add menu.

2. Position the cursor on the bus or wire where the tap is required.

3. Drag the mouse to draw a wire perpendicular to the bus.

4. Release the mouse button when the wire is the desired length.

Bus taps can be made only on vertical or horizontal sections of a bus. Tap
connections are shown as two diagonal lines.

More than one tap can be taken from the same signal, to simplify routing or
permit a cleaner layout. But you cannot add a bus tap to an existing bus tap.
You’ll get the error message “Forming Multilevel Bus.”

Naming the Tap

Once the tap has been added, use the Net Name command from the Add
menu to name it. If the tap is from an ordered bus, the tap’s name must match
the name of a signal in the bus. If it does not, the Schematic Editor or
Hierarchy Navigator will flag it as an error.

Note: Wires entering and leaving any bus (ordered or unordered) must be tagged
with a net name to indicate which signal is being tapped. Unnamed taps will
eventually be flagged as errors.

Using the Schematic Editor

5-16 Synario Capture System User Manual

Connecting to Pins

A tapped signal connects to an ordinary symbol pin in the usual way. An
ordered bus connects to a bus pin (a pin with multiple connections) directly. No
taps are needed; the connections are made automatically. The first signal in the
bus connects to the first signal in the bus pin, the second to the second, and so
forth. Both the bus and the bus pin must contain the same number of signals.

Creating Taps with the Net Name Command

The Net Name command creates the tap, a wire, and the net name.

1. Select the Net Name command from the Add menu.

2. Type a net name contained in the bus to be tapped, then press ENTER.

3. Point to the place on the schematic where you want the free end of the bus
tap.

4. Drag the mouse to the bus and release the button. The tap is made, and the
free end is labeled with the signal name.

Bus Pins

In the Schematic and Symbol Editors, a pin represents either a physical pin on
a real component, or a signal from a lower-level schematic.

A bus pin represents a group of pins or signals. You create a bus pin by giving
a pin a compound name (that is, a list of signals). If the pin connects to a Block
symbol, each of the signals listed in the bus pin’s name must also appear in the
schematic. This defines the connection between the Block symbol and its
underlying schematic.

Ordered buses can connect directly to bus pins. The number of bits or signals
attached to the bus must match the number of bits or signals attached to the
bus pin.

The first signal in the bus (by definition, the first signal in the bus’s name) is
connected to the first signal represented by the pin. The remaining signals in
the bus are connected to the remaining pins in the same order you assigned
the signal names to the pins.

Nets on Iterated Instances

Iterated instances allow a single symbol instance to represent multiple
instances in a parallel connection. Figure 5-3 shows two ways of representing
four parallel buffers. On the right, four separate inverters are added to the
schematic. On the left, one symbol with the instance name of INV[0:3]
represents the bank of four inverters.

Using the Schematic Editor

Synario Capture System User Manual 5-17

Compound Names

The input and output nets of an iterated instance can be given either single
names or compound names. If (as in the example shown in Figure 5-3), the
inputs or outputs are given a compound name, their nets are promoted to
buses in which each instance’s input or output is a separate signal.

Iterated buses work like any other bus. You can attach a bus (with the same
number of signals) directly to them, as you would any other bus.

Single Names

If an iterated input or output is given a single net name, there is only one input
or output net, and all the inputs or outputs connect in parallel to that single
net. In Figure 5-5, the input net is given a single name and the inputs of all four
gates are connected in parallel to the net.

This feature is used most often on inputs, not outputs. Paralleled outputs
represent a “wired-OR” configuration, which is usually drawn as separate
gates, rather than as an iterated instance.

Bus and Net Connections to Iterated Instances

You can make an iterated instance of any symbol. A simple (non-bus) pin on
an iterated instance remains a simple pin. The iteration does not convert the
pin to a bus pin. The same rules of connection to a simple pin still apply.

Connections to the nets of iterated instances are made according to the
following rules:

Connection Rule

Simple net to
simple pin

The net connects to corresponding pin on each instance.

INV3

INV2

INV1

INV0

INV[0:3]

OUT0

OUT1

IN OUT[0:3]
IN

OUT2

OUT3

Figure 5-5
Iterated Inverters with the Inputs in Parallel

Using the Schematic Editor

5-18 Synario Capture System User Manual

Bus to bus pin Successive bus signals connect to successive bus pins on
successive instances. The bus and bus pin must have the
same number of nets.

Simple net to
bus pin

Not permitted. Only a bus can connect to a bus pin.

Bus to simple pin The Nth signal of the bus connects to the scalar pin of the
Nth instance. The width of the bus and the number of
instances must match.

Wiring Constraints
The Schematic Editor enforces a number of wiring constraints. Most are
intended to encourage clean layout and prevent ambiguous wiring patterns.

♦ All wire segments must end on Primary grid points.
♦ Wire segments must be oriented on the 45° and 90° axes.
♦ Wire segments cannot form acute angles. This applies to both crossing and

connected wire segments.
♦ A maximum of two diagonal wire segments can connect at a point. A third

vertical or horizontal segment can connect if it does not form an acute
angle with either of the other segments.

♦ A maximum of three wires can connect at a pin or I/O marker.
♦ A net can have only one name (simple or compound).
♦ Two I/O markers with different net names cannot be connected by a wire.
♦ An I/O marker can connect only to a wire segment, never a pin. (Add a

wire segment if you want a marker to be near a pin.)
♦ An I/O marker cannot be placed in the middle of a diagonal line, only at

the end.
♦ An I/O marker cannot be placed at the crossing point of two wires, even if

the wires are connected.
♦ A tap can be only be placed on a vertical or horizontal section of a wire.
♦ Only one bus tap can be made at any point on a bus.
♦ A bus can contain only individual signals, not other buses. Attempting to

give a net in a bus either a compound name or the name of another bus is
flagged as an error.

♦ The relationship between an ordered bus (that is, a bus with a compound
name) and the signals in that bus is strictly enforced. Naming the bus or
one of its signals in a way that breaks this relationship is not permitted.
For example, you cannot assign a bus tap a name that is not in the bus.

Using the Schematic Editor

Synario Capture System User Manual 5-19

Modifying the Schematic
The Schematic and Symbol Editors provide many commands to edit and
modify your work. The section presents a brief introduction to these
commands. For a full description, please refer to the SCS Command Reference.

Clipboard Commands

The Cut, Copy, and Paste commands use the Clipboard. Executing Cut or
Copy replaces the current contents of the Clipboard with whatever you have
just cut or copied.

Cut and Copy The Cut and Copy commands place a copy of the selected
object on the Clipboard. Either click on the object, or drag
a box around the exact section you want to cut/copy. Cut
removes the selected object; Copy leaves it in place.

Paste The Paste command pastes objects on the Clipboard into
the current drawing, or a drawing in another Schematic
Editor session. Pasting does not remove the object from
the Clipboard. It can be pasted as often as you want.

Note: Schematic objects and symbol objects are not compatible. You cannot paste a
schematic object into a symbol drawing, or vice versa.

Non-Clipboard Commands

The following edit commands do not use the Clipboard, and do not change the
Clipboard’s contents. All these commands can be “reset” (to clear the current
selection or start over) by clicking right anywhere in the Editor’s window.

Delete Removes symbols, wires, text, and other components. You
can click on individual objects to be deleted, or drag a box
around the section to be removed.

Duplicate Copies objects to another place on the same drawing.
Either click on an object, or drag a box around the section
to be copied. (Press SHIFT as you click or drag to select
multiple objects or sections.) The object or section is
attached to the mouse cursor; you can then click where
you want a copy. You can continue to place copies until
you select another command.

Using the Schematic Editor

5-20 Synario Capture System User Manual

Move Moves objects directly. Either click on the object, or drag a
box around the section to be moved. (Press SHIFT as you
click or drag to select multiple objects or sections.) The
object or section is attached to the mouse cursor; you can
then click where you want the object to go. The Move
command is faster than cutting and pasting.

Drag Repositions objects without breaking their electrical
connections. The wires slide, stretch, and form right angle
corners (if possible). Click on the object, or drag a box
around the section to be moved.

Rotate and Mirror The object (or objects) currently attached to the cursor can
be rotated and mirrored. The Mirror command reflects the
object around its vertical axis. The Rotate command
rotates the object 90°. When the symbol has the desired
orientation, click to place it at the desired position.

Undo and Redo Undo reverses your edits one command at a time. If you
reverse too many times, use Redo to reverse the Undo.

Only editing changes to the schematic or symbol can be
undone. View and Sheet commands do not alter the
drawing and cannot be undone.

There is no limit to the number of Undos or Redos you
can perform. However, each time a schematic (or symbol)
file is saved, the file is fully updated and all information
about the last sequence of edits is discarded. Don’t save a
file if there are any editing changes you want to Undo or
Redo.

Debugging and Verifying a Schematic
The Schematic Editor has two levels of checking that attempt to report or
prevent errors early in the design process.

First level errors are detected as you enter your schematic. For example, the
Editor will not let you draw an isolated wire that forms a closed loop without
connecting to anything else. It won’t let you short together nets with different
names.

Using the Schematic Editor

Synario Capture System User Manual 5-21

Second level errors are recognized in the context of a complete design. An
unconnected wire or pin, or an unnamed signal tapped from a bus, are normal
during the first stages of a design. Some potential errors are always indicated,
such as the dots on open pins and hanging line ends. Otherwise, errors of this
type are reported only when schematics and symbols are combined in the
design hierarchy.

You can check for errors and potential errors at any time. Select the
Consistency Check command from the File menu. Any errors are written to a
file and displayed in a list box. Clicking on an error in the list box displays the
section of the drawing with the error and highlights the error with a small
“plus” cursor. You can fix the error, then call Consistency Check repeatedly,
until you’ve found and fixed all the errors.

The Consistency Check command warns about the following potential
schematic errors:

♦ Bus taps should be named.
♦ Isolated I/O markers are not permitted.
♦ If the Mark Open Ends option is enabled, there should not be any

unconnected wire ends.
♦ Unordered buses should not be connected to a bus pin on a symbol.
♦ Unordered buses should not be marked with I/O markers.
♦ Nets should not be marked with more than one I/O marker.
♦ A bus tap and its bus should not both be marked with an I/O marker.

If there is a symbol for this schematic, the Consistency Check command marks
the following as errors:

♦ Each pin must have a corresponding net with an I/O marker whose
direction matches the Polarity of the pin.

♦ Each net marked with an I/O marker must correspond to a pin.

“Unconnected Pin” Message

You can tell the Schematic Editor’s Consistency Check command to ignore
intentionally unconnected pins by appropriately setting one of the pin’s
attributes. This is attribute is #9, named OpenOK. Use the INI Editor to add
this attribute and set its Modify Option to "+", Assign in Schematic.

The attribute can be set in either the Schematic or the Symbol Editor. If set in
the Symbol editor, the pin is never flagged as unconnected. The attribute can
also be selectively set in the Schematic editor to disable the message on specific
pins, but not on all instances of the symbol.

Any value entered will inhibit the “Unconnected” message for that pin. A
value of Yes, OK, or True is suggested.

Using the Schematic Editor

5-22 Synario Capture System User Manual

Schematic Editor Display Options
The following three sections explain a number of display options available in
the Schematic and Symbol Editors.

Schematic Sheets

The Sheet Setup command from the File menu selects which sheet (of a multi-
sheet schematic) to view. Each sheet is displayed in a separate window, which
can be closed, resized, or repositioned as any other window. When only one
sheet window is open, it is enlarged to fill the main window.

Several sheets can be displayed at the same time. Each sheet’s window is offset
slightly from the previous sheet’s window, so that some of the previous sheet
can be seen. Click on any sheet’s window to bring it to the front.

Multiple Views

You can open up to three views of a single sheet. Each view can have a
different magnification. A total of eight sheet windows can be open at the
same time. Objects cut or copied from one sheet can be pasted to another.

Resizing and Renumbering Sheets

The Modify option of the Sheet Setup command resizes and renumbers sheets.
The sizes are set using the Sheet Sizes dialog box in the INI Editor. The Replace
option of the Sheet Setup command replaces whatever sheets are currently
displayed with a full-size window showing the selected sheet.

The maximum sheet size is 4095 x 4095 Primary grid units.

You can automatically resequence sheets by selecting File: Resequence Sheets.

Adding Blank Sheets

The Sheet Setup command can also add blank sheets to an existing schematic.
To add a fifth sheet to a schematic that already has sheets 1–4, type 5 in the
Select Sheet edit box. Then click on Open.

Note: You can choose any number for a new sheet, even if it isn’t the next number in
the sequence. For example, if the schematic has three sheets numbered 1 through 3, you
can add a fourth sheet numbered 7. (The largest sheet number allowed is 99.)

To remove unused sheet numbers from a sequence of sheets, use the File:
Resequence Sheets command.

Using the Schematic Editor

Synario Capture System User Manual 5-23

Grids

Any elements added to a schematic (including symbols, wires, and buses) are
automatically positioned on a grid. The default spacing of this Primary grid is
one-tenth of an inch (or 2.5 mm). You can change the default with the Sheet
Layout dialog box in the INI Editor.

Graphics are also aligned with this Primary grid, but you can align them with
a Secondary grid that has two or four times the resolution. This finer grid gives
better control over the position of names and graphic embellishments.

The Graphic Options command (described below) controls display of the
Primary grid. (The Secondary grid is never shown.) The appropriate
Secondary grid must be selected before graphic items can be positioned at the
higher resolution.

Controlling Display and Graphics Options

The Display Options and Graphic Options commands from the Options menu
sets a number of display options in the Schematic Editor and the Hierarchy
Navigator. Changes last only for the current editing session. Use the INI Editor
to permanently change the default values.

Display Options

The Display Options command displays a dialog box with the following check
box options:

Connect Dots Three wires connected to a symbol pin, and four-wire
junctions, are always drawn with a connect dot. When the
Connect Dots option box is checked, a connect dot is also
displayed when two wires are connected to a symbol pin,
and at three-wire junctions.

Border The schematic’s border is divided into lettered and
numbered zones, to reference the positions of schematic
items. When the Border check box is checked, the zone
display is turned on.

Symbol Pins When the Symbol Pins check box is checked, unconnected
pins are highlighted with a dot.

Pin Attributes When the Pin Attributes check box is checked, pin
numbers and names are displayed.

Symbol Text When the Symbol Text check box is checked, fixed text
within a symbol is displayed.

Using the Schematic Editor

5-24 Synario Capture System User Manual

Symbol Attributes When the Symbol Attributes check box is checked, text for
symbol attribute values is displayed.

Open Ends Wires not terminating on an I/O marker, symbol pin, or
another wire are considered errors. When the Open Ends
check box is checked, an error dot is displayed at the end
of such wires, and on any I/O marker not connected to a
wire.

Off Page Connects When this check box is checked, nets that appear on more
than one sheet will display a cross-reference to the other
sheets, if you placed the name at the off-page end of the wire.

Net Attributes When this check box is not marked, text for net attribute
values is not displayed. This decreases redrawing time
and visual clutter. Note that only net attributes that have
net attribute windows defined are displayed even when
this check box is marked.

Graphic Options

The Graphic Options command displays a dialog box with the following radio
button and check box options:

Text Font Selects the text size. In the Windows version, the choices
are First, Second, Third, Fourth, Fifth, Sixth, Seventh, and
Eighth. In the UNIX/Motif version, the choices are Small,
Medium, and Large. Text Font affects only the text to be
added, not existing text.

Justify Text can be left-justified, right-justified, or centered. This
parameter applies to fixed graphic text and symbol
attribute windows. Justify affects only the text to be
added, not existing text.

Grid All electrical elements in schematics and symbols are
aligned with Primary grid. Graphic elements and text can
be positioned on a finer grid of one-half (Mid) or
one-quarter (Sec) the Primary grid.

Display Controls whether the Primary grid is displayed. The grid
appears as dots, with one dot at every grid intersection.
Every tenth grid point is larger. As you zoom out and the
grid points get closer, some grid dots might not be
displayed.

Full Cursor You can choose between a small “plus” cursor (the
default) and a full screen cursor. The full screen cursor
makes it easier to align objects.

Using the Schematic Editor

Synario Capture System User Manual 5-25

Wide Lines There are two line weights for drawing lines and
rectangles. The Wide Line check box selects the heavier
weight. Wide lines have the same weight as buses on
schematics. This setting affects only lines to be added, not
existing lines.

Vertical Text Fixed text and attribute window text can be horizontal or
vertical. Horizontal is the default. Mark the Vertical Text
check box for vertical. Vertical Text affects only the text to
be added, not existing text.

Setting Attribute Values
You can use the Schematic Editor to override attribute values that were
assigned in the Symbol Editor. (Attributes are described in Chapter 8,
“Attributes.”)

Suppose your schematic has two tristate buffer symbols. One buffer needs to
be large, while the other can be small. The Schematic Editor lets you select the
buffers individually and customize each instance by changing its transistor
size attributes.

Pin Attributes

To modify pin attributes:

1. Select the Pin Attribute command from the Add menu. The Pin Attribute
Editor dialog box appears.

2. Click on the pin to be modified, or click on the symbol containing the pin
to select all pins in the symbol.

3. Highlight the required attribute from the list.

4. Type the new attribute value and press ENTER.

The new value is changed or added to all selected pins.

Symbol Attributes

Symbol attributes can be assigned in either the Symbol Editor or the Schematic
Editor. The editing process is the same as described above for editing pin
attributes. You can select multiple symbols and assign attributes for all of
them simultaneously as described below

You can control whether an attribute’s original value, as defined in the Symbol
Editor, can be overridden on the schematic. This is described in Chapter 8,
“Attributes.”

Using the Schematic Editor

5-26 Synario Capture System User Manual

To select a symbol or symbols in the schematic:

♦ Click on the symbol.
♦ Shift-click to select additional symbols.
♦ Draf a box around the desired symbols.
♦ Use the Find button to select all symbols that match a specified criteria.

Finding Symbols with Specific Attributes

The Find button in the Add: Symbol Attribute dialog box brings up an
Instance Filter dialog box that you can use to select all instances of symbols
that match specified attribute criteria.

To select symbols by attribute criteria:

1. Select Add: Symbol Attribute, then click the Find button.

2. Select the attribute to be compared from the left box.

3. Select the comparison function (such as ==, <, >) from the center box.

4. Enter a value for the attributes to be compared against.

5. To add the selected symbols to a list of selected symbols, clear the Replace
Current Selection check box.

6. To center a single symbol, select a single symbol and then click the GoTo
button.

Net Attributes

Net attributes can be assigned in the Schematic Editor. The editing process is
the same as described above for editing pin attributes. You can select multiple
nets and assign attributes for all of them simultaneously.

Using the Schematic Editor

Synario Capture System User Manual 5-27

Attribute Windows

An attribute window is a predefined area associated with a symbol in which an
attribute’s value is displayed. The attribute window must have been defined
when the symbol was created. Chapter 6, “Using the Symbol Editor,” and
Chapter 8, “Attributes,” explain how attribute windows are added to symbols.

An attribute window can also be associated with a net, and is defined in the
Schematic Editor.

The Attribute Display command from the Options menu selects which
attributes are displayed in which attribute windows. This is useful if you need
to see attributes that are not currently displayed. You can temporarily reassign
the attribute window from another attribute to the attribute you want to see.

For example, it’s common to have attribute windows for the instance and
symbol names, but not simulation delay. If you need to see simulation delay,
you can temporarily assign the delay to the instance window. Your
reassignments are discarded when you quit the Schematic Editor.

You can also use the Query command at any time to see the values of all
attributes associated with a symbol, pin, or net.

Using the Schematic Editor

5-28 Synario Capture System User Manual

Chapter 6

Using the Symbol Editor
The Symbol Editor constructs schematic symbols. Besides the various lines,
arcs, and boxes needed to create the symbol, you can also add text to give
information about the symbol and its relationship to the rest of the circuit.

Schematics are constructed from symbols. A symbol can represent any
electronic component, including capacitors, transistors, integrated circuits, and
even microprocessors. Symbols are connected with wires (in the Schematic
Editor) to create a complete schematic whose behavior can be verified and
simulated.

Note: A symbol is a picture: it has no inherent electrical meaning. Its electrical
characteristics are supplied by attributes that describe the symbol’s behavior. (The
behavior of a Block symbol is described by the schematic file associated with that Block
symbol.) Refer to Chapter 8, “Attributes,” for an explanation of how attributes are
defined and used.

SCS is supplied with a extensive set of symbols. You can also use the Symbol
Editor to create Block symbols that represent a complete schematic (or part of
one). This chapter explains Symbol Editor features you might use to edit these
(and other) symbols. It also shows how to display attribute values on a symbol.

You might also want to read the section that explains Master symbols. These
can be used to automatically add a title block (or similar annotation) to your
symbols and schematics.

This chapter covers the following topics:

♦ Symbol Components
♦ Symbol Types
♦ Creating Symbols
♦ Adding Attributes to Symbols
♦ Preparing Symbols for Schematics
♦ Creating Block Symbols in the Schematic Editor

Note: You can automatically create symbols using the Add: New Block Symbol
and File: Matching Symbol. Refer to the SCS Command Reference.

Synario Capture System User Manual 6-1

Symbol Components
A symbol is composed of the following elements:

Graphics

Graphics are the picture of the symbol. They have no electrical meaning; they
show the location of the component in the schematic.

Pins

Pins on a symbol are points where a wire can be attached. The pins and wires
connect between symbols to circuit elements.

If the symbol represents a physical component, the symbol pin represents the
physical pin to which a conductor can be attached. If the symbol represents a
subcircuit, the symbol pin represents the connection to an external net of the
subcircuit.

Buses cannot be connected to pins unless the pin is a bus pin. Only ordered
buses can be connected to bus pins. See Chapter 5, “Using the Schematic
Editor,” for more information about net and bus connections.

Attributes

An attribute is a property of a symbol, pin, or net. Attributes can describe
anything—the length or width of transistors, the price of a resistor, the size of a
chip or a cell, the number of connections to a block, or even the length of time
it takes to design a cell.

Symbol Types
There are seven symbol types. The symbol type affects the handling of certain
symbol attributes.

♦ Block
♦ Cell
♦ Component
♦ Gate
♦ Graphic
♦ Master
♦ Pin

The symbol type is set in one of three ways:

Using the Symbol Editor

6-2 Synario Capture System User Manual

♦ A default symbol type can be specified with the INI Editor. The Symbol
Editor automatically uses this type when creating a new symbol.

♦ If no default is set with the INI Editor, the Symbol Editor prompts you for
the type when you create a new symbol.

♦ You can change the symbol type using the Change Type command from
the Symbol Editor’s Edit menu.

Component and Gate Symbols

These symbols are used in PCB designs. Component symbols represent
complete physical devices. Gates represent portions of physical devices. A
complete 7400 quad NAND gate is represented with a Component symbol,
while a single NAND gate in a 7400 package is represented with a Gate
symbol. Gate symbols let you design a PCB without making the actual
packaging assignments. That can be handled later by an automatic PCB
packager.

The pins on Component and Gate symbols are numbered to reflect their actual
pin assignments in a physical package. Bus pins are not permitted on Gate
symbols.

Cell Symbols

Cell symbols represent the primitive cells (transistors, resistors, diodes, and so
on) used to design integrated circuits. The pins on Cell symbols are named for
identification in netlists.

Block Symbols

Block symbols are used to build a hierarchical design. A Block symbol
represents a schematic at the next-lower level of the hierarchy. Bus pins are
permitted on Block symbols.

Pin Symbols

Pin symbols represent physical pins on a PCB. For example, you can define a
special type of pin for test points and another for edge connector contacts.
Figure 6-1 shows two pin symbols. This symbol represents a test point added
to a PCB. The pin symbol includes a pin as well as some graphics to indicate
the special purpose of the pin symbol.

Two or more pin symbols can have the same reference designators. This allows
you to spread pin symbols across a schematic (even across sheets) and still
group them into the same connector by assigning the same reference
designator to the different instances. Each instance of a pin symbol with the
same reference designator must have a different pin number, however.

Using the Symbol Editor

Synario Capture System User Manual 6-3

Graphic Symbols

Graphic symbols add information that is not part of the circuitry. Graphic
symbols are typically used for tables and notes. No pins are associated with
Graphic symbols, and they are never included in the hierarchy or netlists.

Master Symbols

Master symbols are used for title blocks, logos, revision blocks, and other
standardized graphic symbols. You can add text to a Master symbol to display
the company name, address, project description, date, and so on.

You can also display attributes 200 to 206 in attribute windows to
automatically show such information as file creation date, sheet number, and
schematic name. The use of these attributes is explained in Chapter 8,
“Attributes.”

Positioning Master Symbols

Master symbols cannot be freely placed on a schematic sheet. Instead, they are
automatically positioned at one of the corners. This permits resizing the sheet
without having to move the title block (or other annotations).

The sheet corner is determined by the location of the symbol’s origin. (Origin
placement is explained later in this chapter.) If the origin is placed at the
upper-right corner of the Master symbol (for example), the symbol will be
positioned at the upper-right corner of the sheet.

Master symbols do not have pins.

Creating Symbols
This section explains the basics of creating a symbol. The SCS Command
Reference has more information about the commands in this section.

Figure 6-1
Pin Symbols

Using the Symbol Editor

6-4 Synario Capture System User Manual

Starting the Symbol Editor

The Symbol Editor can be run from the SCS Shell, from the Windows menu of
the Synario Project Navigator, or using the Symbol command (from the Edit
menu) in either the Schematic Editor or the Hierarchy Navigator.

If you’re creating a new symbol, the symbol is automatically given the default
type specified in the Symbol Controls dialog box from the INI Editor. (You can
choose any of the seven types.) If you want a different type, use the Change
Type command from the Edit menu of the Symbol Editor.

You can also set the default type to No Default. In this case, the Symbol Editor
always prompts you for a type.

Grids

All symbol elements are positioned on a grid. The default spacing of the grid is
one-tenth of an inch (or 2.5 mm). (This spacing is set in the Graphic Options
dialog box of the INI Editor.)

Figure 6-2
Symbol Editor Window

Using the Symbol Editor

Synario Capture System User Manual 6-5

Graphics are usually placed on the Primary grid, but you can align them with
a Secondary grid that has two or four times the resolution. This finer
resolution gives more precise control over the position of names, annotations,
and graphic embellishments. The Graphic Options command from the Options
menu (described below) determines whether alignment is with the Primary or
Secondary grids.

Symbol (and Schematic) dimensions are stored as multiples of the Secondary
grid units, not as absolute lengths. If, for example, you redefine the Primary
grid to be 0.2" (when it was previously 0.1"), symbol drawings and schematics
will print out at twice their previous size.

Positioning Pins

Although graphics and text can be positioned at any of the three grid spacings,
pins must be aligned with the Primary grid. Wires are drawn only on the
Primary grid. If the pins are not on the Primary grid, you will not be able to
attach wires to them.

The tick marks around the outside of the drawing area in Figure 6-2 represent
one major grid unit each. The size of the drawing area is initially 80 x 80
Primary grid units. This size can be increased with the Expand command from
the File menu. Each time you use the Expand command, the drawing area
increases by 20 Primary grid units in each direction. The maximum size of the
drawing area is 400 x 400 Primary grid units.

Drawing Graphics and Fixed Text

The graphical rendition of the symbol is created with a combination of lines,
rectangles, circles, arcs, and fixed text. Graphic objects can be drawn in two
line weights:

Normal Normal lines are the same width as the wires in a
schematic.

Wide Wide lines are twice the width of Normal lines, the same
weight as schematic buses.

The line width is selected from the Graphic Options menu. Changing the line
width does not alter the width of lines or objects already drawn, only the
width of lines drawn after the change.

The drawing commands are at the bottom of the Add menu. All drawing
commands remain active until you click right, or select another command. The
SCS Command Reference has a full description of the drawing commands.

Using the Symbol Editor

6-6 Synario Capture System User Manual

Lines

When clicking to place the end points, lines are constrained to three principal
directions: vertical, horizontal, and 45°. When dragging the line, the line can be
at any angle as long as the end points fall on the grid being used. Switch to a
finer grid to make it easier to place lines exactly where you want them.

Rectangles

Many symbols are based on a rectangular body. For non-rectangular symbols,
such as inverters or multiplexers, use the Line command to draw the outline.

Circles and Arcs

Full circles are placed with the Circle command. Portions of circles can be
created with the Arc command. Arcs are useful for the curved sections of
NAND and NOR gates.

Negation Bubbles

Negation bubbles are graphical and have no electrical significance. (Adding a
negation bubble to a symbol does not change its logic. You must modify the
symbol’s attributes or underlying schematic file.) You can add small or large
bubbles:

♦ Bubble draws a bubble one-half the Primary grid unit in diameter.
♦ Big Bubble draws a bubble one Primary grid unit in diameter.

With either command, a bubble is attached to the cursor. Click at the desired
point in the schematic to place a bubble.

Text

Text can be added anywhere in the drawing window. Typical uses of text
include:

♦ Notes about the symbol
♦ Title blocks
♦ Cross references

Examples of fixed text on a symbol are:

Do not exceed 2000 volts ESD on any pin of this device

This is test point 32

Using the Symbol Editor

Synario Capture System User Manual 6-7

Text Size & Justification

Fixed text (as opposed to text appearing in attribute windows) can be drawn in
three different sizes. In the Windows version of SCS, eight sizes are available.
In the UNIX/Motif version, three sizes are available. Text can be left-justified,
right-justified, or centered. The controls for font size and justification are in the
Graphics Control dialog box. Defaults for these values can be changed using
the INI Editor.

Saving a Symbol

The Save command from the File menu saves the symbol to a disk file. A
symbol can be stored in a library for use in many designs, or it can be kept in
the design directory for use in a specific design.

If you’re saving a new symbol, you’re prompted for a name. If you’re editing
an existing symbol, changes are saved to the existing file.

You can use the Save As command to save the symbol with another file name,
which is useful when you’re designing several similar symbols. Save the
original, modify it, then save the new version with a new name.

Symbol files have the extension .sym. The Editor adds this extension
automatically when you specify the base name. If you specify a different
extension, the Editor replaces it with .sym.

Printing the Symbol

Use the Print command from the File menu to print the symbol. The default
orientation is landscape (long side of the page horizontal). If portrait orientation
(long side of the page vertical) would allow a larger image, use the Printer
Setup command from the File menu to change the orientation.

Editing Symbols

The editing commands provide many ways to modify symbols. A brief
description of these commands is presented here. The SCS Command Reference
has a full description.

Clipboard Commands

Copy, Cut, Paste Cut or Copy places the selected object(s) on the Clipboard.
Cut objects are removed from the drawing; copied objects
remain.

Note: Symbol objects and schematic objects are not compatible. You cannot paste a
schematic object into a symbol drawing, or vice versa.

Using the Symbol Editor

6-8 Synario Capture System User Manual

Non-Clipboard Commands

Duplicate Directly copies objects to another place on the same
drawing without changing the contents of the Clipboard.

Delete Deletes previously placed pieces of the drawing without
changing the contents of the Clipboard.

Move Directly moves pieces of a drawing. It’s faster than cutting
and pasting. The Clipboard’s contents are not changed.

Drag Stretches existing objects. Lines can be lengthened, boxes
widened, circles’ radii changed and arcs modified. In the
Symbol Editor, Drag operates on a single object at a time.

Undo Reverses the last edit. Any command that changes the
symbol can be undone. Commands like View, which don’t
change the symbol, cannot be undone.

Redo Reverses the last Undo. Use Redo if you back up too far
when Undoing.

Preparing Symbols for Schematics
A symbol needs special links so it can be recognized and placed in a schematic.
These links consist of pins, attributes, attribute windows, and the symbol
origin.

Pins

Symbol pins are connection points for wires. Pins on Gate, Component, and
Cell symbols represent the connection points on the device (pins or pads). Pins
on a Block symbol represent connections from one level of the hierarchy to the
level below. Since Graphic and Master symbols don’t represent electrical
components, you can’t attach pins to them.

Pins are the only symbol elements restricted to locations on the Primary grid,
since wires must begin and end on Primary grid points.

Adding Pins

To add a pin to a symbol:

1. Select the Pin command from the Add menu.

2. Click where you want to place a pin.

Using the Symbol Editor

Synario Capture System User Manual 6-9

Pins are typically placed at the end of short line segments extending from the
sides of the symbol. (Pins can be attached directly to the body of the symbol.
However, this makes it more difficult to attach multiple wires to one pin.) Pin
names and numbers are displayed next to the pin.

Adding Pin Names

To add pin names:

1. Select the Pin Attribute command from the Add menu to display the Pin
Attributes dialog box (Figure 6-3).

2. Select PinName from the attributes listed in the right-hand list box.

3. Click on the desired pin.

4. Click on the Pin Name edit box to select it. Then type the desired name
and press ENTER. The name appears on the symbol.

The Pin Attribute command remains active until you select another command.
You can repeat this process to name (or rename) the remaining pins.

Displaying Pin Names

The Pin Name Location command controls whether a pin’s name is displayed,
and its position relative to the pin. Selecting the command from the Add menu
displays the dialog box below (Figure 6-4):

To change the position of a pin name, click the appropriate radio button (L, R,
T, or B), then click on the pin (or drag a box around a group of pins). The L
(“left”) button displays the name to the right of the pin. The R (“right”) button
displays the name to the left of the pin. The T (“top”) button displays the name
below the pin. The B (“bottom”) button displays the name above the pin. Mark
the Vertical check box to display a pin name as vertical text.

To hide a pin’s name, click the Don’t Show radio button, then click on the pin.

Figure 6-3
Pin Attributes Dialog Box

Using the Symbol Editor

6-10 Synario Capture System User Manual

To change the distance of the pin name from the pin, click in the Offset edit
box and type an offset value (0–127). Then click on the desired pin (or drag a
box around a group of pins).

The Offset is measured in Secondary grid units. The maximum Offset is 127.
The default value is set in the Symbol Controls dialog box of the INI Editor.

Displaying Pin Numbers

The Pin number display location is automatically calculated based on the
position of the pin in the symbol. Pin numbers display can be turned on or off
for an entire symbol using the HidePinNumbers attribute (#13).

Bus Pins

A bus pin is needed to connect a bus to a symbol. Naturally, a bus pin must
have as many nets or signals as the bus that connects to the pin.

One way to create a bus pin is to give a pin a name of the form:

bus_name[index1 –index2]

where bus_name is the name of an internal bus, and index1 and index2 specify
the range of signals you want to connect. For example, if you need to connect
nine signals, index1 could be 5 and index2 could be 13.

Alternatively, a bus pin can be defined by giving it a compound name—a list of
bus names separated with commas (,):

name1, clk, mux[0-3], toggle

Bus Pin Limitations

Bus pins are allowed only on Block, Cell, and Component symbols. When a
bus pin is created on a Component symbol, the numbers of the physical pins
must be specified in the symbol definition.

Figure 6-4
Pin Name Location Dialog Box

Using the Symbol Editor

Synario Capture System User Manual 6-11

These pin numbers are a list of pins assigned to the pin attributes BusPin_A
through BusPin_H. When assigning bus pins, the normal PinNumber pin
attribute must not have an assigned value.

The pin list can be divided sequentially among the eight attributes. Each
individual attribute can hold about 200 characters. The list is delimited with
commas or spaces, and can specify sequences of pins in parentheses () or
square brackets []. Examples are:

BusPin_A = 1, 3, 5, (7:10) 7 pins: 1, 3, 5, 7, 8, 9, 10

BusPin_B = A1 B[2:4] C1 5 pins: A1, B2, B3, B4, C1

Attributes

A symbol and each of its pins can have attributes. An attribute has a name and
a value.

Attribute names are represented in the symbol’s file by an integer. The
correspondence between attribute names and integers is defined with the
Symbol Attributes and Pin Attributes dialog boxes of the INI Editor. (See
Chapter 9, “The SCS INI Editor,” for more information.) This arrangement
allows the internal numbers to remain constant, while the attribute names
change to accommodate local practice or language.

Attribute values assigned in a symbol definition become the default values for
each symbol instance. These values are frequently overridden in the completed
design. The following sections have brief discussions of symbol attributes. For
a full discussion of how attributes are defined and used, please refer to
Chapter 8, “Attributes.”

Pin Attributes

Pin Attributes are characteristics or properties associated with a pin. PinName,
Polarity, Fanin, Fanout, and PinNumber are examples of Pin Attributes. Pin
attributes are created with the INI Editor and their values are modified in the
Symbol Editor.

To add or change a pin attribute’s value:

1. Select the Pin Attribute command from the Add menu. The Pin Attribute
Editor dialog box is displayed.

2. Click on the desired pin or pins, or select pin names from the list in the
dialog box.

3. Click on the desired attribute in the right-hand list box.

Using the Symbol Editor

6-12 Synario Capture System User Manual

4. Click on the edit box at the top to select it (the box will be labeled with the
name of the attribute you selected), and enter the attribute value. The
attribute value is assigned to all selected pins.

Most of the standard pin attributes are used by simulators or the Checker.
These tools use the pin attributes to analyze the circuit.

Symbol Attributes

Symbol Attributes are characteristics or properties associated with a symbol.
Examples of symbol attributes are PartNum, InstName, Width, and Type. The
standard symbol attributes (numbered 0–99) are reserved. You can create
symbol attributes (numbered 100–199) using the INI Editor.

Any attribute that is not defined as having a fixed value can later be modified
in the Schematic Editor or the Hierarchy Navigator using the Attribute
command. The procedure is the same as editing pin attributes, described in the
preceding section.

Attribute Windows

Attribute windows are predefined areas on or near a symbol or pin in which
attribute values are displayed. Attribute windows do not have a visible
outline. If no value is displayed, there is no indication that an attribute
window has been defined.

Attribute windows are identified by number. The association between an
attribute window and an attribute is defined using the Attributes dialog boxes
in the INI Editor. An attribute window can have any number; it does not have
to match the number of the attribute itself.

When a symbol is rotated or mirrored, the text in attribute windows retains its
original position. This keeps it readable.

To add an attribute window to a symbol:

1. Select the Graphics Options command from the Options menu. The
Graphics Options dialog box is displayed.

2. Set the Text Font and Justify settings you want for the text in this attribute
window.

3. Select the Window command from the Add menu. A list box appears
containing all attributes that currently have window numbers.

4. Click on the desired attribute from the list box. The attribute name is
attached to the cursor.

5. Click to place the symbol attribute window at the desired position on (or
near) the symbol. Be sure the attribute window is placed so the attribute
value can be read.

Using the Symbol Editor

Synario Capture System User Manual 6-13

A narrow bar appears above or below the window’s name, in a position
indicating the text justification. For example, a right-justified name has the
bar at the right end of the name.

In the Symbol Editor, the window contains the attribute name. When the
symbol is instantiated in a schematic drawing, the attribute window contains
the attribute value for that instance, rather than the attribute name.

Set Origin

When a symbol is placed in the Schematic Editor, the symbol is attached to the
cursor. The point on the symbol attached to the cursor is called the origin of the
symbol.

A newly created symbol has no origin. When the symbol is saved, the origin
defaults to the upper-left corner of the symbol. You can assign an origin or
change the current origin with the Set Origin command in the Symbol Editor.

To set the origin, select the Set Origin command from the Edit menu and click
at the desired location. (The origin does not have to be on or within the
symbol; it can be outside.) Once an origin is assigned, its coordinates are
marked with long pin color tick marks along the border of the symbol window.

Figure 6-2 shows how the origin can be relocated. The long tick marks along
the edge of the window point to the origin’s new position, at about the center
of the symbol.

Note: The Origin is not part of the symbol. If you move the symbol, the Origin does
not move with it. Be sure to reposition the Origin if you move the symbol.

Checking Symbols

The Check command from the File menu finds errors in finished symbols. The
error report is written to a file and then displayed in a pop-up text window.
Clicking on an error in the list highlights the error in the drawing.

The following types of errors are detected and reported:

♦ Block symbols should have a schematic with the same name in the current
directory.

♦ Symbols of type other than Block are usually primitives and should not
have a schematic of the same name in the current directory.

♦ Each pin should have a PinName in a Block or Cell, and a PinNumber in a
Gate or Component.

Using the Symbol Editor

6-14 Synario Capture System User Manual

♦ If a symbol represents a device with more than one gate (such as a 7400
quad NAND gate), then every pin in a gate must appear in the same
number of device sections. That is, all the PinNumber attributes must have
the same number of entries. (Common, non-unique pins, such as clocks
and resets, should repeat the pin number as many times as there are
device sections.)

♦ Pins in Component and Pin symbols can only have one PinNumber.
♦ Pins in the same group of a Gate must all have the same Polarity, Load and

Drive.
♦ Pins on Block symbols should not have Load or Drive specifications.
♦ Pins on non-Block symbols should have Load or Drive specified. Input

pins should specify Load but not Drive. Output pins should specify Drive,
unless the pin is tristate. In that case Load should also be specified,
representing the load in the High-Z state. Bidirectional pins should specify
both Load and Drive.

“Unconnected Pin” Message

You can tell the Schematic Editor’s Check function to ignore intentionally
unconnected pins by adding pin attribute #9, OpenOK. Use the INI Editor to
add this attribute with the "+" option, “Assign in Schematic.”

The attribute can be given a value (Yes, OK, or True) in the Symbol Editor,
Schematic Editor, or the Hierarchy Navigator. If a value is assigned in the
Symbol Editor, the pin is never flagged as unconnected. Or you can selectively
assign a value in the Schematic Editor or Hierarchy Navigator to disable the
message on specific pins.

Creating Block Symbols in the Schematic Editor
The New Block Symbol command from the Add menu is a convenient way to
create generic Block symbols without leaving the Schematic Editor.

These symbols consist of a rectangle with pin leads. The rectangle’s height and
width are automatically scaled according to the number of pins and the length
of their names. The input pins are placed on the left side and the output pins
on the right side. The length of the pin leads is taken from the value of the
Default Pin Name Offset parameter in the Symbol Controls dialog box of the
INI Editor.

The symbol also has an attribute window (near the top) for displaying the
symbol name, and another (near the bottom) for displaying the instance name.

A dialog box lets you specify the symbol name, input pins, output pins, and
bidirectional pins. The pin names should be separated with commas. There are
four edit boxes, one for each item:

Using the Symbol Editor

Synario Capture System User Manual 6-15

Name The name of the Block symbol

Inputs The names of all nets marked as inputs with I/O Markers

Outputs The names of all nets marked as outputs with I/O Markers

BiDirs The names of all nets marked as bidirectional with I/O
Markers

If a bus name appears in one of these fields, it must be enclosed in equals signs
(=busname=). If a compound name appears in the pins list and is not
surrounded by equals signs, it is expanded to produce individual pins for each
name. If the name is enclosed by equals signs, it produces a bus pin. For
example:

Name Entered
in Input Field

Pins Created

A,B[0:3],C 6 pins: A B0 B1 B2 B3 C

A,=B[0:3]=,C 3 pins: A B[0:3] C

=A,B[0:3],C= 1 pin: A,B[0:3],C

Once this information has been entered, the symbol can be edited or placed. To
edit the symbol with the Symbol Editor, click the Edit button. To create the
symbol without editing it, click the Run button. If you click the Run button, the
newly created symbol is attached to the mouse cursor for immediate
placement. In either case, the symbol is created in the current directory.

Making a Block Symbol for the Loaded Schematic

You can use the New Block Symbol to create a Block symbol for the currently
loaded schematic by clicking on the “Use Data from this Block” button. The
edit fields are automatically filled with the correct values from the schematic.
However, it is easier to use the Matching Symbol command from the File
menu.

Using the Symbol Editor

6-16 Synario Capture System User Manual

Chapter 7

Using the Hierarchy Navigator
The Hierarchy Navigator loads a full hierarchical design all at once, so that
you can view it in its complete form (rather than as modules). Every schematic
at all hierarchical levels is included. You can trace signals and connectivity
throughout the full design.

The Hierarchy Navigator is also the bridge between the individual schematics
created in the Schematic Editor and a simulator or other tools that require the
entire design to be in a single database.

This chapter covers the following topics:

♦ Hierarchy Navigator Functions
♦ Navigating a Design
♦ Tracing Signals
♦ Using the Waveform Viewer
♦ Setting and Overriding Attributes
♦ Additional Hierarchy Navigator Features
♦ Analysis Tools
♦ ERC and PCB Checkers
♦ Viewing Critical Paths
♦ The View Report Utility
♦ Netlists and Interfaces
♦ The Packager

Synario Capture System User Manual 7-1

Hierarchy Navigator Functions
The Hierarchy Navigator performs several important functions:

♦ It verifies the correctness and consistency of a design’s wiring. Verification
occurs at each level in the design, and across all the levels, from “top” to
“bottom.”

♦ It provides the environment in which you can analyze and optimize the
circuit’s performance.

♦ It prepares the design data for later steps in the design process (for
example, creating netlists).

♦ It allows back annotation, to permit modifying or optimizing individual
component instances.

The following sections explain the basic concepts of the Hierarchy Navigator.

Navigating a Design
You can start the Hierarchy Navigator from the Synario Project Navigator or
from SCS Executive.

To start the Hierarchy Navigator from the Synario Project Navigator:

1. Select the top-level schematic from the Sources window.

2. Double-click on Navigate Hierarchy in the Processes window.

To start the Hierarchy Navigator from the SCS Executive:

1. Click the Navigate Hierarchy radio button. The list box immediately
displays all the *.tre files in the current directory.

2. If the current directory is not the one you want, double-click on a directory
name or the double dots [..] to change the directory.

3. Double-click on the name of the *.tre file you want. Or highlight the name
of the file and click the RUN button. The Hierarchy Navigator runs and
loads the file.

The Hierarchy Navigator’s Sheet command lets you traverse a design laterally,
at the current hierarchy level. The Push/Pop command moves you down and
up (respectively) through the various hierarchical levels. These commands are
explained in detail later in this chapter.

Using the Hierarchy Navigator

7-2 Synario Capture System User Manual

Updating Schematics

Symbol files are marked with the time and date they were last modified.
Schematic files keep track of this time stamp for each symbol. If a symbol file’s
time stamp is different from that symbol’s time stamp in a schematic, the
schematic is out of date.

The Hierarchy Navigator assumes that discrepancies in the date indicate a
potential problem—the wrong symbol may have been accessed, or someone
has unofficially modified a symbol—and displays warning messages. If only
minor changes were made to the symbol, the warnings can be ignored. If a
significant change was made (such as a new pin, new pin name, or new
symbol origin) any schematics containing that symbol must be revised.

If the changes to a symbol were minor, and the only discrepancy is the date
change, the Schematic Editor can update the schematic for you. Load the
schematic into the Schematic Editor, then save it. The new symbol dates will
replace the old ones. Or, use the Update Schem utility from the File menu of
the SCS Executive.

Push/Pop

The Push/Pop command moves you higher or lower in the hierarchy.

Push Moves to a lower (more detailed) level. Click within a
symbol to view the symbol’s internals. If the symbol
represents a lower-level schematic, that schematic replaces
the current schematic (unless the symbol is at the lowest
level of the hierarchy).

If the lower level file is behavioral (that is, a file with a text
description of the circuit, rather than a schematic), the text
file will be loaded into the viewer program and displayed.

Pop Moves to a higher (less detailed) level. To pop back to the
“parent” of the current schematic, click outside all symbol
boundaries. The parent schematic replaces the current
schematic.

Alternatively, you can move up or down by typing the instance name of the
destination schematic on the prompt line, then pressing ENTER. Enter a
period (.) to pop to the top-level schematic

Using the Hierarchy Navigator

Synario Capture System User Manual 7-3

The full hierarchical context is displayed when pushing or popping. Net
names are shown with their complete hierarchy. Symbol instance names are
shown in an abbreviated format that replaces the leading portion of an
instance name with a period (.); the leading part is displayed on the title bar
of the Navigator. For example, the instance .AB.CD.EF is displayed as .EF,
with the prefix .AB.CD in the title bar.

Push / Pop is a “nested” command, so you can call Push / Pop during another
command, such as Query or Edit Attribute. Click right anywhere in the
window to return control to the previously active command.

Tracing Signals
Although design problems are usually observed at the top level, the source of
those problems is often at a lower level. Tracing signals from the primary
outputs down through the hierarchy can greatly aid debugging.

There are two Navigator functions to facilitate signal tracing, Mark and Query.

Mark The Mark command from the Object menu highlights selected nets or symbols.
This makes it easy to trace signals from one side of a sheet to the other, across
sheets, or through the hierarchy.

Mark is used in some of the simulation interfaces to choose waveforms for
display. Any marked item can be displayed in a list box by typing a question
mark (?) in the prompt line. See the SCS Command Reference for further details.

Query The Query command from the Object menu provides a brief summary of the
selected element’s local attributes, as well as connections to the element. Local
attributes can help you find an incorrectly specified simulation parameter or
loading characteristic. The connectivity information is helpful in circuit tracing.

Click on the individual connections listed in the query pop-up window, and
the display shifts to the area of the schematic containing the selected
connections. You can quickly find all connections to a given net, or the Pin
driving a particular net.

The Query command can search for elements you type in at the prompt and
display information about them in a list box. You can search for an element
based on its:

♦ Instance name
♦ Pin name
♦ Net name
♦ Reference designator

Using the Hierarchy Navigator

7-4 Synario Capture System User Manual

You can query pins, nets, and individual symbols. To query all symbols of one
type (for example, all three-input NAND gates), press SHIFT while you click
on an instance of that symbol. Individual symbols can be located based on
instance name or reference designator. The information is displayed in a text
window. The information available for each element is:

Pins

♦ Pin name
♦ Attached to which instance
♦ Attached to which net
♦ Pin polarity
♦ All other attributes

Nets

♦ Net name
♦ Polarity if input or output node
♦ Local net name, applicable only on external nets
♦ Node number in database
♦ Symbol connections
♦ All other attributes

Individual Symbols

♦ The name (for example, NAND2, NOR3) and type (gate, component,
block, cell, master, pin) of symbol

♦ Full path showing location of symbol file in the file structure
♦ Instance name
♦ Reference designator
♦ Other symbol attributes
♦ Reference location on the schematic (sheet number, vertical border

reference, horizontal border reference, for example, 2A6)
♦ Gate section (A, B, C, etc.) on gate symbols
♦ Instance number in the hierarchical database
♦ Pin / net connections
♦ All other attributes

Using the Hierarchy Navigator

Synario Capture System User Manual 7-5

All Symbols of a Given Type

♦ Internal net count
♦ Instance names and locations
♦ All other attributes

Setting and Overriding Attributes
You can use the Hierarchy Navigator to override attribute values that were
assigned in the Symbol Editor or the Schematic Editor. (Attributes are
described in Chapter 8, “Attributes.”)

If your schematic has two tristate buffer symbols: one buffer needs to be large,
while the other can be small. You can customize each buffer instance in the
Hierarchy Navigator by changing its transistor size attributes.

The Navigator is the only place where you can change the attribute values of
specific instances in the hierarchy (since the Navigator is the only program in
which all levels of the hierarchy are combined). Many design modifications are
made based on results obtained when running the Navigator and a simulator
together, and you can incorporate these changes in the Navigator.

Note: Some external tools use netlists from a single level of the hierarchy (run from
the schematic database rather than the hierarchical database), so attributes assigned in
the Hierarchy Navigator are not available. If your tool creates a netlist from a single
schematic, assign attributes in the Schematic Editor.

Pin Attributes

To modify pin attributes:

1. Select Pin Attribute from the Edit menu. The Pin Attribute Editor dialog
box appears.

2. Click on the pin to be modified, or click on the symbol containing the pin
to select all pins in the symbol.

3. Highlight the required attribute from the list.

4. Type the new attribute value and press ENTER.

Using the Hierarchy Navigator

7-6 Synario Capture System User Manual

Symbol Attributes

Symbol attributes can be assigned in either the Symbol Editor, Schematic
Editor, or Hierarchy Navigator. The editing process is the same as described
above for editing pin attributes. You can select multiple symbols and assign
attributes for all of them simultaneously.

You can control whether an attribute’s original value, as defined in the Symbol
Editor, can be overridden on the schematic. This is described in Chapter 8,
“Attributes.”

Net Attributes

Net attributes can be assigned in the Schematic Editor or Hierarchy Navigator.
The editing process is the same as described above for editing pin attributes.
You can select multiple nets and assign attributes for all of them
simultaneously.

Attribute Windows

An attribute window is a predefined area associated with a symbol in which an
attribute’s value is displayed. The attribute window must have been defined
when the symbol was created. Chapter 6, “Using the Symbol Editor,” and
Chapter 8, “Attributes,” explain how attribute windows are added to symbols.

An attribute window can also be associated with a net, and is defined in the
Schematic Editor.

The Attribute Display command from the Options menu selects which
attributes are displayed in which attribute windows. This is useful if you need
to see attributes that are not currently displayed. You can temporarily reassign
the attribute window from another attribute to the attribute you want to see.

For example, it’s common to have attribute windows for the instance and
symbol names, but not simulation delay. If you need to see simulation delay,
you can temporarily assign the delay to the instance window. Your
reassignments are discarded when you quit the Schematic Editor.

Using the Hierarchy Navigator

Synario Capture System User Manual 7-7

Additional Hierarchy Navigator Features
Save The Save command records the display context of the schematics being

viewed. This includes marked nets, the hierarchy level, the particular view and
magnification. Save also records any attributes that were added to the
hierarchy in the current session.

The context file takes the base name of the root (top-level) schematic. The
extension .tre is added.

Sheet The Sheet command from the File menu selects which sheet (of a multi-sheet
schematic) to view. Each sheet is displayed in a separate window, which can
be closed, resized, or repositioned as any other window. When there is only
one sheet window, it is enlarged to fill the main window.

Several sheets can be displayed at the same time. Each sheet’s window is offset
slightly from the previous sheet’s window, so that some of the previous sheet
can be seen. Click on any sheet’s window to bring it to the front.

Up to three views of a single sheet can be opened. Each window can have a
different magnification (“zoom factor”). A total of eight windows can be open
at the same time.

Print Use the Print command from the File menu to print the schematic currently
being viewed. The Print dialog box lists all the sheets of the current schematic.
To print a specific sheet, click on its number in the list box, then click on This
Sheet. To print all the sheets in a multi-sheet schematic, click on All Sheets.

Clicking on the All Instances button prints each component instance on a
separate sheet. If your schematic has a large number of instances, the program
will print an equally large number of sheets. Be sure that this is what you want
before selecting this command.

Select the Print Image command to print a section of the schematic. The mouse
cursor turns into cross hairs. Drag the mouse to select a rectangular area for
printing. (The area is shown as a dotted rectangle.) This area is sent to the
printer when you release the mouse button.

Using the Hierarchy Navigator

7-8 Synario Capture System User Manual

Control The Display Options command from the Options menu sets a number of
display options in the Hierarchy Navigator. Changes last only for the current
session. You must use the INI Editor to make permanent changes to the
default values.

The following display options can be modified. Please refer to the SCS
Command Reference for detailed information about each option.

♦ Connect dots
♦ Border
♦ Symbol pins
♦ Pin numbers
♦ Symbol text
♦ Symbol attributes
♦ Open ends
♦ Off Page connects
♦ Simulation values
♦ Node numbers
♦ Net attributes

Statistics

The Statistics command from the File menu summarizes how many elements
are placed in the design and how much memory is consumed by various
records in the database. The quantity of each type of the following primitives
is listed:

♦ Types of symbols
♦ Primitive cells
♦ Hierarchical blocks
♦ Instances
♦ Instance pins
♦ Primitive instances
♦ Primitive pins
♦ Nets connected

This is followed by a list of ten types of database records. Each record type is
followed by a measure of the capacity used in a particular design. Five of the
ten record types are fixed length and are reported as number consumed,
number available, and percentage of the memory block consumed.

♦ Definitions (types)
♦ Instances
♦ Nets

Using the Hierarchy Navigator

Synario Capture System User Manual 7-9

♦ Pins
♦ Generic pins

The five remaining types are attribute records. These records are of variable
length, so the number of bytes used and the percentage of the memory block
consumed are shown, not the number of records.

♦ Type Attributes
♦ Instance Attributes
♦ Net Attributes
♦ Pin Attributes
♦ Generic Pin Attributes

Analysis Tools
The SCS Command Reference has a complete description of the Check
commands.

Both the Schematic and Symbol Editors have checking functions that catch
basic errors, such as unconnected pins and shorted nets. However, some errors
are caught only in the context of the complete design. For example, net loading
can be influenced across many sheets and at many levels in the hierarchy.

Electrical Rules Checking

The Electrical Rules Checker (ERC) checks basic connectivity and current
loading (fanout) on a completed design. The Checker shortens turn-around
time by locating many errors prior to simulation.

Printed Circuit Board Checker

The Printed Circuit Board Checker (part of the PCB Package option) performs
a packaging check on PCB schematics. It ensures the correct assignment of
gates to packages.

Simulator Support

If you want to use a simulator and have the appropriate netlist translator, you
can add a simulator menu to the Hierarchy Navigator by specifying a
simulator in the System Controls dialog box of the INI Editor, and providing a
simulator.ini file. Refer to Appendix B, "Simulator Interfaces."

The process called from the menu does not have to be a single program. It can
also be a DOS batch (.bat) file that calls multiple programs and DOS com-
mands.

Using the Hierarchy Navigator

7-10 Synario Capture System User Manual

ERC and PCB Checkers

This section describes the setup and operation of the Electrical Rules Checker
and the Printed Circuit Board Checker.

Checker Attributes

Eight attributes are used by the PCB Checker. These attributes are defined
with the INI Editor and provide the information needed to perform many of
the required checks. (Attributes and their modification are explained in detail
in Chapter 8, “Attributes,” and Chapter 9, “The SCS INI Editor.”)

Polarity Polarity determines which pins are input pins and which
are output. If Polarity is not specified, Input is assumed.
The possible values are Input, Output, and Bidirectional.
Only the first character is needed (I, O, or B).

FanIn FanIn represents the load presented by a pin. Fanout
analysis checks that the FanIn loading a net is less than the
sum of all FanOuts driving that net. This is a relative
measurement, so the units for FanIn can be arbitrary, as
long as they match the units for FanOut.

FanOut FanOut represents the driving capability of a pin. Fanout
analysis checks that the FanOut driving a net is greater
than the sum of all FanIns loading that net. This is a
relative measurement, so the units for FanOut can be
arbitrary, as long as they match the units for FanIn.

LoadLow LoadLow is used for Hi/Lo Loading Analysis. LoadLow
represents the load of the input pin when the net is in the
logic low state. This is a relative measurement, so the units
for LoadLow can be arbitrary as long as they match the
units for DriveLow.

DriveLow DriveLow is used for Hi/Lo Loading Analysis. DriveLow
represents the drive capability of the output pin when the
net is in the logic low state. This is a relative measurement,
so the units for DriveLow can be arbitrary as long as they
match the units for LoadLow.

LoadHigh LoadHigh is used for Hi/Lo Loading Analysis. LoadHigh
represents the load of the input pin when the net is in the
logic high state. This is a relative measurement, so the
units for LoadHigh can be arbitrary as long as they match
the units for DriveHigh.

Using the Hierarchy Navigator

Synario Capture System User Manual 7-11

DriveHigh DriveHigh is used for Hi/Lo Loading Analysis.
DriveHigh represents the drive of the output pin when
the net is in the logic high state. This is a relative
measurement, so the units for DriveHigh can be arbitrary
as long as they match the units for LoadHigh.

WireOr WireOr indicates that a pin has tristate, open-collector, or
wired-OR outputs. The values for this attribute are "Yes"
for wired-OR, "O" for open-collector, and "Tri" for tristate.
Only the first character (Y, O, or T) is needed. Output pins
with WireOr specified as tristate should have both a Load
and a Drive. The Load represents the Load of the pin
when it’s in the tristate condition.

If you connect the outputs of two gates (as shown in
Figure 7-1), the Schematic Editor will not flag it as an error.
The ERC Checker determines its legality according to the
WireOr attribute values.

If both gates are wired-OR ("Yes"), both are open-collector,
or both are tristate, the connection is valid. If the attribute
values are different, the connection is invalid.

The following attributes are used only with the PCB Checker:

RefDes This attribute represents the reference designator of a part
on a printed circuit schematic. It must be unique for
Component symbols (since two parts can’t have the same
designator). Gates which are part of the same package
have the same RefDes. Pin symbols, used for edge
connectors, can have the same RefDes if they belong to the
same connector.

B

A

Figure 7-1
Two Gates with Outputs Connected Together

Using the Hierarchy Navigator

7-12 Synario Capture System User Manual

PinNumber This pin attribute represents the number of the physical
pin on the package. For Components, this attribute is a
single number. When a Gate symbol is created, its
PinNumber attribute is set to a list of numbers
representing the pin number in each of its possible
sections.

When the Gate is assigned to a package with the Add Pin
Numbers command of the Schematic Editor (or the Pin
Numbers command of the Hierarchy Navigator), the
PinNumber attribute takes on the actual number of the
pin for the section it represents. Some packages have
Gates with common clock or enable signals. In this case,
the PinNumber list repeats the common pin number for
each section.

PinGroup If this pin attribute has a value greater than zero, it
indicates that certain pins belong to the same group and
can be swapped. If two pins of the same Polarity have the
same PinGroup, they can be swapped using the Add Pin
Numbers command in the Schematic Editor or Pin
Numbers command the Hierarchy Navigator.

CompName Identifies symbols that comprise sections of the same
physical component.

These attributes are assigned to the symbol and its pins using the Symbol
Attribute and Pin Attribute commands of the Symbol Editor. If a symbol has
an assigned attribute, it becomes the default value for each instance of the
symbol on the schematic. The default values can be overridden for a particular
instance of the symbol on the schematic with the Attribute command of the
Schematic Editor or Hierarchy Navigator.

Using the Hierarchy Navigator

Synario Capture System User Manual 7-13

Types of Analysis Performed by the Checkers

Fanout Analysis

Fanout analysis checks that the FanOut on the driving pin of a net is greater
than the sum of all FanIns on all load pins. This is a relative measurement, so
the units for FanOut can be arbitrary, as long as they match the units for FanIn.

The attributes required for fanout analysis are attached to pins as follows:

Pins Attributes

Input Polarity = Input; FanIn specified

Output Polarity = Output; FanOut specified

WireOr = T, Y, or O (Tristate, Yes, Open-collector). The
WireOr attribute is optional.

Bidirectional Polarity = Bidir; Both FanIn and FanOut specified

In addition to the above pin specifications, tristate or open-collector output
pins should have the WireOr attribute set to Y, O, or T (Yes, Open-collector, or
Tristate). Bidirectional pins can have the WireOr attribute set only if the pin is
part of a block symbol. Bidirectional pins on primitive symbols should not
have the WireOr attribute specified.

Hi / Low Analysis

Hi/Low analysis is more comprehensive than a fanout analysis. The loads and
drives are compared for low and high logic values separately. This allows logic
families such as TTL, which has strong drive when driving low and weak
drive when driving high, to be correctly analyzed. The attributes required for
the symbol pins in the Hi/Low analysis are:

Pins Attributes

Input Polarity = Input; LoadLow and LoadHigh specified

Output Polarity = Output; DriveLow and DriveHigh specified

Bidirectional Polarity = BiDir; LoadLow, LoadHigh, DriveLow, and
DriveHigh specified

In addition to the above pin specifications, tristate or open-collector output
pins should have the WireOr attribute set to Y, O, or T (Yes, Open collector, or
Tristate). Bidirectional pins can have the WireOr attribute set only if the pin is
part of a block symbol. Bidirectional pins on primitive symbols should not
have the WireOr attribute specified.

Using the Hierarchy Navigator

7-14 Synario Capture System User Manual

Subcircuit Analysis

You might sometimes want to analyze the loading or fanout of only a portion
of the circuit. In such cases the input and output pins from the top level block
don’t have any drive or load (respectively) specified. The electrical Rules
Checker handles this in the following way.

The pin attributes of the top level Block symbol determine the load and drive
from external sources. The value of the load attribute (FanIn, LoadLow, and
LoadHigh) on an input pin represent the minimum external drive capability
required. This is checked against the loading on the lower-level schematics.

The value of the driving attribute (FanOut, DriveLow, and DriveHigh) on an
output pin represents the maximum external load. This value is checked
against the drive on the lower-level schematic. Also, if an external input pin is
to be wire-ORed with an internal output pin, the pin in the top level symbol
should have its WireOr attribute set.

For PCBs, primitives should be either Gates or Components. Each primitive
symbol instance should have a RefDes assigned. Each pin must have a
PinNumber. Pins that can be swapped should have the same PinGroup. Pins
that represent pins in multiple sections should have a list of numbers in the
PinNumber attribute.

Operating the Electrical Rules Checker

The Electrical Rules Checker is typically called from the Processes menu of the
Hierarchy Navigator. You specify the command line in the Processes section
of the INI file. The Electrical Rules Checker has the following command line
options:

/A Automatic mode; do not display dialog box.

/H Perform High/Low current loading analysis.

/L Perform fanout analysis.

/W Issue warnings about nets with no load.

The checker displays the Options dialog box if the /A option is not specified. If
other options are specified without the /A option, the dialog box displays the
selected options as the defaults. If the /A option is specified the checker does
not display the dialog box, but does use any other command line options.

Using the Hierarchy Navigator

Synario Capture System User Manual 7-15

To change the electrical rules checker options:

The default options are /A and /W.

1. Run the INI Editor from the Setup command of the SCS Executive.

2. Choose Open from the File menu to load the INI file you wish to modify.

3. Select Navigator Tools from the Tools menu.

4. Change the options in the Flags edit box.

5. Close the dialog box and choose Save from the File menu to save your
changes.

The ERC Checker selection from the Tools menu of the Hierarchy Navigator
gives you several check box options, described below.

Check Box Function

Electrical Rules Only Performs basic connectivity checking, and warns
about open pins and unconnected nets. Each net is
checked to confirm that it is driven by the output
of some gate. Multiple outputs driving a single
net cause warning messages unless all outputs are
open-collector or tristate.

Fanout Analysis Performs fanout analysis in addition to the
connectivity checking. An error message is
displayed if the sum of the loads (FanIn) on a net
exceeds the capacity (FanOut) of the driving gate.

Hi/Lo Current Loading Performs a loading analysis on both the high and
low states. This is useful when the high and low
drive capabilities are not the same (as in TTL).
This check is the same as Fanout analysis, except
it compares LoadLow versus DriveLow and
LoadHigh versus DriveHigh.

Report No-Load Nets Generates a warning for each net that does not
drive any inputs.

Check Invokes the Electrical Rules Checker and writes
any errors found to the file design.err. The View
Report command of the Hierarchy Navigator is
invoked to display the errors in a list box as
described below.

Cancel Terminates execution of the Electrical Rules
Checker.

Using the Hierarchy Navigator

7-16 Synario Capture System User Manual

Each error is written as a separate line in the file design.err (where design is the
base name of the design). The error messages are automatically displayed in a
list box. Clicking on a message causes the schematic to pan and/or traverse the
hierarchy to show the offending net or symbol. This net or symbol is
highlighted and a “plus” mark is placed as close as possible to the error
condition. After correcting each error, you can call this tool again to find the
next error in your design.

Error Messages for the ERC

For the Fanout Analysis, LOAD means FanIn and DRIVE means FanOut.

For the Hi/Lo Current Loading Analysis, LOAD means either LoadHigh or
LoadLow and DRIVE means either DriveHigh or DriveLow.

DRIVE Specified for INPUT Pin = pin_name

An input pin should not have a drive.
Invalid LOAD specified for Pin = pin_name

The load attribute must be a number.
Invalid DRIVE specified for Pin = pin_name

The drive attribute must be a number.
LOAD (100) > DRIVE (50) in Net = net_name

The total of all the loads on the net is greater than the output capacity of the
driving pin.

LOAD Specified for OUTPUT Pin = pin_name

An output pin should only have a load if it is a tristate pin (WireOr = T).
No DRIVE Specified for BIDIR Pin = pin_name

Every bidirectional pin must have a Drive.
No DRIVE Specified for OUTPUT Pin = pin_name

Every output pin must have a Drive.
No LOAD Specified for BIDIR Pin = pin_name

Every bidirectional pin must have a Load.
No LOAD Specified for INPUT Pin = pin_name

Every input pin must have a load.
No LOAD Specified for Tristate OUTPUT Pin = pin_name

An output pin must have a load if it is a tristate pin (WireOr = T).
There are no Loads in Net = net_name

Every net should drive some input pin.
There are no PINS in Net = net_name

Every net should be connected to at least one pin.

Using the Hierarchy Navigator

Synario Capture System User Manual 7-17

There is no Drive pin in Net = net_name

Every net should be driven by some output pin.
Unconnected Input Pin = pin_name

Each Input or Bidirectional pin must be connected to a net.
Warning—Wired OR in Net = net_name

If more than one output pin is driving a net, each of the output pins should
have the WireOr attribute set to Tristate, OpenCollector, or Yes. All the WireOr
attributes must have the same value.

Operating the PCB Checker

The Printed Circuit Checker is called from the Tools menu of the Hierarchy
Navigator. The checker uses two principal criteria to verify the correct
assignment of Gates and Components:

♦ If two symbols are assigned the same reference designator, they must be
the same type of Gate. For example, the four NAND gates in a 7400 device
are represented by the same symbol with the same reference designator
(since all four gates are in the same physical package). The reference
designator (RefDes attribute) assigns the symbol to a package.

♦ Each Gate in a package can be used only once. Each section of a package
must have different pin number assignments. If a package has common
pins (for example, a 74175 has four D-type flip flops with a common clock
and common clear), then the common pins must each be connected to the
same net.

Errors are written to a file called design.err and displayed in list box, one error
on each line. Clicking on a line highlights the net or symbol with that error on
the schematic. You can use this feature to step through the errors one at a time.

Error Messages for the PCB Checker
Duplicate Assignment of RefDes = name

Components must have unique reference designators.
Encountered CELL Type Symbol = name

Each primitive symbol in a Printed Circuit design should be a Gate or
Component. Cell primitives are used in IC designs.

Missing Connector Name on I/O Pin Instance = name

Symbols of type Pin should have a connector name. Use the Reference
Designator command to add one.

Missing Pin Number(s) on Symbol Type = name

Each pin must have a pin number.

Using the Hierarchy Navigator

7-18 Synario Capture System User Manual

Missing RefDes on Symbol Instance = name

Each Gate or Component must have a reference designator assigned.
Missing Schematic file for Block Symbol = name

Non-primitive symbols (Blocks) must have an underlying schematic (.sch) file.
Two Instances of Pin = name on Different Nets

Two Gates of the same part have a common pin wired to different nets. Or,
two Gates of a package have the same pin numbers.

RefDes name Assigned to Different Symbols

If two symbols have the same reference designator, they belong in the same
package. They must be of the same symbol type. (DeMorgan equivalents are
considered the same.)

The View Report Utility
SCS has a standardized method for reporting and displaying errors. Errors are
written to a file and the file’s contents are displayed in a list box. When you
click on an error, the display scans to place the error near the center of the
window. The error is highlighted (usually with a small cross).

The View Report command is in the File menu of the Hierarchy Navigator. A
dialog box prompts you to choose a file. Its contents are displayed in a list box.
Netlisters use the standard View Report interface to display error messages in
the Navigator. Third-party programs can also use this interface.

The View Report command can jump to and highlight specified nets,
instances, pins, or symbol types in a design. When you click on a line in the list
box, that line is searched for a keyword followed by a valid identifier. The
keyword and identifier are separated by an equals sign (=). The equals sign
can have any number of or no leading or trailing spaces. The keywords are:

I, Inst, or Instance An instance. Identifier is instance name.

N or Net A net. Identifier is net name.

P or Pin A pin. Identifier is pin name.

T, Type, or Symbol A symbol type. Identifier is type or filename.

You can enter the keyword and identifier in any combination of upper- and
lowercase; they are not case-sensitive. The keyword and identifier can appear
anywhere in the line, including within a comment. Examples of lines in the list
box are:

I=adf.pdiff Bad SPICE attribute on this line
Unconnected pin = adf.pdiff-input1
The following symbol=NAND2 has a connectivity problem

Using the Hierarchy Navigator

Synario Capture System User Manual 7-19

Clicking on the first example line causes the Navigator to jump to schematic
ADF, which contains instance PDIFF. Instance PDIFF is highlighted. The text
of the error message is ignored. This “free formatting” allows great flexibility
in formatting the error message.

Viewing Critical Paths
A critical path is the signal path in a design that has the longest propagation
time. The View Report command can display critical paths. The required
syntax is shown in the example below:

[path 1]
first net=.input
first inst=.adder.nand3
second net=.adder.nand3.N_23

[path 2]
first net=.cin
first inst=.adder.mux
second net=.adder.mux.control

Header information appears inside square brackets. Items in each sublist
below the corresponding header are treated as described for View Report.
When the command is first invoked, a list box displays the lines from each
header. Clicking on a header line displays a second list box containing the
individual entries for the selected header.

Clicking on a line in the second list box causes the Hierarchy Navigator to
jump to the instance or net in the selected line. The keywords and identifiers
described for View Report is valid here, too.

This syntax can be used to view any group of errors or features in a design. For
example, a checking program that can identify ten different types of errors
could write a file in the following general format:

[errors of type 1, nets with more than 7 connections]
first error of type 1 found on net=.input
second error of type 1 found on net=.adder.sub.n_6
third error of type 1 found on net=.clock
…

[errors of type 2, instances with more than 10 pins]
first error of type 2 found on inst =.control_block
second error of type 2 found on inst = .reg.mux
third error of type 2 found on inst = .ram.decode1.I_3
…

Using the Hierarchy Navigator

7-20 Synario Capture System User Manual

Netlists and Interfaces
Netlists are the usual mechanism for moving a design from one step in the
design cycle to the next. A netlist describes all the components in a design and
the way they’re connected (“connectivity”).

Netlists can also be used as input to your own software. For example, if you’ve
written your own timing verification program, you can output a netlist from
the Hierarchy Navigator for the timing verification program to read.

SCS supports back annotation from any analysis tool to the design. You can
also use the ASCII interface (with caution) to alter the schematic in ways that
are not supported by the supplied back annotation interfaces.

The Hierarchy Navigator supports several standard or generic netlists:

♦ EDIF
♦ ASCII
♦ Generic netlist by net
♦ Generic netlist by pin
♦ Verilog
♦ VHDL
♦ SPICE (various)
♦ Timemill
♦ X-Sim
♦ Racal-Redac
♦ PADS PCB
♦ Cadnetix

These netlisters are available under the Tools or Processes menu in the
Hierarchy Navigator, and are described in Chapter 10, “PCB Design
Considerations,” and in Appendixes A and B.

Note: Some of the netlisters listed above come with the base product, some come with
the PCB Package option, and some come with the Simulation Language option.

Using the Hierarchy Navigator

Synario Capture System User Manual 7-21

The Packager
The Packager is an optional module that can automatically assign reference
designators and pin numbers to PCB gate, component, and pin symbols. The
Packager can be accessed from the Schematic Editor for flat designs, or from
the Hierarchy Navigator for hierarchical designs.

Once it is installed, the Packager’s commands are available only if you use the
System Controls dialog box in the INI Editor to set the Application mode to
“PCB Only” or “Both IC & PCB.” The SCS Command Reference has a complete
description of the packaging commands.

Using the Hierarchy Navigator

7-22 Synario Capture System User Manual

Chapter 8

Attributes
An attribute is a characteristic or property belonging to, or associated with, a
symbol, pin, or net. For example, attributes can describe:

♦ Width or length of transistors, or the price of a resistor
♦ Size of a chip or a cell
♦ Number of connections to a block
♦ Delay from input to output
♦ Length of time taken to design a symbol

This chapter covers the following topics:

♦ Attribute Functions
♦ Attribute Types
♦ Attribute Components
♦ Modifying Attributes
♦ Creating New Attributes
♦ Number Notation in Attributes
♦ Derived Attributes

Attribute Functions
The principal source of information about a symbol’s electrical characteristics
and behavior is the attribute values attached to it. Your simulator uses these
attributes to analyze and simulate the schematics you design.

Attribute values in a symbol definition become the default values for each
symbol instance. These values are frequently overridden in the completed
design, usually to optimize its performance.

Attributes that apply to all instances of a symbol (such as the vendor part
number and the pin polarity) are generally assigned values when the symbol is
created. Attributes that apply to a single instance (such as the instance name)
are assigned after a symbol has been placed in the design.

The symbol libraries supplied with Synario have predefined values for all the
attributes required by the Synario Simulator. Chapter 9, “The SCS INI Editor,”
explains how to modify attributes.

Synario Capture System User Manual 8-1

Attribute Types
There are four attribute types:

Global Global attributes are constants such as feature size, supply
voltage, or identification codes. These attributes are
accessible from every sheet of every schematic at every
level of hierarchy.

Symbol Symbol attributes describe features related to the whole
symbol. Examples are the width and length parameters of
transistors, or SPICE-model characteristics. Symbol
attributes usually apply only to the symbol on which they
appear.

Pin Pin attributes describe features related to individual pins.
Polarity, lead number, drive capability, and loading are
typical pin attributes. Pin attributes are accessible at the
instance level and can be modified in both the Schematic
Editor and Hierarchy Navigator.

Net Net attributes describe characteristics associated with nets.
A good example is the stray capacitance of a net routed
across a chip.

Attribute Components
An attribute has five components: name, number, value, modifier, and
window.

Attribute Name

An attribute’s name identifies it to the user. Width, Length, RefDes and
PinNumber are examples of attribute names.

Attribute Number

The attribute’s number identifies it to the Editors and the Hierarchy Navigator.
Synario uses the number, not the name, to reference an attribute to allow a
different name to be assigned without changing the meaning or use of the
attribute. The connection between an attribute’s name and its number is
defined in the SCS initialization file. (Attributes 0–99 are reserved for Synario,
the Editors, the Hierarchy Navigator, and simulation. Most of them have
predefined meanings.)

Attributes

8-2 Synario Capture System User Manual

Attribute Value

An attribute can be assigned a value. A value is usually a number or a text
string.

Attribute Modifier

An attribute modifier specifies the conditions under which an attribute’s value
can be modified. The attribute modifiers are grouped based on where you can
edit their values:

♦ Anywhere in Design (<blank>)
♦ Not Editable (!)
♦ Symbol Only (-)
♦ Symbol or Schematic ($)
♦ Derived (*)

Attribute modifiers are fully described later in this chapter and in Chapter 9,
“The SCS INI Editor.”

Attribute Window

Attribute values are displayed in attribute windows. Attribute values cannot be
displayed unless the symbol has at least one attribute window.

You add attribute windows to a symbol when you define the symbol. Each
window is assigned a unique number and the default attribute that will be
displayed in that window. (The window number does not have to match the
number of the assigned attribute.) When the symbol is placed in a schematic,
the value of the assigned attribute appears in the window.

You can temporarily change which attribute is displayed in an attribute
window, using the Attribute Display command from the Options menu. This
is useful when you need to view attributes that are not currently displayed.

Attribute windows in schematics can be repositioned, one at a time, with the
Attribute Location command from the Edit menu. Repositioning can make a
crowded schematic more readable.

Note: Attribute windows do not have visible outlines. Rather, they are predefined
areas on or near the symbol.

Attributes

Synario Capture System User Manual 8-3

Modifying Attributes
See the SCS Command Reference for directions on editing attributes.

Symbol Attributes

Symbol attributes are characteristics or properties associated with the full
symbol, such as PartNum, Prefix, and Value.

Table 9-3, in Chapter 9, “The SCS INI Editor,” lists the default symbol
attributes and their meanings.

Pin Attributes

Pin attributes are characteristics or properties associated with pins, such as
PinName, Polarity, Fanin, Fanout, and PinNumber.

Pin attributes that are assigned values in the symbol definition can be edited in
the Schematic Editor.

Table 9-2, in Chapter 9, “The SCS INI Editor,” lists the default pin attributes
and their meanings.

Net Attributes

Net attributes are characteristics or properties associated with pins, such as
Cap, Length, Width, and VHDLNetType.

Table 9-1, in Chapter 9, “The SCS INI Editor,” lists the default net attributes
and their meanings.

Creating New Attributes
Attributes are defined using the INI Editor.

To create a new attribute:

1. Select Options: Schematic in the Synario Project Navigator, or Setup: Edit
Current INI from the SCS Shell.

2. Choose the Attributes menu, then select the type of attribute you want to
create: Symbol, Pin, Net, or Global. A dialog box is displayed. (The Symbol
Attributes dialog box is shown below.)

For Symbol, Pin, or Net attributes, a list box displays all the attribute
numbers from 0 to 199. An edit box at the top permits entering the
attribute’s name.

Attributes

8-4 Synario Capture System User Manual

The Symbol and Pin Attribute dialog boxes have radio buttons to select the
attribute modifier. The Symbol dialog box also has a second edit box to
assign an optional attribute window number.

The Net Attribute dialog box has additional radio buttons to select how
the attribute is displayed

For Global attributes, there is a list box with twenty lines numbered 0 to
19. There are two edit boxes, one for the attribute’s name, the other for its
value.

3. Attributes numbered 0 to 99 are reserved System attributes and should not
be altered. Attributes numbered 100 to 199 that are not already assigned
can be used to create new attributes. Click on one of these to enter the
values for your new attribute. (Global attributes are numbered 0 to 19, and
are always user-defined.)

4. Type in the attribute name and attribute window number you want. Click
on the attribute modifier desired.

WARNING! Some of the System attributes (0-99) may not be defined. Do not use
these for your own definitions. Future symbol libraries (or libraries for devices that you
do not currently use) may use these currently “blank” attributes.

Figure 8-1
Symbol Attributes Edit Box

Attributes

Synario Capture System User Manual 8-5

Table 8-1 below shows some typical attribute entries in the INI Editor.

Attribute
Number

Attribute
Modifier

Attribute
Window # Attribute Name Description

0 ! 0 InstName Instance Name

1 ! 1 Type Symbol Name

2 ! 2 RefDes Reference Designator for PCBs

3 Value General value parameter

35 8 Width MOS transistor width

36 9 Length MOS transistor length

102 * 12 Lambda Smallest processing geometry

The following sections explain how to enter values for each of the new
attribute’s components.

Attribute Names

Attribute names are text strings and can contain any characters except spaces.
Names are not case-sensitive. You can mix cases to improve readability.

Table 8-1
Typical Attributes

Attributes

8-6 Synario Capture System User Manual

Attribute Modifiers

You can edit symbol and pin attribute values on the symbol and override the
values in any schematic where the symbol appears. The four attribute
modifiers described below control how attribute values can be changed in the
schematic.

Modifier Edit In Description

blank Anywhere in Design These attributes can be assigned or edited in the Symbol
Editor, Schematic Editor, or Hierarchy Navigator.

! Not Editable Certain attributes are editable only by special "system"
commands, such as Instance Names and Net Name Flags.
In addition, the ini file may contain attributes that are not
editable for the purposes of maintaining compatibility
with other versions of the schematic (for example, for a
different FPGA or ASIC device family) without losing the
attribute name association.

These attributes are not listed in the attribute editors in
the Symbol Editor, Schematic Editor, or Hierarchy
Navigator.

- Symbol Only These attributes can only be assigned or modified in the
symbol editor. They establish fixed values for all
instances of the symbols to which they are attached.
"Symbol Only" attributes will be listed in the Symbol
Editor attribute editor, but not in the Schematic Editor or
Hierarchy Navigator. This modifier cannot be assigned to
net attributes.

$ Symbol or Schematic Attributes designated with this modifier can be assigned
or modified in the Symbol Editor or Schematic Editor;
they are not editable in the Hierarchy Navigator. These
are typically used in conjunction with netlisters that run
from the schematic. Since those netlisters do not have
access to the hierarchical database, any attributes added
through the Hierarchy Navigator would be lost.

* Derived Derived attributes can be assigned or modified anywhere
in the design through the Symbol Editor, Schematic
Editor, or Hierarchy Navigator.

Attributes

Synario Capture System User Manual 8-7

Note: Attributes 00 through 99 are reserved for Synario definitions. Do not change
their numbers or use. Attributes 100 through 199 are available for you to define and
use for any purpose.

For example, in Table 8-1, attribute 0, InstName, is predefined. Although you can
change its name, you cannot change its attribute number or its use (storing instance
names). The user-defined attribute Lambda has attribute number 102 and does not
have the Symbol Only modifier; it can be altered as you like.

Assigning Values to Simple Attributes

Once an attribute has been created, you can assign values to it. Many attribute
values are assigned during symbol creation.

An attribute such as Prefix (attribute #8) provides an element’s SPICE prefix
for use by the SPICE netlister. The value of this attribute is known when the
symbol is created as C (capacitor), D (diode), I (current source), L (inductor), M
(MOS transistor), Q (bipolar transistor), R (resistor), or V (voltage source). This
value can be assigned in the Symbol Editor with the Symbol Attribute
command from the Add menu.

To set the Prefix value for a MOS transistor symbol:

1. Select the Symbol Attribute command from the Add menu.

2. Click on Prefix in the list box.

3. Type the letter M.

Any time this MOS transistor is instantiated, the attribute Prefix has M as its
default. As there would never be a reason to change the value of this
parameter, you could use the INI Editor to add the minus sign (–) modifier
(“Symbol Only”) to the Prefix attribute. This modifier prevents accidental
changes in the Schematic Editor or the Hierarchy Navigator.

You can also provide default values of width 5 and length 2 for the MOS
transistor. Scroll through the Symbol Attributes list box, and edit values of the
width and length attribute.

Attributes

8-8 Synario Capture System User Manual

Changing Attribute Values in the Schematic Editor

When you create a schematic, you can change the width of the transistor
symbol from within the Schematic Editor.

To change an attribute value:

1. Select the Attribute command from the Add menu. The Attribute Editor
dialog box is displayed.

2. Click on an item (for example, an instance of the transistor symbol).

3. Select the desired attribute, and enter a new value (for example, under the
Width attribute, you can change the value of 5 to 10).

Any value you change in the schematic overrides a symbol’s default value.
You can also edit attribute values in the Hierarchy Navigator. When a design
is finished and logically correct, you can go back (with the Hierarchy
Navigator) and adjust device sizes to fit the constraints on rise and fall time.

Removing Attributes from a Netlist

Most netlist programs ignore attributes whose first character is an asterisk (*).
This feature can be used to remove an attribute from a netlisted symbol by
prefixing the attribute with an asterisk in the Schematic Editor.

Displaying Attribute Values on a Schematic

Attribute values are displayed in attribute windows. Before an attribute can be
displayed on a schematic, an attribute window number must be assigned to
the attribute in the Symbol Editor. In Table 8-1, the InstName attribute is
displayed in attribute window 0, and the Width attribute is displayed in
window 8.

You can add an attribute window number to any value to display it. The
attribute window number does not have to match the attribute number.

You can assign one attribute window number to several attributes. The
attribute with the lowest attribute number that has a value assigned is displayed.

Reassigning Attribute Windows

The attribute value assigned to an attribute window can be changed to permit
viewing different attributes. Suppose you’re editing a design within the
Hierarchy Navigator and want to see the timing delays. You can use the
Attribute Display command to temporarily assign the timing delay attribute to
a window that normally displays a different attribute.

Attributes

Synario Capture System User Manual 8-9

To reassign an attribute window:

1. Select the Attribute Display command from the Options menu of the
Hierarchy Navigator. (The same command is also available in the
Schematic Editor.) A list of all attributes and their associated windows is
displayed.

2. Click on an attribute (for example, "PDQ") currently displayed on the
symbol.

3. Remove the window number from this attribute by pressing
BACKSPACE.

4. Add that window number to the timing delay attribute by clicking on that
attribute and entering the window number.

The delay times you wanted to see are now displayed in the windows where
the "PDQ" attribute was previously displayed.

To return to the original display, assign the attribute windows to their original
numbers. Or, do nothing. Reassignments are temporary and are discarded
when you exit the Hierarchy Navigator or Schematic Editor.

Title Block Attribute Windows

A special group of attribute windows, numbered 200–206, is reserved for
design and file data you might want to display. They are pre-assigned to
attribute windows with the same numbers.

The attribute windows in Table 8-2 can be attached to graphics symbols. When
these symbols are placed in a drawing, the specified values are automatically
displayed. You might, for example, add attribute windows for attributes 200,
202, and 201 to a Master symbol to display the schematic’s name, the current
sheet number, and the last time the drawing was updated.

Attributes

8-10 Synario Capture System User Manual

Window
Number

Window
Name Attribute Window Description

200 FileName The name of the schematic. If the schematic has not been saved,
the default name is UNTITLED.

201 Date The date the file was last updated (written to disk).

202 Sh# The current sheet number. Valid sheet numbers are 1 to 99.

203 Sheets The number of sheets in this schematic.

204 Time The time that the file was last updated (written to disk).

205 Design The name of the navigator file (without the .tre extension).

206 InstName The instance name of the current block.

You can define your own symbol attributes (in the range of 100–199) for such
information as your company’s name and address, or the name of the project
engineer. SCS comes with a Master symbol for a Data I/O title block. You can
modify it for your own use, or study it for ideas of how to create your own title
block.

Using Graphic-Symbol Attribute Windows

To add an attribute window to a Graphic or Master symbol:

1. Select the Window command from the Add menu of the Symbol Editor. A
list of available attribute windows is displayed in a list box.

2. Click on one of the attribute windows. The selected window is attached to
the cursor.

3. Click at the desired point in the symbol to place the attribute window.

Table 8-2
Graphic-Symbol Attribute Windows

Attributes

Synario Capture System User Manual 8-11

Number Notation in Attributes
Synario has a highly flexible system for handling numerical attributes (width,
length, fan-in, impedance, and so forth). SPICE notational conventions are
used. Numbers can be entered as integers (100, -5), floating-point (3.14159),
scientific notation (1E5, 2.54E-3), or any of the preceding types followed by one
of the following unit scale factors:

Unit Scale
Factor Prefix Multiplier

T tera 1e12

G giga 1e9

MEG mega 1e6

K kilo 1e3

M milli 1e-3

U micro 1e-6

N nano 1e-9

P pico 1e-12

F femto 1e-15

Alphabetic characters immediately following a number are ignored unless
they represent a scale factor. 10, 10V, 10Volts, and 10HZ all represent the
number 10, just as 1000, 1000.0 1000hz, 1E3 ,and 1.0E3 all represent 1000.

Each attribute has a default scale factor. Whenever an attribute appears
without a scale factor, the default scale factor is used. If an attribute has a scale
factor specified, the value is taken exactly as written (the default scale factor is
ignored).

For example, the width attribute represents micrometers when it appears on a
transistor symbol. The default scale factor for width is U (micro), so a width of
1000 on a transistor would represent 1000 micrometers (1 millimeter).
However, a width of 1K on a transistor would mean 1 kilometer because the
presence of the unit scale factor, K, overrides the default scale factor.

Table 8-3
Numerical Prefixes in Attributes

Attributes

8-12 Synario Capture System User Manual

Attribute Value Meaning

Width 1 1 micrometer

Width 1U 1 micrometer

Width 1000 1000 micrometers

Width 1K 1 kilometer

Derived Attributes
Derived attributes permit interactive designing. You can change a design and
immediately view the effects of those changes, in much the same way you can
modify the numbers in a spreadsheet to see what happens to your numerical
model.

Derived attributes take their values from:

♦ Other attributes on the symbol or the symbol’s pins.
♦ Attributes on any other symbol or pin instance.
♦ Attributes on the symbol’s parents or children.
♦ Attribute tables.
♦ Global attributes accessible at any level of the design hierarchy.

A derived attribute is not a fixed value. It is specified by a format string that
defines how the attribute is to be derived. The syntax of the format string is
described below:

♦ Letters and numbers are transferred from the format string without
interpretation, just as if they represented a simple attribute.

♦ Whenever a pound sign (#) is followed by a number, the attribute with
that number is copied to the output string. Or, you can use a pound sign
followed by the attribute name in square brackets. For example, either #35
or #[width] returns the value of the width attribute.

♦ If #number or #[attr_name] is immediately followed by a backslash (\) and
a number representing a field index, the given field is copied from the
attribute. Attribute fields are delimited by spaces, commas, slashes, colons,
semicolons, or equal signs. This permits a single value to be taken from a
list of values.

Table 8-4
Default Scale Factors for Transistor Size

Attributes

Synario Capture System User Manual 8-13

♦ Specific instances are accessed by preceding the instance name with the at
sign (@). This allows attributes of child instances to be accessed. For
example, @inst1#[width] takes the width symbol attribute from instance
inst1.

♦ Attributes on parent instances are accessed using two periods (..) to
indicate the next-highest level in the hierarchy. For example, @..#35 takes
the Width attribute from the parent instance.

♦ Pin attributes are accessed by specifying an instance name followed by a
dash (–) and the pin name. The pin name must be terminated with a
space, equals sign (=), pound sign (#), or dollar sign ($). If no pin name
is given, the reference is to the instance itself (@).

For example, @inst2-in3#[LoadCap] returns the value of the load
capacitance attribute from pin in3 on instance inst2.

♦ If a pin name in the preceding syntax is followed by an equals sign (@–= or
–pinname=), the attributes of the net connected to the pin are used instead
of the pin’s attributes.

♦ A single period indicates the original instance. For example, @.-in3#42
takes the value of pin attribute 42 from pin in3 on the original instance.

♦ Global attributes are accessed by a dollar sign ($) followed by either the
global attribute number or the attribute name in square brackets. For
example, both $17 and $[lambda] access global attributes.

♦ Table data in schematics are accessed with the following syntax:

&table_name [row,column]

where

table_name is the table’s name. The cases must match.

row can either be a number or =value or =#attr or =$const. When row
contains an equals sign (=), the table is searched to find the row that has a
label equal to value or equal to the value of attribute attr on the current
symbol instance.

Row numbers start at one. Row zero is the column label.

column can either be a number or =value or =$const or =$attr. When a
column contains an equals sign (=), the table is searched to find the
column that has a label equal to value or equal to the value of the global
constant const.

Column numbers start at one. Column zero is the row label.

The SCS Command Reference explains the Table commands that are used to add
tables and modify table data.

Attributes

8-14 Synario Capture System User Manual

Examples of Derived Attributes

The following examples demonstrate the use of derived attributes. The
attributes (103, 110, and 111) are first defined as shown in Table 8-5.

After loading the symbol for a MOS transistor into the Symbol Editor, you can
create a new attribute that contains both the width and length. A slash (/)
separates them from the letters W= and L=. No matter how the symbol is
oriented in a schematic (for example, upside-down or rotated), the width is
always to the left of the length when this new attribute is displayed.

Attribute
Number

Attribute
Modifier

Attribute
Window

Attribute
Name Comments

0 ! 0 InstName Instance Name

1 ! 2 Type Symbol Name

3 Value

35 8 Width MOS transistor width

36 9 Length MOS transistor length

103 * 10 W/L Ratio of width to length

110 * 11 NewWidth width derived from 103

111 * 12 NewLength length derived from 103

Figure 8-2 shows what happens if you display the width and length
parameters separately on a symbol that is rotated 180°—the order of the width
and length is reversed. If you use a single attribute string to represent the
width followed by the length, the display order is independent of orientation.

Table 8-5
Derived Attributes Defined in INI File

Attributes

Synario Capture System User Manual 8-15

Assigning Derived Attributes

You can assign a derived attribute to any unused attribute number. In this
case, assume user number 103 is free.

To add a derived attribute to the MOS transistor symbol from the Symbol
Editor:

1. Select the Symbol Attribute command from the Add menu. The Attribute
Editor dialog box is displayed.

2. Click on the W/L attribute. This is attribute number 103 from Table 8-5.

3. With this attribute in the edit field, type either

W=#35/L=#36

or

W=#[width]/L=#[length]

then press ENTER.

Separate Attributes Single Attribute

Original Orientation

10 / 2 10 / 2

Mirrored

10 / 22 / 10

Rotated 180°

10 / 22 / 10

Figure 8-2
Effects of Mirroring and Rotation on Attributes Display

Attributes

8-16 Synario Capture System User Manual

The W= is taken literally. It is followed by the value of attribute number 35,
which in this case is the width. The /L= is interpreted literally and followed by
the value of attribute 36, the length. If you then display attribute number 103
in a window (assuming the width is 10 and length is 2), the following appears:

W=10/L=2

You can rotate the MOS transistor symbol and not lose the proper order of
width-followed-by-length. Also, the derived attributes can be used to set values of
Schematic Editor-defined attributes in the attribute-number range 0 to 99.

If attribute 103 is defined as above, you can copy the width and length
separately into two new derived attributes, 110 and 111. When you edit the
symbol for the MOS device, use the Symbol Attribute command and edit the
NewWidth and NewLength attributes to read:

#103\2 newly defined Width, attr 110, returns 10

#[W/L]\4 newly defined Length, attr 111, returns 2

This copies the second and fourth fields and places them into the NewWidth
and NewLength attributes. The W and L are treated as ordinary fields. The
equals sign (=) and slash (/) are delimiters.

If you define a derived attribute 104 and give it the following value:

#103 returns W=10/L=2

it returns the exact contents of attribute 103, W=10/L=2. The literal characters
W=, L=, and the slash (/) become part of the new attribute.

Calculated Derived Attributes

Attributes are text strings and have numerical meaning only when interpreted
by the Simulator or a netlister. There is one exception—derived attributes
inside parentheses () are treated as numbers, not text strings.

In derived attributes, expressions inside parentheses are evaluated to produce
a number. The numerical result is limited to an accuracy of three decimal
places. The four basic arithmetic operations are allowed, as well as several
comparisons. Comparisons are evaluated as shown below.

(a = b) 1 if true, 0 if false

(a != b) 1 if true, 0 if false

(a > b) 1 if true, 0 if false

(a < b) 1 if true, 0 if false

(a >= b) 1 if true, 0 if false

(a <= b) 1 if true, 0 if false

Attributes

Synario Capture System User Manual 8-17

Several examples of attribute definitions containing simple arithmetic
calculations follow.

Format String Result

AREA=(#[length]*#[width]) AREA=nnn, where nnn is length*width from this
symbol

A=(#35*#36* ((#35*#36)

> 10)) +

(#35*#36*1.2*((#35*#36)

<= 10)))

Sets A equal to length times width if the area is
greater than 10. If the area is less than or equal to
10, then A is set equal to the area times the
constant 1.2.

(4* (5+3)) 32

ABC(1.2/100+ .001) ABC0.013

Derived attributes can reference other derived attributes, but there is a limit of
four levels of nesting. When a derived attribute references an instance that is
not available, the entire attribute string for that derived attribute is left blank.

Derived Attributes and Hierarchy

The previous section showed how to access attributes or attribute fields on the
current level of the hierarchy. When a design is loaded into the Hierarchy
Navigator, all levels of the hierarchy are accessible, and attributes can also pass
information to higher or lower levels. (You cannot pass attributes up and
down in the Schematic Editor or Symbol Editor.)

To extract an attribute from another instance, use the at sign (@) followed by
the instance specification. The instance specification for the parent (higher)
symbol is two periods (..), and the instance specification for a child instance in
the underlying schematic is the specific instance name.

Passing attributes up and down the hierarchy is useful during
back-annotation. Transistor-sizing information extracted from a layout can be
added to the transistor level in the Schematic Editor. If the attributes are set up
properly, the low-level transistor sizes can be automatically transferred up
through the hierarchy to the gate level or higher.

Example of Derived Attributes

This example shows how an IC design can be scaled for different processing
dimensions.

One goal in IC design is to equalize the delays of rising and falling signals.
This is usually done by sizing n-channel and p-channel devices so that the path
from Vdd to the output has the same resistance as the path from the output to
ground.

Attributes

8-18 Synario Capture System User Manual

In a simple CMOS inverter, this results in the p-channel device to Vdd having
about twice the width of the n-channel device to ground. In an inverter on a 2µ
(micron) process, the n-channel device might have a width of 2µ and a length
of 4µ. The p-channel device would then have a W/L of 8/2 for a balanced
delay. On a 1 process, the corresponding values would be 2/1 for n channel
and 4/1 for p channel.

Everything scales linearly with the process dimensions. The following example
uses this fact to design a latch that can be automatically scaled to different
process dimensions. Dimensionless W/L attributes are attached to transistors.
At the primitive symbol level, these dimensionless quantities are multiplied by
a process scale factor, Lambda, that assigns the actual dimensions.

A complete design can be scaled to different process dimensions by changing a
single attribute, Lambda, inside the lowest-level primitives (the n- and
p-channel transistors). The alternative to this approach is to regenerate the
library every time a new process is used, and to include the new widths and
lengths on all the symbols.

The following attribute definitions are used:

Attribute
Number

Attribute
Modifier

Attribute
Window

Attribute
Name Comments

35 * 8 Width MOS transistor width

36 * 9 Length MOS transistor length

102 – Lambda smallest processing geometry

105 * 13 Zn W/L ratio for n channel

106 * 14 Zp W/L ratio for p channel

Width and length are derived attributes that represent the actual width and
length of MOS transistors. Lambda is the scale factor that, when multiplied by
the dimensionless width and length terms, gives the actual transistor widths
and lengths. Zn and Zp are dimensionless ratios of width to length, in the
format W/L. Zn is for n-channel transistors, and Zp for p-channel.

Table 8-7 shows the different attributes and their values at various hierarchy
levels. The bottom level is the MOS transistor, with symbols pch.sym and
pch.sym. The width and length attributes are generated by multiplying the
process scale factor, Lambda, by the dimensionless ratios Zn and Zp.

Table 8-6
Attribute Definitions for Derived-Attribute Example

Attributes

Synario Capture System User Manual 8-19

Lambda is defined at the transistor symbol level. The dash (–) modifier
ensures that it cannot be overridden at higher levels. Zn and Zp are
overridden at the latch schematic level and attached to each individual
transistor or inverter instance in the schematic. Zn and Zp are then passed
down to the transistor symbol level where they are used in the calculation of
actual width and length of the transistors. The 10/2 and 20/2 in the inv.sym
column are the default values. As you can see from the schematics below, all
the instances have different values that are set at the latch.sch level in the
hierarchy.

NCH.SYM PCH.SYM INV.SCH INV.SYM LATCH.SCH

Width (#102*@..#105\1) (#102*@..#106\1)

Length (#102*@..#105\2) (#102*@..#106\2)

Lambda 2 2

Zn @..#105 10/2

Zp @..#106 20/2

Figure 8-3 shows a latch.

All transistors have different sizes. Attributes Zn and Zp are edited on
n-channel and p-channel devices and passed down to MOS symbols.
Attributes Zn and Zp are both edited on each inverter and the values passed
down to the inverter schematic. Attributes Zn and Zp are dimensionless
width/length ratios for n- and p-channel transistors.

Table 8-7
Attributes and Values in the INI Editor for IC Example

INV2

INV1

CLK

D DATA O

CLK

Zp

Zp

Zp

Zn Zn

Zn

Figure 8-3
LATCH.SCH with Instances of MOS Transistors and Inverters

Attributes

8-20 Synario Capture System User Manual

Attributes Zn are Zp are passed down to individual transistors.

Attribute Zn is passed down from above. The dimensionless width is copied
from Zn and multiplied by Lambda to make the attribute Width (35). The same
is true for attribute Length (36).

These two device characteristics are scaled in proportion to process variable
Lambda. This makes it easy to use the same schematic for different fabrication
processes, such as 5, 1.2, or 0.5.

The SPICE netlist below shows that the dimensionless transistor widths and
lengths are multiplied by the Lambda scale factor (1.2) to give physical
dimensions in microns:

M1 Q DATA VDD VDD PMOS L=2.4U W=12U

M2 Q DATA GND GND NMOS L=2.4U W=6U

M3 DATA Q VDD VDD PMOS L=1.2U W=1.2U

M4 DATA Q GND GND NMOS L=2.4U W=1.2U

M5 DATA CLK’ D VDD PMOS L=2.4U W=24U

M6 DATA CLK D GND NMOS L=2.4U W=12U

Attributes

Synario Capture System User Manual 8-21

Chapter 9

The SCS INI Editor
The Synario Capture System uses initialization files (ecs.ini) that control the
default behavior of the Schematic Editor, Symbol Editor, Hierarchy Navigator,
Waveform Viewer, and Waveform Editing Tool. This initialization (INI) file
also contains the default values for symbol, pin, and net attributes.

In the Windows version, the master initialization file that comes with SCS is
stored in the config subdirectory, directly beneath the main SCS directory
(c:\synario, usually). You can also create "current" INI files that overlay the
master in other directories.

In the UNIX/Motif version, the INI file information is built up from the master
ecs.ini file stored in the data subdirectory and all other ecs.ini files found along
the path from the root (/) to the current directory.

The INI Editor (pcini.exe) lets you view and alter the values of the parameters
in the INI files. These parameters let you set the default values of the following
(and other) functions and parameters:

♦ Attributes
♦ Color assignments
♦ Display parameters (such as Show Border and Show Pin Dots)
♦ Default symbol type for the Symbol Editor
♦ Default text editor
♦ Global net names
♦ IC or PCB development mode
♦ Library search paths
♦ Printer configuration
♦ Schematic sheet size and layout parameters
♦ Tools and Processes menu entries

The binary.ini File

SCS applications often have to refer to the contents of the INI file. INI files are
ASCII text files, and reading and interpreting an ASCII file takes more time
than directly loading the parameters’ values in binary form.

Synario Capture System User Manual 9-1

Therefore, each time you save an INI file, the INI Editor automatically creates a
binary version of the INI file (binary.ini) in the directory specified in your
DOS TEMP environment variable. If you haven’t defined a TEMP variable, the
binary file is stored on your hard disk’s root directory (usually c:\). (In the
UNIX/Motif version, the binary file is written to the usr/tmp directory.)

When the SCS Executive starts running, it looks for binary.ini in the TEMP
directory (or, if there is no TEMP environment variable, in c:\). If it cannot find
binary.ini, it automatically recreates the file with the default values for SCS.

Custom INI Files

SCS is supplied with a default or “master” initialization file called ecs.ini. It is
stored in the config subdirectory. Unless you create other initialization files
and make them the default INI file, this is the file that is always used.

You can use the Save As command from the File menu to save the INI file
under any other name (and in any other directory, if you wish), to create
customized INI files (“project” files). For example, you might want a separate
INI file for each device family you use.

When you create a custom INI file and make it the current active initialization
file, SCS stores its fully qualified path in the INIFILE entry of the [SCS] section
of win.ini.

To use a custom file, run the INI Editor and load the file. Then select the Save
command from the File command. A dialog box asks if you want to “Set as
Current Project?” this INI file. Click on Yes to use this INI file, No to keep
using the file currently loaded.

Note: The custom INI files use the master INI file (ecs.ini) as an “overlay.” A
custom INI file contains only those values and settings that are different from the
settings in the master INI file. Any changes to the master file will change the behavior
of the custom files. This feature lets you make “global” changes to the custom files
without having to edit each one separately.

Master and Project Mode

The INI Editor has two operating modes—Master mode and Project mode.
When you load ecs.ini to edit it, the Editor is in Master mode. When you load
any other SCS initialization file, the Editor switches to Project mode.

The two modes have slightly different behavior, to accommodate the different
requirements when editing the master initialization file or a custom file.

The SCS INI Editor

9-2 Synario Capture System User Manual

In Master mode:

♦ The File: New and File: Open commands are disabled.
♦ The File: Save command saves the master INI file (ecs.ini).
♦ The File: Save As command saves the master INI file with a different name.

In Project mode:

♦ The File: New command creates an empty project file.
♦ The File: Open command opens an existing project file.
♦ The File: Save command saves this project file.
♦ The File: Save As command saves this project file with a new name.

When you save a project file under a name that is not the current project name,
the INI Editor asks if you want to make the modified file the “current project.”
Click on Yes to make the modified file the new default INI file. Click on No to
save the changes, but keep the currently loaded (unmodified) INI files as the
default.

If you decide to discard your changes, use the Exit command and select No
(“Don’t Save Changes”) to quit without saving.

Special Treatment of Master File Values

When you are editing a project INI file, the INI Editor displays some of the
values that appear in the master INI file (ecs.ini).

♦ If an attribute is defined in the master file, but not in the project file, the
master-file value is shown. These values cannot be deleted. You should not,
therefore, define an attribute in the master file unless you want it to appear
in all the project files. Project-file attributes can be defined only with
unused attribute numbers.

♦ The Sheet Layout dialog box includes an edit box labeled “Automatically
Add Master Symbols.” If one or more symbols have been specified in the
master file, their names will appear to the left of the edit box. These names
cannot be deleted. As with attributes, do not include Master Symbols in
the master file if you do not want them to appear in project files.

♦ The Global Signals dialog box displays any names assigned to global nets
in the master INI file above the edit box for that net. This lets you see the
default definitions before you change them.

♦ The Sheet Sizes, Symbol Tools, Schematic Tools, Navigator Tools, and
Processes dialog boxes display the master-file values for these commands
in a separate list box. These values cannot be deleted or edited. They are
displayed for reference and do not become part of the project file.

The SCS INI Editor

Synario Capture System User Manual 9-3

♦ The Search Paths dialog boxes (Project, Symbol, and Model Libraries)
display the master-file values for these paths in a separate list box. These
values cannot be deleted or edited. They are displayed for reference and
do not become part of the project file.

pcini.exe Command Line Options

The following command line options can be used with pcini.exe. If you want
to use any of these all the time, add them to the command line under [&Setup]
in pcshell.ini. (See Chapter 4, “Basic Operation,” for more information about
pcshell.ini.)

Option Use

-current The editor runs in Project mode on the current INI file. If
ecs.ini is the current file, it is loaded. (This is the default
option in pcshell.ini.)

-master The editor runs in Master mode on ecs.ini.

INI Editor Menus

In addition to the File menu, the INI Editor’s menu bar displays the following:

♦ Controls
♦ Tools
♦ Attributes
♦ Search Paths

The settings and controls for each menu are explained in the following sections.

Controls Menu

System Controls

The System Controls affect the general behavior of the Symbol and Schematic
Editors and the Hierarchy Navigator.

Application Mode

This parameter configures SCS for IC design, or PCB design, or both. The
default setting is IC.

IC Only Provides instance-name and pin-name support for ASICs.

The SCS INI Editor

9-4 Synario Capture System User Manual

PCB Only Provides support for pin numbers and reference
designators for board packaging. See Chapter 10, “PCB
Design Considerations,” for information about the
differences between IC and PCB design using SCS.

Both IC & PCB Provides support for instance names, pin numbers, and
reference designators.

Bus Parentheses

The Bus Parentheses list box lets you select the delimiting character for indices
on ordered bits. They can be enclosed in brackets, parentheses, curly braces, or
angle brackets, as shown below. The default is square brackets.

A[2], A[1], A[0] (default)

A(2), A(1), A(0)

A{2}, A{1}, A{0}

A<2>, A<1>, A<0>

First Character Must be Alphabetic

The first character of a net name or instance is usually a letter. (Numbers are
most often suffixes that identify a specific instance or net.) If this check box is
unmarked, the first character can be a number. This default setting is for this
box to be checked (first character must be alpha).

Coerce Net Names to Upper Case

When this check box is marked, any net name you enter is converted to all
upper-case letters. If you are using a netlist program or simulator that expects
net names to be all upper-case, you may want to check this box to be sure the
names are in the correct format.

Coerce Attributes to Upper Case

When this check box is marked, any attribute name you enter will be
converted to all uppercase letters. Attribute names are not case-sensitive,
however.

Prefer Descending Buses

By default, when the Waveform and HDL tools encounter bus elements where
the ordering of the bus elements is unclear, they arrange them in ascending
order. When this check box is marked, these tools will instead arrange them in
descending order. This option is ignored if you specify a bus order explicitly
anywhere in the schematic.

The SCS INI Editor

Synario Capture System User Manual 9-5

Simulator

The name in this edit box (simulator) is the base name of the simulator
configuration file. The Hierarchy Navigator searches for a file named
simulator.ini to establish the simulation parameters. The default setting is
"SimCP". See Appendix B, “Simulator Interfaces,” for more information about
the simulator.ini file.

A major feature of the simulation environment is providing hardware
description language (HDL) templates in the Symbol Editor and Hierarchy
Navigator. This facilitates writing behavioral models for the simulators.

Text Editor

Specifies the editor SCS uses to edit text. The default is synview.exe. If you
want to use a different editor, enter its name here. If the alternate editor’s
directory does not appear in the DOS PATH statement or is not in the SCS base
directory, give the fully qualified pathname.

Text Viewer

Specifies the editor SCS uses for viewing text. The default is the Notepad
(notepad.exe). If you want to use a different editor, enter its name here. If the
alternate editor’s directory does not appear in the DOS PATH statement or is
not in the SCS base directory, give the fully qualified pathname.

Display Controls

The Display Controls dialog box is a group of check boxes for the following
display features. Checking a box displays or enables the corresponding
feature. The first eight items can be overridden (for the current session only)
with the Display Options command from the Options menu in the Schematic
or Symbol Editors. (Use the INI Editor to make any changes permanent.)

Show Border

Turns screen and printer display of the schematic and symbol borders on and
off.

Show Pin Dots

Turns the screen and printer display of pin dots (unconnected pins) on and off.

Show Pin Numbers

Turns the screen and printer display of pin numbers on and off. (In the Symbol
Editor, pin numbers are displayed only when editing their values.)

The SCS INI Editor

9-6 Synario Capture System User Manual

Show Symbol Text

Turns the screen and printer display of fixed text inside symbols on and off.

Show Symbol Attributes

Turns the screen and printer display of symbol attributes on and off.

Show Net Attributes

Turns the screen and printer display of net attributes on and off.

Show Solder Dots

Turns the screen and printer display of solder dots (wire connections) on and
off.

Show Off Page Connects

On multiple-sheet schematics, you can show references to other sheets at nets
that connect across more than one sheet. The display is enabled on wire
segments with their names at the end of the wire.

Show Open Ends

Wires not terminating on a net name flag, symbol pin, or another wire are
considered schematic errors. This parameter controls whether they are
highlighted on the screen and plotter.

Allow Rotated Pin Numbers

The numbers on the pins of a symbol are normally displayed as horizontal
text. Optionally, the top and bottom pin numbers can be displayed as vertical
text.

Allow Rotated Net Names

If this box is checked, net names at the ends of vertical wires will (in some
cases) be displayed vertically.

Show Net Numbers

This parameter turns the screen and plotter display of node numbers on and
off. It affects only the Hierarchy Navigator display.

Every node in the circuit has a node number assigned in the SCS database.
These node numbers are used internally and can also be used by simulators
like SPICE, which require numbers rather than names.

The SCS INI Editor

Synario Capture System User Manual 9-7

Show Simulation Values

When a simulator is run with the Hierarchy Navigator, the logic levels of each
node are displayed on the schematic in the Navigator. When this box is
checked, the values are shown on the screen and when the schematic is printed.

Symbol Controls

These control two defaults in the Symbol Editor, Default Symbol Type and
Default Pin Name Offset. (In the UNIX/Motif version of SCS, they appear in
the System Controls dialog box.)

Default Symbol Type

The Default Symbol Type is assigned to a newly created symbol. You can
choose from Block, Cell, Component, Gate, Graphic, Pin, or No Default. These
types are described in the list below. You can override the default type by
selecting a different type using the Symbol Editor’s Change Type command.

Refer to Chapter 6, “Using the Symbol Editor,” for a description of the
different symbol types.

Block Hierarchical elements (such as modules)

Cell Primitive in IC design

Component Primitive in PCB designs representing complete packaged
device

Gate Primitive in PCB designs representing a single functional
element of complete device (for example, one of four
NAND gates in a 7400).

Graphic Non-electrical information, such as tables and notes.

Pin Physical pins on an edge connector or PCB.

No Default The Symbol Editor prompts you for the symbol type when
you start a new drawing.

The Master type is not available as a default, only by No Default prompting or
from the Change Type command. It is assumed Master is the least used
symbol type and you would only occasionally create Master symbols.

Default Pin Name Offset

Default Pin Name Offset controls the distance between a pin’s name label and
the pin itself. It is measured in units of one-quarter the Secondary grid. The
default is 36 units. The value can range between 0 and 127.

The SCS INI Editor

9-8 Synario Capture System User Manual

Graphic Options

This dialog box sets the defaults for the Graphic Options dialog box in the
Schematic and Symbol Editors. Any of these can be overridden in the Editor
for the current working session.

Text Justification Horizontal text can be left-justified, right-justified, or
centered. This parameter applies both to fixed graphic text
and text in attribute windows. Any change to this setting
affects text added after the change, not existing text.

Text Size You can choose the size of fixed graphic text and text in
symbol attribute windows. In the Windows version, the
choices are First, Second, Third, Fourth, Fifth, Sixth,
Seventh, and Eight. In the UNIX/Motif version, the
choices are Small, Medium, and Large. The defaults are
Third and Small, respectively. Any change to this setting
affects text added after the change, not existing text.

Vertical Text Text is normally drawn horizontally. When the Vertical
Text box is checked, the default placement of text is
vertical.

Grid Spacing Grid Spacing controls the placement of graphic objects, not
symbols or wires (which must always fall on the Primary
grid). You can set the default increment to the Primary
grid spacing, or one-half or one-quarter that value.
Smaller values allow more precise placement.

Show Grid Enables the Primary grid display. The grid appears as an
array of dots, with one dot at each grid intersection. Every
tenth grid point is larger. As you “zoom out” and the grid
dots get closer together, some dots may not be displayed.

Full Cursor Selects between the normal cursor (a small “plus” sign)
and the full-screen cursor. The full-screen cursor makes it
easier to align objects.

Wide Lines When Wide Lines is checked, all graphic elements (not
symbols or wires) are drawn with double-thick lines.
These heavy lines have the same weight as schematic
buses. Any change in this setting affects graphics drawn
after the change, not existing graphics.

The SCS INI Editor

Synario Capture System User Manual 9-9

Sheet Layout

The Sheet Layout dialog box sets defaults for the border and the Primary grid.

Zones

The border is divided into horizontal and vertical zones (sections) to simplify
locating a specific item. For example, a flip-flop might be in the B7 zone, or an
I/O marker in D3.

By default, the horizontal zones are numbered, the vertical lettered. When the
“Draw Numbers on Vertical Axis” box is checked, the horizontal zones are
lettered, the vertical numbered. When this box is clear, the horizontal zones are
numbered, the vertical lettered.

When the “Horizontal Zones Increase toward the Right” and “Vertical Zones
Increase toward the Top” boxes are checked, the lowest numbers (or letters)
are at the left and bottom. When these boxes are cleared, the lowest numbers
(or letters) are at the top and right.

The “Number of Horizontal Zones in Schematic Border” and “Number of
Vertical Zones in Schematic Border” edit boxes set the number of border
divisions. The permitted range of values is two to nine divisions.

Grid

The Grid Size and Grid Units settings are self explanatory. Inches or
centimeters at a 0.1 increment are the most common choices. 0.1 inches is the
default.

Symbols do not have an absolute size; they are scaled in grid units. Therefore,
selecting a smaller grid may let you place more symbols on a given size
schematic. On the other hand, a larger grid produces larger symbols when the
schematic is printed.

Automatically Add Master Symbols

Master symbols are used for reference items that appear on every schematic,
such as a title bar, the project name, or the company logo. If you want a Master
symbol to be added to each schematic, type its file name in the Automatically
Add Master Symbols edit box.

The symbol is automatically placed in the same corner of the schematic as its
origin. For example, if the symbol’s origin is at its lower-left corner, the symbol
is positioned at the lower-left corner of the schematic.

More than one Master symbol can be specified by separating them with
spaces. (If they have the same origin, they will overlap.) As with other
symbols, do not specify the path. The Editor will traverse the Symbol Libraries
search path for the first symbol file with a matching name.

The SCS INI Editor

9-10 Synario Capture System User Manual

Sheet Sizes

The Sheet Sizes dialog box sets the permitted drawing sizes. The default sheet
size is the size specified at the top of the list box. The sheet size for a particular
drawing can be changed with the Sheet Setup command in the Schematic
Editor. Typical sheet sizes are:

English (inches) Metric (mm)

A = 11 8.5 A4 = 297 210

B = 17 11 A2 = 594 420

C = 22 17 A3 = 420 297

D = 34 22 A1 = 841 594

E = 44 34 A0 = 1189 841

The width is the first number. Since schematics are usually wider than they are
high, the width is usually greater than the height. Height and width are
measured in the Grid Units specified in the Sheet Layout dialog box (inches,
centimeters, or millimeters). The maximum supported dimension is 8000 Grid
Units.

To add a new size, click on the Add button. A new entry with the designation
New and a length and width of zero is added to the list. Press TAB to select the
edit boxes (or click on them), then change the Sheet Size, Width, and Height to
the values you want.

To change the size of an existing sheet, click on the list box line with its
description. The values are copied to the edit boxes, where you can alter them.

The Delete button removes the currently highlighted sheet. The Move Up
button swaps the highlighted sheet with the sheet above it. The Move Down
button swaps the highlighted sheet with the sheet below it.

Note: The sheet size names are arbitrary and need not have any relation to either
European paper sizes or American drafting paper sizes. You can use any letter,
number, or name you want.

The SCS INI Editor

Synario Capture System User Manual 9-11

Wave Controls

This dialog box controls the overall appearance of the Waveform Viewer and
Waveform Editing Tool. Colors are set in the Wave Colors dialog box.

Padding Around Text The line spacing of text in the waveform name
area in units of one-quarter the text height.

Gap Between
Waveforms

The space between waveforms in units of
one-quarter the text height.

Characters in Name
Field

The width of the waveform name area. If names
are longer than the number of characters selected,
the names are truncated in the display.

Reverse Bits in Bus If Yes, the least-significant bit (LSB) of buses is
displayed to the left whenever the bus value is
displayed as a number. If No, the bus value is
displayed with the same bit order as a binary
number (the LSB to the right).

Bus Radix The radix, or base, used to display buses. The
choices are Binary, Octal, Decimal, and
Hexadecimal.

Global Nets

Global nets are net names that have predefined symbols associated with them.
When one of these global names is assigned to a net (GND, for example), the
corresponding symbol is attached to the net in your schematic.

Global signals can be accessed across all hierarchy levels and across all sheets
and schematics in a design. For this reason, names assigned as global net
names cannot be used as “local” net names.

Note: Global ground symbols are drawn only at the bottom of vertical wires, while
global supply symbols are drawn only at the top of vertical wires. If the wire is not
vertical, the global symbol is not drawn. Instead, its name is displayed inside a box that
overlaps the net.

The available symbols are shown in Figure 9-1. A symbol cannot be used until
a name has been assigned to it. (Three of the symbols are already named and
can be used immediately.) Click on the edit box next to the symbol and type in
the name you want. You can change or remove a name the same way.

The SCS INI Editor

9-12 Synario Capture System User Manual

There are three types of global net symbols.

Labeled Symbols The symbols in columns 2 and 4 of Figure 9-1 are labeled
symbols. The name you assign to one of these symbols is
attached to the symbol to label it, replacing the "T" or
"TTT".

You can assign more than one name to labeled symbols.
Multiple names are separated with a space (not a comma).
Therefore, names cannot contain spaces.

Unlabeled SymbolsThe symbols in columns 1 and 3 of Figure 9-1 are unlabeled
symbols. The name you assign is not shown on the
symbol. The symbol is the only visible indication that the
net has been named. Use the Query command to view the
name.

You can assign only one name to an unlabeled symbol.
This limitation prevents confusion; if you could assign
more than one name, you would have no way of knowing
which name had been chosen.

No Symbol You can assign a name to the box with "TTT" at the top of
the second column. This name is global. The name is
attached to the net, but there is no symbol (other than the
box surrounding the name).

Figure 9-1
Global Signals Dialog Box

The SCS INI Editor

Synario Capture System User Manual 9-13

You can assign more than one name to this symbol.
Multiple names are separated with a space (not a comma).
Therefore, names cannot contain spaces.

Colors

The Colors dialog box assigns colors to various Symbol and Schematic Editor
display functions. There are 18 combo boxes, one for each Editor display
function that can have a unique color.

To change a color, click on the arrow in the combo box, then click on the
desired color in the color-bar display that appears. The display functions are
listed below.

Background The background color of the Editor window

Highlight When you use the Query command to select a component,
the component is marked with diagonal lines of this color.
Queried nets are redrawn in this color.

Phantom When you select objects to move or drag, they are
redrawn in this color.

Pins The color of symbol pins.

Graphics The color of lines, boxes, circles, arcs, and text. (Although
the body of a symbol is graphical, it has its own color
attribute.)

Border The color of the lettered and numbered boxes that border
the drawing.

Figure 9-2
Colors Dialog Box

The SCS INI Editor

9-14 Synario Capture System User Manual

Verify A net selected with the Query command is redrawn in this
color. A symbol selected with the Query command is
marked with diagonal lines of this color.

Symbols The color of the body of a symbol.

Nets The color of wires and net names.

OpenEnds Hanging wires or unattached net names are marked with
a dot of this color.

Buses The color of buses and bus names.

HighlightBus A bus selected with the Mark command is redrawn in this
color.

HighlightSymbol A symbol selected with the Mark command is marked
with diagonal lines of this color.

SimVal The color of text showing the logic value of a schematic
node.

SimVal0 The color of the small square on a schematic node
indicating logic low.

SimVal1 The color of the small square on a schematic node
indicating logic high.

SimValX The color of the small square on a schematic node
indicating unknown state.

SimValZ The color of the small square on a schematic node
indicating high impedance.

CAUTION: Don’t assign the Background color to any other display function.
That function will be invisible against the same-colored background.

Wave Colors

The Wave Colors dialog box assigns colors to various Waveform Viewer
display functions. There are nine combo boxes, one for each Waveform Viewer
display function that can have a unique color.

To change a color, click on the arrow in the combo box, then click on the
desired color in the color-bar display that appears. The display functions are
listed below.

Background The background color of the Waveform Viewer window.

WaveName The color of waveform names in the names window.

The SCS INI Editor

Synario Capture System User Manual 9-15

BusWaveform The color of bus waveforms.

HighlightWave When a waveform is selected, its name is marked with
diagonal lines of this color.

SignalWave The color of single-bit waveforms.

UnknownWave The color of signals that have been assigned a logic value
of “unknown.”

HighZWave The color of signals that have been assigned a logic value
of “Hi-Z.”

ResistiveWave The color of signals that have been assigned a strength of
“resistive.”

SupplyWave The color of signals that have been assigned a strength of
“supply” (Vdd).

CAUTION: Don’t assign the Background color to any other display function.
That function will be invisible against the same colored background.

Figure 9-3
Wave Colors Dialog Box

The SCS INI Editor

9-16 Synario Capture System User Manual

Print Controls

Orientation Specifies the default orientation for printing
schematics.

Margins Specifies the default margins for printing
schematics

Clipboard Format Specifies the clipboard format of items that are cut
or copied to the clipboard.

Tools Menu
You can invoke other programs from within the Schematic Editor, the Symbol
Editor, or the Hierarchy Navigator. These new programs are listed in the Tools
menu of the Editors and the Navigator, and in the Navigator’s Processes
menu. (If no programs are assigned to these menus, the menus are not
displayed.)

There are three dialog boxes for adding programs to the Tools menus, and a
fourth dialog box for adding programs to the Process menu in the Hierarchy
Navigator. The only distinction between Tools and Processes in the Hierarchy
Navigator is that the Processes menu is intended for programs that create
netlists. You can ignore this distinction and assign programs to any menu.

All four dialog boxes are identical and work the same way. The Hierarchy
Navigator Process Menu dialog box is shown in Figure 9-4.

♦ The Menu Label is the text string that appears in the menu to identify the
added tool or process. You click on this menu item to run the program.

♦ The Application is the filename of the program. (You can also specify DOS
batch (.bat) files.) If the program is not in the SCS root directory or one of
the directories in the DOS PATH statement, enter the fully qualified path
name.

♦ The Flags are any command line switches or options needed.

You can manually fill in these edit boxes, or you can use the Add button to
browse the programs on your hard disk. The Add button displays the generic
Open File dialog box, labeled Choose Application. Find the application you
wish to add, then double-click on it. (Or highlight it and click OK.) The Menu
Label and Application edit boxes are automatically filled in.

When you use the Add button, the path is not included in the Application edit
box. If the program is not in the SCS root directory or one of the directories in
the DOS PATH statement, you must add the full path to the application’s
name.

The SCS INI Editor

Synario Capture System User Manual 9-17

You must also fill in any command line flags or switches required. You can use
any of the filename substitution flags in the command line flags to represent
the base name of the currently loaded file. See the section "pcshell.ini Format"
in Chapter 4 for filename substitution flag. (You must supply the desired
extension.) For example, if the file design.rat were currently loaded, and you
wanted to pass the name design.cat, you would enter

&F.cat

If you don’t use a substitution flag, the current filename is inserted at the end
of the command line.

The list box below the edit box displays the tools or processes in the same
order they will appear in the menu. The Move Up button swaps the
highlighted application with the tool above it. Move Down swaps the
highlighted application with the application below it. To delete an application,
highlight its name, then click the Delete button.

Symbol Tools

Any utilities, netlisters, or other processes that don’t require the Hierarchy
Navigator to operate (such as the Notepad, archiving tools, and so on) can be
added to the Tools menu of the Symbol Editor. The Verilog and VHDL
netlisters are the only tools shipped with SCS that currently work in the
Symbol Tools menu.

Figure 9-4
Hierarchy Navigator Process Menu Dialog Box

The SCS INI Editor

9-18 Synario Capture System User Manual

Schematic Tools

Any utilities, netlisters, or other processes that don’t require the Navigator to
operate (such as the Notepad, archiving tools, and so on) can be added to the
Tools menu of the Schematic Editor. The following tools shipped with SCS
work in the Schematic Tools menu.

♦ EDIFNETS
♦ Schematic Back annotation
♦ Verilog netlister
♦ VHDL netlister

The following are the standard Schematic Tools entries in the default ecs.ini
file:

Code Verilog=vericode
Code VHDL=vhdl
EDIF Netlist=EDIFNETS

Navigator Tools

This dialog box adds entries to the Tools menu of the Hierarchy Navigator.
These entries start tasks for the Waveform Viewer. You can write your own
interface programs and add them to the Tools menu.

The following are the standard Navigator Tools entries in the default ecs.ini
file:

Check Circuit=CHECKCKT

Code Verilog Model=VERICODE

Navigator Processes

This dialog box adds entries to the Processes menu of the Hierarchy Navigator.
These entries start tasks for netlisting or simulation. SCS supports several
netlisters that are accessed through this menu. You can also write your own
interface programs and call them from the Processes menu.

Note: The distinction between the types of programs added to the Navigator’s Tools
and Processes is arbitrary, and designed only to make it easier to find a specific tool.
You can place your own entries in either menu.

These are the standard Navigator Process entries in the default ecs.ini file:

Flat Spice Netlist=Spicenet
Hierarchical Spice Netlist=hSpicent

Net List By Pin=pcbnet -pin (generic list in part/pin order)

The SCS INI Editor

Synario Capture System User Manual 9-19

Net List By Net=pcbnet -net (generic list in net order)
List Marked Nets and Instances=lister -listmark
Partlist=lister -listpart
Instance list=lister -listnet

EDIF 2 0 0 Netlist=edifnet (EDIF-format netlister (hierarchical))
ASCII Netlist=asciinet (ASCII-format netlister)

Note: An optional Programmer’s Interface Kit (PIK) is available. This kit provides C
functions that let you access the SCS database (schematics, symbols, navigator files,
and so on). You can use the extracted data as input for your own interface programs.

Attributes Menu
Attributes are created and assigned using the INI Editor. Refer to Chapter 8,
“Attributes” for a description of attributes.

Symbol, Pin, and Net Attributes

There are separate dialog boxes for creating symbol, pin, and net attributes. All
have a list box showing the current attribute definitions, and an edit box at the
top where an attribute name can be added, deleted, or altered.

Attribute Numbers

The attribute is represented in the attribute database by the attribute number,
and SCS uses this number to access it. You can therefore change the name of
any attribute without changing access to that attribute.

Unused attribute numbers are shown with four dashes in the name field. New
attributes can be added to these empty fields.

The first 100 attributes (0–99) are reserved for SCS use. You should not add
new attributes to the empty attribute fields in this section. Future versions of
SCS or symbol libraries you purchase later may need these currently unused
attributes.

The second 100 attributes (100–199) are for your own use. You can define them
in any way you like, without worrying about changes or incompatibility.

There are seven attributes (200–206; not shown in the INI Editor) that can be
used to display file creation and other data. These are explained in Chapter 8,
“Attributes.”

The SCS INI Editor

9-20 Synario Capture System User Manual

Adding Attributes

To add an attribute:

1. Click on the number (100–199) of an unused attribute.

2. Enter the name of the attribute in the Attribute Name edit box.

3. Select appropriate values for attribute modifiers, window and display.

Attribute names are not case-sensitive. You can mix upper and lower case to
make the name easier to read.

Figure 9-5
Symbol Attributes Dialog Box

Figure 9-6
Pin Attributes Dialog Box

The SCS INI Editor

Synario Capture System User Manual 9-21

Attribute Data Fields

The attribute modifier controls where and how attribute values can be entered
or altered. The default is a blank (no entry). All the dialog boxes include a
group of Edibility radio buttons that select the attribute modifier. See Chapter
8, "Attributes" for more information on attribute modifers.

You can specify how net attributes are displayed. See "Add: Net Attribute
Window" in the SCS Command Reference for more information.

Attribute Window

Symbol attributes can be displayed on or near the symbol in an area called the
“attribute window.” (Attribute windows are described in Chapter 6, “Using
the Symbol Editor.”)

If you select an attribute and enter a number in the Attribute Window edit box,
the value of the attribute is displayed with the symbol. The attribute window
number does not have to be the same as the attribute number.

Attribute Name

You can enter your own names for the user-defined attributes (100–199). You
can change the names of the system attributes (0–99) if you want, because the
association between an attribute and its value is made with the attribute’s
number, not its name.

Modifying Attributes

Use the following procedure to add or modify a symbol attribute. The
procedure is nearly the same for pin and net attributes; skip the steps that
don’t apply to the selected attribute.

Figure 9-7
Net Attributes Dialog Box

The SCS INI Editor

9-22 Synario Capture System User Manual

1. Click on the attribute you want to modify. You can select any line in the
list box, even if the attribute number is the only field that currently has a
value.

2. The attribute’s name appears in the Attribute Name edit box. Type the
new or changed attribute name.

3. Click on the appropriate radio button to assign the desired attribute
modifier. "Anywhere in Design" is the default modifier. If this modifier is
selected, the modifier field is left blank in the list box. (Net attributes do
not have an attribute modifier.)

4. If you want the attribute displayed, enter a number in the Attribute
Window edit box. Window numbers range from 0 to 99, and have no
relation to the attribute numbers 0 through 99. (Pin and net attributes do
not assign attribute windows in the INI Editor.)

If two (or more) attributes use the same attribute window, the
lowest-numbered attribute that has a value is displayed.

Example Attributes

Tables 9-1, 9-2, and 9-3 show example attribute definitions for net, pin, and
symbol attributes. Attribute modifiers, numbers, and windows are shown
where appropriate.

Chapter 8, “Attributes,” has a more detailed discussion about using attributes
and creating new ones.

The SCS INI Editor

Synario Capture System User Manual 9-23

Att Number Att Mod Attribute Name Description

0 ! NetName Net name

3 Cap Capacitance

5 Length

8 Width

10 VeriType Verilog Net Type

30 VHDLNetType VHDL Net Type

31 VHDLBusType VHDL Bus Type

111 RouteLayers Route Layers

112 ThermalLayers Thermal Layers

113 NetWeight Net Weight or Priority

114 ViaPerNet Number of Vias allowed per Net

115 MinWidth Minimum Net Width for PCB

116 MaxWidth Maximum Net Width for PCB

117 MinLength Minimum Net Length for PCB

118 MaxLength Maximum Net Length for PCB

119 WidthByLayer Width List by Layer

120 SpacingByLayer Spacing List by Layer

121 ConnWidth Connect Width

122 ReconnType Reconn Type

123 MatchedPair Matched Pair

124 Shielding Shielding

125-130 Reserved Future PCB

Table 9-1
Standard Net Attributes

The SCS INI Editor

9-24 Synario Capture System User Manual

Att Number Att Mod Attribute Name Description

0 – PinName Pin name

1 – Polarity In, Out, BiDir

2 FanIn Dimensionless number for IC loads

3 FanOut Dimensionless number for IC drive

4 + PinNumber Used in PCBs for Gate or Component pin
numbers; represents physical pin connection

5 WireOr Tristate, Opencollector, or Yes

6 – PinGroup Used in PCB design; indicates can swap pins

7 LoadLow Current load in low state

8 DriveLow Current drive in low state

9 OpenOK OK to be unconnected pin

10 – SilosName Identifies pins in models

11 SilosLoad Numeric load factor for load calculation

14 – VeriName Alternate pin name or order for pins

15 LoadHigh Current load in high state

16 DriveHigh Current drive in high state

18 – TimilName Alternate pin name or order for pins

20 LoadCap Capacitive load (pF)

21 DriveCap Capacitive drive (pF)

22 + KCL Drive factor for simulation models

23 + Pin2Pin Pin to pin delay for simulation models

24 + DelayBack Back annotated delay for simulation models

25 + ChkPulseW Check for pulse width violation on this pin

26 + ChkHold Check for hold time violation on this pin

27 + ChkSetup Check for setup time violation on this pin

30 VHDLPinType Port type if scalar port in VHDL

Table 9-2
Standard Pin Attributes

The SCS INI Editor

Synario Capture System User Manual 9-25

Att Number Att Mod Attribute Name Description

31 VHDLBusPinType Port type if vector port in VHDL

32 VHDLDefValue Default value for Port

33 VHDLNetConv Type conversion function for port

34 VHDLBusConv Type conversion function for port

35 VHDLPinUse Used for port type of BUFFER in VHDL

36 SpiceOrder Integer that forces order of subcircuit pins

40 HiLoPinName Alternate pin name used for HiLo simulations

50 XSimPinName Pin name used for X-Sim primitives

51 PinNegation Apply negation to this pin

90 – BusPin_A First set of pins attached to bus pin

91 – BusPin_B Second set of pins attached to bus pin

92 – BusPin_C Third set of pins attached to bus pin

93 – BusPin_D Fourth set of pins attached to bus pin

94 – BusPin_E Fifth set of pins attached to bus pin

95 – BusPin_F Sixth set of pins attached to bus pin

96 – BusPin_G Seventh set of pins attached to bus pin

97 – BusPin_H Eighth set of pins attached to bus pin

111 PinDiameter Pin Diameter

112 ECLType ECL Pin Type

113-120 Reserved Future PCB

The SCS INI Editor

9-26 Synario Capture System User Manual

Att
Number Att Mod

Attribute
Window Attribute Name Description

0 ! 0 InstName Instance Name

1 ! 1 Type Symbol Name

2 ! 2 RefName Reference designator for PCBs

3 3 Value General value parameter

4 PartNum PCB part number

5 PartShape Footprint of PCB part

6 CompName Identifies gates in the same package.
Can be used for
DeMorgan-equivalence or
non-homogeneous components

7 - GateGroup Identifies interchangeable gates

8 Prefix SPICE element prefix (Q, M, R …)

9 + 9 CompGroup Component Group used to group
components to be placed together on
the board

10 – SilosModel Primitive model name for SILOS

11 SilosTimes Delay specifier for SILOS primitives

13 + HidePinNumber If set, indicates that pin numbers
should not be displayed for this gate

17 – XSimModel X-Sim primitive model name

18 + BodyDelay Body delay parameter for simulation

20 – VeriModel Primitive or model name for Verilog

21 VeriTimes Delay specification for Verilog

22 VeriStrnth Strength specification for Verilog

25 – TimilModel Primitive or Model name for
Timemill

Table 9-3
Standard Symbol Attributes

The SCS INI Editor

Synario Capture System User Manual 9-27

Att
Number Att Mod

Attribute
Window Attribute Name Description

26 TimilExtra Extra parameter for Timemill

34 Impedance SPICE parameter

35 Width SPICE transistor width

36 Length SPICE transistor length

37 Multi Multiplication factor for SPICE

38 SpiceModel Model card for SPICE

39 SpiceLine Model parameters for SPICE

40 SpiceLine2 Additional SPICE model parameters

41 * AreaS Area of source for SPICE

42 * AreaD Area of drain for SPICE

43 * PeriS Perimeter of source for SPICE

44 * PeriD Perimeter of drain for SPICE

45 NRS Squares of source diffusion, SPICE

46 NRD Squares of drain diffusion, SPICE

47 DefSub Substrate node

60 – GND Power connection attribute for PCBs;
typ GND

61 – VDD Power connection attribute for PCBs;
typ VDD

62 – VCC Power connection attribute for PCBs;
typ VCC

63 – PCBGlobal3 Power connection attribute for PCBs

64 – PCBGlobal4 Power connection attribute for PCBs

65 – PCBGlobal5 Power connection attribute for PCBs

66 – PCBGlobal6 Power connection attribute for PCBs

67 – PCBGlobal7 Power connection attribute for PCBs

68 – PCBGlobal8 Power connection attribute for PCBs

69 – PCBGlobal9 Power connection attribute for PCBs

The SCS INI Editor

9-28 Synario Capture System User Manual

Att
Number Att Mod

Attribute
Window Attribute Name Description

70 – HiloModel Specifies model for HILO primitives

71 HiloTimes Specifies HILO delay times

72 HiloStrength Specifies HILO driving strength

73 HiloParam

74 HiloParamValue

75 HiloDelayScale

76 HiloVisibility

78 VHDLConfig

79 VHDLUseLib

80 VHDLModel

81 VHDL1 User-definable for VHDL

82 VHDL2 User-definable for VHDL

83 VHDL3 User-definable for VHDL

84 VHDL4 User-definable for VHDL

85 VHDL5 User-definable for VHDL

86 VHDL6 User-definable for VHDL

87 VHDL7 User-definable for VHDL

88 VHDL8 User-definable for VHDL

89 VHDL9 User-definable for VHDL

99 EllaType

109 PartDesc Part Description

111 FPList Footprint List

112 MirrorFootPrint Mirror Footprint

113 PowerPin Power Pin List

114 CompLoc Location

115 CompLayer Component Layer on Board

116 CompRot Component Rotation

The SCS INI Editor

Synario Capture System User Manual 9-29

Att
Number Att Mod

Attribute
Window Attribute Name Description

117 CompFixed Component location is fixed

118 CompLocked Component location is locked

119 CompKey Key

120 Decoupler

121 CompHeight Component Height

122 Voltage

123 Wattage

124 Tolerance

125-130 Reserved Future PCB

Global Attributes

The Global Constants dialog box defines global attributes in schematics. There
are 20 global attributes, all of which are user-defined. They can be used to
define anything, but are usually used for attributes that apply to all
schematics, such as supply voltage (VDD) or design rule dimensions.

1. Click on the desired global attribute number from the list box.

2. Type the name of the global attribute in the Attribute Name edit field.

3. Type the value of the global attribute in the Attribute Value edit field.

Global attributes can be modified in the Hierarchy Navigator with the Edit:
Constants command. Changes are discarded when you exit the Navigator.

The SCS INI Editor

9-30 Synario Capture System User Manual

Search Paths Menu

Project, Model, and Symbol Libraries

These dialog boxes let you modify the search paths for Projects, Models, and
Symbols. The directories are searched in the order they appear in the list.

Libraries are directories that contain symbol or schematic files. SCS also
installs libraries that have been compressed into individual files with the .lib
extension. Once they have been added to the search path, these compressed
symbol libraries are treated the same way as the library directories. You can
define your own symbol library directories, but not compressed symbol
libraries.

Note: You can modify symbols from the compressed libraries using the library
extraction utiltiy "extlib" to extract a copy of a symbol from a library. You can then
edit the symbol and place it in a directory that is searched before the library. The
command line is

extlib symbol_name

Figure 9-8
Global Attribute Editor

The SCS INI Editor

Synario Capture System User Manual 9-31

When you highlight a name, it appears in the Path edit box where it can be
modified. The paths supplied with the default version of ecs.ini names are
prefixed with %ROOT. This is the path specified by the Root variable defined
during installation. (The default Root path is the directory you installed SCS
in, usually c:\synario.)

You can add your own path variables to the Registration Database using the
Windows program RegEdit:

proj_path = c:\projects
my_symbols = d:\user_sym

or as SET PATH statements in autoexec.bat:

SET MY_PATH = e:\my_proj

You can access any of these paths in the search path list by prefixing their
names with a percent sign (%):

$proj_path\
%my_symbols\
%MY_PATH\

The percent sign (%) accesses paths from the registration database. The dollar
sign ($) accesses paths from the DOS or UNIX environment.

You do not have to use path variables. You can enter a fully-qualified path for
any of your search paths.

Adding and Deleting Elements to Paths

To add or delete a search path:

1. Select the type of path you want from the Search Paths menu.

2. Click the Add Path button. The generic Open File dialog box appears
(labeled Select Project Library, Select Symbol Library, or Select Model
Library).

3. Use the controls to select the directory and file type you want.

4. Click on the name of a file in that directory or a library name, then click
OK (or just double-click on the filename). The directory containing this file,
or the library is added at the bottom of the list.

The Delete button removes the path that is currently highlighted. The Move
Up button swaps the highlighted path with the path below it; Move Down
swaps the highlighted path with the path above it.

The SCS INI Editor

9-32 Synario Capture System User Manual

Note: If you want a path to include one of your own variables, you must enter it
manually. The easiest way to do this is to use Add Path to add any directory to the list.
You can then modify it in the path edit box.

Enabling and Disabling Paths

A plus sign (+) next to a path means it is enabled, and will be searched. A
minus sign (–) means the path is disabled and will not be searched. To enable
or disable a path, click on its name to highlight it. Then click the Enable check
box to mark or clear it.

Libraries and Directory Structures
Libraries are collections of symbols, models, or hierarchical blocks that can be
accessed by the schematics of any design. Libraries are stored in directories
other than project directories. Using a “common” directory for circuit elements
simplifies design organization and makes it easier to ensure that all symbols
and models are updated properly.

Figure 9-9
Symbol Libraries Search Path Dialog Box

The SCS INI Editor

Synario Capture System User Manual 9-33

Program Directories

The following description of the SCS’s directory structure applies to the
Windows version. The directory structure of the UNIX/Motif version is
described in Chapter 1, “Getting Started.”

All software and related files used by SCS are located in a master directory
called synario. (You can, however, select a different directory during
installation.) The various files and subdirectories found in the master SCS
directory are:

synario Main directory; contains the SCS executable and
help files.

…\config Holds the initialization (.ini) files and licensing
files. (Initialization files for specific designs can
also be placed in those designs’ directories.)

…\examples\schem Contains SCS sample designs.

…\mod_libs, etc. Contains model libraries, schematics, and
behavioral description files (Verilog, VHDL, and
so on).

…\sym_libs Contains symbols.

In the Windows version, the installation program automatically adds entries to
the Registration Editor that specify the main directory and configuration paths.
If you should later move these files (without reinstalling) you should also
change these paths in Windows Registration Editor.

User Directories

You generally create a separate directory for each design. However, SCS does
not require all the files for a project to be in the same directory. You can put
them in any directory.

Library Directories

Libraries store building blocks that can be reused in different designs. A
library usually contains related items. For example, a symbol library might
consist of symbols for 7400-series TTL devices. Another library might contain
symbols for gate array primitives.

SCS interfaces with three different types of libraries:

♦ Project directories
♦ Symbol libraries
♦ Model libraries

The SCS INI Editor

9-34 Synario Capture System User Manual

You can specify different libraries of each type and can control which ones are
on the library search path. Please refer to the section “Search Paths Menu” on
page 9-31.

Project Directories

As explained above, SCS does not require all the files for a design to be in the
same directory. There are no default entries for this search path, and none are
required. Since the Project Directories are searched before the other directories,
you might want to add the directories with symbols you have created to the
Project Directories search path.

Model Libraries

Model libraries contain schematics that represent higher-level primitives. If the
model library is included in the library search path, the Hierarchy Navigator
will be able to display a lower-level or more detailed view of the circuit.

Suppose a schematic containing logic gates is drawn and simulated using a
gate level simulator. Assume also that a model library exists containing the
transistor level schematics of all the logic gates. A netlist for a switch level
simulation can be obtained by adding the model library to the library search
path, then running the netlister.

Symbol Libraries

Symbol libraries contain the primitive symbols for IC and PCB designs.
Typical primitive symbols are PMOS and NMOS transistors, AND gates, NOR
gates, or a 74ALS193 counter chip. Symbols are used throughout the hierarchy
and at the primitive level in a design.

Library Searching

SCS searches for symbols in a fixed order, and uses the first symbol file it finds
with the required name. For example, a symbol myname can exist in a project
directory and another version of myname can exist in a symbol library. Because
project directories are searched before symbol libraries, the version of myname
from the project directory is used.

Symbols are searched for in the following order:

1. The current project directory.

2. The project directories specified in the INI Editor’s Project Libraries dialog
box. Project directories closest to the top of the list box are searched first.

3. The symbol libraries specified in the INI Editor’s Symbol Libraries dialog
box. Symbol libraries closest to the top of the list box are searched first.

The Model libraries are not searched, because they contain schematics, not
symbols.

The SCS INI Editor

Synario Capture System User Manual 9-35

Important! If you open a schematic and the symbol search paths are not set correctly,
or a symbol file is missing, the Schematic Editor may not be able to locate the correct
symbols. If this happens, you’ll see the wrong symbols, or blanks where the missing
symbols should be. Close the file immediately, without making any changes.

If symbols are missing from a schematic, it is opened with the name untitled, rather
than its original name. If you then accidentally save the file, the original version won’t
be damaged.

SCS also searches for schematics in a fixed order. It uses the first schematic it
finds with the required name. The schematic search order is as follows:

1. The current project directory.

2. The project directories specified in the SCS INI Editor. Project directories
closest to the top of the list box in the SCS INI Editor are searched first.

3. The model libraries specified in the SCS INI Editor. Model libraries closest
to the top of the list box in the SCS INI Editor are searched first.

The following is a typical symbol search path. %ROOT is the base directory
defined in the Windows Registration Editor, usually c:\synario.

%ROOT\sym_libs\std
%ROOT\sym_libs\misc
%ROOT\sym_libs\ttl
%ROOT\sym_libs\ttl_ls
%ROOT\sym_libs\ttl_als
%ROOT\sym_libs\ttl_as

The SCS INI Editor

9-36 Synario Capture System User Manual

Chapter 10

PCB Design Considerations
This chapter explains the differences in the way the Schematic Editor and
Hierarchy Navigator handle IC (integrated circuit) and PCB (printed-circuit
board) designs. If you don’t use SCS to create PCB layouts, you don’t need to
read this chapter.

This chapter covers the following topics:

♦ Configuring for PCB Design
♦ Differences between IC and PCB Design
♦ PCB Attributes
♦ Symbol Types
♦ DeMorgan-Equivalent Gates
♦ Instance Names and Reference Designators
♦ Example PCB Design
♦ Auto Packaging of PCB Devices
♦ PCB Back Annotation Interfaces
♦ PCB Netlisters
♦ The packlist Bill-of-Materials Program

Configuring for PCB Design
As shipped, SCS is configured for IC design only. If you are doing PCB
design, you should reconfigure your system for "PCB Only" or "Both." Also,
many of the PCB functions are only available if you purchased the PCB
Package option.

To change the configuration:

1. Select “ecs.ini Editor” from the Setup menu of the SCS Executive. When
the INI Editor runs, select System Controls from the Controls menu. Then:

2. Click the arrow in the Application Mode combo box.

3. Click on either PCB Only or Both IC & PCB.

4. Select the Save command from the INI Editor’s File menu.

Synario Capture System User Manual 10-1

The PCB features that can be called from the SCS Executive are now available.
PCB features available from the Schematic and Symbol Editors and the
Hierarchy Navigator will be available after you have exited from and returned
to those applications.

Differences between IC and PCB Design
CAD tools for ICs must be able to handle hierarchical designs with large
element counts, but relatively few types of building block cells. PCBs typically
don’t need as many hierarchical levels, but have large component libraries and
must have support for:

♦ Reference designators
♦ Pin numbers
♦ Swapping pins within a package
♦ DeMorgan-equivalent symbols

An example at the end of this chapter shows how the PCB features are used.

PCB Attributes
Following is a brief description of some of the attributes commonly used for
PCB design.

Symbol Attributes

Symbol attributes used in PCB design are shown in Table 10-1.

Attribute Name Att. # Description

RefName 2 Reference Designator: This is the physical package
designation. More than one symbol may share a reference
designator, but all symbols with the same reference
designator are considered to be part of the same package.
Assign the reference designator prefix (such as U for ICs, R
for resistors, C for capacitors) in the Symbol Editor for each
symbol type. This prefix is used by the automatic packaging
tools in the Schematic Editor and Hierarchy Navigator when
assigning packages.

Table 10-1
PCB Symbol Attributes

PCB Design Considerations

10-2 Engineering Capture System User Manual

Attribute Name Att. # Description

PartNum 4 Part Number: Vendor or user part number. Used to identify
the actual component associated with this symbol.

PartShape 5 Part Shape (Footprint): Indicates the package type (for
example, dip14) for use with PCB place and route software.

CompName 6 Component Name: Identifies the component name for
(possibly different named) symbols. Symbols in the same
physical component should share a component name. For
example, if there are 2 symbols to represent the DeMorgan
equivalents of the same "nand" gate, the symbols would have
the same CompName attribute. Likewise, different symbols
that are not functionally equivalent but are found in the same
package (non-homogeneous gates) would still share the same
CompName attribute, but would have different GateGroup
attributes (see below).

GateGroup 7 Gate Group: Identifies functionally equivalent gates within a
package. Gates within a single package with the same value
for the GateGroup attribute are considered to be
interchangeable.

CompGroup 9 Component Group: Component Groups are physical
clusterings of components on a printed circuit board. The
PCB placement software attempts to place components in the
same component group close together.

HidePinNumber 13 Hide Pin Number: For components that do not need to
display their pin numbers (for example, resistors and
capacitors), assigning this attribute with a value of Y or Yes
suppresses the pin number display.

PCB Design Considerations

Synario Capture System User Manual 10-3

Pin Attributes

Pin attributes used in PCB design are shown in Table 10-2.

Attribute
Name Att. # Description

Polarity 1 Polarity: Specifies the signal flow for this pin (input, output,
bidirectional).

PinNum 4 Pin Number: Indicates the physical pin number of the component
connection to this pin. In the Symbol Editor, assign the list of
possible connections to each pin, representing each of the
functionally equivalent pins in the package (for example, the A input
of a 7400 nand gates would be assigned the list 1 4 9 12). The Pin
Number and Package Assignment software in the Schematic Editor
and Hierarchy Navigator will use this information to override this
attribute with specific pin assignments. For Pin or Component
symbols, assign a single pin number.

PinGroup 6 Pin Group: Identifies functionally equivalent pins within a specific
gate. Pins with the same value for the PinGroup attribute are
considered to be interchangeable (for example the inputs of a nand or
nor gate).

OpenOK 9 Not an error if left open: This attribute is used by the electrical rules
checker. Normally, the checker would flag any unconnected outputs
as an error. Any such outputs with this attribute assigned, however,
will not be considered errors.

Table 10-2
PCB Pin Attributes

PCB Design Considerations

10-4 Engineering Capture System User Manual

Symbol Types
The Schematic Editor uses different symbol types to represent primitive
elements in ICs and PCBs. The primitives are described below.

Component In a PCB design, these symbols represent a complete
physical package. A typical example is a 7400 quad
NAND package. The component symbol has pin numbers
that correspond to the physical pin numbers of the
package.

Gate In a PCB design, these symbols represent one section of a
physical package. A typical example is a single NAND
gate from a 7400 quad NAND package. Gates do not need
to be assigned to packages as they are placed; the
assignment can wait until the logic design is complete.

Gates can be swapped to clean up PCB routing. You can
change pin assignments in the Schematic Editor. You can
swap gates with the Package: Pin Numbers command in
the Schematic Editor or the Hierarchy Navigator.

Note: Gates that are part of the same component type should have the same
CompName attribute. If they are functionally equivalent, they should also have the
same GateGroup attribute. Non-homogeneous gates can have different gate group
attributes. After they are packaged, gates from the same physical package/component
will have the same RefName attribute.

Cell These symbols represent the lowest-level primitives used
in IC design. Cell symbols do not support pin numbers or
reference designators. Cells, therefore, cannot be used in
PCB designs.

Pin Pin Symbols are used to represent physical pins on a
printed circuit board. Each pin symbol is a single pin of
an edge connector, jumper, or other connector. To
identify pin symbols as part of the same physical
connector, you assign the same reference designator to
them. Pin numbers are reference designators and must be
assigned manually to pin symbols (that is, auto packaging
options do not work on pin symbols).

The Schematic Editor supports both pin numbers and pin
names. Pin numbers can be used in PCB designs, and pin
names are available in both IC and PCB designs.

PCB Design Considerations

Synario Capture System User Manual 10-5

DeMorgan-Equivalent Gates
DeMorgan-equivalent logic gates have the same function but different
schematic representations. A schematic is often easier to understand when the
appropriate gate is used.

For example, a circuit whose inputs are ORed to form an error signal can be
implemented with NAND gates. However, it’s easier to understand the
circuit’s OR function when it’s drawn as OR gates. An example of
DeMorgan-equivalent gates is shown in Figure 10-1, where a NAND gate is
represented by an OR gate with inversion bubbles on its inputs.

If different symbols represent the same functionality, you can identify them as
DeMorgan-equivalent by giving their CompName attributes the same name.
The Schematic Editor will then recognize the gates as being of the same type,
and allow them to use the same reference designator.

Note: Gates that are part of the same component type should have the same
CompName attribute. If they are functionally equivalent, they should also have the
same GateGroup attribute. Non-homogeneous gates can have different gate group
attributes. After they are packaged, gates from the same physical package/component
will have the same RefName attribute.

Instance Names and Reference Designators
The following sections explain instance names and reference designators. Both
identify component instances, but they are used differently.

Reference Designators

One difference between PCB and IC designs is the convention used to identify
individual components. In a PCB design, elements are identified by a reference
designator. A reference designator is a unique code for each physical
component.

Figure 10-1
DeMorgan Equivalent of a NAND Gate

PCB Design Considerations

10-6 Engineering Capture System User Manual

Typical codes are:

Code Component Type

C1, C2, C3 Capacitors

R1, R2, R3 Resistors

Q1, Q2, Q3 Transistors

U1, U2, U3 ICs

If a component (such as a multi-gate IC or a multi-resistor SIP) contains more
than one element, each element uses the same reference designator. The
elements are distinguished by their pin numbers.

Instance Names

IC designs use instance names to assign a hierarchical identifier. At each level,
the lowest-level components derive their full hierarchical names by stringing
together the higher-level block names with the primitive’s name. A delimiter
separates each level in the name. The following are examples of hierarchical
instance names.

cpu.alu.bit1.carry_lookahead.inverter1
mother_board.disk_controller.lm741

Since each component instance is uniquely described by a hierarchical path,
two identical devices in different circuits can have the same instance name,
without confusion or ambiguity.

The Schematic Editor supports both reference designators and instance names.
You can choose the type by setting the Application Mode parameter using the
INI Editor. (It appears in the System Controls dialog box under the Controls
menu.) Application Mode can be set to the following values:

IC Only Supports instance names and pin names.

PCB Only Supports reference designators and pin numbers.

Both IC & PCB Supports instance names, pin names, reference
designators and pin numbers.

PCB Design Considerations

Synario Capture System User Manual 10-7

Assigning Reference Designators

To assign reference designators:

1. Select the Add Reference Designator command from the Package menu of
the Schematic Editor or Hierarchy Navigator.

2. Type the reference designator name and press ENTER. The name is
attached to the cursor.

3. Click on the Component or Gate symbol.

You are not warned if you duplicate a reference designator. To find duplicate
reference designators, use the Check Packaging command.

You can also use the Autopackage feature of the Schematic Editor or Hierarchy
Navigator to assign reference designators automatically.

Designators for Multi-Gate Devices

The gates in a multi-gate device can have the same reference designator. This
is possible because the reference designator refers to the package, not to the
gates.

Within a multi-gate device, identical gates can be drawn in their normal form,
or as their DeMorgan equivalents. (Figure 10-2 shows a latch constructed from
a single 7400 IC in which one of the NAND gates is shown in its DeMorgan-
equivalent form, as an OR gate with inverted inputs.) A symbol and its
DeMorgan equivalent are considered to be the same type, and can have the
same reference designator. The symbols are identified as equivalent by
sharing the same value for their respective CompName attributes.

Connector pin symbols (symbols of type Pin) are also allowed to have
duplicate reference designators. This permits edge connectors to use a single
reference designator.

7400D

U1

12

13
11

7400

U1

9

10
8

7400

U1

4

5

6

7400

U1

1

2
3

D

Q
EN

Figure 10-2
Latch Constructed from One 7400 Quad NAND IC

PCB Design Considerations

10-8 Engineering Capture System User Manual

Note: Gates that are part of the same component type should have the same
CompName attribute. If they are functionally equivalent, they should also have the
same GateGroup attribute. Non-homogeneous gates can have different gate group
attributes. After they are packaged, gates from the same physical package/component
will have the same RefName attribute.

Pin Numbers

Pin numbers show the correspondence between the pins on a Gate or
Component symbol and the pins on a physical device. Only PCB designs
require pin numbers.

Component symbols represent a complete physical device whose pins are
fixed and cannot be interchanged with other pins in that component. Gate
symbols represent one section of a multi-section physical device. Gate symbols
are assigned groups of pin numbers, where each group includes all the pins
that have the same function. For example, the symbol for a 7400 NAND gate
has pins with the following names and numbers:

Name=IN1 Number=1 4 9 12
Name=IN2 Number=2 5 10 13
Name=OUT Number=3 6 8 11

This is a Gate symbol that represents one-quarter of a complete 7400 IC (as
shown in Figure 10-3). When the 7400 IC is given a single reference designator,
the pin numbers uniquely identify each gate.

Note: The use of multiple pin numbers permits pin reassignment for improved
routing. On any given Gate symbol, however, only one number per pin is displayed.
The number identifies which gate in the component is being used.

Figure 10-3
Pinout of 7400 Quad NAND Gate

PCB Design Considerations

Synario Capture System User Manual 10-9

Some Gates have common pins. For example, the 74175 quad D flip-flop has a
common clock and clear. The pin number attribute in this case has four
identical entries as below.

Name=ENAB Number=4 4 4 4

These common pins cannot be swapped, since there would be no benefit in
doing so.

Pin numbers are first assigned to Gate and Component symbols in the Symbol
Editor.

To initialize the pin numbers:

1. Select the Pin Attribute command.

2. Assign the proper pin numbers to the PinNumber attribute for the various
pins.

Component symbols have only one pin number assigned per pin.

Gate symbols have one pin number for each gate section in the package.
For example, a 74174 IC has six D flip-flops. Each flip-flop has a separate D
input and Q output. There is also a common CP clock and common CLR
clear. As in the example for the 7400, the attribute entries for the pins look
like this:

Name=D Number=3 4 6 11 13 14
Name=Q Number=2 5 7 10 12 15
Name=CP Number=1 1 1 1 1 1
Name=CLR Number=9 9 9 9 9 9

The Add Pin Numbers command in the Schematic Editor assigns pin numbers
prior to packaging or layout. The Hierarchy Navigator can also be used to
assign pin numbers.

Hiding Pin Number Display

The display of pin numbers on PCB symbols can be suppressed by assinging
the HidePinNumbers attribute a value of Y or Yes on the symbol (this is a
symbol attribute, not a pin attribute). For example, discrete resistors and
capacitors should have a pin number for the purpose of PCB routing, but you
may not wish to display them on the schematic.

Gate Assignment

When Gate symbols are placed in a schematic they have the pin assignments
from the first section of the package (A). The Autopackage feature can be used
to automatically assign the pin numbers.

PCB Design Considerations

10-10 Engineering Capture System User Manual

Automatic assignment might not produce the best board routing, however.

To swap functionally-equivalent gates within a package:

1. Select the Add Pin Numbers command from the Package menu of the
Schematic Editor (in a flat design), or the Pin Number command from the
Edit menu of the Hierarchy Navigator (in a hierarchical design). The
program prompts you for a pin number or gate section.

2. Choose the section to which you wish to reassign the target gate. Enter
either the section letter (A, B, C, D) or a unique pin number from the
chosen section. (A common clock signal, for example, would not be a
unique pin.) Press ENTER.

3. Click on the gate to be reassigned. The pin numbers on the gate change to
reflect those on to the new gate section.

Reassignment is possible only with Gate symbols, not Components. Gate
assignments are swapped between packages by reassigning the packages’
reference designators.

Pin Swapping

You can also swap functionally identical pins within a Gate for better routing.
For example, the inputs of a NOR gate are functionally equivalent.

To swap two functionally-equivalent pins:

Enter the new number for one of the pins and click on that pin. The Hierarchy
Navigator checks the Pin Group attribute. If both pins are in the same Pin
Group (and the symbol is a Gate from the same section), the selected pin is
swapped with the pin with the given pin number.

Because common pins (such as clocks or clears) perform exactly the same
function for each gate, swapping them is not permitted.

If the Add: Pin Numbers command in the Schematic Editor is active, you can
click on an instance to pick up the current gate letter, or click on a pin to pick
up the pin number. This simplifies copying the gate or pin from one instance
to another.

You can change the pin numbers in your design using either the Pin Numbers
command in the Hierarchy Navigator or the Add Pin Numbers command in
the Schematic Editor. If your design is hierarchical, it is usually easier to make
these changes in the Hierarchy Navigator.

PCB Design Considerations

Synario Capture System User Manual 10-11

Example PCB Design
The following example builds a latch using a 7400 NAND package. The
features described in this example include:

♦ Use of Gate symbols
♦ DeMorgan-equivalent symbols
♦ Pin numbers
♦ Reference designators
♦ Assigning gates within a package
♦ Swapping pins within a gate

Figure 10-4 shows a latch circuit constructed from two-input NAND gates. The
OR gate at the output of the latch is a DeMorgan equivalent of a NAND gate.

System Configuration

Before creating a PCB design, set the Application Mode (as described above) to
either PCB or Both IC & PCB. This change enables the reference designator and
pin number functions in the Schematic Editor.

Creating a Gate Symbol

Two symbols are needed for the latch circuit shown in Figure 10-2. One is a
standard NAND gate, taken from the SCS library. The other is the
DeMorgan-equivalent NAND gate, drawn as an OR gate with inverted inputs.
The following explanation of how to create these symbols assumes the
standard pinout for a 7400 quad NAND gate (as shown in Figure 10-3):

♦ VDD on pin 14
♦ Ground on pin 7
♦ Outputs on pins 3, 6, 8, and 11
♦ Corresponding input pairs on 1 and 2, 4 and 5, 9 and 10, 12 and 13

D

Q
EN

Figure 10-4
Latch Constructed from 7400 NAND Gates

PCB Design Considerations

10-12 Engineering Capture System User Manual

Note: Gates that are part of the same component type (for example, 7400 . . .) should
have the same CompName attribute. If they are functionally equivalent (as are any of
the gates in the 7400 example), they should also have the same GateGroup attribute.
Non-homogeneous gates can have different gate group attributes. After they are
packaged, gates from the same physical package/component will have the same
RefName attribute.

To create the inverted OR symbol:

1. Click the Edit Symbol radio button in the SCS Executive, then click New.
The Symbol Editor runs.

2. Click the Gate radio button in the Type dialog box, then click OK.

3. Draw an OR symbol with two input pins and one output pin. Mark the
input pins with inversion bubbles.

4. Use the Symbol Attributes command to set the RefDes attribute to "U."
The Schematic Packager uses this default prefix and automatically adds a
number to create a unique reference designator.

5. Since this OR symbol is a DeMorgan-equivalent of a NAND gate, be sure
its CompName, GateGroup, and PartShape attributes are assigned the
same name as the NAND symbol you’re using.

6. The following pin attributes are optional. However, they should be
assigned as shown so that the design can be properly packaged. Use the
Add: Pin Attribute command.

PinName Choose appropriate pin names, such as IN1, IN2, OUT.

Polarity Set the polarity of the input pins to In and the polarity of
the output pin to Out.

PinNumber Set one of the input pins to the following list: 1 4 9 12.
This corresponds to the pin numbers of all of the IN1
input pins on the 7400 NAND package.

Set the other input pin to the following list: 2 5 10 13.
This corresponds to the pin numbers of the IN2 input pins
on the 7400 NAND package.

Set the output pin to the following list: 3 6 8 11. This
corresponds to the pin numbers of the output pins on the
7400 NAND package.

PCB Design Considerations

Synario Capture System User Manual 10-13

Create the Latch Schematic

To create the latch schematic shown in Figure 10-4:

7. Open a new schematic with the Schematic Editor.

8. Place the four instances as shown in Figure 10-4. All four symbols display
pin numbers from the A section of the quad NAND gate. That is, they all
have pin numbers of 1, 2, and 3.

9. Wire the circuit to look like Figure 10-4.

10. Use the Package: Reference Designator command to set the reference
designator to U1 on all the symbols. This indicates that all the gates are
from the same package.

11. Select the Pin Number command. Type 5 (which is a pin in the second gate
of the package) and press ENTER.

12. Click on the bottom center NAND gate. The pin numbers of this gate
change to those of the second gate in the package: 4, 5, and 6.

13. The Pin Numbers command now prompts for a new pin number or gate
section. As before, change the pin numbers of the top center NAND gate to
those of the third gate in the package: 8, 9, and 10.

14. Finally, type 11, 12, or 13 and press ENTER. Click on the
DeMorgan-equivalent OR gate. Its pin numbers change to those of the
fourth gate in the package.

Swapping Packages

If you drew the shortest wiring paths for this schematic, you’d find that there
were three crossovers underneath the IC—2–10, 5–11, and 6–13. If the two
middle NAND gates were swapped, only two crossovers would be needed
(3–9 and 6–12).

To swap the assignments and improve the routing:

1. Select the Pin Numbers command. You are prompted for a pin number or
gate section.

2. Type 4 and press ENTER.

3. Click on the top center NAND gate. The pin numbers change to 4, 5, and 6.

The Schematic Editor checks the PinGroup attribute before performing the
pin swap. Pins 4 and 5 belong to the same pin group, so they can be
swapped.

PCB Design Considerations

10-14 Engineering Capture System User Manual

4. Type 8 and press ENTER. Click on the bottom center NAND gate. The pin
numbers change to 8, 9, and 10.

The Pin Numbers command can also be used to swap functionally-equivalent
pins. For example, to swap pins 4 and 5, type 4, press ENTER, then click
directly on pin 5 (rather than the body of the gate). The two pins are
immediately interchanged.

Note: The Pin Numbers command allows two or more sections to have the same pin
numbers, allowing you to swap sections. However, if you leave two sections with the
same numbering, it will eventually be caught as an error.

Auto Packaging of PCB Devices
The Packager is a utility that assigns reference designators and pin numbers to
PCB primitive symbols. Reference designators and pin numbers are usually
required for PCB layout, and help document a PCB design.

Iterated symbols are a form of hierarchical structure and must therefore be
packaged in the Hierarchy Navigator using the Reference Designator
command.

The remainder of this section describes the necessary setup or configuration
information required, as well as the individual packaging commands.

The Package menus of the Schematic Editor and Hierarchy Navigator have the
eight commands listed below:

Command Function

Query Packaging Queries design by packaging information.

Check Packaging Sets online checking mode of operation.

Clear Packaging Erases the packaging information on a symbol.

Auto Package Automatically assigns the packaging information.

Reference Designator Assigns (or reassigns) individual reference designators.

Pin Numbers Assigns (or reassigns) individual pin numbers.

Add Reference
Designator

Assigns sequences of reference designators.

Add Pin Numbers Assigns sequences of pin numbers.

PCB Design Considerations

Synario Capture System User Manual 10-15

Configuration Information

The PCB Packaging software is optional. It must be installed and authorized
before it can be used.

The packaging commands are activated in the Schematic Editor and Hierarchy
Navigator by setting the Application Mode (using the INI Editor) to PCB or
Both IC & PCB. This adds the Package menu to the Schematic Editor. (You
must quit the Schematic Editor and return before the menu will appear.)

The packaging commands operate on the RefDes and PinNumber attributes of
Gate symbols, and Pin symbols and on the RefDes attributes of Component
symbols.

The System accepts reference designators of one or two alpha characters (A–Z)
followed by an integer. Pin numbers are limited to four alphanumeric
characters.

The Schematic Editor expects the RefDes attribute in a Pin, Gate, or
Component symbol definition to be set to the prefix desired for the reference
designator. This prefix can be one or two alpha characters. A prefix using any
other characters is ignored.

If no value is assigned to the RefDes attribute, a default prefix of "U" is
assigned for Gate and Component symbols when packaging in the Schematic
Editor.

In a PCB designs, pin symbols are usually used to represent edge connectors.
All pins representing an edge connector are given the same reference
designator. This is usually done in the Schematic Editor (rather than the
Symbol Editor) so that any reference designator can be used. (If the reference
designator were assigned in the Symbol Editor, all pins would have the same
reference designator.)

In the case of Gate symbols, each pin should have its PinNumber attribute set
to the list of pins that the pin could have for each gate in the package. The
same pin number can appear more than once in a list, indicating that a pin
(such as a clock input) is common to more than one gate. The same number
should not appear in lists for different pins.

Query Packaging

The Query Packaging command scans the schematic and lists groups of Gate
and Component symbols according to their packaging information. It operates
in one of three ways:

♦ Enter a specific reference designator, such as U12, to display the
sheet/zone location and gate section of all elements designated U12 in a
list box. Clicking on a symbol does the same thing.

PCB Design Considerations

10-16 Engineering Capture System User Manual

♦ Enter a reference designator prefix, such as C, to display in a list box the
sheet/zone location and gate sections of all elements whose reference
designators start with C. Any elements whose reference designators have
not been assigned are indicated as such. Clicking on a symbol whose
reference designator has not been assigned does the same thing.

♦ Enter a symbol’s file name, such as NAND2, to display the sheet/zone
location and gate sections of all NAND2 elements in the schematic in a list
box. Clicking on a symbol while holding down SHIFT does the same thing.

Check Packaging

Check Packaging constantly updates the packaging information, except while
the Query Packaging command is running. It can be terminated by selecting
the Query Packaging command or any command not on the View or Package
menus.

Check Packaging scans the schematic for packaging errors. Whenever the
other commands change the packaging information, the checking report is
updated and displayed in the Packaging Error Report list box.

Any packaging errors are displayed. If the error involves a conflict between
two or more symbols, the error is followed by a series of indented lines
showing the sheet/zone of each symbol causing the error. Errors that involve
only one symbol are listed with the sheet/zone information on the same line.

Clicking on an error from the list box displays the symbol with the error. The
cursor is temporarily changed to an "X" and positioned on the symbol. Moving
the mouse restores the cursor to its original position and appearance.

The checking command also acts as a repackaging command if no other
packaging command is selected. Clicking on any symbol repackages the
symbol as if you had executed Clear Package, then Auto Package.

Error Messages

The following errors are reported by the packaging checker:
Gate Multiply Assigned

The same reference designator or the same pins appear on two or more gates.
The multiply assigned gates appear in an indented list immediately below the
error message.

Invalid Pins on Gate

The pin numbers on the instance are not a valid set, according to the symbol
definition.

PCB Design Considerations

Synario Capture System User Manual 10-17

RefDes on Different types

The same reference designator is used on symbols of differing types (where
the type is the CompName attribute, or the base name of the symbol file if no
CompName has been specified). The offending symbols appear in an indented
list immediately below the error message.

RefDes Multiply Assigned

The same reference designator appears on two or more components. The
conflicting symbols appear in an indented list immediately below the error
message.

Unpackaged Symbol

A symbol has not yet been packaged.

Symbols are always shown with their respective sheet/zone locators at the
beginning of the line.

This sheet/zone locator has the form of an integer representing the sheet,
followed by a letter and number coordinate pair that specifies the X–Y location
of the symbol on the sheet. For example, a symbol having a sheet/zone locator
of 3D5 would be located on sheet 3 in the region where zones D and 5 intersect.

Clear Packaging

This command clears the packaging information on one or more symbols. It
can clear:

♦ A single symbol. Click on the symbol.
♦ All symbols. Type ALL, then press ENTER.
♦ All symbols enclosed in a drag box.
♦ All symbols of the same type. Hold down SHIFT while clicking on one

symbol of the desired type.
♦ All symbols with a specified prefix. Type the prefix, then press ENTER.

After being cleared, the reference designator returns to the prefix you specified
in the symbol definition. The pins on Gate symbols are set to the values for the
first gate section in the package.

Auto Package

Auto Package automatically selects an appropriate reference designator for
Component symbols, and reference designator and pin assignments for Gate
symbols. It ignores Pin symbols.

Reference designators for Component symbols consist of the prefix specified in
the symbol’s definition, plus the lowest number that has not already been
assigned to that prefix. For example, if U1, U2, and U4 already exist, the next
U-series reference designator is U3.

PCB Design Considerations

10-18 Engineering Capture System User Manual

If you enter the prefix without a number, the count automatically starts at 1. If
you append a number to the prefix, the count starts with that number. In
either case, the Editor automatically skips over any numbers that have already
been used with that prefix.

If you specify a number, the prompt line shows:

Package (# > = nn) =

where nn is the smallest unused number for that prefix.

Gate symbols are first assigned reference designators and pin assignments
from any free gate sections in existing packages. New packages are assigned
only if there are no unused gates. The name is selected for new packages as it
is for Component symbols.

The Auto Package command can process one, several, or all unpackaged
symbols in the schematic. The command packages:

♦ A single symbol. Click on the symbol.
♦ All symbols. Type ALL, then press ENTER.
♦ All symbols enclosed in a drag box.
♦ All symbols of the same type. Hold down SHIFT while clicking on one

symbol of the desired type.
♦ All symbols with a specified prefix. Type the prefix, then press ENTER.

To package iterated instances or hierarchical designs, you must use the
commands in the Hierarchy Navigator.

Reference Designator

This command explicitly sets the reference designator on a Gate, Component,
or Pin symbol. Invalid assignments are allowed, but only so you can move
reference designators among symbols. Be sure that no invalid assignments
remain when you quit this command. Invalid assignments will be trapped
later by the PCB Check command.

You first specify the reference designator to be assigned by one of the
following methods:

♦ Enter the full name (for example, U23) and press ENTER. Or
♦ Enter the prefix (for example, U) and press ENTER. The system selects the

first unused name with that prefix. Or
♦ Click on a symbol. The system selects a unique name with the same prefix

as the selected symbol. Or
♦ Click on a Gate or Pin symbol while holding down SHIFT. The system

copies the name from the symbol.

PCB Design Considerations

Synario Capture System User Manual 10-19

The name you’re assigning is attached on the cursor. The command assigns the
name to:

♦ A single symbol when you click on the symbol. The name on the cursor is
then incremented to the next available name.

♦ A single symbol when you click on the symbol while pressing SHIFT. The
name on the cursor is attached to the selected symbol but is not
incremented. Use this method for gate assignments with multiple sections
in the same package (which therefore have the same reference designator).

♦ All symbols enclosed in a drag box. The symbols are assigned unique
names starting with the selected name. The name attached to the cursor is
incremented to the next available.

♦ All symbols enclosed in a drag box while you press SHIFT. All selected
symbols have the assigned name attached to them. The name attached to
the cursor does not change.

To package iterated instances, you must use the commands in the Hierarchy
Navigator. The RefDes attribute on an iterated instance consists of a list of
reference designators. The list is delimited by commas (,) or spaces. A
sequence of reference designators is formed by enclosing the numeric range in
parentheses (), brackets [], or curly braces { }.

For example, a symbol with instance name CC[1:20] specifies 20 iterations of a
symbol. If you assign this symbol a reference designator of C1,C3,C(5:20),
C22,C24, then the 20 iterations of the symbol are referenced as C1, C3, C5, C6,
C7, C20, C22, C24.

Pin Number

This command explicitly sets the pin numbers on Gate symbols and assigns a
gate symbol to a particular section of a component. It also lets you swap pins
on a Gate symbol.

You must enter the gate section or pin number to be assigned using one of the
following methods:

♦ Type the pin number, then press ENTER. Or
♦ Type a letter corresponding to the gate section in the package

(A, B, C, D), then press ENTER. Or
♦ Click on a pin to copy its number. Or
♦ Click on a symbol body to copy its gate section.

The gate section or pin number is attached to the cursor. The gate to be
numbered is designated by clicking on its body or on one of its pins. The
command checks the requested assignment to be sure it’s a valid gate for the
symbol.

PCB Design Considerations

10-20 Engineering Capture System User Manual

The command then assigns the correct pin numbers to the gate. If an explicit
pin number is requested and if one of the gate’s pins is selected, the command
attempts to assign that pin by swapping with other pins in the same pin group.

This command does not prevent duplicate gate assignments or common pin
conflicts. These errors are detected and reported by the Check command.

PCB Back Annotation Interfaces
SCS provides a number of printed circuit board (PCB) back annotation
interfaces. The following netlist formats are currently supported:

♦ PADS PCB
♦ Racal-Redac Interchange Format (RINF)

If additional netlist formats are developed, they will be documented in release
and update notes.

The Back Annotation Programs

Back annotation can be performed with either of two supplied programs,
pcbback or scback. Unless otherwise noted, both programs behave identically.

The Schematic Back Annotation program (scback) reads a file containing back
annotation commands for the schematic. scback should be called from the
Utilities menu of the SCS Shell. You need to add one of the following lines
(depending on whether you use PADS PCB or RINF format) to the [&Utilities]
section of pcshell.ini:

Back Annotate Schematic from PADS=scback.exe -pads, Schematic:,*.eco,all,&f

Back Annotate Schematic from RINF=scback.exe -rinf, Schematic:,*.irp,all,&f

The Hierarchy Back Annotation program runs from within the Hierarchy
Navigator. You need to add one of the following lines (depending on whether
you use PADS PCB or RINF format) to the Navigator Tools section of
pcshell.ini using the INI Editor:

&Back Annotate from PADS=pcbback.exe -pads &f

&Back Annotate from RINF=pcbback.exe -rinf &f

PCB Design Considerations

Synario Capture System User Manual 10-21

Both back annotation programs take a single command line argument (the
basename of the schematic) and look for a a back annotation command file. If
you do not specify one of the following command line options, the programs
look for a file with the name basename.ban. An alternate format can be
specified with one of the following command line formats:

-pads Read PADS PCB back annotation file design.eco.

-rinf Read Racal-Redac RINF format back annotation file
design.irp.

After scback runs, you must load (or reload) the schematic to view the results.
scback does not support iterated instances, buses, or bus pins.

The default format (.ban) generic files can contain the following commands.
(pcbback does not support these commands.)

Command Function

I Back annotate instance

N Back annotate net

P Back annotate pin

R Rename component (change reference designator)

S Swap pins

G Swap gates

Comment line (Blank lines are considered comment
lines, and ignored.)

The I, N, and P commands take three arguments:

command attribute instance/element_name value

♦ Pin names take the form instance_name–pin_name.
♦ The new attribute value is assigned as a schematic override for the

specified instance, net, or pin.

The R, S, and G commands work with reference designators and pin numbers
rather than names.

♦ The R command takes two arguments: the old reference designator and
the new reference designator.

♦ The S command takes three arguments: the first is the reference designator
of the gate, and the second and third are the pin numbers to be swapped.

PCB Design Considerations

10-22 Engineering Capture System User Manual

♦ The G command takes two groups of arguments. Specify the reference
designator and section letter of each gate, separated by a period (.). (For
example, U1.A or U3.D.) If the gates are not equivalent (that is, they do not
have the same CompName), the program may fail to find one of the
specified gates.

The formats of the generic commands are shown below:

I attribute instance_name value

N attribute net_name value

P attribute pin_name value

R ref1 ref2

S ref pin1 pin2

G ref1.section1 ref2.section2

#any_text

PADS PCB-specific Features

The design.eco file (where design is the name of your design) must have been
produced by PADS. The back annotation interface opens this file automatically
and updates attributes in the Hierarchy Navigator to reflect any changes. You
must perform a Save from the Navigator to preserve the back annotated
changes.

The commands for the PADS PCB format operate the same way as the generic
R, S, and G commands.

RENPART rename component (change reference designator)

SWPPINS swap pins

SWPGATES swap gates

REM comment

Each command appears by itself on a line, followed by the component and pin
information on separate lines. Each command remains in effect until another
command line appears:

PCB Design Considerations

Synario Capture System User Manual 10-23

RENPART
ref1 ref2
ref1 ref2
…
SWPPINS
ref pin1 pin2
ref pin1 pin2
…

PADS PCB Error Messages
Unable to Open Error File design.err For Writing

scback could not open a file to list errors. You may be out of disk space,
or read/write access is set incorrectly.

Missing PADS Back Annotation File

The file design.eco does not exist or could not be found.
Insufficient Memory to Process Design

You need more free RAM to run this module.

RINF-specific Features

The design.irp file (where design is the name of your design) must have been
produced by the Racal-Redac program. The back annotation interface opens
this file automatically and updates attributes in the Navigator to reflect any
changes. You must perform a Save from the Hierarchy Navigator to preserve
the back annotated changes.

The commands for the PADS PCB format operate the same way as the generic
R, S, and G commands, except that it recognizes only the first pin list format.
The command names are also different:

The formats of the RINF-specific commands are shown below:

.REN_COM ref1 ref2

(rename component (change reference designator))

.SWA_PIN pin1ref1 pin1ref2

(swap pins)

.SWA_GAT ref1 ref2 pin1ref1 pin1ref2 pin2ref1 pin2ref2 pin3ref1
pin3ref2 …

(swap gates)

.REM comment

(comment)

PCB Design Considerations

10-24 Engineering Capture System User Manual

RINF Error Messages
Unable to Open Error File design.err For Writing

scback could not open a file to list errors. This is usually caused by incorrect
read/write file or directory permissions.

Missing RINF Back Annotation File

The file design.irp does not exist or could not be found.
Insufficient Memory to Process Design

You need more free RAM to run this module.

PCB Netlisters
SCS provides a number of printed circuit board (PCB) netlist interfaces. (These
netlisters are an option supplied with the PCB software package.) The
following netlist formats are currently supported:

♦ Cadnetix
♦ CADSTAR
♦ PADS PCB
♦ PCAD
♦ Racal-Redac Interchange Format (RINF)
♦ Tango

If netlist conversion programs for additional formats are developed, they will
be documented in the release notes for those products.

A single program called pcbnet performs these conversions. To use pcbnet,
add an entry to your INI file using the Navigator Tools dialog box of the INI
Editor. The entry consists of the application name pcbnet with one or more of
the following command line options:

Option Action

-cadnetix Write Cadnetix netlist file (.cdx).

-cadstar Write CADSTAR netlist file (.cdi).

-pads Write PADS PCB netlist file (.pad).

-pcad Write PCAD netlist file (.alt).

-rinf Write Racal-Redac RINF format netlist file (.frp).

-tango Write Tango netlist file (.net).

PCB Design Considerations

Synario Capture System User Manual 10-25

-ext=.abc Create a netlist file with the specified extension (that is,
design.abc). This overrides the default extension for the
selected netlist format.

-nohead Suppress printing of time and date header.

-power Include the “hidden” power and ground pins in the netlist.

-view Run the specified viewer to display the netlist file
immediately after netlist creation.

The remainder of this section describes features common to all PCB netlisters
and the features of individual netlisters.

Features Common to All PCB Netlisters

PCB netlists share many features. Elements in the netlist are referenced using
RefDes and pin numbers. Each format, however, usually has a unique
arrangement of reference designators and pin numbers.

Attributes Needed for Netlisting

The following attributes are commonly used by the PCB netlisters. If these
attributes are not already defined in the Attributes section of the INI file, you
need to add them for the PCB netlister interfaces to work properly. Not every
netlister requires all the attributes defined below.

Attribute Description

Type The name of the symbol (symbol attribute #1). For
example, NAND2 or 7404.

RefDes The reference designator attribute used in PCBs (symbol
attribute #2). For example, U2 or R23.

Value A component’s value, such as a capacitor’s capacitance
(symbol attribute #3). For example, 10K or 30u.

PartNum The PCB part number for a component (symbol attribute
#4).

PinName Pin identifier for PCB interfaces (pin attribute #0). For
example, IN1 or Y.

Polarity Pin polarity (pin attribute #1). Permitted values are
INPUT, OUTPUT, and BIDIR, which can be abbreviated
as I, O, and B.

PCB Design Considerations

10-26 Engineering Capture System User Manual

PinNumber Component pin numbers (pin attribute #4). For example,
the symbol for the 7400 series NAND Gate has pins with
the following names and numbers:

PinName= IN1 PinNumber= 1 4 9 12

PinName= IN2 PinNumber= 2 5 10 13

PinName= OUT PinNumber= 3 6 8 11

PartShape Specifies the component package type used by the PCB
layout program (symbol attribute #5). For example, DIP14
or PGA128.

CompName Replaces the symbol name in PCB netlists (symbol
attribute #6). For example, 74LS00 or ROM2KX8. The
value (if specified) is substituted for the symbol’s filename
in the PCB netlist. This allows component names longer
than eight characters to be netlisted. (DOS file names are
limited to eight characters, and the UNIX/Motif version of
SCS also observes this limit, for file compatibility.)

DeMorgan-equivalent gates can be defined by giving the
CompName attribute the same value on different
symbols. Two or more gate symbols having identical
CompName attributes can share the same reference
designator.

GateGroup Identifies whether symbols with the same CompName
attribute are swappable (symbol attribute #7).
Non-swappable symbols have different letter values for
the GateGroup. Swappable have identical GateGroup
values. This attribute is used when assigning
non-homogeneous gates.

PCB_Global Ten symbol attributes are reserved for hidden power and
ground pins in component symbols (symbol attributes #60
to 69). These are described in more detail later in this
section.

PinGroup Indicates which other pins in a component have the same
function (pin attribute #6). In a 7400 series NAND gate, for
example, the inputs have the same PinGroup. Pins with
the same PinGroup attribute can be swapped in a Gate
symbol.

Width Associates track width with the net (net attribute #8.)

PCB Design Considerations

Synario Capture System User Manual 10-27

The symbol and pin attributes listed above are assigned using the Symbol
Attributes and Pin Attributes dialog boxes in the Symbol Editor. If an attribute
is assigned in the Symbol Editor, that attribute becomes the default value for
each instance of the symbol on the schematic. These default values can be
overridden for any particular instance of the symbol with the Add: Attribute
command of the Schematic Editor.

All nets with names longer than the number of characters permitted for a
particular netlist are given a unique net name starting with "N__" (N followed
by 2 underscores).

The pcbnet netlisters use the Block, Component, Gate, or Pin symbol types.
The Cell symbol type is invalid in PCB designs. Any other type is ignored.
Component or Gate symbols must have their RefDes and PinNums attributes
specified.

Non-homogeneous gates are supported in SCS. Refer to the example at the end
of this chapter.

Preparing Schematics

The circuit must be fully packaged prior to extracting the netlist. Each symbol
should have an assigned reference designator. Pin numbers are assigned
according to the gate sections within each package.

Reference designators can be assigned in the Schematic Editor or the Hierarchy
Navigator. Assignments in the Navigator override assignments made in the
Schematic Editor. If the design contains repeated hierarchy, the Hierarchy
Navigator must be used to assign the reference designators and pin numbers
to the gates and components in the repeated portions.

The netlisters also require Block symbols to have corresponding schematics. At
the lowest hierarchical level, all symbols should be Component, Gate, or Pin.
(That is, a Block symbol cannot be at the lowest level. The Block symbol must
represent a schematic which is composed of only Components, Gates, and
Pins.)

DeMorgan-equivalent symbols are given the same name in their CompName
attribute. The processor considers the two symbols to be equivalent and lets
them share a package.

PCB Power Pins

Most PCB components have at least one connection to the power supply
(usually VCC or GND). You can hide these connections to reduce schematic
clutter.

PCB Design Considerations

10-28 Engineering Capture System User Manual

Symbol attributes 60 through 69 represent hidden power and ground pins. The
attribute’s name corresponds to the name of the global net. The attribute’s
value corresponds to the pin number on the package. For example, the default
INI file has the following attribute names corresponding to the attribute
numbers below:

Attribute Number Global Net

60 GND

61 VDD

62 VCC

Attributes 63–69 can be assigned by the user to other power supply values.

CAUTION: If you assign a name to a hidden power pin, you must also assign
the same name to one of the Global Nets in ecs.ini. (Use Global Nets from the
Controls menu of the INI Editor to make the assignment.) Otherwise, you will
eventually receive an error message saying that there is no global net for the
hidden power pin.

To apply hidden power and ground pins to a 7400 quad NAND gate:

This example assumes pin 7 is connected to ground and pin 14 is connected to
VCC.

1. Load the NAND symbol into the Symbol Editor.

2. Use the Symbol Attribute command from the Add menu to set the value of
the GND attribute to 7, the power pin on this DIP.

3. Use the Symbol Attribute command from the Add menu to set the value of
the VCC attribute to 14, the power pin on this DIP.

You typically define attributes for GND and VDD. Up to ten different nets
(named in attributes 60–69) can be defined as potential connections to these
hidden pins. The symbol libraries must contain the default connections to the
power and ground pins. If the attribute is not assigned or has the value 0, the
net is not connected to that symbol.

If a particular pin is sometimes connected to VDD and sometimes connected to
VCC, use the following procedure:

1. Edit the attributes on the symbol so that the VDD symbol attribute is the
actual pin number and the attribute for VCC is 0.

2. Find the instances on the schematic that need to have this pin connected to
VCC and set the VDD attribute to 0.

3. Then set the VCC attribute on these instances to the actual pin number.

PCB Design Considerations

Synario Capture System User Manual 10-29

Note: If you assign a pin number to one of the hidden power net attributes, you must
use the corresponding power net in the schematic. Otherwise, you will eventually
receive a “Missing Power Net” error message.

If you use hidden power pins in your schematic, you must add the following
command line option to the netlister entry:

-power

This option tells the netlister to add the power connections to the netlist. If this
option is not used, some netlisters will not include the hidden power pins in
the netlist. A typical command line (as shown in the INI File) might be:

PADS PCB Netlist = pcbnet -pads -power

View Report Facility

Errors are normally displayed automatically. If you want to view an error file
after it has been closed, or read a file generated by a non-SCS program, you
can use the View Report facility.

If you load an error file, the View Report dialog box displays any errors that
occurred during netlist generation. It lists the generated netlist and the errors.
You can click on any error in the list to highlight it in the schematic. Note that
View Report is not the same feature as the -view option, which brings up the
Notepad after the Netlist is generated.

Error Messages

The following error messages may be issued by the pcbnet netlister:
Missing Pin Number(s) on Symbol Type type

Pin numbers were not assigned to the symbol. Use the Symbol Editor to add
them.

Missing RefDes on Symbol Instance instance

A Reference Designator was not assigned to the symbol.
Missing .SCH file for Block Symbol symbol

The symbol is a Block symbol, but the matching schematic was not found. You
must copy the schematic into the project’s directory, or into any library that
appears in the Model Libraries path (set in the INI Editor). If this error
occurred because the symbol was incorrectly defined as a Block symbol, load it
into the Symbol Editor and change its type to Gate or Component.

PCB Design Considerations

10-30 Engineering Capture System User Manual

Encountered CELL Type Symbol symbol

The symbol was created as a Cell symbol. This symbol type is intended for IC
design and should not be used in PCB applications. Load the symbol into
Symbol Editor and change its type to Component or Gate, or replace the
symbol with one of the appropriate type.

Two Instances of Pin pin on Different Nets

The same pin can appear on different symbols (for example, a common enable
pin). This message appears if each instance of the common pin is connected to
a different net.

This message also appears if two instances of a symbol are assigned the same
Reference Designator and their common pins are not connected to the same
net.

RefDes name Assigned to Different Symbol types

The same Reference Designator name was assigned to two different symbol
types.

Missing Power Net name From Attribute attribute

An attribute in the range for global power nets (60–69) has been defined, but
this net is not used anywhere on the schematic. The global net must be used in
any schematic with symbols that have power pins.

Non-Global Power Net name From Attribute attribute

An attribute in the attribute number range for global power nets has been
defined, but there is no global net with the same name.

PADS PCB-specific Features

The following features apply only to the PADS PCB netlist.

The PADS PCB netlister supports the PartShape symbol attribute. The
examples below show how the PartShape is formatted in the netlist. It follows
the part type and is separated from the part type with an at sign (@).

U1 LS7400@SO-14
U2 AMD386@PCC128

The net attribute Width represents trace widths in PCB applications. This
information is netlisted with the proper syntax following the signal definition
in the PADS PCB netlist. Net attributes can be added to a design using the
Add: Attribute command in the Schematic Editor or the Edit: Attribute
command in the Hierarchy Navigator.

The PADS PCB interface creates a netlist file with the name design.pad (where
design is the base name of your design). This file should be copied to the PADS
PCB design directory and renamed with the .asc suffix.

PCB Design Considerations

Synario Capture System User Manual 10-31

The PADS PCB processor combines a checking function with the generation of
the netlist. Error reports are inserted in the netlist file. If any errors occur, the
processor calls the viewer program and displays the entire netlist, including
error reports, before returning to the Hierarchy Navigator.

If the -power command line option is not specified, the PADS PCB netlister
assumes you are using the standard PADS PCB library of parts that comes
with the PADS PCB product. This library already has power- and ground-pin
definitions and therefore does not require SCS hidden power pins.

Net names longer than 12 characters are assigned unique names starting with
"N__" (N followed by 2 underscores). The period (.) in a net name is
converted to a slash (/).

RINF-specific Features

The REDAC Interface Format lets you extract a RINF-compatible netlist. This
process creates a netlist file with the name design.frp (where design is the base
name of your design).

The RINF processor combines a checking function with the generation of the
RINF-compatible netlist. Error reports are inserted in the netlist file. If errors
occur, the processor invokes the default editor specified in the INI file and
displays the entire netlist, including error reports, before returning to the
Navigator.

Net names starting with a period (.) have the NetName enclosed in quotation
marks (" "). An apostrophe (’) in the NetName is converted to a backslash (\).

PCAD-specific Features

The PCAD netlister converts invalid characters (for example, []) to
underscores (_). A bus element named ABC[0] appears in the Netlist as
ABC_0_. NetNames longer than 24 characters are assigned unique names
starting with "N__" (N followed by two underscores).

To ensure unique net names, do not use an underscore as the last character.
For example, if your schematic contains nets named BETA_1_ and BETA[1],
the PCAD netlister converts the latter to BETA_1_, the same as the first name.

The PCAD netlister flags duplicate names as commented warnings in the
netlist and calls the View Report command to display the netlist. Click on the
line with the warning to highlight the net with the duplicate name.

CADNETIX-specific Features

Net names longer than 16 characters are assigned unique names starting with
"N__" (N followed by two underscores). The dollar sign ($) in net names is
converted to an underscore (_).

PCB Design Considerations

10-32 Engineering Capture System User Manual

CADSTAR-specific Features

A warning is flagged if more than 1024 nodes are connected to a net.

The allowed value of track width is 0–7, inclusive.

TANGO-specific Features

Net names longer than 16 characters are assigned unique names starting with
N__ (N followed by two underscores). Net names with non-alphanumeric
characters (except the underscore) are also assigned unique names starting
with N__.

Required Attributes

The following attributes are required by various netlisters. Those in italics are
optional.

Note that if the CompName attribute is not supplied, the netlister substitutes
the name of the symobl (filename).

Component Section

Netlist Format Required Attributes

CADNETIX CompName, RefName, PartNum
If PartNum is not set, it is netlisted as "X".

CADSTAR RefName, PartShape

PADS PCB RefName, CompName, PartShape, Value
Setting PartShape or Value to an asterisk (*) is the same
as setting it to null (no value).

PCAD CompName, RefName

RINF RefName, PartNum, PartShape
If PartShape is not supplied, CompName (the Symbol
Name) is used

TANGO RefName, PartShape, CompName, Value

Net Section

Net names are automatically assigned by SCS if you leave them unassigned.

Netlist Format Required Attributes

CADNETIX PinNum, NetName

CADSTAR PinNum, NetName, Width

PCB Design Considerations

Synario Capture System User Manual 10-33

PADS PCB PinNum, NetName, Width

PCAD PinNum, NetName

RINF PinNum, NetName

TANGO PinNum, NetName

Non-Homogeneous Gates Example

The following table shows how attributes are defined for non-homogeneous
gates in a 747074 six-section multifunction circuit. This component has two
inverters, a 3-input NOR gate, a 3-input NAND gate, and two D-type flip-flops.

Symbol CompName GateGroup
Gnd (Sym
Att #60)

VCC (Sym
Att #61) PinName PinNumbers

747074_1.sym
(inverters)

747074 A 12 24 A
B

1, 23
2, 22

747074_2.sym
(NAND)

747074 B 12 24 A
B
Y

3
4
5

747074_3.sym
(flip-flops)

747074 C 12 24 CLK
_PRE
D
_Q
_CLR
Q

6, 18
7, 17
8, 16
9, 15
10, 14
11, 13

747074_4.sym
(NOR)

747074 D 12 24 A
B
Y

20
21
19

In this example, the four symbols are different logic elements that represent
the different sections of the components. The two inverters are
interchangeable, as well as the two flip flops. The NAND and NOR are not
interchangeable. You could provide two different representations of the
NAND or NOR sections using DeMorgan equivalence.

PCB Design Considerations

10-34 Engineering Capture System User Manual

DeMorgan-Equivalent Gates Example

DeMorgan equivalence is demonstrated using the 7408 quad two-input AND
gates.

Symbol CompName GND pin VCC pin PinName PinNumber

7408.sym 7408 7 14 A 1, 4, 9, 12

B 2, 5, 10, 13

Y 3, 6, 8, 11

7408_alt.sym 7408 7 14 A 1, 4, 9, 12

B 2, 5, 10, 13

Y 3, 6, 8, 11

The two symbols are the same in this example, except that one symbol draws
the AND in the normal way, and the second symbol draws the AND as an OR
with inversion bubbles on all the pins.

Netlisting Example

This example shows a simple schematic followed by the netlists that are
produced using the various ASCII netlister program. The schematic is
quant.sch, which appears in the examples\pcb subdirectory of your SCS
installation.

PCB Design Considerations

Synario Capture System User Manual 10-35

ASCII Netlist Format
COMMENT asciinet 1.0 - SCS 2.7 Beta 1
COMMENT FILE quant.net - 7/18/94 4:20:22 PM
INSTANCE 7400 I_11
SYMATTR RefName U2
PIN INA N_3
PINATTR PinNum 4
PINATTR PinGroup 1
PIN INB N_4

PINATTR PinNum 5
PINATTR PinGroup 1
PIN OUT N_6

PINATTR PinUse O
PINATTR PinNum 6
INSTANCE 7400 I_12

SYMATTR RefName U2
PIN INA N_1

4.7K3K

2K

10UF

-

+

OPA1

-

+

OPA

+

1.5V

+

2.5V

7402

7400

7400

7400

7400

7400

7400

A8

VCC
A7

A6

A5

A4

A3

A9

A2

Figure 10-5
quant.sch Schematic Used in Netlist Examples

PCB Design Considerations

10-36 Engineering Capture System User Manual

PINATTR PinNum 1
PINATTR PinGroup 1
PIN INB N_2
PINATTR PinNum 2
PINATTR PinGroup 1
PIN OUT N_5

PINATTR PinUse O
PINATTR PinNum 3
INSTANCE 7400 I_10
SYMATTR RefName U1
PIN INA A8
PINATTR PinNum 1
PINATTR PinGroup 1
PIN INB A7
PINATTR PinNum 2
PINATTR PinGroup 1
PIN OUT N_1

PINATTR PinUse O
PINATTR PinNum 3
INSTANCE 7400 I_9
SYMATTR RefName U1

PIN INA A6
PINATTR PinNum 4
PINATTR PinGroup 1
PIN INB A5
PINATTR PinNum 5
PINATTR PinGroup 1
PIN OUT N_2
PINATTR PinUse O

PINATTR PinNum 6
INSTANCE 7400 I_8
SYMATTR RefName U1
PIN INA A4
PINATTR PinNum 9
PINATTR PinGroup 1
PIN INB A3
PINATTR PinNum 10
PINATTR PinGroup 1
PIN OUT N_3
PINATTR PinUse O
PINATTR PinNum 8
INSTANCE 7400 I_7
SYMATTR RefName U1

PCB Design Considerations

Synario Capture System User Manual 10-37

PIN INA A2
PINATTR PinNum 12
PINATTR PinGroup 1
PIN INB N_10
PINATTR PinNum 13
PINATTR PinGroup 1
PIN OUT N_4
PINATTR PinUse O
PINATTR PinNum 11
INSTANCE 7402 I_5
SYMATTR RefName U3
PIN INA N_5
PINATTR PinNum 2
PINATTR PinGroup 1
PIN INB N_6
PINATTR PinNum 3
PINATTR PinGroup 1
PIN OUT N_8
PINATTR PinUse O
PINATTR PinNum 1
INSTANCE VSRC I_26
SYMATTR RefName S1
PIN + N_9
PINATTR PinNum 1
PIN - GND
PINATTR PinUse O
PINATTR PinNum 0
INSTANCE VSRC I_3
SYMATTR RefName S2
PIN + N_7
PINATTR PinNum 1

PIN - GND
PINATTR PinUse O
PINATTR PinNum 0
INSTANCE OPA I_29
SYMATTR RefName U4
PIN IN1 N_8
PINATTR PinNum 5
PIN IN2 N_9

PINATTR PinNum 6
PIN IN3 VCC
PINATTR PinNum 8
PIN IN4 GND

PINATTR PinNum 4
PIN OUT A9

PCB Design Considerations

10-38 Engineering Capture System User Manual

PINATTR PinUse O
PINATTR PinNum 7

INSTANCE OPA1 I_24
SYMATTR RefName U4
PIN IN1 N_7
PINATTR PinNum 3
PIN IN2 N_8
PINATTR PinNum 2
PIN OUT A9
PINATTR PinUse O
PINATTR PinNum 1
INSTANCE CAP CAP[0]
SYMATTR RefName C1
PIN A VCC
PINATTR PinUse B
PINATTR PinNum 1
PIN B GND
PINATTR PinUse B
PINATTR PinNum 2
INSTANCE CAP CAP[1]
SYMATTR RefName C2
PIN A VCC
PINATTR PinUse B
PINATTR PinNum 1
PIN B GND
PINATTR PinUse B
PINATTR PinNum 2
INSTANCE CAP CAP[2]
SYMATTR RefName C3
PIN A VCC
PINATTR PinUse B

PINATTR PinNum 1
PIN B GND
PINATTR PinUse B
PINATTR PinNum 2
INSTANCE CAP CAP[3]
SYMATTR RefName C4
PIN A VCC

PINATTR PinUse B
PINATTR PinNum 1
PIN B GND
PINATTR PinUse B
PINATTR PinNum 2
INSTANCE RES I_21
SYMATTR RefName R2

PCB Design Considerations

Synario Capture System User Manual 10-39

PIN A N_8
PINATTR PinUse B
PINATTR PinNum 2
PIN B GND
PINATTR PinUse B
PINATTR PinNum 1
INSTANCE RES I_22
SYMATTR RefName R1
PIN A VCC
PINATTR PinUse B
PINATTR PinNum 2
PIN B N_8
PINATTR PinUse B
PINATTR PinNum 1
INSTANCE RES I_27
SYMATTR RefName R3
PIN A VCC
PINATTR PinUse B
PINATTR PinNum 2
PIN B A9
PINATTR PinUse B
PINATTR PinNum 1
INSTANCE EDGE I_19
SYMATTR RefName E1
PIN CONNECT A7
PINATTR PinNum 3
INSTANCE EDGE I_18
SYMATTR RefName E1
PIN CONNECT A6
PINATTR PinNum 4
INSTANCE EDGE I_17

SYMATTR RefName E1
PIN CONNECT A5
PINATTR PinNum 5
INSTANCE EDGE I_16
SYMATTR RefName E1
PIN CONNECT A4

PINATTR PinNum 6
INSTANCE EDGE I_15
SYMATTR RefName E1
PIN CONNECT A3
PINATTR PinNum 7
INSTANCE EDGE I_14

SYMATTR RefName E1
PIN CONNECT A2

PCB Design Considerations

10-40 Engineering Capture System User Manual

PINATTR PinNum 8
INSTANCE EDGE I_30
SYMATTR RefName E1
PIN CONNECT A8
PINATTR PinNum 2
INSTANCE EDGEOUT I_31
SYMATTR RefName E1
PIN CONNECT A9
PINATTR PinUse O
PINATTR PinNum 1
NET N_9
NET N_8
NET N_7
NET GND
NET A9
NET VCC
NET N_6
NET N_5
NET N_4
NET N_3
NET N_2
NET N_1
NET N_10
NET A5
NET A6
NET A7
NET A8
NET A4
NET A3
NET A2

PCB Design Considerations

Synario Capture System User Manual 10-41

The Packlist Bill-of-Materials Program
The packlist bill-of-materials program writes a text file that includes
information about the gates and components of a PCB design, in a format
suitable for reading by a database or spreadsheet program. The program lists
packages (single components or sets of gates with the same reference
designator) rather than single symbol instances. packlist is normally run after
the design has been packaged (that is, after all gates have been assigned a
reference designator).

The output of the program consists of a header line followed by a line of
attribute values for each package or set of packages in the design. The lines are
sorted based on the attribute values. If two or more packages have the same
attribute values, they are combined into a single line in the listing. Optionally,
the number of gates or packages represented by each line may be listed. The
fields of attribute values on each line are usually separated by a tab, since most
spreadsheet programs can read files which have fields separated by tab
characters. Optionally, the fields can be formatted into columns separated by
spaces.

What Packlist Does

packlist performs the following operations in the order listed:

1. Checks for packaging errors and reports them.

2. Prints a header line. The default for the header line is a list of the names of
the attributes which are to be listed. You can override the default header
with the “header” entry in packlist.ini.

3. Gathers the attribute data for each package in the design. The default set of
attributes gathered is part number, symbol type (component name),
reference designator, value, and part shape (geometry). You can override
the default set of attributes with the “list” entry in packlist.ini.

4. Sorts the packages in the design according to their attribute data. The
default priority for sorting of attributes is part number, value, and
reference designator. You can override the default sorting priority with the
“sort” entry in packlist.ini.

The part number or symbol type is usually the most important sorting
attribute. The value attribute assures that all resistors and capacitors are
listed in order. If two or more packages have the same value for all of the
attributes in the sort list, they are combined into one line of output.
Therefore, if the value and reference designator are omitted from the sort
list, only one line will be written for each type of package.

PCB Design Considerations

10-42 Engineering Capture System User Manual

5. Writes one line for each set of packages in the design. Each line contains a
list of the attribute values for the package (or set of packages) on that line.
The set of symbols represented by a line consists of the set of packages that
have the same value for each of the attributes in the sort list.

By default, each attribute printed is separated from the preceding attribute
with a tab. You can specify the number of spaces to use (instead of a tab)
with the “spacing” entry in the packlist.ini file.

Command Line Options

The following command line switches can be used to modify packlist’s
behavior.

Switch Effect

-ext=.xyz Sets the extension of the output file to .xyz. This overrides
the default extension of .bom.

-view Displays the output file up in the Viewer when complete.

-head Prints two lines with date and program version.

-section=sec_name Reads configuration information from the [sec_name]
section of packlist.ini. The default section name is
[Default]. This parameter is ignored if there is no
packlist.ini in the config directory or the windows
directory. The packlist.ini file is described in the next
section.

The packlist.ini File

packlist.ini uses the same format as most other .ini files used in Windows. The
file is divided into sections marked by section names in square brackets. Each
section contains entries in the following format:

[SectionName]
entry =value
entry =value
entry =value
 …

Lines beginning with a semicolon (;) are treated as comments and ignored.

If packlist.ini is called with a command line argument of the
form:section=name, the section with that name will be read to obtain the
configuration information. If there is no such section, or the -section option is
not used, the [Default] section is used.

PCB Design Considerations

Synario Capture System User Manual 10-43

packlist.ini Entries

Each section of packlist.ini contains the following entries.

list Lists the attribute names (or attribute numbers) to be
printed on each line. The names are delimited by spaces.

In addition to attribute names (or numbers), list can
contain other special identifiers.

#line Prints a line number.

#gate Prints how many different symbol instances (or gates) are
represented by this line in the bill of materials.

#pack Prints how many different packages are represented by
this line in the bill of materials. Two different symbol
instances are considered part of the same package if they
have the same reference designator and component name
(symbol name).

#unused Prints a count of the unused gates in the set of packages
listed. In the case of packages with non-homogeneous
gates, the count of unused gates does not include sections
which are entirely unused.

For example, consider a package with three 2-input
NAND gates and two 3-input NAND gates. If there are
two 2-input gates in the design, the bill of materials will
list one unused gate. But if there are two 2-input gates and
one 3-input gate, the bill of materials lists two unused
gates.

To display the location of a symbol in sheet and zone
format, use attribute #253 (the location attribute).

sort Lists the attribute names (or numbers) to be used for
sorting the packages used in the design. The first attribute
specified is the most important for the sort, the next
attribute is the next most important, and so on. If two
packages have the same value for all the attributes in the
sort order, they are listed on the same line.

If an attribute is displayed but not used in the sort, the
value listed will be the value from the first set of packages
represented by the line. Other packages on the same line
may have different values for the attribute.

PCB Design Considerations

10-44 Engineering Capture System User Manual

header The header entry is a single line that is printed at the
beginning of the file. The only thing special about this line
is that a backslash character followed by a lower case "t"
(\t) is printed as a tab character. If there is no header line
in packlist.ini, the header consists of the attribute names
from the list entry. These attribute names are separated by
spaces or tabs.

spacing The spacing entry is the width (in characters) of each
column of output. If spacing is 0 (the default value), the
columns are separated by tabs instead of spaces. If spacing
is a negative number, the text in the columns is
left-justified instead of right-justified.

Example 1

When there is no packlist.ini configuration file, the default is:

[Default]
;list is "line number" PartNum CompName RefName Value PartShape
"gate count"
list=#line 4 6 2 3 5 #gate
;sort order is PartNum CompName Value RefName
sort=4 6 3 2
header=
spacing=

Sample Output

packlist 1.0 - Engineering Capture System 2.6
xxx.bom - 8/25/93 0:58:39 AM
#Line PartNum CompNam RefName Value PartShape #Gates
0 CAP1 C1 1 2
1 CAP1 C2 1 1
2 CAP1 C1 2 2
3 COMP1 U1 1
4 COMP1 U2 1
5 GATE1 U4 4
6 GATE1 U6 2
7 GATE2 U3 4
8 GATE2 U5 3
9 RES1 R1 1 4
10 RES1 R2 1 1
11 RES1 R2 2 2

PCB Design Considerations

Synario Capture System User Manual 10-45

Example 2

This example produces a list of unique packages and identifies the number of
packages of each type. If packlist.ini has the [Custom] section shown below,
the command line would be

packlist -head -section=Custom.

[Custom] list= #Line PartNum Value RefName CompName PartShape
#pack
sort=PartNum CompName Value
header=#Line PartNum Value RefName CompName PartShape #Packages
spacing=-10

Sample Output:

packlist 1.0 - Engineering Capture System 2.6
xxx.bom - 8/25/93 1:06:42 AM
#Line PartNum Value RefName CompName PartShape #Packages
0 1 C1 CAP1 2
1 2 C1 CAP1 1
2 U1 COMP1 2
3 U4 GATE1 2
4 U3 GATE2 2
5 1 R1 RES1 2
6 2 R2 RES1 1

PCB Design Considerations

10-46 Engineering Capture System User Manual

Appendix A

Generic Interfaces
This chapter explains the generic interfaces that are currently supported for
the Synario Capture System (SCS). The following interfaces and topics are
covered in this chapter:

♦ Archive Utility
♦ ASCII
♦ EDIF
♦ Generic Netlists

Archive Utility
The Archive utility gathers all the symbols and schematics needed in a design
and places them in a single directory. It is typically used for archiving designs
or for transferring designs to a different directory.

Archive is run from the Tools menu of the Hierarchy Navigator and must be
added to the tools menu using the INI Editor.

Running the Archive utility without any command-line options does not copy
the project files, but only writes a list of the files under the name design.lst
(where design is the base name of the project).

To actually copy the files, you must add the -save command-line option and
specify the path, as shown below.

archive -save= path

The path must be complete and not contain any spaces.

The Archive utility copies or records only electrically significant symbols—
Block, Cell, Component, Gate, and Pin symbols. Graphic and Master symbols
are not copied or recorded.

Synario Capture System User Manual A-1

ASCII Interface
The ASCII interface converts data in the SCS binary database to an ASCII
format file you can edit with any text editor. The interface also converts an
ASCII file (in the appropriate format) to the SCS binary format. You can
interface with any CAE/CAD system via the SCS ASCII interface (though
additional manual editing may be required in some cases).

Once a database has been converted to ASCII format, you can modify it and
then translate it back to SCS format. This allows various filtering and
processing programs to be used in the SCS environment.

The following ASCII interface conversion programs can be accessed from the
SCS Executive Utilities menu:

♦ Schem to ASCII
♦ ASCII to Schem
♦ Symbol to ASCII
♦ ASCII to Symbol

ASCII / Symbol Interface

An SCS symbol file contains the information required to describe a symbol and
its attributes. The database entries include graphic elements, fixed text, symbol
attributes, attribute display windows, pins, and pin attributes.

SCS calculates an “extent” box for each symbol. This box is a rectangle that
encloses all the points that define the various elements of the symbol. Unless
you choose a different point, the upper-left corner of this box is the default
origin for the symbol.

SCS uses a grid system for coordinates. The grid spacing is defined by the Grid
Size and Grid Units parameters in the Sheet Layout dialog box of the INI
Editor. The Primary grid is divided into a Secondary grid with four points in
each major grid interval.

The Secondary grid is used for all coordinates in the symbol database. When
the Symbol Editor stores the symbol data base it recalculates the extent box
and adjusts the coordinates so that all coordinates are positive integers. The
Symbol Editor also limits the size of a symbol to 400 Primary (or 1600
Secondary) grid units in each dimension.

The ASCII to Symbol and Symbol to ASCII conversion utilities are called from
the Utilities menu of the SCS Executive.

Generic Interfaces

A-2 Synario Capture System User Manual

Interface Format

The interface is a line-oriented ASCII text format. Each element in the symbol
is represented as a single line in the text file. Each line consists of:

♦ A keyword that begins the line and identifies the type of element
described.

♦ A list of parameters describing the element following the keyword.

The following conventions apply within each line:

♦ Keywords are not case-sensitive.
♦ Parameters are delimited by spaces and tabs.
♦ Text strings appear at the end of the line and can contain embedded blanks.
♦ Coordinate locations are given as pairs of numbers. X coordinates increase

to the right and Y coordinates increase to the bottom of the symbol. All
coordinate locations and distances are given in Secondary grid units.

In the following description of the format, keywords are shown in roman text
and parameters are shown in italics.

version number

The SCS symbol database version number is specified on the first line of the
file.

symboltype type

The symboltype should be the second line of the file. The type parameter is
BLOCK, CELL, COMPONENT, GATE, GRAPHIC, MASTER, or PIN. If this
parameter is not specified, the type defaults to BLOCK.

Each of the following formats for graphic elements contains a parameter that
specifies line weight. This parameter can have the value NORMAL or WIDE.
These keywords can be abbreviated as N or W.

On UNIX systems, the graphic-element format contains a parameter that
specifies line style. This parameter can have the value Dash, Dot, or DashDot.
If the parameter is missing, the line is drawn solid.

line width x1 y1 x2 y2 style

The x-y coordinates are the line’s end points.

rectangle width x1 y1 x2 y2 style

Generic Interfaces

Synario Capture System User Manual A-3

The x-y coordinates are two opposite corners of the rectangle.

circle width x1 y1 x2 y2 style

The x-y coordinates are the opposite corners of a square, with the square
enclosing the circle. If a rectangle is specified, it is converted to a square with
the same upper-left corner as the rectangle. The sides of the square are the
length of the shorter sides of the rectangle.

arc width x1 y1 x2 y2 x3 y3 x4 y4 style

The first two x-y coordinates describe a circle (see above) containing the arc.
The third and fourth coordinate pairs are the starting and ending points of the
arc. If these points are not on the circle, the lines joining these points to the
circle’s center set the boundaries of the arc. The arc is drawn counterclockwise
from the starting to the ending point.

text x1 y1 justify font string

The x-y coordinate is the origin for drawing the text.

justify specifies the horizontal (vertical) justification of the text. It can have the
value LEFT, RIGHT, CENTER, VLEFT, VRIGHT, or VCENTER. Any value can
be abbreviated to just the first two characters. Horizontal (vertical) text is
always justified vertically (horizontally) to the center of the character.

font specifies the size of the text and can be 0–7. (In the UNIX/Motif version,
there are only three font sizes, 2, 3, and 4. DOS sizes 0–2 are mapped to UNIX
size 2, DOS size 3 is mapped to UNIX size 3, and DOS sizes 4–7 are mapped to
UNIX size 4.)

string is the text string. The string consists of the first non-blank character after
the font parameter and all following characters.

symattr name string

name specifies the attribute and must match one of the attribute names listed in
the Symbol Attributes section of the INI file.

string is the attribute value assigned, including any attribute modifiers.

window number x1 y1 justify font

number specifies which attribute window is to be drawn.

The x-y coordinate is the origin for drawing the attribute value.

Generic Interfaces

A-4 Synario Capture System User Manual

justify specifies the horizontal (vertical) justification of the text. It can have the
value LEFT, RIGHT, CENTER, VLEFT, VRIGHT, or VCENTER. Any value can
be abbreviated to just the first two characters. Horizontal (vertical) text is
always justified vertically (horizontally) to the center of the character.

font specifies the size of the text and can be 0–7. (In the UNIX/Motif version,
there are only three font sizes, 0–2. Sizes 4–7 are mapped to UNIX size 2, 3 is
mapped to size 1, and 0–2 are mapped to size 0.)

pin x1 y1 justify offset

The x-y coordinate is the location of the pin. This location must fall on a
Primary grid point.

The justify and offset parameters indicate where to draw the name of the pin.
offset is the distance from the pin, and can range from 0 to 31 Secondary grids.
justify indicates the direction the pin name is offset from the pin and can be
LEFT, RIGHT, BOTTOM, TOP, VLEFT, VRIGHT, VBOTTOM, VTOP, or
NONE. (Use NONE when you are not giving the pin a name.) Any of these can
be abbreviated to just the first two characters.

pinattr name string

Pin attributes apply to the previously defined pin. name is the attribute and
must match one of the attribute names in the Pin Attributes section of the INI
file.

string is the attribute value assigned, including any attribute modifiers.

Example ASCII Symbol File

The following example is the result of translating the symbol in Figure A-1 to
the ASCII format.

Generic Interfaces

Synario Capture System User Manual A-5

Version 3
SymbolType COMPONENT
Line N 8 8 0 8
Line N 8 28 0 28
Rectangle N 8 0 40 36
Line N 40 8 48 8
Line N 40 28 48 28
Text 25 17 CENTER 0 myFF
SymAttr SILOSModel .JKFF
Pin 0 8 LEFT 9
PinAttr PinName J
PinAttr Polarity IN
Pin 0 28 LEFT 9
PinAttr PinName K
PinAttr Polarity IN
Pin 48 28 RIGHT 9
PinAttr PinName QN
PinAttr Polarity OUT
Pin 48 8 RIGHT 9
PinAttr PinName Q
PinAttr Polarity OUT
Window 0 24 44 CENTER 0
Window 1 24 -8 CENTER 0

ASCII / Schematic Interface

The schematic database is a compact binary file that is created and modified by
the Schematic Editor. The ASCII Schematic Interface allows you to translate
the SCS schematic database to and from a format that can be modified by a text
editor or other program. This allows conversion of schematics from one
system to another.

Type

RefName

J

K

myFF

Q

QN

Figure A-1
Symbol to be Translated to ASCII

Generic Interfaces

A-6 Synario Capture System User Manual

An SCS schematic file contains the information required to describe a
schematic including all of its sheets. The database entries include:

♦ Wires
♦ Buses
♦ Net name flags
♦ Net attributes
♦ Bus taps
♦ Symbol instances (both primitive and hierarchical)
♦ Symbol attribute overrides
♦ Pin attribute overrides
♦ Cosmetic graphics
♦ Fixed text
♦ Tables

A schematic file has one or more sheets, each representing a separate page of
the printed schematic. Each sheet is divided into grids.

The grid spacing is defined by the Grid Size and Grid Units parameters in the
Sheet Layout dialog box of the INI Editor. The Primary grid is divided into a
Secondary grid with four points in each major grid interval. All connectivity
elements (wires, symbols, pins, and attributes) must lie on the Primary grid.
Cosmetic graphics and fixed text can lie on either the Primary or Secondary
grid.

The Secondary grid is used for all coordinates in the schematic database.
However, all the connectivity elements have coordinates that are integral
multiples of four, which forces them to fall on the Primary grid.

The size of a sheet in a schematic is determined when the sheet is created. For
example, if the units are inches and the grid is 0.1, a sheet 22 inches wide is
(22 / 0.1) or 220 Primary grids wide. In Secondary units, the sheet is 880 grids
wide.

The ASCII to Schematic and Schematic to ASCII conversion utilities are called
from the Utilities menu of the SCS Executive.

Generic Interfaces

Synario Capture System User Manual A-7

Interface Format

The interface is a line-oriented ASCII text format. Each element in the
schematic is represented as a single line in the text file. Each line consists of:

♦ A keyword that begins the line and identifies the type of element
described.

♦ A list of parameters describing the element following the keyword.

The following conventions apply within each line:

♦ Keywords are not case-sensitive.
♦ Parameters are delimited by spaces and tabs.
♦ Text strings appear at the end of the line and can contain embedded blanks.
♦ Coordinate locations are given as pairs of numbers. X coordinates increase

to the right and Y coordinates increase to the bottom of the symbol. All
coordinate locations and distances are given in Secondary grid units.

In the following description of the format, keywords are shown in roman text
and parameters are shown in italics.

SCS Database Version

version number

The SCS symbol database version number is specified on the first line of the
file.

Sheet Size

sheet number width height

The sheet entry should be the second line of the file. number is the sheet
number and can range from 1 to 99. The width and height are the dimensions of
the sheet description that follows. All other lines following the sheet entry are
entities which appear on that sheet. Additional sheet entries represent the
beginnings of new sheets.

Generic Interfaces

A-8 Synario Capture System User Manual

Net Position (Wire)

wire x1 y1 x2 y2

The x-y coordinates are the wire’s end points. These coordinates must lie on a
major grid. These coordinates must also satisfy the interconnection constraints
for wires. For example, they must be lines at 45 or 90 degree angles to the edge
of the sheet.

Flag Position

flag x1 y1 name

The x-y coordinate is the location of the flag. This coordinate must lie on the
Primary grid.

name is the net name to be displayed. A wire cannot display two different
names. The name consists of the first non-blank character after y1 and all
following characters. The name must conform to the rules for net names. A net
name cannot contain spaces.

Pin Position and Definition

IOpin x1 y1 in_out

The x-y coordinate is the location of the pin. This coordinate must lie on the
Primary grid. in_out specifies the polarity and can be IN, OUT, or BIDIR. The
first character can be used as an abbreviation.

Bus Tap Position

bustap x1 y1 x2 y2

The x-y coordinates are the end points of the wire forming a bus tap. These
coordinates must lie on the Primary grid. The bus tap must be at a 90 degree
angle to the bus and can be either horizontal or vertical. It must also satisfy the
interconnection constraints. These constraints are listed on page 5-20 of “Using
the Schematic Editor.”

Generic Interfaces

Synario Capture System User Manual A-9

Symbol Position and Format

symbol name x1 y1 rot_mir

name is the name of the symbol. Since it is the name of a symbol file, it must
conform to the file name conventions for SCS.

The x-y coordinate is the location of the symbol origin.

rot_mir specifies the rotation and mirroring applied to this symbol instance.
rot_mir can have values of R0, R90, R180, R270, M0, M90, M180, or M270. The
first two characters can be used as an abbreviation.

The R values represent the rotated positions of the object. The M values
represent the rotated positions of the object after it has been mirrored
left-right. The list below describes the orientation:

rot_mir Value Orientation

R0 Default orientation, no rotation

R90 Default orientation, rotated 90° counter-clockwise

R180 Default orientation, rotated 180° counter-clockwise

R270 Default orientation, rotated 270° counter-clockwise

M0 Mirrored orientation, no rotation

M90 Mirrored orientation, rotated 90° counter-clockwise

M180 Mirrored orientation, rotated 180° counter-clockwise

M270 Mirrored orientation, rotated 270° counter-clockwise

symattr name string

The symbol instance attributes apply to the previously defined symbol
instance.

name specifies the attribute and must match one of the attribute names listed in
the Symbol Attributes section of the INI file.

string is the attribute value to be assigned. The string is the first non-blank
character following the name field and all following characters.

Generic Interfaces

A-10 Synario Capture System User Manual

Attribute Window Position

window number x1 y1 justify font

The attribute window location applies to the previously defined symbol
instance. It overrides the window location in the symbol definition.

number specifies which attribute window is to be drawn.

The x-y coordinate is the origin for drawing the attribute value.

justify specifies the horizontal (vertical) justification of the text. It can have the
value LEFT, RIGHT, CENTER, VLEFT, VRIGHT, or VCENTER. Any value can
be abbreviated to just the first two characters. Horizontal (vertical) text is
always justified vertically (horizontally) to the center of the character.

font specifies the size of the text and can be 0–7. (In the UNIX/Motif version,
there are only three font sizes, 0–2. Sizes 4–7 are mapped to UNIX size 2, 3 is
mapped to size 1, and 0–2 are mapped to size 0.)

Pin Attribute Position

pinattr x1 y1 name string

The x-y coordinate is the location of the pin. The specified pin attribute applies
to the pin at this location.

name specifies the attribute and must match one of the attribute names listed in
the Pin Attributes section of the INI file.

string is the attribute value to be assigned. The string is the first non-blank
character following the name field and all following characters.

Net Attribute Position

netattr x1 y1 name string

The x-y coordinate is the location of a point on the net. The specified net
attribute applies to the net at this location.

name specifies the attribute and must match one of the attribute names listed in
the Net Attributes section of the INI file.

string is the attribute value to be assigned. The string is the first non-blank
character following the name field and all following characters.

Generic Interfaces

Synario Capture System User Manual A-11

Each of the following formats for graphic elements contains a parameter that
specifies line weight. This parameter can have the value NORMAL or WIDE.
These keywords can be abbreviated as N or W.

On UNIX systems, the graphic-element format contains a parameter that
specifies line style. This parameter can have the value Dash, Dot, or DashDot.
If the parameter is missing, the line is drawn solid.

Lines line width x1 y1 x2 y2 style

The x-y coordinates are the line’s end points.

Rectangles rectangle width x1 y1 x2 y2 style

The x-y coordinates are two opposite corners of the rectangle.

Circles circle width x1 y1 x2 y2 style

The x-y coordinates are the opposite corners of a square that encloses the circle.
If a rectangle is specified, it is converted to a square with the same upper-left
corner as the rectangle. The sides of the square are the length of the shorter
sides of the rectangle.

Arcs arc width x1 y1 x2 y2 x3 y3 x4 y4 style

The first two x-y coordinates describe a circle (see above) containing the arc.
The third and fourth coordinate pairs are the starting and ending points of the
arc. If these points are not on the circle, the lines joining these points to the
circle’s center set the boundaries of the arc. The arc is drawn counterclockwise
from the starting to the ending point.

Table Text Position

text x1 y1 justify font string

The x-y coordinate is the origin for drawing the text.

justify specifies the horizontal (vertical) justification of the text. It can have the
value LEFT, RIGHT, CENTER, VLEFT, VRIGHT, or VCENTER. Any value can
be abbreviated to just the first two characters. Horizontal (vertical) text is
always justified vertically (horizontally) to the center of the character.

Generic Interfaces

A-12 Synario Capture System User Manual

font specifies the size of the text and can be 0–7. (In the UNIX/Motif version,
there are only three font sizes, 0–2. Sizes 4–7 are mapped to UNIX size 2, 3 is
mapped to size 1, and 0–2 are mapped to size 0.)

string is the text string. The string consists of the first non-blank character after
the font parameter and all following characters.

table x0 y0 rows cols row_height col_width
first_row_height first_col_width
name_just name_font title_just title_font
upper_left_just upper_left_font first_row_just first_row_font
first_col_just first_col_font rest_of_table_just
rest_of_table_font

The justification referred to below can have the following values:

BottomLeft
BottomCenter
BottomRight
CenterLeft
CenterCenter
CenterRight
TopLeft
TopCenter
TopRight
None

‘None’ is used if you don’t want the title or name to appear on the table.

The name and title are drawn outside the table. When the Bottom options are
used to justify the table’s name or title, the table’s name is printed above the
table. The Top options prints the table’s name below the table.

Font Parameters

The font parameters referred to below specify the text size and can be 0, 1, or 2.
This corresponds to five, seven, or nine Secondary grid units in height.

Parameter Description

x0 y0 The x-y coordinate is the upper-left corner of the table.

rows Number of rows

cols Number of columns

row_height Height in Secondary grid units of all rows except the first

Generic Interfaces

Synario Capture System User Manual A-13

col_width Width in Secondary grid units of all columns except the
first

first_row_height Height in Secondary grid units of the first row

first_col_width Width in Secondary grid units of the first column

title_just Justification for the table’s title

title_font Font size for the table’s title

name_just Justification for the table’s name

name_font Font size for the table’s name

upper_left_just Justification for the text placed in the upper-left cell

upper_left_font Font size for the text placed in the upper-left cell

first_row_just Justification for the table’s first row (other than the first
entry, covered by upper_left_just)

first_row_font Font size for the table’s first row (other than the first entry,
covered by upper_left_font)

first_col_just Justification for the table’s first column (other than the
first entry, covered by upper_left_just)

name_font Font size for the table’s first column (other than the first
entry, covered by upper_left_font)

rest_of_table_just Justification for all other cells, including all cells to the
bottom right

rest_of_table_font Font size for all other cells, including all cells to the
bottom right

Generic Interfaces

A-14 Synario Capture System User Manual

Table Name and Title Attributes

tableattr number value

The specified table attribute applies to the previously defined table.

number is the table attribute number. There are two choices:

0 Table name attribute

1 Table title attribute

where value is the value of the table attribute.

tabledata row col value

The table data refers to the previously defined table.

row and col specify the element in the table for which data is being defined.
value is the data.

EDIF Interfaces
This section describes the Electronic Design Interchange Format (EDIF)
interface for SCS symbols and netlists. EDIF is an standard format for ASCII
data that allows design information to be exchanged among different
CAD/CAE systems. SCS uses a subset of this format as an ASCII interface to
its symbol libraries.

SCS can read and write EDIF symbol descriptions, and write EDIF netlists.
Third-party interfaces are available to read and write EDIF schematic
descriptions.

The EDIF standard is broad and includes many data formats not used in SCS.
As a result, not all EDIF files translate correctly into SCS symbol files.

Generic Interfaces

Synario Capture System User Manual A-15

EDIF Netlist Interface

An EDIF netlist format is available in the Processes menu of the Hierarchy
Navigator. To add this EDIF netlister to the Hierarchy Navigator menu, use
the Navigator Tools dialog box in the INI Editor to create an entry for the
edifnet or edifnets program.

The following command line options are available:

/N Use Notepad to view netlist immediately after it is written.

/E Use EXTERNAL statement instead of LIBRARY statement
on primitives.

/S Reduce whitespace in netlist. Makes netlist smaller but
less readable.

The edifnet program runs from within the Hierarchy Navigator and creates a
hierarchical netlist. The edifnets program can output only a single level of the
hierarchy to a flat EDIF netlist.

Translating SCS Symbols To EDIF Files

To translate existing SCS symbols to EDIF files:

1. Select the Write EDIF command from the SCS Executive Utilities menu.

2. Click the Symbol to EDIF radio button.

3. Change directories within the SCS Executive to the directory containing
the symbol files to be translated. The symbols in each directory are shown
in the list box.

4. Double-click on the symbols in the list box to be converted. If you want to
translate all the symbol files in the list box, click the ALL button. EDIF files
with the extension .edf are created in this directory.

Generic Interfaces

A-16 Synario Capture System User Manual

Translating EDIF Files to SCS Symbol Files

To translate EDIF files to SCS symbols:

1. Select the Read EDIF command from the SCS Executive Utilities menu.

2. EDIF files having an extension of .edf are displayed in the list box. If the
current directory is not the one you want, click on a directory name or the
double dot [..] to change directories.

3. Double-click on the EDIF files in the list box to be converted. If you want
to translate all the symbol files in the list box, click the ALL button. SCS
symbol files are created in this directory having the file extension .sym.

Because EDIF files can contain more than one symbol, the file name of each
symbol is the name of the cell in the EDIF file with the extension .sym. Errors
or warnings are written to an error file named symbol.err, where symbol is the
name of the EDIF file being translated. Errors are flagged with the line number
on which the error occurred.

EDIF File Format

The EDIF format is briefly described here. For a complete description of the
EDIF standard refer to the Electronic Industries Association publication,
Electronic Design Interchange Format Version 2 0 0 (EIA Interim Standard No.
44).

EDIF statements have the following format:

(keyword { form })

Generic Interfaces

Synario Capture System User Manual A-17

A form is a sequence of identifiers, primitive data, symbolic constants, or other
EDIF statements.

keyword EDIF keywords are not case-sensitive.

identifier An identifier is the name of an object or data group.
Identifiers are used for name definition, name references,
and symbolic constants. EDIF identifiers consist of
alphanumeric or underscore characters and must be
preceded by an ampersand (&) if the first character is not
alphabetic. The ampersand is not considered part of the
name. Identifiers can be up to 255 characters. Case is not
significant.

number Numbers are 32-bit signed integers. Real numbers can be
represented by a scaled integer EDIF statement. For
example, the number 1.4 is represented as (e 14 -1). The e
form requires a mantissa and an exponent. The resulting
real number is restricted to the range of ± 1.0 x 10 ± 35.

string EDIF strings consist of one or more ASCII characters
enclosed in quotes (" "). All ASCII characters are legal.

Because quotes and percent signs (%) are EDIF
delimiters, they must be entered as an escape sequence of
the form %nn%, where nn is the integer value of the ASCII
character. For example, "quote %34% character" is the
string “quote " character”. (The outer quotation marks are
not part of the string; they just delimit it.) ASCII characters
not on the keyboard are also entered this way.

whitespace Blank, tab, linefeed, and carriage return characters
(whitespace) are delimiters. Blanks and tabs are significant
when they appear in strings.

symbolic constant A symbolic constant is a predefined EDIF name. For
example, LOWERLEFT is used to specify text justification.

point The pt construct is used to specify coordinate locations.
The pt keyword must be followed by the x- and
y-locations. For example: (pt 100 200) is at x=100, y=200.

Generic Interfaces

A-18 Synario Capture System User Manual

Scaling

Numbers must be scaled to values appropriate for the actually elements they
represent. For example, coordinate locations and graphic descriptions (such as
line width) are measured in units of distance and must be specified in meters.
Each coordinate value is converted to a length in meters by applying the scale
factor. Each EDIF library has a [Technology] section which has a required
numberDefinition construct. The scale construct is used within
numberDefinition to relate numeric values to physical units.

Renaming Object Names

Names express relationships between objects and reference external elements.
The name of a figureGroup is only used within the EDIF file as a reference to
the EDIF structure which defines the drawing characteristics. Other names,
such as cell names or property names, are used by SCS.

Sometimes the external name of an object is not a valid EDIF identifier. When
this happens, the rename construct can be used to create a valid EDIF identifier
and preserve the external name. For example, the symbol test$1.sym could
generate the following cell construct:

(cell (rename test_1 "test$1")

The above example shows that the EDIF string is used to contain the original
name, and a new name, test_1, is created as an EDIF identifier.

Formatting EDIF Files

The translation from EDIF to SCS symbol files is not always perfect because of
differences between SCS and other CAE systems. Keep the following points in
mind when performing EDIF translations:

♦ The scale for unit distance must be defined correctly in the
numberDefinition section of the technology block in each library.

♦ The SCS requires pins, symbols and nets to fall on the Primary grid. You
may therefore have problems lining up symbol pins on the Primary grid
points.

♦ The pathWidth, borderWidth, and textHeight should be defined in a
figureGroup in the technology block.

♦ Since the UNIX/Motif version SCS has only three font sizes, text may not
appear to have mapped correctly. (The Windows version has eight font
sizes, so this is less likely to occur.)

Generic Interfaces

Synario Capture System User Manual A-19

♦ In order to correctly interpret symbol and pin attributes, SymbolType
should be specified as a property of the cell.

♦ The cell name defines the name of the translated symbol.
♦ All pins should be defined using the port construct in the interface section

of the view.
♦ Pin attributes must have definitions in the Pin Attributes section of the INI

file.
♦ Symbol attributes should appear in the [Interface] section before the

symbol constructs if there are any attribute display windows with that
attribute.

♦ Symbol attributes must have definitions in the Symbol Attributes section
of the INI file.

♦ Arcs should be carefully specified since there is a possibility of rounding
errors in the conversion between a three point arc and a center-and-radius
description of the arc.

♦ The world coordinates must be limited so that the symbol fits within the
SCS symbol limit of 400 Primary grid units.

♦ SCS file names are limited to eight characters for DOS/Windows
compatibility. In the UNIX/Motif version of SCS, case is significant.

♦ In displaying pin names, SCS places pin names from 1 to 15 quarter grids
from the pin.

♦ SCS uses the SymbolType property to distinguish Block, Cell, Component,
Gate, and Graphic symbols.

♦ SCS supports only two line widths.

♦ SCS uses system-wide specification of color for nets and pins. EDIF allows
individual items to have their own colors.

♦ Attributes which are relevant in SCS may not be the properties relevant in
other CAE systems.

Preparing Non-SCS EDIF Files for Translation

Before reading in EDIF files that were produced on another system, the
following procedure should be followed:

1. Be sure the Grid Size setting in the Sheet Layout dialog box of the Controls
menu of the INI Editor is set to match the grid setting from the source CAE
system. Changing the Grid Size changes the size of the symbol, both when
displayed and when printed.

Generic Interfaces

A-20 Synario Capture System User Manual

2. Add Attribute definitions to the Symbol Attributes and Pin Attributes
sections of the INI file to correspond to any attributes that were defined in
the source CAE system but which are not currently defined by SCS.

Check the spelling of the attribute names and change it to match the
spelling of properties in the EDIF file. For example, PartNum in SCS might
be spelled Part_No in the source CAE system. Once the EDIF files have
been converted, you can change the spelling back if you wish. The spelling
of attribute names is significant only during translation of files to ASCII or
EDIF format.

3. Check the cell names in the EDIF file to be sure the names do not conflict
with the names of other files after truncation to eight characters. (File
names are limited to eight characters under both Windows and
UNIX/Motif.)

4. Determine the desired symbol type. The symbol can be a BLOCK, CELL,
COMP, GATE, GRAPHIC, MASTER, or PIN. The symbol type is normally
determined by having a property on the cell that specifies the type. If this
property is not present, the symbols created during EDIF to SCS
translation have the type specified by the default SymbolType in the
Controls section of the INI file. If there is no SymbolType property in the
EDIF file and no SymbolType default in the INI file, the symbol is created
as a BLOCK.

Generic Interfaces

Synario Capture System User Manual A-21

Generic Netlists
Several generic netlisters are supplied with the SCS. The ASCII output of these
generic netlists is usually in a form that can be easily modified for custom
applications.

These netlisters are consolidated in a single executable file called lister. This
program is accessed through the Processes menu of the Hierarchy Navigator.
A specific netlister is specified by adding a command-line option to the lister
entry:

Option Action

-netorder Net list by net

-pinorder Net list by instance and pin

-listmark List only marked nets and instances.

-listinst List type, location, parent and instance names.

-listpart List block symbols, count of primitive symbols.

The following additional options can be used with all the netlisters:

-nohead Suppress printing of time and date header.

AND2

X2

AND2

X1

I1
OUT1

I2
OUT2

CLOCK

CLEAR

MYFF

MYFF

myFF

myFF

J

K

Q

QN

J

K

Q

QN

Figure A-2
Schematic for Netlist Examples

Generic Interfaces

A-22 Synario Capture System User Manual

-pcb Use reference designator and pin number instead of
instance name and pin name.

-view Run the currently specified editor to view the netlist file
immediately after netlist creation.

-ext=.abc Create a netlist file with the specified extension
(design.abc). The specified extension overrides the default
extension.

Netlist by Net (netorder)

The -netorder option generates a flat (non-hierarchical) ASCII netlist. Only
primitive symbols and their pins are included in the listings. Buses are
resolved into discrete signals and do not appear as buses in the listings.

The generated netlist is ordered by net. The listing is divided into two sections.
The first section of the listing contains a list of the symbol instances showing
the symbol type followed by the instance name. Each instance is on a separate
line and instances of the same symbol type are not sorted into groups. A line of
dashes ends this list.

The second section of the listing is a list of each net followed by a list of the
pins that are contained in the net. The first entry in the line is the net name.
The following entries are the pins connected to the net.

If more than one line is required to list a net, the line to be continued ends with
an ampersand and the following line is indented.

The following example shows the Netlist format for Net List By Net. The
circuit in Figure A-2 is the basis for this example.

JKFF X3
JKFF X4
AND2 X1
AND2 X2

A2 X4-J X2-OUT
OUT2 X4-Q
CLEAR X4-K X3-K
CLOCK X1-IN2 X2-IN2
I2 X2-IN1
OUT1 X3-Q
A1 X3-J X1-OUT
I1 X1-IN1

Generic Interfaces

Synario Capture System User Manual A-23

Netlist by Pin (pinorder)

The -pinorder option generates a flat (non-hierarchical) ASCII netlist. Only
primitive symbols and their pins are included in the listings. Buses are
resolved into discrete signals and do not appear as buses in the listings.

The output netlist is ordered by symbol instances. The two entries are symbol
type followed by instance name. The entries that follow this represent the
symbol pins. Each pin entry contains the name of the pin followed by the
name of the net to which it is connected. Unconnected pins have the word
“Unconnected” in place of the net name.

The symbol and each of its pins are listed on a separate line. The line with the
symbol instance is not indented to differentiate it from the lines with the pins.

The following example illustrates the Netlist format for Net List By Pin. The
circuit in Figure A-2 is the basis for this example.

JKFF X3
J A1
K CLEAR
Q OUT1
QN Unconnected
JKFF X4
J A2
K CLEAR
Q OUT2
QN Unconnected
AND2 X1
IN1 I1
IN2 CLOCK
OUT A1
AND2 X2
IN1 I2
IN2 CLOCK
OUT A2

Generic Interfaces

A-24 Synario Capture System User Manual

Appendix B

Simulator Interfaces
This chapter explains the simulator interfaces that are currently supported for
the Synario Capture System (SCS). The following interfaces and topics are
covered in this chapter:

♦ SILOS
♦ Timewave History File Format
♦ Simulation Environment
♦ SPICE
♦ SPICE Format Conversions
♦ Timemill
♦ Verilog
♦ VHDL
♦ Export

SILOS
SCS provides an interface to the SILOS Logic Simulator. This interface lets you
extract a netlist file for the SILOS simulator.

The SILOS Netlist Processor is selected from the Processes menu of the
Hierarchy Navigator. This processor creates a netlist file with the name
design.dat (where design is the base name of your design). This file is a
topological description of the hierarchical design and is combined with a
user-supplied pattern file that specifies the initial values, clock, and pattern
definitions for the simulator. The pattern file is typically named design.pat.
Any text editor can be used to create the pattern file.

If errors occur, the processor invokes the Notepad (or the text editor you
specified in ecs.ini) on the netlist file. You can use the Notepad to scroll
through the netlist file and identify the errors. Each error is on a separate line
surrounded by asterisks. For example:

**** Missing Pin Named: EN ****

Synario Capture System User Manual B-1

Adding a SILOS Menu Entry to the Hierarchy Navigator

The SILOS netlister is run as a process from the Hierarchy Navigator. You
must use the INI Editor to add it to the Navigator’s Processes menu.

1. Select the INI Editor from the SCS Executive.

2. Select the Processes command from the Tools menu.

3. Add the following menu entry:

SILOS Netlist

4. Add the following command line entry:

silosnet

Any of the following options can be added to the command line:

/A Automatic mode; do not display Option dialog box.

/M Write subcircuit netlist.

/P Use lowest-level primitives.

/S Invoke the SILOS simulator. (DOS only)

The netlister displays the Option dialog box if the /A option is not specified. If
the /A option is specified the netlister does not display the Option dialog box
but does use any other options specified on the command line. If other options
are specified without the /A option the dialog box is displayed with the
selected options as the defaults.

Required Attributes

Four attributes are reserved for use with the SILOS interface. They are defined
in the INI file and provide the information needed to construct the network
description.

SILOSModel

This symbol attribute identifies the primitive or macro used to represent the
symbol.

Primitives are identified by the first three characters after a leading period (.).
For example, .AND, .AND42, and .ANDU2 are seen as being the same
primitive. "PDQ" is not a primitive, because it does not begin with a period.

Simulator Interfaces

B-2 Synario Capture System User Manual

Macros are specified by name without a leading period. Macros must be
defined in the systm.lib or macro.lib library file. The remainder of the
attribute (after the macro or primitive name) is copied into the network
description without interpretation. Therefore, if a strength qualifier is desired
on a primitive, it can be appended to the primitive name in this attribute.

SILOSTimes

This symbol attribute specifies the rise and fall times and multipliers for the
gate. Rise time is the first field and fall time is the second field. The multipliers
are optional components of each field. If present, this string is inserted into the
network description between the SILOSModel and the pins.

SILOSName

This pin attribute is used for macros and several primitives to set the order in
which the pins are listed in the netlist. For macros, pins are identified by
number and appear in the netlist in the same order as the numbers in the
SILOSName attribute.

For some primitives, the pins are identified by name (rather than order). If the
PinName is different than the name required to identify the pin for SILOS, the
SILOSName attribute can be used. The netlist processor checks the
SILOSName before looking at the PinName.

If the first character in this attribute is a minus sign (–), the netlister places a
leading minus sign in front of the net name connected to this pin. This treats
the pin as if there were an inverter on the pin. The symbol should have an
inverter bubble on this pin to indicate the inversion and avoid confusion.

SILOSLoad

This pin attribute indicates the optional numerical load factor used in
computing the fanout-dependent delay load for all gates connected to this
input pin. If present, this string is inserted into the network description
between the SILOSModel and the pins.

Optional Attributes

Several other attributes are used by the SILOS interface:

Value

The Value attribute is used on .cap symbols to specify the capacitance.

Simulator Interfaces

Synario Capture System User Manual B-3

Polarity

The polarity is used by the SILOS netlister for several primitive types to
determine which pins are the output pins.

PinName

The pin name is used to identify pins for some primitives if the SILOSName
attribute is not present.

These attributes are assigned to the symbol and its pins by use of the Symbol
Attribute and Pin Attribute commands of the Symbol Editor. If a symbol has
an attribute assigned, it becomes the default value for each instance of the
symbol on the schematic. The default values can be overridden for a particular
instance of the symbol on the schematic by use of the Add: Attribute command
of the Schematic Editor or the Edit: Attribute command of the Hierarchy
Navigator.

Creating the Pattern File

The pattern file is one of two files required by SILOS to perform simulations. It
provides circuit stimuli, such as clocking signals and any other primary inputs.
The pattern file also contains the location of the netlist file. You must create a
pattern file for each simulation. The pattern file has the extension .pat.

The following is an example pattern file named demo.pat for use with a design
called demo.sch. Text following a dollar sign ($) is a comment.

!INPUT DEMO.DAT $ Causes SILOS to read the
netlist
VDD .CLK 0 S1 $ Define the global power and
ground
GND .CLK 0 S0
RESET .CLK 0 S1 160 S0 $ Specify all input signals
CLOCK .CLK 0 S0 100 S1 150 S0 .REP 0

Please refer to the SILOS Reference Manual for more information about clock
and pattern inputs.

Controlling Netlist Extraction

The netlist file is one of two files required by SILOS. The netlist file contains
the circuit’s connectivity.

When the SILOS netlist processor is selected from the Processes menu of the
Hierarchy Navigator, a dialog box offers the following options:

Simulator Interfaces

B-4 Synario Capture System User Manual

Netlist Writes the netlist only.

Subcircuit Writes a special version of the netlist for a sub-hierarchy
when working with a split hierarchy.

Simulate Invokes the SILOS Simulator after writing the netlist.
(DOS only)

Select the required option and run the process by clicking the Run button.

In addition to the buttons, there is a check box labeled Use Primitives. When
the netlist processor encounters a symbol that has the SILOSModel attribute
specified, it normally codes that macro or primitive into the netlist without
looking for any lower-level schematics. If the Use Primitives option is selected,
the netlist processor ignores the SILOSModel on higher-level blocks and codes
the netlist using only the lowest-level primitives. This feature makes it possible
to switch between simulating at the functional level and the gate level without
changing anything on the schematic.

For example, assume a schematic has a symbol called NAND2 and the
SILOSModel attribute of this symbol is .NAND. An underlying schematic
exists for the symbol NAND2 containing transistor symbols NMOS and PMOS
(SILOSModel= .NMOS and .PMOS). The netlist is normally coded .NAND
without any reference to the underlying schematic. With the Use Primitives
option, NAND2 is coded as a .MACRO using statements containing .NMOS
and .PMOS.

SILOS Format Conversions

The SILOS netlister makes the following conversions in the netlist file
extracted from the SCS schematic. Keep these changes in mind when
interpreting error messages from SILOS.

♦ The apostrophe (’) (that causes names to be written with overbars) is
replaced with an underscore (_).

♦ SILOS uses the left parenthesis (() as its hierarchical separator, rather than
a period (.).

The SILOS netlister writes a hierarchical netlist. Therefore, any
instance-specific attribute overrides, that are added by the Hierarchy
Navigator, do not appear in the netlist.

Simulator Interfaces

Synario Capture System User Manual B-5

Building SILOS Symbol Libraries

SILOS has many built in primitive functions that are used in simulation.
Several attributes in these primitives must take on prescribed values. The
following list gives the attributes needed for various SILOS primitives.

Combinational Gates

SILOSModel= .INV, .AND, .NAND, .OR, .NOR, .XOR, .XNOR, or .GATn
Polarity= OUT on the output pin

Tri-State Combinatorial Gates

SILOSModel= .TINV, .TAND, .TNAND, .TOR, or .TNOR
Polarity= OUT on the output pin
SILOSName= begins with E on the enable pin
Name= begins with E on the enable pin

And-Or-Invert Gates

SILOSModel= .AOI, or .OAI
Polarity=OUT on the output pin
SILOSName= A, B, ... indicates the groups of pins

Level & Strength Delays

SILOSModel= .DLA, or .SDLA
Polarity=OUT on the output pin

Flip-Flops

SILOSModel=.DNEFF, .DPEFF, .JKNEFF, .JKPEFF, .SRNEFF, .SRPEFF,
.TNEFF, or .TPEFF
SILOSName= or Name= one of CLK and Q on all types. CLR, SET and QB are
optional on all types. J, K, S, R, and D as appropriate.

Transfer Gates

SILOSModel= .NXFR, .PXFR, .NRXFR, .PRXFR, .CXFR, or .CRXFR
SILOSName= or Name= IN, OUT, and EN and/or EP on enable(s)

CMOS Transistors

SILOSModel= .CMOS
SILOSName= or Name= NS, NGP, NGN, or ND

Simulator Interfaces

B-6 Synario Capture System User Manual

MOS transistors

SILOSModel= one of .NMOS .PMOS
SILOSName= or Name= NS, NG, ND

Zycad-compatible D Flip-Flop

SILOSModel= .DFF
SILOSName= or Name= Q, D, CLK, or R

Zycad-compatible Latch

SILOSModel= .LAT
SILOSName= or Name= Q, D, EN, R

Resistor

SILOSModel= .RES
Polarity= OUT on the output pin

Capacitor

SILOSModel= .CAP
Value= capacitance ratio (default is 1)

The capacitor symbol should have only one pin. If it has two pins, one must be
connected to GND or VSS.

Setup & Hold Detectors

SILOSModel=.SHNE or .SHPE
SILOSName= or Name= CLK or D
Polarity=OUT on the output pin

RAM, ROM, and PLAs

These primitives are not implemented due to the wide range of possible
combinations. You should manually code macros for these elements into one
of the system library files and set the SILOSModel to the name of the macro.

Macros

SILOSModel= name of the macro
SILOSName= order for pins

Simulator Interfaces

Synario Capture System User Manual B-7

Symbols for manually-coded elements require the pin output order to be
specified. This is done by using the SILOSName attribute to indicate the
numeric order of the pins. The macro definitions should be in either the
systm.lib or macro.lib system library.

Examples

Two examples of SILOS elements are presented. A J-K flip-flop shows how to
use a SILOS primitive. A four-bit inverter shows how to use a SILOS macro to
build a non-standard function.

Negative Edge-Triggered J-K Flip-Flop

The following example is a negative edge-triggered J-K flip-flop with
active-high set and clear. It has CMOS type strengths, a rising delay of 4ns, and
a falling delay of 2ns. The special attributes necessary are listed.

Symbol Attributes

SILOSModel= .JKNEFF/C
SILOSTimes= 4 2

Pin Attributes

PinName SILOSName Polarity

J In

K In

CLK In

SET -SET In

CLR -CLR In

Q Out

QN QB Out

In this example, CMOS drive strength is shown by the /c in the SILOSModel
definition. The rise and fall delays are shown under SILOSTimes.

The last pin has a PinName of QN, so it is displayed that way on the
schematic. The SILOS netlister requires the pin name to be QB, so the
SILOSName attribute (QB) is used in the netlist file.

Simulator Interfaces

B-8 Synario Capture System User Manual

The SET and CLR pins are to be treated as active low rather than the default
active high. The minus sign (–) on the SILOSName causes the net connected to
this pin to be listed with a leading minus sign, which indicates these are
active-low pins.

Four-Bit Inverter

The following example is a macro for a four-bit inverter whose symbol uses
bus pins:

Macro Definition

.macro INVERT4 DATA0 DATA1 DATA2 DATA3 ENABLE OUT0 OUT1 OUT2 OUT3
OUT3 .TINV ENABLE DATA3
OUT2 .TINV ENABLE DATA2
OUT1 .TINV ENABLE DATA1
OUT0 .TINV ENABLE DATA0
.eom

Symbol Attributes

SILOSModel= INVERT4

Pin Attributes

PinName SILOSName Polarity

OUT[0;3] 6 Out

ENABLE 5 In

DATA[0;3] 1 In

The numbering sequence for a bus pin should treat that pin as a sequence of
individual numbers. In this example, DATA[0:3] is given a SILOSName of 1.
Since there are four pins, the next usable number for a SILOSName is 5.

Error Messages

No Model Defined for symbol

A primitive symbol did not have the SILOSModel defined.

Unknown Primitive Type: type

The SILOSModel attribute is not one of the supported types.

Simulator Interfaces

Synario Capture System User Manual B-9

Missing Symbol for root_schem

The Subcircuit option requires a symbol for the root schematic.

Missing Subcircuit File filename

If a symbol has a SILOSModel specified without a leading period (.), there
must be a file with the given name and extension .dat in the current directory
or one of the project or model directories in the search path. Load the
schematic into the Hierarchy Navigator, then run the SILOS netlister with the
Macro option to create this file.

Missing Pin Named: name

A primitive symbol was expected to have a pin with the given Name or
SILOSName.

SILOSName Not Specified for Pin in Symbol name

Macros require that each pin have its SILOSName specified as a number
indicating the numerical order for the pin to be listed. This symbol is a Macro
because SILOSModel specified a name without a leading period.

Incorrect Pin Ordering in macro

This macro has a gap in the sequence of numbers in the SILOSName attribute.
This symbol is a Macro because SILOSModel specified a name without a
leading period.

No Output Pin on name

This primitive requires a pin with Polarity=Out

Unconnected Output: output

All primitives must have the outputs connected except for the QB pin of a
Flip-Flop.

Unconnected Capacitor Pin On: symbol

The capacitor pin must be connected.

Capacitance Not to GND or VSS

If a capacitor symbol has two pins, one of the pins must be connected to GND
or VSS.

Missing or Invalid VALUE (Capacitance) for node

The Value attribute must be set to the relative capacitance for this node.

Simulator Interfaces

B-10 Synario Capture System User Manual

Dynamic Simulation Interface

The SCS can include the SILOS Simulator in the design environment. The
interface between SCS and SILOS consists of three parts:

Netlist Extraction SCS can extract the design netlist in SILOS input format.
The netlist file has the extension .dat. Additional SILOS
input, including the stimulus commands, is
user-generated and placed in another file, typically with
the extension .pat.

Simulator Control The SILOS Simulator can be launched and controlled from
the Hierarchy Navigator. Commands can be defined and
added to the Navigator’s Simulate menu. The elements on
which the commands act (such as nets) are selected by
clicking on them in the schematic.

Output Viewing The output of the Simulator can be viewed graphically
with the Waveform Viewer. The simulation results can be
viewed as the simulation progresses (dynamic mode) or
after the simulation is completed (static mode).

The Waveform Editor can run alone or in conjunction with the Hierarchy
Navigator. In the latter case, the schematic can be back-annotated with the
states of signals as defined in the Simulator.

Setup of the silos.ini File

The Hierarchy Navigator can be configured to control the SILOS Simulator.
The first step is to specify the Simulator parameter as "silos" using the INI
editor. This causes the Navigator to read silos.ini, that must be in either the
working directory or in the ROOT\data (ECS_ROOT/data) directory. A typical
silos.ini file is shown below.

Simulator Interfaces

Synario Capture System User Manual B-11

[SimTitle]
 title = SILOS

[SimTools]
 Code Verilog = #Make MakeVerilog
 Waveform Editor = wet -nav &B
 Edit silos.ini = notepad %config\silos.ini
 Start Silos = #Simulate Simulate1
 Start Silos Flat = #Simulate Simulate2
 Review Silos Results = waves -nav -silos &B

[MakeVerilog]
 Process = vericode -model &R
 Extension = .v
 Path =
 ModelAttribute = 20

[Simulate1]
 Command = silos3w
 Waves = waves -nav -silos &B
 SimAppName = silos3
 ExitMsg = quit
 FirstMsg = FirstSilos1
 Command = rsh host_name /home/bin4/silos &R.pat &R.dat
 Waves = waves -nav -silos -sim &B
 First = siloswav -sendbuf -wav@ \n in &R.pat \n in &R.dat \n sim 0

[Simulate2]
 Command = silos3w
 Waves =
 SimAppName = silos3
 ExitMsg = quit
 FirstMsg = FirstSilos2

[FirstSilos1]
 1 = RESET ALL
 2 = CON .CUSTREPORT .SYN=0 .SAV=2
 3 = LIB .\common{.v} .\symbus{.vi} .\top{.v} .{.v} c:\test\bliflib.v
 4 = File .SAV=&B
 5 = File .STO=&B.rep
 6 = Input &B.tf
 7 = Sim 0

Simulator Interfaces

B-12 Synario Capture System User Manual

[FirstSilos2]
 1 = RESET ALL
 2 = CON .CUSTREPORT .SYN=0 .SAV=2
 3 = LIB .\common{.v} .\symflat{.vi} .\top{.v} .{.v} c:\test\bliflib.v
 4 = File .SAV=&B
 5 = File .STO=&B.rep
 6 = Input &B.tf
 7 = Sim 0

[SimControls]
 MaxLine = 512
 Terminator =
 Separator = ,
 FlattenBusses = Yes
 HierChar = (
 RootPrefix = (t(m(
 RootIOPrefix = (t(
 InstPrefix = (t(m(
 SubPrefix = (t(m(
 GlobalPrefix =
 InstParen = _

[SimMenu]
 Set = SET %n = %{ 0 1 X Z }
 Force = FORCE %n = %{ 0 1 X Z }
 Release = FREE %*n
 Simulate to: = Sim to ?{}
 Stop = ^C
 Finish = QUIT

[SimSources]
 .abl =
 .v =
 .vf = vf\

[Export]
 exp -verilog -ext=.tf

The First entry under the [SimControls] section works as follows. The
Navigator replaces the at sign (@) with the host number for the local host
(typically,192.9.200.nnn) and the &R with the path name to the root schematic.
It then sends the siloswav command to SILOS followed by the two in
commands to read in the pattern file (.pat) and the netlist file (.dat). This is
followed by the sim 0 command. (The individual command lines are separated
with a “newline” character—a backslash followed by the letter n (\n).)

Note: The paths to the netlist files must refer to the host running SILOS.

Simulator Interfaces

Synario Capture System User Manual B-13

Netlist Extraction

The SILOS netlist extraction program, silosnet, is accessed from either the
Processes menu or the Simulate menu of the Hierarchy Navigator. In either
case, the netlist of the hierarchical design has the root schematic’s base name
and the extension .dat.

The Code SILOS command in the Hierarchy Navigator is enabled by setting
the Simulator option to "silos" using the INI editor. There must be a file named
silos.ini in the working directory, or in the ROOT\data directory (the
ECS_ROOT/data directory in the UNIX/Motif version). The preceding section,
“Setup of the silos.ini File” has a sample silos.ini file.

Running SILOS with the Hierarchy Navigator

After SILOS has been relinked and the silos.ini file set up, you can run SILOS
from the Navigator using the following procedure:

1. Set the Simulator parameter in the INI file to "silos" using the INI editor.

2. Start the Navigator on the top level of your design. SILOS appears on the
menu bar. If SILOS does not appear, the setup is not correct or the silos.ini
file was not found in either the working directory or in the ROOT\data
(ECS_ROOT/data) directory.

3. Select the Code SILOS Model command in the SILOS menu. This extracts
the netlist for the design.

4. Select the Start Simulator command in the SILOS menu. The Simulator
Control window opens showing the Delta button. Below the button is a
window displaying the commands:

siloswav
sim 0

The SILOS sign-on messages appear, then the SILOS prompt:

Ready:

If the -waves option was requested, the Waveform Viewer opens.

You are now prepared to run SILOS. The menu changes to show the
commands specified in the silos.ini file. Use the Hierarchy Navigator menu
and the control buttons on the Simulator window to control SILOS.
Commands not in the menu can be entered directly into SILOS by clicking in
the control window and typing the command.

Simulator Interfaces

B-14 Synario Capture System User Manual

Running SILOS Without the Hierarchy Navigator

SILOS can also be run without the Navigator by starting the Waveform
Viewer, then SILOS, with the commands:

waves -sim -silos &
silos design .pat design .dat

After SILOS is launched, enter:

siloswav -sendbuf -wav addr
sim 0

where addr is the Internet address of the host

The Waveform Viewer runs. Enter all SILOS commands from the keyboard.

Running SILOS in Static Mode

SILOS can also be run in static mode with or without the Hierarchy Navigator.
When SILOS completes, it creates a history file named save.sim. Use the
Waveform Viewer to view the simulation results. This feature lets you run a
long simulation unattended.

If you want to use the Hierarchy Navigator, add an entry to the Navigator
Tools section of the INI Editor that specifies the command to launch the
Waveform Viewer and access the history file:

waves -nav -silos

If the Waveform Viewer is to be run by itself, enter the command:

waves -silos

Simulator Interfaces

Synario Capture System User Manual B-15

Timewave History File Format
The Timewave history file format was designed to provide an ASCII file
format passing data from the Simulator to the Waveform Viewer. The history
file is usually used to store simulation results for later analysis using the
Waveform Tools.

The format supports times from zero to two billion, with four different
simulation states for up to 65,000 nodes.

The file is stored with the same base name as the netlist filename, but with the
extension .his. The file has four sections: the preamble, the header, the node
names, and the node transitions. The first section can be omitted.

Preamble

The preamble contains comments and/or date information. Lines in this
section can begin with any non-digit character. All lines (including blanks) are
skipped until a line beginning with a digit is encountered.

Header

This is a single line containing three integer values and terminated with a
new-line (\n) character. The format is

decimals end_time node_count

The values are

decimals Number of decimal places in time values (0, 1, or
2).

end_time Last simulation time.

node_count Number of nodes that are monitored.

Node Names

This section is a single line that follows the header containing the node names.
The first name represents node number 0 in the state data.

♦ Names are separated by spaces
♦ Names are limited to 256 characters each

Simulator Interfaces

B-16 Synario Capture System User Manual

♦ The number of net names is limited to 65535.
♦ The Node Names section should be terminated with 3 new-line characters

(\n).

Node Transitions

This section follows the node names and specifies the node transitions. For
each time when at least one node changes, there is one record which lists all
the nodes that changed. The format of the record is the time followed by one
or more pairs of node number and state values. Each record is terminated
with a new-line (\n) character. The first record should be at time zero, and
every node should be listed with its initial value. After the last time any signal
changes, there should not be any more events. The following rules apply to
node transition records:

♦ All fields in a record are delimited with spaces.
♦ Nodes are indexed from zero.
♦ Buses are referenced by their constituent signals. The bus Data [0:7] is

treated as 8 separate signals (Data [0], Data [1] …).
♦ The legal state values are:

0 Logic low

1 Logic high

2 Unknown

3 High-Z

Example History File

This example is a 2-input AND gate. The simulation runs from 0 to 512. The
nodes are GND, VDD, IN1, IN2, and OUT. The gate has a rise time of 2 and a
fall time of 1. The inputs are 0, 0 at time 0 and change at time 138, 256, and 384.

Simulator Interfaces

Synario Capture System User Manual B-17

This file is an example history file
and this is the Preamble section.
0 512 5
GND VDD IN1 IN2 OUT

0 0 0 1 1 2 0 3 0 4 2 1 4 0
1 4 0
128 2 1
256 3 1
258 4 1
384 2 0
385 4 0

Simulation Environment
The Simulation Environment is a generic interface for running a simulator
within the SCS environment. The operational model consists of five functions
that can be interconnected, as shown in Figure B-1. Ideally, the environment
should include all the functions. You can, however, omit one or more functions
while retaining the interaction among the remaining modules.

The Hierarchy Navigator is the parent process. You begin your work session
by invoking the Navigator to view your design. The Navigator combines the
symbols and schematics to create a hierarchical data structure, which is
displayed in the Navigator window. The Navigator also provides a Simulate
menu with the following options:

Hierarchy Navigator

Waveform Analysis Simulator

Data Preparation

Control Shell
Commands

Data Base

Probing
States Probing

Results

Commands

Figure B-1
Operational Model of SCS/Simulation Environment

Simulator Interfaces

B-18 Synario Capture System User Manual

Model Action

Code Simulation
Models

The Hierarchy Navigator runs the Data Preparation
module to extract the model information from the
database.

Compile Model The Hierarchy Navigator runs the process that compiles
the models according to the simulator’s requirements.
This process can be omitted for some simulator
environments.

Start Simulator You can run the simulator only after you have run the two
preceding Model options.

You can add additional options to the simulator initialization file.

Once the simulation is running, you send commands to the simulator through
the Simulate menu in the Hierarchy Navigator. In the UNIX/Motif version
you can also click buttons in the control shell or type commands in the control
shell’s main window. These commands enter the simulator as its standard
input (stdin) as if they were typed into a normal operating system command
window. You should not need to modify the simulator to accommodate this
portion of the interface.

The Hierarchy Navigator can also invoke the Waveform Viewer. When run,
the Viewer opens a socket and awaits the connection of the Simulator. The
Simulator can then connect to the Viewer, using a routine that is supplied with
the (optional) Programmer’s Interface Kit.

When connected, the Waveform Viewer displays the simulation results. It also
passes the results (at the query cursor) to the Hierarchy Navigator for display
of net state values. All other functions of the Viewer and the Navigator, such
as cross-probing, are also available.

When all modules are operational and linked, the process is controlled
through user interactions with the Hierarchy Navigator, the Waveform
Viewer, and the SCS Shell.

A subset of the environment can also be used. Simulators with their own
waveform-viewing capabilities can omit the Waveform Viewer. If you omit the
Waveform Viewer, however, cross probing and display of simulation results
on the schematic are not available. When long simulations are run in a batch
environment, the Navigator/Waveform Viewer combination provides a
powerful tool for viewing the results of the simulation from a history file.

Simulator Interfaces

Synario Capture System User Manual B-19

Simulation Environment Setup

The simulation environment is defined in a separate configuration file. This
lets you define an interface for any simulator without modifying the SCS
programs.

The ecs.ini file contains a Simulator parameter (set in the System Controls
dialog box of the INI Editor), which is the base name of this configuration file.
The .ini extension is added to the Simulator parameter to form the complete
file name. (The Simulator name is forced to lower case in the UNIX/Motif
version, and is case-insensitive in the Windows version.) The system expects to
find this simulator.ini control file in the working directory, or in the directory
specified by the CONFIG variable in the Windows Registration Editor, or (in
the UNIX/Motif version) in the ECS_ROOT/data directory.

Each section of the simulator configuration file has an identifying header
within square brackets. All lines following the header, up to the end of the file
or another header, are part of that section.

The commands in each section are described below.

[SimTitle]

Title = simulator name

Adds the simulator’s name to the menu bar of the Hierarchy Navigator. If this
section is omitted, the default name "Simulator" is displayed.

[SimTools]

The commands in this section are available from the simulator’s menu. It can
contain any number of entries of the form:

menu_label = command_line

The is menu_label displayed in the simulator’s menu. It can be any text. The
command line is the command passed to the operating system when you select
this item. Any of the “path tokens” described in Chapter 4, “Basic Operation”
can be added to the command_line and will be properly expanded.

A number of special commands are available, all starting with the pound sign
(#):

menu_label = #compile section
menu_label = #maker section
menu_label = #simulate section
menu_label = #reload

Simulator Interfaces

B-20 Synario Capture System User Manual

The first three commands replace the section name with the information in the
corresponding [section] of the initialization file. (The format of these sections is
described later.) This feature allows a set of commands to be defined once,
then conveniently reused.

The #reload command reloads the simulator.ini file. It’s used when you’ve
modified the file after starting the Hierarchy Navigator.

[SimControls]

This section specifies how net and instance names are “mangled” before being
passed to the simulator or the Waveform Viewer.

MaxLine = nn

Specifies the maximum command-line length before the Hierarchy Navigator
breaks the line by inserting a continuation character and a carriage
return/linefeed. Maxline can be no larger than 1024.

Continue= char

Specifies an continuation character when breaking long lines. If none is
specified, the default is the backslash (\).

RootIOPrefix = string

Specifies the prefix to be added to the names of nets external to the root
schematic. Nets external to the top-level schematic are primary I/O ports.
Should end with the HierChar. (See the HierChar entry.)

RootPrefix = string

Specifies the prefix to be added to the names of nets local to the root schematic
and not primary I/O ports. Should end with the HierChar. (See the HierChar
entry.)

SubPrefix = string

Specifies the prefix to be added to nets that do not appear in the root schematic
(appear as local nets in lower level schematics). Should end with the HierChar.
(See the HierChar entry.)

InstPrefix = string

Specifies the prefix to be added to the hierarchical path name used to set the
scope of the simulator when the schematic is pushed or popped. Should end
with the HierChar. (See the HierChar entry.)

Simulator Interfaces

Synario Capture System User Manual B-21

GlobalPrefix = string

Specifies the prefix to be added to global nets. Usually the same as
RootIOPrefix. (Must be left blank for SILOS.) If it is not blank, it should end
with a hierarchy character. (See the HierChar entry.)

FlattenBusses = Yes | No

Buses are normally flattened to scalar signals (default = Yes). If this option is
turned off (No), the bus name is placed in the command. The name is the local
name and the simulator must understand the hierarchical context. The name is
converted into the simulator’s format, including the required parentheses,
range delimiter, and the delimiter between signals in the complex names. (See
the Concatenate entry.)

HierChar = char

Specifies the character denoting hierarchy levels in hierarchical names sent to
the simulator. This character replaces the period (.) and dash (–) in names
within the SCS environment.

BarChar = B

Complemented signals have an apostrophe (’) or underscore (_) as the leading
character. This control attaches a prefix of B to these signals. This provides
compatibility with VHDL simulators, that do not permit leading underscores
in a net name.

Separator = char

Specifies the character used to delimit lists of nets in commands. The default is
a blank space. The comma (,) is typically used.

Terminator = char

Each command sent to the simulator has a terminator character appended
before the final newline. The default is not to append a terminator. The
semicolon (;) is typically used.

Parentheses= ccc

Specifies a substitute for the parentheses and delimiter in bus names. The first
and last character are the parentheses and the middle character is the
delimiter. The default is to use the parentheses in the schematic and the colon
(:) as a delimiter.

For example, if the schematic has A(0–7), and you have set Parentheses = [:],
then the name passed to the simulator is A[0:7].

Simulator Interfaces

B-22 Synario Capture System User Manual

Concatenate= char

When buses are not flattened, complex buses (such as A,B,Data[0:3]) are
processed by replacing the commas and backslashes with the Concatenate
character.

[simulate]

The name of this section is the same as the section name specified in the
#simulate command line of the [SimTools] section.

Command = command_line

The command line that calls the simulator.

Waves = command_line

The command line that calls the Waveform Viewer.

SimAppName = appname

The name the simulator uses to identify itself to the Hierarchy Navigator. (For
example, for silos3w it’s "Silos3".) If not specified, the base name of the
simulator executable file is used.

FirstMsg = section

section is the name of the section with the commands to be sent to simulator at
startup.

ExitMsg = message

This message is sent to the simulator when the Hierarchy Navigator is closed.
If no message is specified, the Simulator tells the Navigator to quit (under
Windows) or sends a SIGKILL message to the Navigator (under UNIX/Motif).

PushPop= string

Specifies the command sent to the simulator when first starting and when the
Hierarchy Navigator performs a push or pop. The command is formed by
replacing the first percent sign (%) in string with the RootPrefix= value and the
Navigator’s current hierarchical context. If there is no percent sign in string,
the current hierarchical path is appended to string.

Prompt = char

UNIX/Motif only. The character the simulator displays as the prompt. It’s
usually ">".

Simulator Interfaces

Synario Capture System User Manual B-23

[SimMenu]

This section contains the list of menu buttons displayed on the Hierarchy
Navigator’s Simulate menu. Up to 25 entries can be added to this menu. The
syntax of the entries in this section is:

menu_item = format_string

where menu_item is the string that appears on the menu and format_string
describes the command sent to the simulator.

The format_string defines the operation of the command to the Hierarchy
Navigator. The string is a template of the command sent to the simulator.
Within the template, controls define the operation of the command to the
Navigator.

Both simple and interactive commands can be specified. Simple commands are
executed immediately when you select the command from the menu. These
commands do not have any of the special format indicators described below
(%n, %*n, or %i). The format_string for immediate commands must not contain
any special characters other than a single percent sign (%).The percent sign
must not be followed by n, i, or *. When the menu item is selected, the percent
signs (if any appear in the format_string) are replaced by the name of the design
file, and the resulting message is sent to the simulator.

Interactive commands let you select nets or instances by clicking on them.
These commands include the special substitution indicator described below
(%n, %*n, or %i).

When you select one of these commands from the Simulator menu, the system
enters an interactive command mode allowing you to select nets or instances.
The Hierarchy Navigator displays a special prompt indicating which
command it is executing.

Each time you select a net or instance the special substitution characters in the
format_string are replaced by the names of the selected element(s) and the
resulting command is sent to the simulator. One format string can contain only
a single substitution indicator. The substitution indicators are shown below.

%n The Hierarchy Navigator allows you to click on individual
nets. Each time a net is selected the name of the net
replaces the %n and the command is sent to the simulator.

Simulator Interfaces

B-24 Synario Capture System User Manual

%*n The Hierarchy Navigator lets you select a group of nets by:

• Clicking on the net.
• Clicking on a symbol instance to select all
• Dragging a box around name flags and pins.
• Holding down SHIFT to perform multiple selections.

The list of nets replaces the %*n and the resulting string is
sent to the simulator.

%i The Hierarchy Navigator accepts the selection of a symbol
instance. The full hierarchical name of the instance is
placed in the string and the command is sent to the
simulator.

%{ a bc } This option defines a set of choices displayed in a dialog
box when the command is active. Each time a message is
issued, the selected choice is substituted into the
command. This option is intended for commands that are
used to force states in the simulator. A choice of a question
mark (?) causes a type-in field to be included as a choice in
the dialog box.

The menu commands are user-definable. The following suggested commands
can be included in the [SimMenu] section:

Command Effect

Free Causes SILOS to report state changes on the selected
signals and the Waveform Viewer to show the signals

Force Forces a state on the selected signal until released with a
Free command

Set Temporarily sets the state on the selected signal

Exit Leave SILOS

Simulator Interfaces

Synario Capture System User Manual B-25

[SimButtons] (UNIX/Motif only)

The Simulator Control Window has three buttons whose behavior is controlled
by this setting. This section defines the text string that is sent to the simulator
each time the button is clicked. If no string is specified, the button does not
appear.

Run = string

Clicking the Run button sends this string, followed by the terminator character,
to the simulator.

Stop = string

Clicking the Stop button sends this string, followed by the terminator
character, to the simulator. If the first two characters in the string are "^C",
they are replaced with the ASCII control character (ASCII 003). This feature
does not operate properly if the simulator is run by specifying a script file in
the command.

Delta = string

A message is formed by replacing the percent sign (%) in the string with the
integer value in the type-in field. If the string does not contain a percent sign,
the value is appended to the string. The message is terminated with the
terminator character and a \n (newline).

[maker]

The name of this section is the same as the section name specified in the
#maker command line of the [SimTools] section.

Process = command_line

If the Process method is specified, the menu entry Code Simulation Models is
added to the Navigator’s Simulate menu. Choosing Code Simulation Models
executes command_line with the appropriate substitutions as described below.

When the command is selected, command_line is expanded by replacing any
“path tokens” with the actual path. The format for these substitutions is
explained in Chapter 4, “Basic Operation.”

If the character immediately preceding the path token (_), the preceding string
is inserted into the path as a prefix to the file name. That is,

proc &F abc/_&F

becomes:

Simulator Interfaces

B-26 Synario Capture System User Manual

proc / pathname /schem / pathname /abcschem

The following controls only apply to the Schematic/Symbol method of
extraction:

RootProcess = command_line

This line is needed only if the root-level schematic is netlisted differently than
the rest of the design. In VHDL code, for example, it is common to netlist the
top level of the design along with a test bench. This ensures that all the
top-level I/O parts are defined properly for VHDL.

When you execute Code Simulation Models from the Hierarchy Navigator, if
you have defined an entry for Root Process, the top level schematic is netlisted
according to the instructions in command_line.

Extension = file_extension

Specifies the file extension for the model files. It is used by the Hierarchy
Navigator to find the model files.

Path = file_path

This control specifies the directory with the model files. The path can either be
the full path, or a directory relative to the directory containing the symbol file.

ModelAttribute = symbol_attribute_number

If a value is specified for this attribute on a symbol, the system assumes that
the model is already available, and does not generate a model. (Setting this
attribute effectively prevents SCS from coding a model.) When performing a
Push or Pop in the Hierarchy Navigator, the model specified here is searched
for, not the symbol file.

[compiler]

The name of this section is the same as the section name specified in the
#compile command line of the [SimTools] section.

Some simulators require the models to be compiled prior to invoking the
simulator. This section provides the necessary controls.

Process = command_line

If the Process method is specified, the entry Compile Simulation Models is
added to the Navigator’s Simulate menu. Choosing Compile Simulation
Models executes the command_line with the appropriate substitutions as
described above.

Simulator Interfaces

Synario Capture System User Manual B-27

The following controls apply only to the Schematic/Symbol method of
extraction:

RootProcess = command_line

RootProcess is needed only if the root-level schematic is netlisted differently
than the rest of the design. In VHDL code, for example, it is common to netlist
the top level of the design along with a test bench. This ensures that all the
top-level I/O parts are defined properly for VHDL.

If you have defined a RootProcess entry, executing Compile Simulation
Models from the Hierarchy Navigator compiles the top-level schematic
according to the instructions in command_line.

Ext = file_extension

The extension for the compiled model files. It is used by the Hierarchy
Navigator to find the compiled model files.

ModelExt = file_extension

The extension for the netlist files.

Path = file_path

Specifies the directory where the compiled files are to go.

ModelPath = file_path

Specifies the directory where the model (netlist) files are.

ModelAttribute = symbol_attribute_number

The attribute number of the attribute that has a value only if a symbol is a
simulator primitive.

[SimSources]

This section is a list of extensions and paths to the sources that are part of a
design. When you use the Push or Pop command in the Hierarchy Navigator,
this list is searched for a source file.

[SimSources]
 .abl =
 .v =
 .vf = vf\

If no path is specified, the symbol directories are searched.

Simulator Interfaces

B-28 Synario Capture System User Manual

[FirstMessage]

This section is a series of numbered lines that are output, in sequence, to the
simulator on startup. The name of the section corresponds to the name given
in the FirstMsg entry of the [simulate] section, as shown below:

[Simulate2]
 Command = silos3w
 Waves =
 SimAppName = silos3
 ExitMsg = quit
 FirstMsg = FirstSilos2

[FirstSilos2]
 1 = RESET ALL
 2 = CON .CUSTREPORT .SYN=0 .SAV=2
 3 = LIB .\common{.v} .\symflat{.vi} .\top{.v} .{.v} c:\test\bliflib.v
 4 = File .SAV=&B
 5 = File .STO=&B.rep
 6 = Input &B.tf
 7 = Sim 0

[Export]
 exp -verilog -ext=.tf

The [Export] section contains the command line that calls the export program
(the program that converts Waveform Editor data to a stimulus file).

Running the Waveform Viewer

The following describes the various command-line options used in launching
the Waveform Viewer.

Windows

The Waveform Viewer program is named waves. It can be started with the
Run command from the Program Manager, from the Hierarchy Navigator’s
Tools menu, or as part of the Navigator’s Simulation Environment. In all cases,
the program is run with a combination of command line arguments that
specify the program’s operating mode:

Option Function

-nav waves is under control of the Hierarchy Navigator. This
option should be included in the Waves= control of the
Simulation Environment or the Navigator Tools entry in
the INI file.

Simulator Interfaces

Synario Capture System User Manual B-29

-pcsilos waves runs with the PC/SILOS history file.

-sim waves runs dynamically with a simulator. If this option is
missing, waves runs in the static mode using a history file
for the simulation results.

-time waves accepts its data from a history file written in the
Timewave history file format.

basename Specifies the base name for the display save file (.wav), the
timewave history file (.his) (if the -time option is
specified), and the binary save file (no extension).

UNIX/Motif

The Waveform Viewer program is named waves. It can be launched from a
UNIX command shell, from the Hierarchy Navigator’s Tools menu, or as part
of the Navigator’s Simulation Environment. In all cases, the program is run
with command-line arguments that specify the program’s operating mode:

Option Function

-nav waves is under control of the Hierarchy Navigator. This
option should be included in the Waves= control of the
Simulation Environment or the Navigator Tools entry in
the INI file.

-sim waves runs dynamically with a simulator. If this option is
missing, waves runs in the static mode using a history file
for the simulation results.

waves opens a socket to which the Simulator connects.
The default port number is 1703. This can be overridden
by following the -sim option with the desired port number
(for example, -sim1705).

-silos waves runs with the SILOS simulator in either dynamic
mode or with a SILOS history file in static mode.

-time waves accepts its data from a history file written in the
Timewave history file format.

basename Specifies the base name for the display save file (.wav), the
timewave history file (.his) (if the -time option is
specified), and the binary save file (no extension).

Simulator Interfaces

B-30 Synario Capture System User Manual

SPICE
SCS provides an interface to several different versions of the SPICE Simulator.
This interface extracts a netlist file in either a hierarchical or flattened format
for simulation with Spice.

Both the flat and hierarchical netlisters generate netlists that are compatible
with Berkeley Spice, HSPICE, PSpice, or LVS (layout versus schematic). The
netlist can be written with the actual node names or with SCS-assigned node
numbers.

If errors occur, the processor invokes the Notepad on the netlist file. You can
use the Notepad to scroll through the netlist and identify the errors. Errors are
displayed one to a line, surrounded by asterisks. For example:

**** Unconnected Pin on Transistor: N1 ****

Setting up the INI File

To run the SPICE netlister, you must enter the following information in the
SCS INI file.

Adding a Menu Entry to the Hierarchy Navigator

The SPICE netlister is run as a Process from the Hierarchy Navigator. To create
a Process menu option for the hierarchical SPICE netlister in the Hierarchy
Navigator, use the following procedure:

1. Select the INI Editor from the Setup menu of the SCS Executive.

2. Select the Processes command from the Tools menu of the INI Editor.

3. In the dialog box, create a menu entry using one of the following
statements (depending on whether you need a flat or hierarchical netlist).

Flat SPICE

Hierarchical SPICE

4. Enter the command line as:

Spicenet (for flat SPICE netlist)

Hspicent (for hierarchical SPICE netlist)

The following options can be appended to the command line.

Simulator Interfaces

Synario Capture System User Manual B-31

Hierarchical Spice Command Line Options

The following four options are mutually exclusive. Choose only one:

/B Use Berkeley Spice conventions.

/H Use HSpice conventions.

/L Use LVS conventions.

/P Use PSpice conventions.

One or more of the following options can be specified:

/A Automatic mode; do not present dialog box.

/G Allow use of .GLOBAL instruction (hierarchical netlist
only).

/M Write subcircuit netlist (hierarchical netlist only).

/N Use node names instead of numbers.

/U Do not add u to length or width and do not add p to areas.

/X Ignore Prefix of X on subcircuits and Use Primitives
(hierarchical netlist only).

-ext=.abc Create a netlist file with the specified extension
(design.abc). The specified extension overrides the default
extension for that netlist format.

If the /A option isn’t specified, the netlister displays the option dialog box. If
the /A option is specified, the netlister does not display the dialog box but
does use any other options specified on the command line. If other options are
specified without the /A option, the dialog box is displayed with the selected
options as the defaults.

Required Attributes

Several attributes are reserved for use with the SPICE interface. These
attributes are defined in the INI file and provide necessary information for
constructing the network description.

Prefix This symbol attribute identifies the type of element
represented by the symbol. Only the first character is
significant. Examples are Q, M, D, C, and R.

Simulator Interfaces

B-32 Synario Capture System User Manual

SpiceModel This optional symbol attribute specifies the model name
listed for this symbol. The model name should match the
name on a .MODEL statement in the SPICE control file.

SpiceLine This optional symbol attribute is used to add parameters
to the SPICE network description of this symbol. If
present, it is copied to the network description without
interpretation.

It can be used on any primitive symbol. It can also be used
on instances of blocks in hierarchical netlists, allowing
parameters to be passed in hierarchical SPICE netlists.

The SpiceLine attribute automatically wraps to another
line if it is longer than 80 characters.

SpiceLine2 This attribute is copied to the netlist as part of the [subckt]
header when used on Block symbols. For primitive
symbols this attribute is treated in the same as SpiceLine.

It can be used on any primitive symbo, and also on
definitions of blocks in hierarchical netlists. SpiceLine2 is
used primarily to define parameters on subcircuits. The
parameters defined using SpiceLine2 can then be passed
in to individual instances using the SpiceLine attribute.

The SpiceLine2 attribute automatically wraps to another
line if it is longer than 80 characters.

Impedance Characteristic impedance for transmission lines.

Multi This optional symbol attribute indicates a multiplier factor
for multiple devices in parallel. It works for primitives
and subcircuits (except for transmission lines, diodes,
voltage and current sources).

AreaS The source area for transistors. It is defined as a derived
attribute, allowing you to set its value as a function of
other attributes.

AreaD The drain area for transistors. It is defined as a derived
attribute, allowing you to set its value as a function of
other attributes.

PeriS The source perimeter for transistors. It is defined as a
derived attribute, allowing you to set its value as a
function of other attributes.

Simulator Interfaces

Synario Capture System User Manual B-33

PeriD The drain perimeter for transistors. It is defined as a
derived attribute, allowing you to set its value as a
function of other attributes.

NRS Equivalent number of squares of source diffusion in series
with a transistor’s source. It is used by SPICE to calculate
source resistance.

NRD Equivalent number of squares of drain diffusion in series
with a transistor’s source. It is used by SPICE to calculate
drain resistance.

DefSubstrate Default net to connect to bulk node on transistor. It is used
if a transistor is shown with only three terminals. The
fourth terminal (the bulk node) is defined by this attribute.
The name referenced by this attribute must be a global net
that exists on the schematic.

Several other attributes are used by the SPICE interface.

Value Several primitive types use this attribute to represent the
basic value of the primitive. Elements using this attribute
include: capacitor, resister, inductor, voltage source,
current source, and transmission line.

Width transistor width

Length transistor length

PinName The pin name is used to identify pins for some elements.

SpiceOrder This attribute forces the netlisted order of subcircuit
connections. If this pin attribute is not set on individual
pins in a subcircuit, the pins are netlisted in the following
order:

1. Inputs sorted alphabetically
2. Bidirectionals sorted alphabetically
3. Outputs sorted alphabetically

The netlist pin order on a subcircuit can be forced by
setting the SpiceOrder attributes of each pin to numerical
values ranging from 1 (first in order) to the number of
pins. This option can be used to interface with the PSPICE
digital libraries.

Simulator Interfaces

B-34 Synario Capture System User Manual

These attributes are assigned to the symbol and its pins by use of the Symbol
Attribute and Pin Attribute commands of the Symbol Editor. If a symbol has
an attribute assigned, it becomes the default value for each instance of the
symbol on the schematic. The default values can be overridden for a particular
instance of the symbol on the schematic by use of the Add: Attribute command
of the Schematic Editor or the Edit: Attribute command of the Hierarchy
Navigator.

Refer to your SPICE Manual for a detailed explanation of the SPICE format.

Controlling The Netlist Extraction

The Hierarchical SPICE Netlist Processor (hspicent) is selected from the
Processes menu of the Hierarchy Navigator. This processor creates a netlist file
with the name design.spi (where design is the base name of your design). This
file is a topological description of the hierarchical design and can be combined
with user-supplied files that specify the input stimuli and monitor the output.

The Flat SPICE Netlist Processor (spicenet) also creates a netlist file with the
name design.spi. However, it converts hierarchical designs into flat
(non-hierarchical) netlist form. Block (and other high-level) symbols are
converted into primitive symbols and the nets connecting them. This version is
useful when the design contains instance-specific attribute overrides.

When the netlist processor is selected from the Process menu of the Hierarchy
Navigator a dialog box offers several program options. These options are:

Option Effect

Berkeley Spice Use Berkeley Spice conventions.

HSpice Use HSPICE conventions.

LVS Use LVS conventions.

PSpice Use PSpice conventions.

In addition to the buttons, there is a check box labeled Node Names that lists
nets by name rather than by number. This box is marked by default for PSpice
and HSpice.

Simulator Interfaces

Synario Capture System User Manual B-35

The Hierarchical SPICE Netlister has three additional check boxes:

Check Box Effect

Subcircuit Produces a special version of the netlist for a
sub-hierarchy when working with a split hierarchy.

Globals Permits the use of the .GLOBAL HSpice instruction.

Any global nets are declared in a .GLOBAL statement.
Global nets are not explicitly passed inside subcircuits
through the node connectivity list in the subcircuit
definition.

When the PSpice option is selected, global nets are
specified with a $G_ prefix in the netlist.

If the option is not specified, no nets in the netlist are
treated as global. In this case, all nets required in
subcircuits are passed in through the node connectivity
list in the subcircuit definition, including Vdd, but not
including Gnd.

Use Primitives Determines whether the netlist expands Block symbols
having an X prefix. If the Use Primitives option is not
specified, and the netlist processor encounters a symbol
that has an X prefix, it searches for a subcircuit SPICE file
with the same name as the symbol (but with extension
.spi) and reads that file into the netlist without looking for
any lower-level schematics.

Both the flat and hierarchical SPICE netlist generators are
modified to recognize the X prefix as a user-defined
model. In both cases, the ModelName symbol attribute is
used as the model name if it is defined. The symbol’s
name is used if no model name is available.

If the Use Primitives option is selected, the netlist
processor ignores symbols with an X prefix and codes the
netlist using only the lowest-level primitives.

Both the flat and hierarchical SPICE netlist generators are modified to
recognize the X prefix as a user-defined model. In both cases, the ModelName
symbol attribute is used as the model name if it is defined. The symbol’s name
is used if no model name is available.

Simulator Interfaces

B-36 Synario Capture System User Manual

SPICE Format Conversions
When netlists are written with node numbers, a special preprocessor is run
that converts names in a control file into the corresponding numbers. This lets
you generate the control file using meaningful node names and have SCS
automatically convert the names to numbers for SPICE.

The Hierarchical SPICE netlister creates artificial nodes whenever it encounters
unconnected pins on block symbols. Each instance of an unconnected pin is
given its own unique node. In the node number format this node is a number
larger than any number on the real nodes. In the node name format this node
is assigned a name of the form UNCnn, where nn is a unique number for each
occurrence of an unconnected pin. Avoid assigning names with this format.

The Hierarchical SPICE netlister gives instances alphanumeric names with the
Prefix attribute as the first character, followed by the instance name. Unnamed
instances and nets are given names beginning with I_ and N_ by the Hierarchy
Navigator. The Hierarchical SPICE netlister converts the I_ from unnamed
instance names and replaces it with UN. Similarly, the N_ from unnamed nets
is replaced with UN. Avoid assigning net names or instance names of the form
UNCnn (where Mnn is an integer).

The Hierarchical SPICE netlister writes a hierarchical netlist. Therefore, any
instance-specific attribute overrides that are added by the Hierarchy Navigator
do not appear in the netlist.

Working with the Hierarchical Netlist

You sometimes need to know which element in a netlist corresponds to which
instance in the schematic. When interpreting a particular SUBCKT in the
SPICE netlist, first convert the element name to the original instance name by
removing the prefix and, if necessary, convert the leading UN to I_. When
using the normal option, with Node Numbers instead of names, the comments
at the front of each SUBCKT description tell which nets represent which
numbers.

To find the corresponding element on the schematic::

1. Use the Push/Pop command to find the schematic that represents the
SUBCKT.

2. Select the Query command.

3. Type i= followed by the instance name from the netlist and press ENTER.
The required element is highlighted.

Simulator Interfaces

Synario Capture System User Manual B-37

Some SPICE netlists permit node names to be used, rather than converting
them to numbers. Using the Node Names option with these formats retains the
original names of the nets, making it easier to find the net you want.

Working with the Flat Netlist

The Flat SPICE netlister can produce large files, since every repeated
hierarchical block is replicated and assigned unique instance and net names.

The alphanumeric element names are formed by taking the Prefix (M, Q, and
so on) and attaching it to the instance number (for example, M123 or Q17).

The flat netlist is difficult to read. The Query command in the Navigator can
help.

To find the net with a given node number:

1. Select the Query command.

2. Type the required node number on the prompt line and press ENTER. The
Query command pushes or pops to the correct schematic and highlights
the requested node.

To find the instance with a given element name:

1. Select the Query command.

2. Type i=nnn (where nnn is the number portion of the element name) and
press ENTER. The Query command pushes or pops to the correct schematic
and highlights the requested instance.

Preprocessing a Control File

Many versions of SPICE require that you specify nodes with numbers rather
than names. This can be confusing if you are working with the numbered
nodes for SPICE and the named nodes on your schematic. The SPICE netlister
has a preprocessor that maps the names on your schematic into node numbers
for SPICE. You can write the SPICE control files using the names on your
schematics rather than numbers.

The preprocessing feature of the SPICE netlister works as follows:

1. Place all SPICE control instructions in a file having the file extension .spp.

2. Place quotes (" ") around every net name.

Simulator Interfaces

B-38 Synario Capture System User Manual

3. Run the SPICE netlister with the node number option. The netlister creates
a copy of the .spp file where the names in quotes are replaced with the
corresponding numbers. This new file has the extension .spc.

Attributes Required for SPICE Elements

Different SPICE elements require different attributes to be assigned to them.
This section lists the various attributes used with the different SPICE
primitives.

Bipolar Junction Transistor

Prefix= Q

SpiceModel= name of Model for this device

Multi= optional multiplication factor

SpiceLine= optional additional parameters

SpiceLine2= optional additional parameters

PinName= first letter C for Collector

PinName= first letter B for Base

PinName= first letter E for Emitter

PinName= first letter S for optional Substrate

A junction transistor is a four-terminal device, with the fourth terminal the
substrate connection. Transistor symbols are usually drawn showing only the
base, collector, and emitter. The substrate has an implied connection to
ground. SPICE requires this connection whether or not it’s shown on the
symbol. The DefSubstrate attribute on transistor symbols lets you connect the
substrate node to any global net in the schematic.

MOSFET, MESFET, and JFET Devices

Prefix= M for MOSFET, B for MESFET, or J for JFET Devices

SpiceModel= Name of Model for this device

Width= Width in meters

Length= Length in meters

AreaS= Area of substrate

AreaD= Area of Drain

Simulator Interfaces

Synario Capture System User Manual B-39

PeriS= Perimeter of substrate

PeriD= Perimeter of drain

NRS= Number of squares of source diffusion

NRD= Number of squares of drain diffusion

Multi= Optional multiplication factor

SpiceLine= Optional additional parameters

SpiceLine2= Optional additional parameters

PinName= First letter D for Drain

PinName= First letter G for Gate

PinName= First letter S for Source

PinName= First letter B for optional Base (substrate)

A MOSFET is a four-terminal device, with the fourth terminal the substrate
connection. MOSFET symbols are usually drawn showing only the drain, gate,
and source connections. The bulk has an implied connection to ground or Vdd.
The PSpice and Berkeley netlisters require the substrate connection either
directly or through the DefSubstrate attribute. The DefSubstrate attribute on
MOSFET symbols lets you connect the substrate node to any global net in the
schematic.

Transmission Line

Prefix= T

Impedance= Characteristic impedance

Value= Transmission line delay

SpiceLine= Optional additional parameters

SpiceLine2= Optional additional parameters

PinName= First two letters I1 for first input

PinName= First two letters R1 for first reference node

PinName= First two letters I2 for second input

PinName= First two letters R2 for second reference node

Simulator Interfaces

B-40 Synario Capture System User Manual

Diode

Prefix= D

SpiceModel= Model name

SpiceLine= Optional additional parameters

SpiceLine2= Optional additional parameters

PinName= + for cathode pin, anode name is optional

Capacitor

Prefix= C

Value= Capacitance in farads

SpiceModel= Model name (PSpice, HSpice, and LVS)

Multi= Optional multiplication factor

SpiceLine= Optional additional parameters

SpiceLine2= Optional additional parameters

Name= Optional name for both pins

Independent Sources

Prefix= I for independent current source

Prefix= V for independent voltage source

Value= Voltage or current specification

SpiceLine= Optional voltage or current specification

SpiceLine2= Optional additional parameters

PinName= + for positive pin, negative name is optional

Linear Dependent Sources

Prefix= E for Voltage controlled voltage source

Prefix= G for Voltage controlled current source

Value Dependent gain for source

InitCond= Optional initial conditions

SpiceLine= Optional voltage or current specification

SpiceLine2= Optional additional parameters

Simulator Interfaces

Synario Capture System User Manual B-41

PinName= + for positive pin, negative name is optional

PinName= P for positive controlling node

PinName= N for negative controlling node

Inductor

Prefix= L

Value= Inductance in henries

SpiceModel= Model name (PSpice, HSpice, and LVS)

Multi= Optional multiplication factor

SpiceLine= Optional additional parameters

SpiceLine2= Optional additional parameters

PinName= Name is optional for both pins

Resistor

Prefix= R

Value= Resistance

SpiceModel= Model name (PSpice, HSpice, and LVS)

Multi= Optional multiplication factor

SpiceLine= Optional additional parameters

SpiceLine2= Optional additional parameters

PinName= Optional name for both pins

Subcircuits (Hierarchical SPICE Only)

Multi= Optional multiplication factor

SpiceLine= Optional additional parameters on subcircuit instances

SpiceLine2= Optional parameter definition in subcircuit header

SpiceOrder= Optional pin attribute; forces order of pins in subcircuit
header

Simulator Interfaces

B-42 Synario Capture System User Manual

Examples

Two examples of SPICE specifications are presented. An independent voltage
source shows the use of the SpiceLine attribute. A MOSFET example shows the
typical attribute assignments for transistors in a CMOS IC design.

Independent Voltage Source

Symbol Attributes

InstName= IN7

Prefix= V

SpiceLine= 0.001 AC 1 SIN (0 1 1MEG)

Pin Attributes

PinName= + (This is the pin attribute on the positive pin.)

The plus pin is connected to node 10 and the other pin is
connected to GND.

Netlist Output

VIN7 10 0 0.001 AC 1 SIN (0 1 1MEG)

MOSFET

Symbol Attributes

InstName= DIFF

Prefix= M

SpiceModel= P_PWELL

Width= 10E-6

Length= 1E-6

AreaS= 30E-12

AreaD= 30E-12

SpiceLine= IC=0.2,3.7,-2.1

Pin Attributes

PinName= D this pin corresponds to drain and is node 3

Simulator Interfaces

Synario Capture System User Manual B-43

PinName= G this pin corresponds to drain and is node 4

PinName= S this pin corresponds to source and is node 5

PinName= B this pin corresponds to substrate and is node 2

Netlist Output

MDIFF 3 4 5 2 P_PWELL L=1E-6 W=10E-6 AD=30E-12 AS=30E-12
IC=0.2,3.7,-2.1

Error Messages

Missing or Invalid Prefix Code on Symbol Type type

A primitive symbol did not have the Prefix defined.

Invalid Prefix on Element element

The Prefix attribute is not one of the supported types.

Missing Symbol for filename

When using the Subcircuit option, you must have a symbol for the root
schematic.

GND not defined as a GlobalNet.

The Controls: SCS Controls section of the INI file must have an entry for
globals that includes GND. Example: GlobalNets=VDD GND

Unconnected Pin on Bipolar Transistor transistor

Bipolar transistors (Prefix=Q) must have nets wired to the Collector, Base and
Emitter pins.

Unconnected Pin on Transistor transistor

MOSFET (Prefix= M) , MESFET (Prefix= B) and JFET (Prefix= J) must have nets
wired to the Source, Gate and Drain pins.

Unconnected Pin on Transmission Line line

Transmission Lines (Prefix= T) must have nets wired to the pins labeled I1, I2,
R1 and R2.

Unconnected Pin on Diode diode

Diodes (Prefix= D) must have nets wired to the two pins one of which is
named with a plus sign (+).

Simulator Interfaces

B-44 Synario Capture System User Manual

Unconnected Pin on Source source

Independent Current Source (Prefix= I), Independent Voltage Source (Prefix=
V), Voltage Controlled Voltage Source (Prefix= E) and Voltage Controlled
Current Source (Prefix= G) must have nets wired to the two pins, one of which
is named with a plus sign ("+").

Unconnected Pin on component

Resistor (Prefix= R), Inductor (Prefix= L) and Capacitor (Prefix= C) must have
net wired to the two pins.

Failed to find Net (nn)

This is a System Error; you should not see this.

Missing or Unrecognized Default Substrate for transistor

MOSFET transistors must have either four terminals or a valid
DefaultSubstrate attribute. The DefaultSubstrate attribute must be the name of
a global net and that net must exist on the schematic containing the transistor.

Timemill
SCS provides an interface to EPIC Design Technology’s Timemill Simulator
and Pathmill Critical Path Analyzer. This interface lets you extract a netlist file
for Timemill or Pathmill. The Hierarchy Navigator is used to examine the
Pathmill results and the Interactive Logic Analyzer is used to examine the
Timemill results.

The Timemill Netlist Processor is selected from the Processes menu of the
Hierarchy Navigator. This processor creates a netlist file with the name
design.ntl, where design is your design’s name. This file is a topological
description of the hierarchical design. For simulation, it is combined with a
user-supplied stimulus file that specifies the initial values, clock, and pattern
definitions for the simulator. The pattern file is named design.io.

For critical path analysis, the netlist is combined with a user-supplied static
setup file that specifies the source and sink nodes. Any text editor can be used
to create the stimulus file or static-setup file.

Any instance-specific attribute overrides to the Width or Length attributes on
transistor elements are written to a separate configuration file named
design.ovr. This file is used as input to Timemill and Pathmill.

Simulator Interfaces

Synario Capture System User Manual B-45

If errors occur, the processor invokes the Notepad on the netlist file. You can
use the Notepad to scroll through the netlist file and identify the errors. Errors
are displayed one to a line, surrounded by asterisks. For example:

**** Missing Pin Named: EN ****

Setting up the INI File

To run the netlister, you must specify the following information in the INI file.

Adding a Menu Entry to the Hierarchy Navigator

The Timemill netlister and simulator are run as a Process from the Hierarchy
Navigator. To create a netlist Process menu option for Timemill in the
Hierarchy Navigator, use the following procedure.

1. Select the INI Editor from the SCS Executive.

2. Select the Processes command from the Tools menu of the INI Editor.

3. Create the following menu entry:

Timemill Netlist

4. Add the following command line entry:

timenet

Any of the following options can be added to the command line:

/A Automatic mode; do not display dialog box.

/M Write subcircuit netlist.

/P Use lowest-level primitives instead of models.

The netlister displays the Option dialog box if the /A option is not specified. If
the /A option is specified the netlister does not display the dialog box but does
use any other options specified on the command line. If other options are
specified without the /A option the dialog box has the selected options as the
defaults.

Required Attributes

Three attributes are reserved for use with the Timemill interface. These
attributes are defined in the INI file and provide the information needed for
constructing the network description.

Simulator Interfaces

B-46 Synario Capture System User Manual

TimilModel This symbol attribute identifies the primitive or model to
be used to represent the symbol. Primitives are N, P, R, C.
Anything else is treated as a model.

TimilExtra This symbol attribute specifies the complete syntax of any
parameters, states or initial values required by this type of
symbol from blocks to transistors. If present, this string is
appended to the network description after all the pins are
listed.

If a functional model is written that requires allocation of
memory for states the symbol must contain the attribute
TimilExtra= (ST=n), where nis the number of states
required.

TimilOrder This pin attribute determines the order that pins are listed
in the netlist. For models, pins are identified by number
and appear in the netlist in the same order as the numbers
in the TimilOrder attribute. For primitives, the pins are
identified by name.

If the PinName is different from the name required to
identify the pin for Timemill then the TimilOrder can be
used as an alternate name. The netlist processor checks the
TimilOrder before looking at the PinName.

The following attributes are also used by the Timemill interface.

Value The Value attribute specifies capacitance values in
nanofarads on capacitors and resistance values in ohms on
resistors.

Width The Width attribute specifies the channel width of
transistors in microns.

Length The Length attribute specifies the channel length of
transistors in microns.

Polarity The Polarity attribute determines which pins are output
pins.

PinName The PinName attribute identifies pins for the primitives if
the TimilOrder attribute does not specify the name.

Simulator Interfaces

Synario Capture System User Manual B-47

These attributes are assigned to the symbol and its pins with the Add: Symbol
Attribute and Add: Pin Attribute commands of the Symbol Editor. If a symbol
has an attribute assigned, it becomes the default value for each instance of the
symbol on the schematic. The default values can be overridden for a particular
instance of the symbol on the schematic by use of the Add: Attribute command
of the Schematic Editor or the Edit: Attribute command of the Hierarchical
Navigator.

Preparing Additional Files

Timemill requires a stimulus file containing vectors for primary inputs.
Pathmill requires a static setup file specifying the input and output nodes to be
searched. Both of these files are manually created using a text editor.

Sample Timemill Stimulus File

The following is an example stimulus file for use with a design called updown.
This file must be named updown.io.

(is=clk)(en=reset)(ot=R)(st=5)(ov=0)(sv=0,5,500);
(is=clk)(en=set)(ot=S)(st=5)(ov=1)(sv=0,400,800);
(is=clk)(en=yy)(ot=Y)(st=5)(ov=1)(sv=0,500,800);
(is=clk)(en=xx)(ot=X)(st=5)(ov=0)(sv=0,200,800);
(is=clk)(en=ck1)(ot=CK)(st=5)(ov=1)(sv=0,20,40);
(is=chk_out)(en=updown.tst)(it=Q0,Q1,Q2,Q3)(st=3);

Refer to the Timemill Reference Manual for more information about clock and
pattern inputs.

Sample Pathmill Static Setup File

The following is an example static setup file for use with a design called
updown. This file must be named updown.s.

no_warning
source_node S
source_node Y
source_node CK
source_node X
source_node R
sink_node Q3N
sink_node Q3
number_of_long_path 10

Refer to the Pathmill Reference Manual for more information about the static
setup file.

Simulator Interfaces

B-48 Synario Capture System User Manual

Controlling the Netlist Extraction

When the netlist processor is selected from the Processes menu of the
Hierarchy Navigator, a dialog box offers the following options:

Netlist Writes the netlist only.

Subcircuit Writes a special version of the netlist for a sub-hierarchy
when working with a split hierarchy.

In addition to the buttons, there is a check box labeled Use Primitives. When
the netlist processor encounters a symbol that has the TimilModel attribute
specified, it normally codes that model into the netlist without looking for any
lower-level schematics. If the Use Primitives option is selected, the netlist
processor ignores the TimilModel on higher-level blocks and codes the netlist
using only the lowest-level primitives. This feature makes it possible to switch
between simulating at the functional level and the switch level without
changing anything on the schematic.

For example, a design contains a schematic with a symbol called NAND2 and
the TimilModel attribute of this symbol is NAND. An underlying schematic
exists for the symbol NAND2 containing transistor symbols NMOS and PMOS
(TimilModel= N and P). The normal option codes the netlist with NAND
without any reference to the underlying schematic. With the Use Primitives
option, NAND2 is coded as a subcircuit using n-channel and p-channel
transistor switch level elements.

Timemill Format Conversions

The Timemill netlister assigns names to nodes whenever it encounters
unconnected pins on block symbols. The format of the name is UNCnn, where
nn is a unique number for each occurrence of an unconnected pin. Do not
assign names using this format in the schematic.

Building Timemill Symbol Libraries

Timemill has several built in primitive functions that are used in simulation.
Several attributes in these primitives must take on prescribed values.

The following list gives the attributes needed for various Timemill primitives.

Simulator Interfaces

Synario Capture System User Manual B-49

CMOS Transistors

TimilModel= either N or P
Width= channel width, default scale factor is microns
Length= channel length, default scale factor is microns
TimilOrder= or PinName= S, G, D

Resistor

TimilModel=
Value= resistance in ohms, default scale factor is 1.
TimilOrder= or Name= S, D

Capacitor

TimilModel= C
Value= capacitance, default scale factor is nanofarads

This symbol should only have one pin or if it has two pins one of them must be
connected to GND.

Models

TimilModel= name of the model
TimilExtra= optional specification of states and initial values

Symbols that represent functional models require the pin output order to be
specified. This is done with the TimilOrder attribute. It indicates the numeric
order that the pins are to be output. The pins are grouped according to Polarity.

Examples

Two examples of Timemill models are presented. A J-K flip-flop shows the use
of the TimilOrder and TimilExtra attributes. The second example shows how
buses can be automatically ordered.

Functional Model for J-K Flip-Flop

Symbol Attributes

TimilModel= xjkff
TimilExtra= (st=2)

Simulator Interfaces

B-50 Synario Capture System User Manual

Pin Attributes

PinName TimilOrder Polarity

J 2 In

K 4 In

CLK 3 In

SET 5 In

CLR 1 In

Q 1 Out

QN 2 Out

In the above example, the nets connected to the input pins are listed in the
order CLR, J, CLK, K, and SET. The nets connected to the output pins are listed
in the order Q and QN. This functional model requires two states to store Q
and QN, so the TimilExtra attribute is specified to allow for these two states.

Dummy Symbol Using Bus

Symbol Attributes

TimilModel= DUMMY

Pin Attributes

PinName TimilOrder Polarity

OUT Out

CLOCK 1 In

DATA[0;3] 2 In

RESET 5 In

In the above example, the nets connected to the input pins are listed as follows
CLOCK, DATA0, DATA1, DATA2, DATA3, RESET. The output pin does not
require TimilOrder to be specified since there is only one output pin.

The numbering sequence for a bus pin should treat that pin as a sequence of
individual numbers. In this example, DATA[0:3] is given a PinName of 1.
Since there are four pins, the next usable number for a PinName is 5.

Simulator Interfaces

Synario Capture System User Manual B-51

Error Messages

No Model Defined for symbol

A primitive symbol did not have the TimilModel defined.

Missing Symbol for schematic

The Subcircuit option requires a symbol for the root schematic.

Missing Pin Named: attribute

A primitive symbol is expected to have a pin with the given PinName or
TimilOrder attribute.

Missing Pin Order for TimeMill On model

Models require that all pins of a given Polarity have TimilOrder specified as a
number indicating the numerical order for the pin to be listed. If order doesn’t
matter, then all the pins of the same Polarity should have the TimilOrder left
blank.

Incorrect Pin Ordering in model

This model has a gap in the sequence of numbers in the TimilOrder attribute.

Unconnected Capacitor Pin On: capacitor

The capacitor pin must be connected.

Capacitance Not to GND

If a Capacitor symbol has two pins, one of the pins must be connected to GND.

Missing or Invalid VALUE (Capacitance) for capacitor

The Value attribute must be set to the capacitance for this node in nanofarads.

Missing or Invalid VALUE (Resistance) for resistor

The Value attribute must be set to the resistance in ohms for this resistor.

Missing or Invalid WIDTH for transistor

The Width attribute must be set to the channel width of this transistor in
microns.

Missing or Invalid LENGTH for transistor

The Length attribute must be set to the channel length of this transistor in
microns.

Simulator Interfaces

B-52 Synario Capture System User Manual

Verilog
SCS provides the means of including the Verilog Simulator in the design
environment. The interface between SCS and Verilog consists of three parts:

Netlist Extraction SCS can extract the structural module description from the
schematic. It can also extract a template description from a
symbol that represents a behavioral model.

Simulator Control
(UNIX/Motif only)

The Verilog simulator can be launched and controlled
from the Hierarchy Navigator. Various commands can be
defined and added to a menu and the elements (such as
nets) are selected by clicking on the schematic.

Output Viewing
(UNIX/Motif only)

The output of the simulator can be viewed graphically
with the Waveform Viewer. The simulation results can be
viewed as the simulation progresses (dynamic mode) or
after the simulation is completed (static mode) by using a
history file.

The Waveform Viewer can either run alone or in conjunction with the
Hierarchy Navigator. In the latter case, the schematic can be back-annotated
with the states of signals as defined in the simulator.

The necessary code is in the directory /interfaces/verilog as supplied on the
UNIX distribution tape. A test example is included in the /interfaces/veritest
directory. A sample verilog.ini file is included in the /data directory on the
distribution tapes or disks.

Setting up the Verilog Environment in SCS

The Verilog Netlister is run from the Simulator menu of the Hierarchy
Navigator for hierarchical netlists. The Verilog netlister creates a top-level
netlist file with the name design.v (where design is the top-level name of your
design hierarchy) and individual netlist files for sub-level blocks.

The Verilog netlister is also run from the Tools menu of the Schematic Editor
and the Tools menu of the Symbol Editor to create Verilog netlists of
individual schematics or modules.

Setting up the INI File

To run the interface, you must enter the following information in the INI file.

Simulator Interfaces

Synario Capture System User Manual B-53

The Simulator parameter in the Controls section of the INI file enables the
Simulator menu of the Hierarchy Navigator with the name and options of the
selected simulator. Enter “verilog” for the Simulator parameter.

The remaining parameters for the Verilog simulation environment are kept in
the verilog.ini file in the CONFIG directory specified in the Windows
Registration Editor, or the ECS_ROOT/data directory (under UNIX/Motif).
Each design can also have a separate verilog.ini file in its working directory.

Adding a Tools Menu Entry to the Schematic Editor

The Verilog netlister can be run as a Tool from the Schematic Editor,
independent of the Simulator parameter. The program generates a module
netlist of the schematic block. The module declaration is extracted directly
from symbol files, so a symbol for the schematic must exist for the netlist to be
written. This gives the user independent control of module information and its
underlying netlist.

To create a Tools menu option for Verilog in the Schematic Editor, use the
following procedure:

1. Select the INI Editor from the SCS Executive.

2. Select the Schematic Tools command from the Tools menu of the INI
Editor.

3. In the dialog box, create the following menu entry:

Verilog Netlist

4. Add the following command line entry:

vericode

Any required options are added after "vericode" on the command line.

Adding a Tools Menu Entry to the Symbol Editor

The Verilog netlister can be run as a Tool from the Symbol Editor, independent
of the Simulator parameter. The program generates a module statement for the
symbol being edited.

To create a Tools menu option for Verilog in the Symbol Editor, use the
following procedure:

1. Select the INI Editor from the SCS Executive.

2. Select the Symbol Tools command from the Tools menu of the INI Editor.

Simulator Interfaces

B-54 Synario Capture System User Manual

3. In the dialog box, create the following menu entry:

Verilog Netlist

4. Add the following command line entry:

vericode

Any required options are added after vericode on the command line.

Command Line Options

The following options are used with the vericode netlister:

-n Display in selected editor

-NETS Force net and pin names to uppercase

-nets Force net and pin names to lowercase

-INST Force instance names to uppercase

-inst Force instance names to lowercase

-model Force VeriModel names to lowercase

-noprim Code primitive types as modules

The selected editor is specified with the Text Editor option in the System
Controls section of the INI file.

Required Attributes

Five attributes are reserved for use with the Verilog interface. These attributes
are defined in the INI file and provide information necessary for constructing
the network description.

VeriModel

This symbol attribute identifies the primitive or model used to represent the
symbol. It is used in conjunction with the VeriName pin attribute to generate
the instantiation line for primitive and model blocks. Any name that is not one
of the primitives is treated as a model. This attribute cannot be overridden in
the schematic editor or the Hierarchy Navigator on an instance basis because
the symbol files are used to determine the Verilog model names. Thus any
such change will not have any effect on the Verilog netlist that is created.

Simulator Interfaces

Synario Capture System User Manual B-55

The remainder of the attribute (after the model or primitive name) is copied
into the network description without interpretation. Therefore, if a strength
qualifier is desired on a primitive, it can be appended to the primitive name in
this attribute. If the -model option is used, the Verilog model name is forced to
lower case. If it is not used, the Verimodel attribute is netlisted with the case
specified on the symbol definition.

VeriName

The Verimodel and Veriname attributes are useful only for blocks with
hand-coded models. These attributes are used to manually match the model
and pin names of the hand-coded models with the model and pin names of the
symbols that represent these models. If present, this pin attribute is used to
determine the pin names that are netlisted in the instantiation line for models
only if they have a VeriModel attribute assigned. If not present, the SCS
PinName attribute is used to determine the pin names. This attribute should
be used if the PinName attribute is different from the name required to
identify the pin in the Verilog netlist.

In cases where a pin must be ignored during netlisting (hidden pins are one
example), it can be given a name beginning with a two dashes (––) using the
VeriName attribute. Note that the Verimodel attribute must be assigned a
value for the VeriName attribute to be used.

VeriStrength

This symbol attribute specifies the strength for the outputs on this gate. If
present, this string is inserted into the network description between the
VeriModel and the VeriTimes.

VeriTimes

This symbol attribute specifies the delay for this gate. If present, this string is
inserted into the network description between the VeriModel and the pins.

VeriComp

This attribute causes a defparam line to be generated as needed by the Logic
Automation Incorporated libraries. If a VeriComp attribute is specified, the
line

defparam " instance_name " COMPONENT="VeriComp_value "

precedes the instance line.

Several other attributes are used by the Verilog interface.

Simulator Interfaces

B-56 Synario Capture System User Manual

Polarity

The Polarity attribute is used by the Verilog netlister to determine which pins
are the output pins for several of the primitive types. Legal values are INPUT,
OUTPUT, BIDIR.

PinName

The PinName is used to identify pins for some primitives and for all models if
the VeriName attribute is not present or is not used.

These attributes are assigned to the symbol and its pins with the Symbol
Attribute and Pin Attribute commands of the Symbol Editor. An assigned
attribute becomes the default value for each instance of the symbol on the
schematic. Note that the Verilog netlister writes a hierarchical netlist.
Therefore, any instance-specific attribute overrides added by the Hierarchy
Navigator do not appear in the netlist.

Setting Up the verilog.ini File

The Hierarchy Navigator can be configured to control the Verilog simulator.
The first step is to specify the simulator parameter to be Verilog using the INI
editor. This causes the Navigator to read the verilog.ini file that must be in the
working directory, or in the CONFIG directory specified in the Registration
Database, which can be changed with the Windows program RegEdit, or the
$ECS_ROOT\data directory (under UNIX/Motif).

The verilog.ini file contains all the necessary commands and directives to
control the Verilog simulator.

A sample verilog.ini file is shown below. A copy of this file is provided with
the SCS release tape for your convenience, and it’s recommended that you use
this file until you become more familiar with the SCS simulation environment.
Refer to the section "Simulation Environment" in this chapter.

Simulator Interfaces

Synario Capture System User Manual B-57

;NOTE: This file is for running silos from hiernav
;Silos uses verilog and to write all the netlists from
;the Navigator using "make" we add [MakeVerilog]
;the name "MakeVerilog" is arbitrary. It matches the value specified after
;#Make in a command in the [SimTools] section
[MakeVerilog]
;need a process to make the netlists from the Navigator
 Process = vericode -model &R
;We use the default extension .v so we need the following line to let the
;Navigator know this.
 Extension = .v
;we want to put the .v files in the same directory with the symbols so
;we leave the Path blank.
 Path =
;the Verilog Model attribute is number 20. If attribute #20 has a value
;it means that the symbol is a verilog primitive or has a .v file supplied
;by the user. So, if we run make from the Navigator we must have the
;following line
 ModelAttribute = 20

[SimTitle]
;If there is no Title the menu in the Navigator will be "Simulator"
;We would like the menu to say "Silos III" so we need the following line
 Title = Silos III

[SimTools]
;the next line invokes the "make" facility to write the verilog netlists.
 Code Verilog = #Make MakeVerilog
 Waveform Editor = wet -nav &B
 Edit silos.ini = notepad %config\silos.ini
;the next line invokes the "simulate" facility to start silos using the
;commands from "Simulate1"
 Start Silos = #Simulate Simulate1
;the next line invokes the "simulate" facility to start silos using the
;commands from "Simulate2"
 Start Silos Flat = #Simulate Simulate2
 Review Silos Results = waves -nav -silos &B

;we want to be able to start Silos from the Navigator so we add [Simulate1]
;the name "Simulate1" is arbitrary. It matches the value specified after
;#simulate in a command in the [SimTools] section
[Simulate1]
;Command is the entire command line to start the simulator
 Command = silos3w
;Waves is the entire command line to start the Waveform Viewer
 Waves = waves -nav -silos &B
;SimAppName is the name the simulator uses to identify itself to the Navigator
 SimAppName = silos3
;ExitMsg is the command to tell the simulator to quit
 ExitMsg = quit
;FirstMsg is the name of the section that contains the messages to send to
;the simulator when it starts up.
 FirstMsg = FirstSilos1

Simulator Interfaces

B-58 Synario Capture System User Manual

;We have several commands to send to the simulator when it starts so we add
;[FirstSilos1]. the name "FirstSilos1" is arbitrary. It matches the value
;specified for the FirstMsg entry in the section that starts the simulator.
[FirstSilos1]
;the values on the left side of the equal sign are not used but they must
;be unique within the section
;we use numbers just for simplicity
 1 = RESET ALL
 2 = CON .CUSTREPORT .SYN=0 .SAV=2
;the LIB command points to where the library files are stored on this machine
;rather than hard code path names, these could be specified in environment
;variables...
 3 = LIB .\common{.v} .\symbus{.vi} .\top{.v} .{.v} E:\test\bliflib.v
 4 = File .SAV=&B
 5 = File .STO=&B.rep
 6 = Input &B.tf
 7 = Sim 0

;we want to be able to start Silos from the Navigator so we add [Simulate2]
;the name "Simulate2" is arbitrary. It matches the value specified after
;#simulate in a command in the [SimTools] section
[Simulate2]
;Command is the entire command line to start the simulator
 Command = silos3w
;Waves is the entire command line to start the Waveform Viewer
 Waves =
;SimAppName is the name the simulator uses to identify itself to the Navigator
 SimAppName = silos3
;ExitMsg is the command to tell the simulator to quit
 ExitMsg = quit
;FirstMsg is the name of the section that contains the messages to send to
 FirstMsg = FirstSilos2

;We have several commands to send to the simulator when it starts so we add
;[FirstSilos2]. the name "FirstSilos2" is arbitrary. It matches the value
;specified for the FirstMsg entry in the section that starts the simulator.
[FirstSilos2]
;the values on the left side of the equal sign are not used but they must
;be unique within the section
;we use numbers just for simplicity
 1 = RESET ALL
 2 = CON .CUSTREPORT .SYN=0 .SAV=2
;the LIB command points to where the library files are stored on this machine
;rather than hard code path names, these could be specified in environment
;variables...
 3 = LIB .\common{.v} .\symflat{.vi} .\top{.v} .{.v} E:\test\bliflib.v
 4 = File .SAV=&B
 5 = File .STO=&B.rep
 6 = Input &B.tf
 7 = Sim 0

Simulator Interfaces

Synario Capture System User Manual B-59

[SimControls]
;MaxLine may not exceed 1024
 MaxLine = 512
 Terminator =
 Separator = ,
 FlattenBusses = Yes
;Silos uses left paren as its hierarchy separator
 HierChar = (
;In our examples we have named the top module "t" and the instance of our
;design "m". So we need the following prefixes:
 RootPrefix = (t(m(
 RootIOprefix = (t(
 InstPrefix = (t(m(
 SubPrefix = (t(m(
;Silos requires that the globals be specified outside of any module.
;to make this happen we must set GlobalPrefix to blank
;normally GlobalPrefix would be the same as RootIOPrefix
 GlobalPrefix =
;verilog does not allow brackets in instance names so we must set InstParen
;to underscore. Both the left and right brackets [] from names of iterated
;instances will be converted to underscores.
 InstParen = _

;to send commands to the simulator we must have a [SimMenu] section
[SimMenu]
 Set = SET %n = %{ 0 1 X Z}
 Force = FORCE %n = %{ 0 1 X Z}
 Release = FREE %n
;Simulate doesn’t work well. the user must type end the end time
 Simulate to: = Sim to ?{}
 Stop = ^C
 Finish = QUIT

;to get the Navigator to bring up source files when the user clicks on
;primitive symbols, we add the [SimSources] section.
[SimSources]
;we leave the right side of the equal sign blank. If our source files were
;not in the same directory with the symbols we could set the right side of
;the equal sign to the relative or absolute path of the sources
 .abl =
 .v =
 .vf = vf\
 .foo = c:\foo\

;[Export] is for the waveform Editor and must have only one line
[Export]
 exp -verilog -ext=.tf

Verilog Command Line

Generally, the Verilog -f option is used to include most of the command line
information that is needed by Verilog. The commands can also be included in
the verilog.ini file itself. The command line typically contains:

Simulator Interfaces

B-60 Synario Capture System User Manual

The command to start Verilog

/verilog

or if using a remote host

rsh remote_host /verilog

A password option:

-p1234abcd

The option to include a commands file:

-f / cmds_file

The option to run Verilog in interactive mode:

-s

The netlist file for the design to be simulated:

&R.v

and the option to include a library path to be scanned:

-y /lib +libext+.v

The paths (/) to the commands file and the netlist files must be from the view
of the host running Verilog. The directories containing these files must
therefore be mounted on the host. See your network administrator for
assistance in determining the correct way to access these files.

Building Verilog Symbol Libraries

Verilog has several built-in primitive functions used in simulation. Several
attributes in these primitives must take prescribed values. The following list
gives the attributes needed for various Verilog primitives.

Combinational Gates

VeriModel= one of AND, NAND, OR, NOR, XOR, XNOR, BUF, NOT
Polarity= OUT on the output pins
Polarity= IN on the input pins

Simulator Interfaces

Synario Capture System User Manual B-61

Bidirectional Pass Gates

VeriModel= one of TRAN RTRAN
Polarity= BI on both pins

Tri-State Bidirectional Gates

VeriModel= one of TRANIF0, TRANIF1, RTRANIF0, RTRANIF1
Polarity= BI on the two main pins
Polarity= IN on the control pin

Tri-State Drivers

VeriModel= one of BUFIF0, BUFIF1, NOTIF0, NOTIF1
Polarity= OUT on the output pins
VeriName= or PinName= IN on the input
VeriName= or PinName= EN on the enable pin

MOS Gates

VeriModel= one of NMOS, PMOS, RNMOS, RPMOS
VeriName= or PinName= D, G, S

CMOS Gates

VeriModel= one of CMOS, RCMOS
VeriName= or PinName= D, GN, GP, S

Pullup & Pulldown Gates

VeriModel= one of PULLUP, PULLDOWN
Polarity= OUT on the pin

Models — User-defined Primitives

VeriModel= Name of the primitive
Polarity= OUT on the output pin
Polarity= IN on the input pins
VeriName= User-defined name

The pin names of the user-defined primitives (or models) are netlisted in
alphabetical order. The pin name matching is done by name, not by sequence.

VeriOrder Attribute

The VeriOrder attribute changes the pin ordering in the produced netlist.

Simulator Interfaces

B-62 Synario Capture System User Manual

To change the default pin ordering:

Set the VeriOrder pin attribute of the pins you want to re-order to any
sequential numbers. When you produce a netlist, the pins will be output in
the order you specified.

Example

The following example is a model for dummy symbol with a bus.

Symbol Attributes

VeriModel= DUMMY

Pin Attributes

Pin Name VeriName Polarity

OUT Out

CLOCK In

DATA[0:3] In

RESET In

In the above example the pins are listed as follows:

CLOCK, DATA[0:3], OUT, RESET

Netlist Extraction

The Code Verilog commands in the Hierarchy Navigator are enabled by
setting the Simulator option to "verilog" using the INI editor. A file named
verilog.ini must exist in either the working directory, or in the CONFIG
directory specified in the Windows Registration Editor, or the ROOT\data
directory (under UNIX/Motif).

Selecting Code Verilog from the Simulate menu of the Hierarchy Navigator
creates a set of structural module definitions for each schematic linked into the
hierarchy, including the top level.

Selecting Verilog Netlist from the Tools Menu of the Schematic Editor creates a
complete structural module definition from the schematic and the associated
symbol file.

Simulator Interfaces

Synario Capture System User Manual B-63

Selecting Verilog Netlist from the Tools Menu of the Symbol Editor creates a
template module definition from the symbol only if an associated schematic is
not available. The intent is for the user to complete the behavioral description
in text mode.

All three versions of this function create (or update) files with the base name of
the schematic or symbol and a .v extension.

Controlling The Netlist Extraction

The following parameters and controls let you customize the netlist extraction.

VeriModel Attribute

The VeriModel symbol attribute is the most useful way to control Verilog
Netlist extraction. When the netlist processor encounters a symbol that has the
VeriModel attribute specified, it normally codes that model into the netlist
with the specified VeriName pin attributes (if any), without looking for any
lower-level schematics.

If the VeriModel attribute is not specified, the netlister ignores the VeriName
pin attributes of that symbol and codes the lower-level schematics associated
with that symbol. The VeriModel and VeriName attributes are used only to
code the module instantiations (that is, calls to modules) and not module
declarations.

-noprims Command Line Option

The -noprims command-line option of the netlister causes it to skip the test for
the Verilog primitive names and to code all instances as normal modules, even
if they are Verilog primitives.

For example, assume a design contains a schematic with a symbol called
NAND2 and the VeriModel attribute of this symbol is NAND. An underlying
schematic exists for the symbol NAND2 containing transistor symbols NMOS
and PMOS (VeriModel = NMOS and PMOS). NAND2 is normally coded with
the NAND primitive name without any reference to the underlying schematic.
With the -noprims option, NAND2 is coded as a subcircuit using n-channel
and p-channel transistor switch level elements.

Simulator Interfaces

B-64 Synario Capture System User Manual

Existing Verilog Files

In some cases, template module definitions are generated from symbol files,
which are then completed with user-defined Verilog behavioral models or
stimulus. In order to preserve this user-defined data the next time the file is
updated (after a change in the number of pins of the symbol, for example) the
Verilog netlister replaces only the header comment, the module statement, and
any lines that identify the polarity of the pins in the module statement. If a
schematic is associated with the symbol under consideration, a completely
new file is generated each time, and any manually entered data is discarded.

Pin Ordering

The Verilog netlister uses explicit naming to instantiate modules. The symbol
files are used to extract pin names for module declaration lines as well as
instantiation lines. In both cases, the pins are sorted alphabetically without
regard to their polarity (Input, Output, Bidir). In the case of module
instantiations, each pin is matched with the connected net before the sort.

To change the default ordering:

Set the VeriOrder pin attribute of the pins you want to re-order to any
sequential numbers. When you produce a netlist, the pins will be output in
the order you specified.

Vectors

Vectors with their bits spread over many pins are grouped together. For
example, for the pin assignments below

|
|----o DD[0:3]
|----o A,B,DD[4:5]
|----o DD[6]
|----o DD[8]
|

the vector DD[0:8] will be used as the port. (Note that bit DD[7] is generated,
even though it is not used.) It is the user’s responsibility to insure that all the
bits of a vector are coded with the same polarity. The netlister randomly
selects one of the pins to determine the polarity of the vector.

Simulator Interfaces

Synario Capture System User Manual B-65

For module instantiations, vector pins are coded with the vector name and the
list of signals connecting to the vector. If any bits are not connected, either
because of an unconnected pin or an embedded bit that was not on a pin, an
extra comma is inserted to the netlist. When a pin’s netlist includes one or
more commas, it is surrounded by curly braces { } inside the parentheses (). If
there is a mismatch between the number of buses and the number of bus pins,
the extra signals are dropped (if there are too many signals) or the remaining
bits become unconnected (if there are too many pins).

Running Verilog (UNIX/Motif)

To simulate, the netlists are first combined with a user-supplied stimulus file
that specifies the initial values, clock, and pattern definitions for the simulator.
Then the Verilog Simulator is started from the Simulate menu of the Hierarchy
Navigator. This displays the simulator window, as well as the Waveform
Viewer to view the simulation results dynamically:

1. Start the Hierarchy Navigator on the top level of your design. Verilog
appears on the menu bar. If Verilog does not appear, the setup is not
correct or the verilog.ini file was not found in either the working directory
or in the ROOT\data (ECS_ROOT/data) directory.

2. Select the Start Simulator command in the Verilog menu. The Simulator
Control window opens showing the 3 buttons (Run, Stop and Delta).
Below the buttons is a window showing the command:

$ecs_init (192.9.200. nnn);

where nnn is the Internet node address.

The Verilog sign-on messages appear. Any problems starting Verilog are
reported. You will eventually see two Verilog prompts:

C1 > C2 >

If the -waves option was requested, the Waveform Viewer runs at this
time.

You are now prepared to run Verilog. The menu changes to show the
commands specified in the verilog.ini file. Use the Hierarchy Navigator menu
and the control buttons on the Simulator window to control the Verilog
program. Commands not included in the menu can be entered directly into
Verilog by clicking the mouse in the control window and typing the command.

Simulator Interfaces

B-66 Synario Capture System User Manual

VHDL Interface
The Synario Capture System provides the means of including the VHDL
Netlister (vhdl) and Simulator in the design environment. The interface
between SCS and VHDL consists of three parts:

Netlist Extraction The Synario Capture System can extract the
structural module description from the schematic.
It also has the ability to extract a template
description from the symbol that represents a
behavioral model.

Simulator Control The VHDL simulator can be launched and
controlled from the Navigator. Various
commands can be defined in which the command
is selected from menu and the elements (such as
nets) are selected graphically from the schematic.

Output Viewing The output of the simulator can be viewed
graphically with the Waveform Viewer (WAVES).
The simulation results can be viewed as the
simulation progresses (dynamic mode) or after
the simulation is completed (static mode) by using
a history file. The Waveform Viewer can either
run alone (stand alone) or in conjunction with the
navigator. In the latter case, the schematic can be
back annotated with the states of signals as
defined in the simulator.

The scope of this document is to describe the Netlist extraction process using
the VHDL Netlister. For details on setting up the simulator refer to the
Simulation Environment section. Many SCS terms are called by a different name
in VHDL. Some common terms, along with their VHDL counterpart, which
will be used in this document are shown in the table below:

Simulator Interfaces

Synario Capture System User Manual B-67

SCS Term VHDL Equivalent

Pin Port

Net Signal

Symbol Entity

Polarity Mode

Bus Array of Signals

Bi-directional Inout

Symbol Attributes Generics

Pin Attributes Port Declaration

Setting up the VHDL Environment in SCS

The VHDL Netlister is invoked from the Simulator menu of the Hierarchy
Navigator for hierarchical netlists. It creates a top-level netlist file with the
name design_name.vhd where design_name is the top-level name of your design
hierarchy, and individual netlist files for sub-level blocks. The VHDL Netlister
can also be invoked from the Tools menu of the Schematic Editor and the
Tools menu of the Symbol Editor to create VHDL netlists of individual
schematics or modules.

Setting up the SCS.ini File

In order to properly generate the VHDL code, some initial setup is required in
the ecs.ini and vhdl.ini files. The master copy of these files is located in the
$ECS_ROOT/data directory. Copies of these files can also be placed in the
local directory. The values in the local directory override those set in the
master files. The ecs.ini configures the SCS tools and allows the customization
of various elements in the SCS environment. Refer to Chapter 9 for more
details about the ecs.ini file. The vhdl.ini file is described later in this section.

Simulator Interfaces

B-68 Synario Capture System User Manual

The Simulator parameter in the ecs.ini file enables the Simulator menu of the
Hierarchy Navigator with the name and options of the selected simulator.

To set up the VHDL menu:

Enter VHDL for the Controls: Simulator parameter.

In SCS, the mechanics for associating information with graphical objects is
through attributes. These attributes can be defined for symbols, pins and nets
with each attribute having a name and a value. By assigning values to the
required attributes, the port names, types, generics and default values for each
entity (symbol) can be defined. Some attributes are reserved for use with the
VHDL interface. The following sections and attributes of the ecs.ini file are
used by the VHDL Netlister.

Description of Symbol Attributes

[SymAttrNames}
InstName = !0,0
Type = !1,1
RefName = !2.2
VHDL_Cfg = +78
VHDL_Use/Lib = -79
VHDL_Model = -80
VHDL_Gen1 = 81
VHDL_Gen2 = 82
VHDL_Gen3 = 83
VHDL_Gen4 = 84
VHDL_Gen5 = 85
VHDL_Gen6 = 86
VHDL_Gen7 = 87
VHDL_Gen8 = 88
VHDL_Gen9 = 89

VHDL-cfg (#78)

Defines the entity/architecture pair of the configuration name to be used in the
configuration section of the netlist, instead of the default. This value is
typically assigned during schematic editing, where it might be required to
override the default configuration for a particular symbol. If left blank, then
either the model name (attribute #80), if defined, or symbol name will be used.
For example,

VHDL_Cfg = configuration Work.cfg
VHDL_Cfg = entity Work.and (A)

Simulator Interfaces

Synario Capture System User Manual B-69

VHDL_Use/Lib (#79)

Specifies the section to be copied from the vhdl.ini file (in place of the section
specified by the use_lib_section parameter). For example,

VHDL_Use/Lib = Mylib_Defaults

VHDL_Model (#80)

Indicates that the symbol represents a precompiled model whose component
instantiation statement is defined in one of the packages. This attribute
therefore determines if a component instantiation statement needs to be
written in the VHDL netlist. For example,

VHDL_Model = orgate specifies that the current symbol
represents orgate which is already
compiled into one of the libraries

VHDL_Genn (n is 1 to 9) (#81-89)

This is the mechanism for defining generics symbol attributes) for an entity
(symbol). Any of these attributes that contain values are copied "as is" into the
generic declaration of that entity. The format for the value field is
param:type:=value. For example,

VHDL_Gen1 = delay:time:=0 ns (In symbol editor)

These attributes can be overriden in the Schematic Editor where the symbol is
instantiated. The format of the overriding values should be: name=value. For
example,

VHDL_Gen1 = delay = 10ns

If none of these attributes is assigned a value, generic declarations are not
coded. If more than 9 generics are needed then multiple generics can be
specified in the same attribute by separating them with semicolons (;).

Simulator Interfaces

B-70 Synario Capture System User Manual

Description of Pin Attributes

[PinAttrNames]
 PinName = -0 ;Name of Signal on Symbol Pin
 Polarity = -1 ;Specifies Input, Output or Bi-directional
Polarity
 VHDL_PinType = -30 ;Port Type if Scalar Port
 VHDL_BusType = -31 ;Port Type if Vector Port
 VHDL_Def_Value = +32 ;Default Value for Port
 VHDL_NetConv = +33 ;Type Conversion Function for Scalar Port
 VHDL_BusConv = +34 ;Type Conversion Function for Vector Port
 VHDL_PinUse = -35 ;Polarity of the Port (Buffer or Linkage)

VHDL_PinType #(30)

Specifies the VHDL type of port (pin) for scalar objects. If left blank, this value
is taken from the Defaults section of the vhdl.ini file. For example,

VHDL_PinType = BIT
VHDL_PinType = MVL7

Note: If the net attributes VHDL_NetType is blank, the pin attributes value is used.

VHDL_BusType (#31)

Specifies the VHDL type of the port (pin) for vector objects. If left blank, this
value is taken from the Defaults section of the vhdl.ini file. For example,

VHDL_BusType = Bit_Vector
VHDL_BusType = MVL7_Vector

Note: If the net attributes VHDL_BusType is blank, the pin attributes value is used.

VHDL_Def_Value (#32)

Sets a default value for the port (pin) in the entity (symbol) declaration when
the value is assigned in the Symbol Editor. If no default value is needed, this
argument can be left blank. For example,

VHDL_DefValue = ’0’ ;
VHDL_DefValue = X"00";
VHDL_DefValue = "ZZZ"

Simulator Interfaces

Synario Capture System User Manual B-71

VHDL_NetConv (#33)

This attribute is assigned a value when the pin is connected to a signal of a
different type. It specifies the VHDL type conversion function to be associated
with the port (pin), if it is scalar. For an input pin, the function is associated
with the signal it connects to in the schematic, for an output pin the function is
associated with the signal in the port map. This value can be specified on a per
instance basis in the schematic. For example,

VHDL_NetConv = bit2mvl7 ;
VHDL_NetConv = mvl2bit

VHDL_BusConv (#34)

Specifies the VHDL type conversion function to be associated with the port if it
is a bus. The rules of the association are the same as described above for the
scalar pins. For example,

VHDL_BusConv = bv2mv ;
VHDL_BusConv = mv2bv

VHDL_PinUse (#35)

Specifies the mode (polarity) of the port (pin) other than IN, OUT, INOUT.
Could be either buffer or linkage (the only two legal values). To make a buffer
port, the I/O marker on the schematic must be a BIDIR and the matching pin
on the schematic must also be bi-directional. The symbol pin must have this
attribute set to buffer. With this combination of attributes, the port netlists as
BUFFER. The buffer value can be assigned to a single pin attached to a single
net. It can not be assigned to a Bus Port. For example,

VHDL_PinUse = Buffer ;

In addition to the attributes mentioned above, the following optional sections
can contain directory path names to define symbol libraries:

[SymbolLibraries]

$ECS_ROOT/your_lib_path = Yes

The remaining parameters for the VHDL simulation environment are kept in
the VHDL.ini file in the $ECS_ROOT/data directory. Each design can have a
separate VHDL.ini file in its local directory.

Simulator Interfaces

B-72 Synario Capture System User Manual

Description of Net Attributes

[NetAttrNames]
 VHDL_NetType = -30 ;Port Type if Scalar Port
 VHDL_BusType = -31 ;Port Type if Vector Port

VHDL_NetType #(30)

Specifies the VHDL type of signal for scalar objects. If left blank, the pin
attributes are used. If the pin attributes are blank, this value is taken from the
Defaults section of the vhdl.ini file. For example,

VHDL_NetType = BIT
VHDL_NetType = MVL7

VHDL_BusType (#31)

Specifies the VHDL type of the signal for vector objects. If left blank, the pin
attributes are used. If the pin attributes are blank, this value is taken from the
Defaults section of the vhdl.ini file. For example,

VHDL_BusType = Bit_Vector
VHDL_BusType = MVL7_Vector

Adding a Tools Menu Entry to the Schematic Editor

The VHDL Netlister can be run as a Tool from the Schematic Editor,
independent of the Simulator parameter. The program generates a module
netlist of the schematic block. A symbol for the schematic has to exist in order
for the netlist to be written since the module declaration is extracted directly
from the symbol files. This gives the user independent control of module
information and its underlying netlist. Note that the symbol for a schematic
can be created from within the schematic using the File--Create Symbol
command.

Adding a Tools menu Entry to the Symbol Editor

The VHDL Netlister can be run as a Tool from the Symbol Editor, independent
of the Simulator parameter. The program generates a module statement for
the symbol being edited.

Simulator Interfaces

Synario Capture System User Manual B-73

Command Line Options

The following options are used with the VHDL Netlister:

Option Function

-s Suppress the generation of the configuration
statements

-t Generate a VHDL testbench template for a given
symbol or schematic

-n Run the default text editor (specified in the Editor
field of the ecs.ini) after the VHDL code is
generated

flat Flatten buses when generating VHDL

-e Do not output entity lines in the generated VHDL

VHDL Testbench Template

In VHDL, a testbench is the code that generates the input test stimulus and
optionally performs the expected response verification. The -t option of the
Netlister provides a template for the testbench (minus the behavioral
description) as a convenience to the user.

Setting up the VHDL.ini file (for use with Hierarchy Navigator)

The Hierarchy Navigator can be configured to control the VHDL simulator.
The first step is to specify the Simulator parameter to be VHDL using the
ecs.ini editor. This causes the Navigator to read the VHDL.ini file, which must
be in either the local directory or in the $ECS_ROOT/data directory. The
VHDL.ini file contains all the necessary commands and directives to control
the VHDL simulator. Note that empty sections (that is, sections without any
contents) are not allowed. However, there may be cases when library and use
statements are not needed at the top of each .vhd file generated by the
Netlister. In such cases, a section may be defined consisting only of the VHDL
comment characters (--), as shown:

[None_Default]

--

--

Simulator Interfaces

B-74 Synario Capture System User Manual

A sample VHDL.ini file along with a brief explanation is shown below. (Refer
to Appendix B, "Simulator Interfaces" for more details on the topic of setting
up the simulator).

Description of Default Control Parameters in vhdl.ini

These parameters are used in the [Defaults] section of the vhdl.ini file.

net_type

Default VHDL type of scalar nets and pins.

For example,

net_type = mvl7
net_type = bit

bus_type

Default VHDL type of vector pins and busses. If the bus_type is terminated
with a (), a range is added to the declaration when VHDL netlists are extracted
(that is, the type is assumed to be unconstrained).

For example,

bus_type = bit_vector
bus_type = MVL7_VECTOR

work_lib

Default name of the library where the configurations are found. This
parameter is used while generating configuration statements in the VHDL
netlist.

For example,

work_lib = work (Generates the use statement in the
cfg.declaration as: use configuration
WORK.cfg_symbol).

model_lib

Default name of the library where the configuration of the model is found.
This is also used while generating configuration statements in the VHDL
Netlist.

Simulator Interfaces

Synario Capture System User Manual B-75

For example,

model_lib = Your_Own (Generates the use statement in the
cfg.declaration as: use entity
Your_Own.symbol(arch)).

use_lib_section

Default name of the section in the vhdl.ini file, to be copied to the top of each
VHDL netlist. Typically this section contains library and use packages
information.

For example

, use_lib_section = MyOwn_Defaults

This section copies information for the section of the vhdl.ini file marked as
[MyOwn_Defaults] to the beginning of each VHDL netlist. From our example,
that would produce:

library Mylib;
use Mylib.types.all;
use Mylib.components.all;

tb_entity

Default entity name to be used in the automatically generated test bench
template. If no value is specified, "E" is used.

For example,

tb_entity = tb_andor
tb_entity = tb_toplevel

tb_arch

Default architecture name of the test bench entity, to be used in automatically
generated test bench template. If no value is specified, "A" is used.

For example,

tb_arch = tb_struct
tb_arch = tb_behavioral

Simulator Interfaces

B-76 Synario Capture System User Manual

tb_inst

Default instance name of the top level schematic to be used in the
automatically generated test bench template. If no value is specified,"UUT" is
used.

These attributes are assigned to the symbol and its pins by use of the
Add->Symbol Attribute and Add->Pin Attribute commands of the Symbol
Editor. If a symbol has an attribute assigned, it becomes the default value for
each instance of the symbol on the schematic. Note that the VHDL Netlister
writes a hierarchical netlist. Because of this, any instance specific attribute
overrides added by the Hierarchy Navigator do not appear in the netlist.
Please refer to the Attributes section in this manual for more details on
attributes in the SCS environment.

ModelAttribute = 80

This parameter specifies the number of the symbol attribute used to store the
VHDL model names. This parameter is used extensively by the Hierarchy
Navigator and the VHDL Netlister, and it must be included in the VHDL.ini
file. See also the VHDL_Model attribute defined in the ecs.ini file.

ECS Only Controls (UNIX)

FlattenBusses = No

This parameter causes busses not to be flattened when they are monitored
from the Hierarchy Navigator. The same value should be assigned to this
parameter as the command line option.

RootPrefix, RootIOPrefix, InstPrefix, SubPrefix = %

These parameters cause the system to use fully hierarchical net and instance
names instead of local names. They must be included in the VHDL.ini file in
order to successfully monitor and cross-probe nets between the Hierarchy
Navigator and the Dynamic Waveform Tool.

Run = .Delta = #% $ecs_stop;.

The $ecs_start command has been eliminated. Thus the Run and Delta
commands do not include that VHDL function call.

Monitor = $ecs_waves ("%n")

The argument of the $ecs_waves function call has to be a string. Note that the
%*n notation has been changed to %n when this task is called.

Simulator Interfaces

Synario Capture System User Manual B-77

Netlist Extraction

The Code VHDL commands in the Hierarchy Navigator are enabled by setting
the Simulator option to VHDL using the ecs.ini editor. A file named VHDL.ini
must exist in either the local directory or in the $ECS_ROOT/data directory.

Selecting Code VHDL in the Simulator menu of the Hierarchy Navigator
creates a set of structural module definitions for each schematic linked into the
hierarchy including the top level. If, however, a structural module already
exists and the schematic has not been modified since, it is not recompiled.

Selecting VHDL Netlist in the Tools Menu of the Schematic Editor creates a
complete structural module definition from the schematic and the associated
symbol file. Note that a symbol for the schematic must exist so that the
module netlist can be completed, since the module declaration of the block is
extracted from the symbol file.

Selecting VHDL Netlist in the Tools Menu of the Symbol Editor creates a
template module definition from the symbol only if an associated schematic is
not available. The intent is that the user then completes the behavioral
description in the text mode.

All three versions of this function create (or update) files with the base name of
the schematic or symbol and a .vhd suffix.

Generating VHDL Netlist from Symbols

The Netlister produces a VHDL template (that is, a VHDL description without
the architecture body) from symbols. The following steps describe the process
of netlist extraction from a symbol named abc.

A netlist file called abc.vhd is opened and the following information is written
to it.

Library and Package Declaration

The library declarations are coded first. If attribute #78 (VHDL_Use/Lib) of
the symbol has a value, then that value is matched to the section names in the
vhdl.ini file and the contents of the section are copied into the netlist. If no
value has been assigned to attribute #78, the contents of the section specified
by the value of parameter use_lib_section in the vhdl.ini are copied.

Entity Declaration

The name of the entity is the same as the name of the symbol. The entity
declaration consists of generic declaration (symbol attributes) and port
declarations (pin attributes).

Simulator Interfaces

B-78 Synario Capture System User Manual

Generic Declaration(s)

If any of the symbol attributes in the range of 81-89 (VHDL_Gen1 -
VHDL_Gen9) has a value, then the generic declaration is written. The values
of these attributes is copied verbatim.

Port Declaration(s)

Port names are taken from pin attribute #0 (PinName). If the port is a scalar,
the pin name is taken as it is. If the pin name is a vector, then the range
description is stripped from the name.

Port mode is taken from pin attribute #35 (VHDL_PinUse) if the mode is buffer
or linkage or pin attribute #1 (Polarity) if the mode is In, Out or Inout.

Port type is taken from either pin attribute #30 (VHDL_PinType) for scalar
port or pin attribute #31 (VHDL_BusType) for vectors.

Architecture Declaration

An empty architecture body is coded with default architecture name as
behavioral. Anything you type inside the architecture body is retained during
the next invocation of the Netlister for the same symbol.

Configuration Declaration

Default configuration statements are written with the configuration name
cfg_symbolname.

Generating VHDL Netlists from Schematics

The process for generating Netlists from schematics is similar to the process
previously described for symbols. The major difference is that in schematics,
in addition to the entity declaration there are component statements and
component instantiation statements.

To generate a VHDL description from a schematic called xyz:

1. A netlist file called xyz.vhd is opened and the following VHDL code is
written.

2. A library declaration and an entity declaration similar to the one described
for the symbol are written.

3. An architecture declaration is written and it consists of:

Signal Declaration

Simulator Interfaces

Synario Capture System User Manual B-79

Signal names are taken from the netlists used in the schematic. If the net is
a bus, the range is stripped from the name. The signals inherit type from
the pin they are connected to. If a signal connects to pins of different
types, the type is taken from one of the pins (chosen arbitrarily) that does
not have a type conversion function specified, the signal type is taken from
the value of the parameter net_type or Bus_type in the vhdl.ini file.

Component Declaration

A component statement is written for each symbol in the schematic that
does not have a value assigned for symbol attribute #80 (VHDL_Model).

Architecture Body

An architecture called schematic is written. The architecture body of the
schematic consists of component instantiation statements for each of the
symbols drawn on the schematic diagram. The name of each component
instance is taken from the name assigned to the symbol on the schematic.
The generic map statement is written if needed. The port map statement is
then written.

4. A configuration file called cfg_schematic_name is written.

For instances of the same symbol, the list of instance names are written
followed by the model name (attribute #80) or the symbol name. If
configuration is specified for the instance (that is, if symbol attribute #78 for
the instance has been assigned a value), then it writes

use (attr#78)

If the symbol is a precompiled model, then it writes

use entity model_lib.(a ttribute#80)(A)

where the value of model_lib is taken from the vhdl.ini. If it is not a model,
then it writes

use configuration work_lib.cfg_symbolname

where the value of work_lib is taken from the vhdl.ini file.

Simulator Interfaces

B-80 Synario Capture System User Manual

Generating VHDL Netlists from the Navigator

The VHDL Netlister program can also be invoked from the Navigator to
generate the VHDL code for the schematic. Optionally, a testbench template
can also be generated for the root on the schematic. The advantage of
invoking the VHDL Netlister from the Navigator rather than from the
Symbol/Schematic editor is that the Netlister generates the VHDL code not
only for the root schematic, but also for the symbols within the schematic and
all underlying hierarchy. Invoking the Netlister from the Navigator results in
the following steps being performed:

1. The design is traversed in a depth first manner. Blocks specified as
predefined models are not traversed.

2. For each block traversed, the directory specified by the Path control in the
ModelBuilder section of the vhdl.ini is searched for the corresponding
VHDL file. If the VHDL file is not found or if it is older than the symbol
block, the VHDL file is regenerated for that block.

Special Topics (Buses, Resolution Function and Testbench Mode)

Some topics which require special attention while using the VHDL Netlister
are discussed below.

Using Buses

Buses are used to represent a group of related signals in the SCS schematics.
In the corresponding VHDL netlist, they are represented as a one dimensional
array of signals. The following rules must be followed for the proper
generation of VHDL code for busses.

1. Bus names on the schematic must have the following format:

busname (from : to)

Busnames of the format Busname (from, to, step) which are legal in SCS are
illegal using the VHDL Netlister.

2. The bus pin type may be specified by the pin attribute #31
(VHDL_BusType). The value of this attribute must have the following
format:

bustype

or

bustype ()

Simulator Interfaces

Synario Capture System User Manual B-81

The parentheses are necessary if bustype is an unconstrained array type.
However, if bustype is a user-defined, constrained subtype, then no
parentheses are required.

3. The VHDL code generated for the port declaration is of the following
format:

busname

or:

busname (left to right) if left < right
busname (left downto right) if left > right

The range specification is added if bustype is an unconstrained array type
(as indicated by the presence of parentheses in the value for pin attribute
#31). The range is derived from the name of the pin and is added to the
basetype (bustype), if needed. Examples of VHDL code generated by
different type of pin attributes are shown below:

Pin Attributes VHDL Code Generated

Pin_Name (Pin Attr. #0) : a (0:3) a : in bit_vector (0 to 3) ;
VHDL_ BusType (Pin Attr. #31) :
bit _vector ()

Pin_Name : a (7:0) a : in BusX (7 downto 0);
VHDL_BusType : BusX ()

Pin_Name : a (7:0) a: in byte ;
VHDL_BusType : Byte

If no attribute is assigned to the pin attribute #31 (VHDL_BusType), the type is
derived from the value assigned to the parameter Bus_Type in the Default
section of the vhdl.ini file.

Simulator Interfaces

B-82 Synario Capture System User Manual

Using VHDL Type Resolution Functions

A resolution function is used to return the value of a signal when the signal is
being driven by multiple drivers. It is illegal in VHDL to have a signal with
multiple drivers without a resolution function attached to that signal. The
resolution function will examine the values of all of the drivers and return a
single value called the resolved value of the signal. The way to specify
resolution functions for signals on a net by net basis in SCS is by defining a
subtype to be a resolved type and then assigning the subtype to the desired
pins. It is recommended that the resolved subtype be assigned to all the pins
in the primitives so that the signals which connect to these pins automatically
become the resolved types, provided the reflexive attribute is associated with
the resolution function. This attribute is an assertion that the function has the
property that when given an input vector with exactly one element, it returns
that value.

Using Indexed Array Slices in PinNames

A pin on a symbol can be an indexed array slice of the form

slice_name (index)

If two or more pins belong to the same array, the VHDL netlister collapses
them to generate a single port declaration. For example, if a symbol contains
pins with PinNames as inp(0), inp(1), inp(2) and inp(3), the corresponding
entity declaration in VHDL looks like:

port (input : in BusX (0 to 3))

The direction of the range of the bus is determined by the following rules:

♦ If at least one of the slices contain a range of the form

bus_name (left:right), left > 0 , and right > 0

the direction of that range is used for the entire bus.

♦ If the above rule does not apply, the direction specified in the
VHDL_BusType attribute is used. You can specify this by inserting the
character ’t’ for "to" and ’d’ for "downto" between parentheses in the
VHDL_BusType (For example, BusX (d)).

♦ If no direction is specified, the direction is assumed to be ascending.

Simulator Interfaces

Synario Capture System User Manual B-83

Automatic Testbench Template Generation

A VHDL testbench template can be generated for the root schematic by
specifying the -t command line option for the VHDL Netlister program. The
option is specified in the ModelBuilder section of the vhdl.ini file by making
the following assignment:

RootProcess = vhdl -t %

The testbench consists of the following:

♦ The standard library/use statements.
♦ An empty entity whose name is specified by the tb_entity parameter in the

Default section of the vhdl.ini file.
♦ An architecture, whose name is specified by the tb_arch parameter in the

Default section of the vhdl.ini file and containing:
♦ A signal declaration for each pin on the top level symbol
♦ A component declaration for the symbol (with the same name as the

symbol)
♦ A single instance of the component, whose name is specified by the tb_inst

parameter in the Defaults section of the vhdl.ini file, with port mapping
the ports to the signals.

♦ An empty block statement (labeled TB) for users to add test vectors if
desired.

♦ A configuration statement for the testbench, named
CFG_TB_COMP_NAME.

Simulator Interfaces

B-84 Synario Capture System User Manual

Structure of Output VHDL Files

VHDL Code Explanation

library your_own;| Specified by symbol attr. #79 or by
use your_own.types.all;| use_lib_section of the [Defaults]
use your_own.components.all;| section of the vhdl.ini file

entity AOI is| AOI is the name of the symbol/file
generic (N : positive : = 5 ;|This is specified in symbol
attrs. #81 - 89
tLH : Time : = 0 ns ;
tHL : Time : = 5 ns) ;
port (In1 : in BIT : = ’1’ ;| Polarity specified by pin attr.
#1 or #35
In2 : in BIT : = ’1’ ;| ’1’ = Default; specified by pin attr.
#32
In3 : in BIT_VECTOR (2 downto 0);| InX are pin names specified
by pin attr. #1
In4 : in BIT_VECTOR (0 to 2);| BIT/BIT_VECTOR is VHDL type
| specified by pin attr. #30, 31

Output : out BIT) ;
end AOI;

architecture BEHAVIORAL of AOI is| Boiler plate code. The
contents of this
begin | section are preserved if/when VHDL code
end BEHAVIORAL;| is regenerated

configuration CFG_AOI of AOI is
for BEHAVIORAL

end for;

end CDG_AOI;|

Controlling the Netlist Extraction

The VHDL symbol attribute is the most useful way to control VHDL Netlist
extraction. Normally, when the netlist processor encounters a symbol that has
the VHDL attribute specified, it codes that model into the netlist with the
specified VHDL pin attributes, if any, without looking for any lower level
schematics. If the VHDL attribute is not specified, the netlister would ignore
the VHDLpin attributes of that symbol and code the lower level schematic
associated with that symbol. Note that the VHDL attributes are used only to
code the module instantiations (that is, calls to modules), and not module
declarations.

Simulator Interfaces

Synario Capture System User Manual B-85

Existing VHDL Files

In some cases, template module definitions are generated from symbol files,
which are then completed with user-defined VHDL behavioral models or
stimulus. In order to preserve this user-defined data the next time the file is
updated (for example, after a change in the number of pins of the symbol), the
VHDL Netlister replaces only the header comment, the module statement and
any lines that identify the polarity of the pins in the module statement. Note
that if there is a schematic associated with the symbol under consideration, a
completely new file is generated each time, and no manually entered data is
preserved.

Some Restrictions

The maximum number of generics that can be declared for any symbol is nine.
However, this limit can be overcome by defining multiple generics in a single
symbol attribute separated by a semicolon (;). For example, the following
string for the symbol attribute VHDL_Gen1 (attribute #81) is legal:

delay : time := 2 ns ; fanout : positive : = 8

Note that there is no semicolon (;) at the end of the string. The total number of
characters in all the generics combined can not be more than 255.

Sample vhdl.ini File

;NOTE: This file is for running vhdl from hiernav

;Set the title of the Simulation menu in the hierarchy navigator
[SimTitle]
 title = VHDL

;we want to be able to write all the net lists from
;the Navigator using "make" so we add [MakeVhdl]
;the name "MakeVhdl" is arbitrary. It matches the value specified after
;#Make in a command in the [SimTools] section
[MakeVhdl]
;need a process if we are going to make the net lists from the Navigator
 Process = vhdl &R
;we use the extension .vhd so we need the following line to let the
;Navigator know this.
 Extension = .vhd
;we want to put the .vhd files in the same directory with the symbols so
;we leave the Path blank.
 Path =
;the Vhdl Model attribute is number 80. If attribute #80 has a value
;it means that the symbol is a vhdl primitive or has a .vhd file supplied
;by the user. So, if we run make from the Navigator we must have the
;following line
 ModelAttribute = 80

Simulator Interfaces

B-86 Synario Capture System User Manual

;we want to be able to compile the net lists from
;the Navigator using "compile" so we add [CompileVhdl]
;the name "CompileVhdl" is arbitrary. It matches the value specified after
;#Compile in a command in the [SimTools] section
[CompileVhdl]
 Process = zvan -nc &R
;the RootProcess runs only on the top schematic
 RootProcess = zvan -nc &Ptb&F
;the compiled files have extension .sim
 Extension = .sim
 ModelExt = .vhd
;we want to put the .sim files in the same directory with the
;symbols so we leave the Path blank.
 Path =
;the .vhd files are in the same directory with the symbols so
;we leave the ModelPath blank.
 ModelPath =
;the Vhdl Model attribute is number 80. If attribute #80 has a value
;it means that the symbol is a vhdl primitive or has a .vhd file supplied
;by the user. So, if we run compile from the Navigator we must have the
;following line
 ModelAttribute = 80

;the SimTools section directs the simulation interface to the appropriate
;information for generating VHDL models (using the built-in "make" facility),
;compiling the models, and starting the simulator. Each of these functions
;is represented by an entry in the first section of the simulation menu
;of the hierarchy navigator
[SimTools]
;the next line invokes the "make" facility to write the vhdl net lists.
 Code vhdl = #Make MakeVhdl
;the next line invokes the "compile" facility to compile the vhdl net lists.
 Compile vhdl = #Compile CompileVhdl
;the next line invokes the "simulate" facility to start vhdl using the
;commands from "Simulate"
 Start vhdl = #Simulate Simulate

;we want to be able to start vhdl from the Navigator so we add [Simulate]
;the name "Simulate" is arbitrary. It matches the value specified after
;#simulate in a command in the [SimTools] section
[Simulate]
;Command is the entire command line to start the simulator
 Command = dummysim cfg_tb_%
;Waves is the entire command line to start the Waveform Viewer
 Waves =
;SimAppName is the name the simulator uses to identify itself to the Navigator
 SimAppName =
;ExitMsg is the command to tell the simulator to quit
 ExitMsg =
;FirstMsg is the name of the section that contains the messages to send to
;the simulator when it starts up.
 FirstMsg =

Simulator Interfaces

Synario Capture System User Manual B-87

[SimControls]
 MaxLine = 40
 RootPrefix = /e/uut
 HierChar = /
 Continue = \

[SimButtons]
 Run = run
 Stop = ^C
 Delta = run

;Entries in the SimMenu section get transferred directly to the simulation
;menu in the hierarchy navigator. The corresponding commands are sent to
;the simulator when the menu item is selected.
[SimMenu]
 Monitor = Monitor %*n
 Trace=Trace %n
 Hold Val = Hold %{ ????? ’0’ ’1’} %*n
 List All = List *

;The Defaults section specifies the default values for a number of parameters
;in the output VHDL
[Defaults]
 net_type = DotX
 bus_type = BusX
 work_Lib = WORK
 model_lib = ZYCAD
 use_lib_section = Myown_Defaults

;This section provides default header information included in all VHDL files.
;The name of the section is arbitrary and is specified by the "use_lib_section"
;entry in the "Defaults" section. This information may be overwritten by
;the VHDL_Use/Lib symbol attribute (#79), if specified.
[Myown_Defaults]
 library Mylib;
 use Mylib.types.all;
 use Mylib.components.all;

Simulator Interfaces

B-88 Synario Capture System User Manual

Exporting the Stimulus File
You create a stimulus file for simulation by creating waveforms in the
Waveform Editor and exporting into the stimulus format of the target
simulator and written to the appropriate files.

To export to a stimulus file:

1. Create waveforms in the Waveform Editor.

2. Select Export from the Waveform Editor File menu.

See Also

"Exporting the Stimulus File" and "Changing the Waveforms for Exporting" in
the Waveform Tools Manual

Simulator Interfaces

Synario Capture System User Manual B-89

Index

A
Aliased net names, 3-8
Archive utility, A-1
Arrays

described, 5-8
ASCII conversion programs, A-2
ASCII interface, A-2

format, A-3
Attribute modifiers

defined, 2-4
Attribute windows, 6-13

adding, 6-13
assigning, 2-5, 8-3
changing assignments, 8-3
for graphic symbols, 8-10
graphic symbols, 8-10
repositioning, 8-3

Attributes
* (derived), 8-7
adding to initialization file, 9-20
adding windows, 6-13
assigning, 2-3
assigning values, 8-8
assigning window numbers, 8-9
changing, 2-3
CompGroup, 10-2
CompName, 10-2
components, 2-4, 8-2
creating, 2-5, 9-20
creating new attributes, 8-4
data fields in initialization file, 9-22
defined, 2-2 – 2-3, 8-1
derived, 8-7, 8-13
derived attribute numbers, 8-16
derived attributes example, 8-18
derived format, 8-13

derived-attribute calculations, 8-17
described, 5-4
displaying values in schematic, 8-9
example definitions, 9-23
example of derived, 8-15
extracting values, 8-18
GateGroup, 10-2
global, 2-4, 8-2, 9-30
HidePinNumber, 10-2
HidePinNumbers, 10-10
modifier, 2-4, 8-3
modifiers, 8-7
modifying, 8-4, 9-22
modifying net values, 8-4
modifying pin values, 8-4
modifying symbol values, 8-4
name, 2-4, 8-2, 8-6, 9-22
net, 2-4, 8-2
number, 2-4, 8-2, 9-20
number notation, 8-12
OpenOK, 10-4
PartNum, 10-2
PartShape, 10-2
passing derived attributes through hierarchy, 8-18
pin, 2-4, 6-12, 8-2
PinGroup, 10-4
PinNum, 10-4
Polarity, 10-4
reassigning windows, 8-9
RefName, 10-2
removing from netlists, 8-9
required for netlister, 10-33
required for netlisters, 10-26
reserved, 8-10
scale factors, 8-12

Index-1 Synario Capture System User Manual

scaling derived values, 8-19
standard net, 9-23
standard pin, 9-25
standard symbol, 9-27
symbol, 2-4, 6-13, 8-2
System modifier, 8-7
types, 2-4, 8-2
typical, 8-5
use, 2-3, 2-6, 8-1
value, 2-4, 8-3
VeriOrder, B-62
window, 2-5, 8-3, 9-22
windows, 6-13

Automatic packaging, 10-15

B
Back annotation interfaces, 10-21
Back annotation programs, 10-21
Back-annotation, 8-18
Bill of materials program, 10-42
Block symbol

described, 4-3
Block symbols

creating in Schematic Editor, 6-15
defined, 2-1, 6-3

Bottom-up design, 3-3
Branch

defined, 5-10
Bus pins

creating, 6-11
defined, 5-17

Bus taps
defined, 5-16
names required, 5-16
naming, 5-16

Bus types
defined, 5-14

Buses
adding taps, 5-16
compound, 5-14
compound names, 5-18
connections to bus pins, 5-17
connections to iterated instances, 5-18
defined, 5-14
naming, 5-14
naming taps, 5-16
ordered, 5-14, 5-17

pin connections, 5-17
simple, 5-14
single names, 5-18
taps on, 5-16
types, 5-14
unordered, 5-15
use, 2-7

C
CADNETIX netlister, 10-32
CADSTAR netlister, 10-33
Cell symbols

defined, 6-3
use in IC design, 10-5

Command structure, 4-10
Commands

See name of specific command
CompGroup attribute, 10-2
CompName attribute, 10-2
Component symbols

defined, 6-3
use in PCB design, 10-5

Compound bus names, 5-11 – 5-12
Compressed Symbol Libraries, 9-31
Crash recovery, 4-12
Critical paths

viewing, 7-20
Cursor size, 9-9

D
Date attribute window, 8-10
DeMorgan-equivalent gates

defined, 10-6
use in PCB designs, 10-6

Derived attributes, 8-7
assigning numbers, 8-16
calculated expressions, 8-17
described, 8-13
example, 8-15, 8-18
format, 8-13
passing through hierarchy, 8-18

Design attribute window, 8-10
Differences between IC and PCB design, 10-2
Display options

described, 5-24
Displaying pin names, 6-10

Index

Synario Capture System User Manual Index-2

Displaying pin numbers, 6-11
Dragging the mouse, 4-10

E
EDIF file format, A-17
EDIF format considerations, A-19
EDIF interface, A-15
Electrical Rules Checker, 7-11

error messages, 7-17
options, 7-15

Electrical rules checking, 7-10
Error checking, 7-10
Error reports

viewing, 7-19
Errors

displaying, 4-11
recovering from, 4-12

Expanded Bus Name command, 5-12
Exporting a stimulus file, B-89

See also Waveform Tools Manual

F
Fanout analysis

described, 7-14
File names

conventions, 4-13
extensions, 4-13 – 4-14

Filename attribute window, 8-10
Files

saving, 4-14

G
Gate symbols

defined, 6-3
use in PCB design, 10-5

GateGroup, 10-2
Generic netlist program, A-22
Global nets

defined, 9-12
Global signals

defined, 9-13
Graphic options

described, 5-25
Graphic symbols

defined, 6-4
Graphics

defined, 2-2
described, 5-4

Grid
setting spacing, 9-9 – 9-10

H
Header

timewave history file, B-16
Hi/Low analysis

described, 7-14
Hidden power pins, 10-28
HidePinNumber attribute, 10-2
HidePinNumbers attribute, 10-10
Hierarchical design

abstract, 3-2
advantages of, 3-2
approaches to, 3-2 – 3-3
Block symbols, 3-2
bottom-up, 3-3
defined, 3-4
described, 3-1
hierarchical naming, 3-6
inside-out, 3-3
mixed, 3-3
name aliases, 3-8
net names, 3-7
philosophy, 3-2 – 3-3
structure, 3-5
symbols in, 3-4
techniques, 3-2 – 3-3
theory of, 3-1
top-down, 3-3

Hierarchical levels
defined, 3-1

Hierarchy
defined, 3-1
modular design, 3-1 – 3-2
opposed to sheets, 3-1

Hierarchy Navigator
attribute windows, 7-7
back-annotation, 8-18
display options, 7-9
displaying component attributes, 7-4
error checking, 5-13, 7-10
functions, 7-2

Index

Index-3 Synario Capture System User Manual

Mark Command, 7-4
netlist generation, 7-21
overriding attribute values, 7-6
printing display, 7-8
Processes menu, 9-19
Push/Pop command, 7-3
Query Command, 7-4
Query types, 7-4
reassigning attribute windows, 8-9
reassigning pin attribute values, 7-6
running, 7-2
saving display context, 7-8
schematic updating, 7-3
sheet selection, 7-8
signal tracing, 7-4
simulation from within, 7-10
Tools menu, 9-17
traversing a design, 7-2

I
I/O marker

defined, 5-13
IC design

differences from PCB design, 10-2
IC mode, 9-4
INI Editor

described, 4-16, 9-1 – 9-36
INI File

See Initialization file
INI files

described, 4-16, 9-1 – 9-36
location, 9-1
multiple, 4-16

Initialization file
application mode, 9-4
attribute data fields, 9-22
attribute modification, 9-22
attribute name, 9-22
attribute number, 9-20
attribute windows, 9-22
binary.ini version, 9-1
border display, 9-6
bus parentheses, 9-5
contents, 9-1
cursor size, 9-9
customized versions, 9-2
described, 9-1

display controls, 9-6
first character alpha, 9-5
global attributes, 9-30
global nets, 9-12
global signals, 9-13
grid shown, 9-9
grid size, 9-10
grid spacing, 9-9 – 9-10
line width, 9-9
location, 9-1
master symbols added, 9-10
modifying, 9-1
net attributes display, 9-7
net numbers shown, 9-7
off-page connects shown, 9-7
open ends shown, 9-7
pin dots display, 9-6
pin name offset, 9-8
pin numbers display, 9-6
print controls, 9-17
Processes menu, 9-19
program directories, 9-34
rotated net names shown, 9-7
rotated pin numbers shown, 9-7
Schematic Editor colors, 9-14
search paths, 9-31
sheet layout, 9-10
sheet sizes, 9-11
simulation values shown, 9-8
simulator selection, 9-6
solder dots display, 9-7
symbol attributes display, 9-7
Symbol Editor colors, 9-14
symbol text display, 9-7
text editor selection, 9-6
text justification, 9-9
text size, 9-9
Tools menu, 9-17
vertical text, 9-9
Waveform Viewer colors, 9-15
Waveform Viewer controls, 9-12
zones, 9-10

Inside-out design, 3-3
Installation, 1-1
Instance name

use, 2-6
Instance names

adding, 5-6
default, 5-7

Index

Synario Capture System User Manual Index-4

difference from Reference designators, 10-7
Editor-defined, 5-7
iterated instances, 5-8
legal characters, 5-9
multiple instances, 5-8
sequential, 5-7
use in PCB designs, 10-7
user-defined, 5-7

InstName attribute window, 8-10
I/O markers

defined, 2-5, 2-8
names, 2-8
use, 2-8

Iterated instances
described, 5-8

L
Landscape orientation

selecting, 4-14
Line width, 9-9

setting, 6-6
Log file

described, 4-12

M
Malfunctions

recovering from, 4-12
Mark Command, 7-4
Markers

defined, 2-8
names, 2-8
use, 2-8

Master symbols
defined, 6-4
positioning, 6-4

Mixed design, 3-3
Mouse

dragging, 4-10
right-button functions, 4-11
use, 4-10

N
Names

net and bus, 2-7

Net
described, 5-3

Net and bus names, 2-7
Net attributes

table, 9-23
Net branch

defined, 5-10
Net name

automatic placement, 5-12
defined, 5-11
position, 5-11

Net Name command, 5-17
Net names

adding, 5-11
adding an overscore, 5-12
aliased, 3-8
assigning, 5-11
Editor-assigned, 5-10 – 5-11
entering, 5-11
legal characters, 5-12
renaming, 5-13
reserved, 5-12
sequential, 5-11 – 5-12
use, 5-10
user-assigned, 5-10

Net polarity
defined, 5-13
setting, 5-13

Netlist by net, A-23
Netlist by pin, A-24
Netlist interfaces, A-1

archive utility, A-1
ASCII interface, A-2
EDIF, A-15
generic, A-22
listing by net, A-23
listing by pin, A-24

Netlister attributes, 10-26, 10-33
Netlister programs, 2-9
Netlisters

CADNETIX, 10-32
CADSTAR, 10-33
list, 10-25
TANGO, 10-33

Netlists
conversion, 2-9
format, 2-9
removing attributes, 8-9
use, 2-9

Index

Index-5 Synario Capture System User Manual

Nets
automatic connection of branches, 5-10
defined, 5-10
implicit connection of branches, 5-10

Network
described, 5-3

Network operation, 4-12
Networks

defined, 5-10
Node names (timewave history file), B-16
Node transitions (timewave history file), B-17

O
OpenOK attribute, 10-4
Ordered buses, 5-14

P
Packaging

automatic pin and reference assignments, 7-22
checks, 7-10

packlist bill of materials program, 10-42
Page layout

selecting, 4-14
PartNum attribute, 10-2
PartShape attribute, 10-2
PCB back annotation interfaces, 10-21
PCB design

automatic packaging, 10-15
configuring for, 10-1
differences from IC design, 10-2
use of instance names, 10-7
use of reference designators, 10-6

PCB design considerations, 10-1
PCB design example, 10-12
PCB mode, 9-4
PCB netlisters

list, 10-25
options, 10-25
specifying, 10-25

pcbback back annotation program, 10-21
Pin attributes, 9-25
Pin names

use in IC designs, 10-5
use in PCB designs, 10-5

Pin numbers
use in PCB designs, 10-5

Pin symbols, 10-5
defined, 6-3

PinGroup attribute, 10-4
PinNum attribute, 10-4
Pins

adding, 6-9
adding names, 6-10
defined, 2-2
displaying names, 6-10
displaying numbers, 6-11

Plotting, 4-14
Polarity attribute, 10-4
Portrait orientation

selecting, 4-14
Power pins

hidden, 10-28
Preamble (timewave history file), B-16
Print Controls, 9-17
Printed Circuit Board Checker, 7-11
Printed Circuit Checker

invoking, 7-18
Printed-circuit boards

See PCB
Printing, 4-14
Product installation, 1-1
Prompt line

described, 4-11
Push/Pop command, 7-3

Q
Query command, 7-4

use, 5-10

R
Recovering from malfunctions, 4-12
Reference designators

difference from instance names, 10-6
pin symbols, 10-5
use in PCB designs, 10-6

RefName attribute, 10-2
Removing attributes from netlists, 8-9

Index

Synario Capture System User Manual Index-6

S
Scaling derived attribute values, 8-19
scback back annotation program, 10-21
Schematic

description, 4-3
Schematic components

described, 5-3
Schematic conversion format, A-8
Schematic conversion programs, A-2, A-6
Schematic Editor

 modifying schematics, 5-20
adding blank sheets, 5-23
adding elements, 5-5
adding I/O marker, 5-13
adding wires, 5-9
attribute windows, 5-28
changing attribute values, 8-9
colors, 9-14
creating Block symbols, 6-15
display options, 5-23 – 5-24
displaying attribute values, 8-9
editing schematics, 5-20
error checking, 5-13, 5-21
features, 5-1
graphic options, 5-25
grid display, 5-24
I/O markers, 5-13
log file, 4-12
numbering sheets, 5-23
overriding attribute values, 5-26
placing symbols, 5-5 – 5-6
Primary grid, 5-24
reassigning pin attribute values, 5-26
redoing commands, 5-21
replacing symbols, 5-6
saving files, 4-14
Secondary grid, 5-24
sheet resizing/renumbering, 5-23
sheet selection, 5-23
symbol list box, 5-5
symbol search path, 5-6
text formatting, 5-26
Tools menu, 9-17
undoing commands, 5-21
wiring constraints, 5-19

Schematic symbols
defined, 2-1

Schematics
composition, 2-5
defined, 5-2
elements, 2-5
error checking, 5-21
file names, 5-2
hierarchies, 5-3
multi-sheet, 5-2
required elements, 2-6
updating, 7-3

SCS
description, 2-1
features, 4-1

SCS command structure, 4-10
SCS directory structure, 9-34
SCS installation, 1-1
Search paths

setting, 9-31
Sequential net names, 5-11 – 5-12
Sh# attribute window, 8-10
Sheets

multiple views, 5-23
Sheets attribute window, 8-10
SILOS simulator interface, B-1
Simulation environment setup, B-18
Simulator initialization file

format, B-20
Simulator interfaces

list, B-1
SILOS, B-1
SPICE, B-31
Timemill, B-45
Verilog, B-53
VHDL, B-68

Simulator setup, B-18
SPICE format conversions, B-37
SPICE simulator interface, B-31
Symbol attributes

defined, 2-2
table, 9-27

Symbol conversion programs, A-2, A-16
Symbol Editor

adding attribute windows, 6-13
adding pin names, 6-10
adding pins, 6-9
bus pins, 6-11
colors, 9-14
creating symbols, 6-4
default symbol type, 9-8

Index

Index-7 Synario Capture System User Manual

display options, 5-24
error checking, 6-14
features, 5-1
graphic options, 5-25
grid settings, 6-5
invoking, 6-5
line widths, 6-6
log file, 4-12
redoing commands, 5-21
saving files, 4-14
setting default type, 6-5
setting origin, 6-14
text formatting, 5-26
Tools menu, 9-17
undoing commands, 5-21

Symbol files
describes, 2-2

Symbol graphics
defined, 2-2

Symbol Libraries, 2-1
compressed, 9-31
search paths for, 9-31

Symbol pins
defined, 2-2

Symbol text
defined, 2-2

Symbol type
setting default, 6-5

Symbol types
differences between PCB and IC design, 10-5
for IC design, 10-5
for PCB design, 10-5

Symbols
attributes, 6-2
creating, 6-4
defined, 2-1, 6-1
described, 5-3
electrical meaning, 6-1
file contents, 2-2
graphic elements, 6-2
pins, 6-2
setting default type, 9-8
setting type, 6-2
types, 6-2

Synario Capture System
See SCS

T
TANGO netlister, 10-33
Text

defined, 2-2
described, 5-4

Text size, 9-9
Time attribute window, 8-10
Timemill simulator interface, B-45
Timewave history file, B-16

example, B-17
Top-down design, 3-3

U
UNIX installation, 1-7
Unordered buses, 5-15
Updating schematics, 7-3

V
Verilog simulator interface, B-53
VeriOrder attribute, B-62
Vertical text, 9-9
VHDL simulator interface, B-68
View Report command, 7-19
View Report utility, 10-30
Viewing error reports, 7-19

W
Waveform Tools

timewave history file, B-16
Waveform Viewer

colors, 9-15
Windows installation, 1-1
Wires

adding, 5-9
automatic placement with net name, 5-12
constraints, 5-19
defined, 2-7
described, 5-3

Index

Synario Capture System User Manual Index-8

	Main Table of Contents
	Schematic Entry User Manuals
	Table of Contents
	Preface
	Using This Manual
	Synario Capture System Basics (Chapters 2 and 3)
	How to Use the Synario Capture System (Chapter 4 through Appendix B)
	Other Documents

	Chapter Contents
	SCS Components

	Chapter 1 Getting Started
	Chapter 2 Inside SCS
	Symbols
	Symbol Libraries
	What Does a Symbol Consist Of?

	Attributes
	Attribute Types
	Attribute Components
	Creating New Attributes

	Schematic Elements
	Symbols
	Wires
	I/O Markers
	Graphics
	Text

	Schematics Relation to Netlists
	Using Netlists

	Chapter 3 Introduction to Hierarchical Design
	What Is a Hierarchy?
	Advantages of Hierarchical Design
	Approaches to Hierarchical Design
	Top-Down Design
	Bottom-Up Design
	Inside-Out (“Mixed”) Design

	What is Hierarchical Organization?
	Symbols, Schematics, and Hierarchy
	Hierarchical Design Structure
	Hierarchical Naming
	Nets in the Hierarchy
	Automatic Aliasing of Nets

	Chapter 4 Basic Operation
	What SCS Can Do
	SCS Programs
	Using the SCS Executive
	Running the Editors or Hierarchy Navigator
	Editing Files
	Schematic Exchange/Conversion Utilities
	Setup Utilities

	Customizing the Executive with the pcshell.ini File
	pcshell.ini Format
	The SCS Executive Command Line

	SCS Command Structure
	Using the Mouse
	Right Mouse Button Functions

	Prompting and Error Messages
	Error Recovery

	Network Operation
	Naming Design Files
	Saving the Schematic or Symbol
	Printing and Plotting
	Windows
	UNIX/Motif

	The INI Editor

	Chapter 5 Using the Schematic Editor
	Chapter Contents
	What Is a Schematic?
	Schematic Sheets Versus Hierarchical Levels

	Schematic Components
	Symbols
	Wires
	Attributes
	Graphics and Text

	Adding Schematic Elements
	Selecting a Symbol
	Placing the Symbol

	Wiring the Schematic
	Drawing Wires

	Nets and Buses
	Net Names
	Entering Net Names
	Placing the Net Name
	Renaming a Net
	Specifying Signal Direction
	Buses
	Bus Pins

	Wiring Constraints
	Modifying the Schematic
	Clipboard Commands
	Non-Clipboard Commands

	Debugging and Verifying a Schematic
	”Unconnected Pin” Message

	Schematic Editor Display Options
	Schematic Sheets
	Grids
	Controlling Display and Graphics Options

	Setting Attribute Values
	Pin Attributes
	Symbol Attributes
	Net Attributes
	Attribute Windows

	Chapter 6 Using the Symbol Editor
	Symbol Components
	Graphics
	Pins
	Attributes

	Symbol Types
	Component and Gate Symbols
	Cell Symbols
	Block Symbols
	Pin Symbols
	Graphic Symbols
	Master Symbols

	Creating Symbols
	Starting the Symbol Editor
	Grids
	Drawing Graphics and Fixed Text
	Saving a Symbol
	Printing the Symbol
	Editing Symbols

	Preparing Symbols for Schematics
	Pins
	Bus Pins
	Attributes
	Checking Symbols
	“Unconnected Pin” Message

	Creating Block Symbols in the Schematic Editor
	Making a Block Symbol for the Loaded Schematic

	Chapter 7 Using the Hierarchy Navigator
	Hierarchy Navigator Functions
	Navigating a Design
	Updating Schematics
	Push/Pop

	Tracing Signals
	Mark
	Query

	Setting and Overriding Attributes
	Pin Attributes
	Symbol Attributes
	Net Attributes
	Attribute Windows

	Additional Hierarchy Navigator Features
	Analysis Tools
	ERC and PCB Checkers
	Types of Analysis Performed by the Checkers
	Operating the Electrical Rules Checker
	Operating the PCB Checker

	The View Report Utility
	Viewing Critical Paths
	Netlists and Interfaces
	The Packager

	Chapter 8 Attributes
	Attribute Functions
	Attribute Types
	Attribute Components
	Attribute Name
	Attribute Number
	Attribute Value
	Attribute Modifier
	Attribute Window

	Modifying Attributes
	Symbol Attributes
	Pin Attributes
	Net Attributes

	Creating New Attributes
	Attribute Names
	Attribute Modifiers
	Assigning Values to Simple Attributes
	Changing Attribute Values in the Schematic Editor
	Removing Attributes from a Netlist
	Displaying Attribute Values on a Schematic
	Reassigning Attribute Windows

	Number Notation in Attributes
	Derived Attributes
	Examples of Derived Attributes

	Chapter 9 The SCS INI Editor
	The binary.ini File
	Custom INI Files
	INI Editor Menus

	Controls Menu
	System Controls
	Display Controls
	Symbol Controls
	Graphic Options
	Sheet Layout
	Sheet Sizes
	Wave Controls
	Global Nets
	Colors
	Wave Colors
	Print Controls

	Tools Menu
	Symbol Tools
	Schematic Tools
	Navigator Tools
	Navigator Processes

	Attributes Menu
	Symbol, Pin, and Net Attributes
	Example Attributes
	Global Attributes

	Search Paths Menu
	Project, Model, and Symbol Libraries

	Libraries and Directory Structures
	Program Directories
	User Directories
	Library Directories

	Chapter 10 PCB Design Considerations
	Configuring for PCB Design
	Differences between IC and PCB Design
	PCB Attributes
	Symbol Attributes
	Pin Attributes

	Symbol Types
	DeMorgan-Equivalent Gates
	Instance Names and Reference Designators
	Reference Designators
	Instance Names
	Assigning Reference Designators
	Gate Assignment
	Pin Swapping

	Example PCB Design
	System Configuration
	Creating a Gate Symbol
	Create the Latch Schematic

	Auto Packaging of PCB Devices
	Configuration Information
	Query Packaging
	Check Packaging
	Clear Packaging
	Auto Package
	Reference Designator
	Pin Number

	PCB Back Annotation Interfaces
	The Back Annotation Programs
	PADS PCB-specific Features
	RINF-specific Features

	PCB Netlisters
	Features Common to All PCB Netlisters
	Attributes Needed for Netlisting
	Preparing Schematics
	PCB Power Pins
	View Report Facility
	Error Messages
	PADS PCB-specific Features
	RINF-specific Features
	PCAD-specific Features
	CADNETIX-specific Features
	CADSTAR-specific Features
	TANGO-specific Features
	Required Attributes
	Non-Homogeneous Gates Example
	DeMorgan-Equivalent Gates Example
	Netlisting Example
	ASCII Netlist Format

	The Packlist Bill-of-Materials Program
	What Packlist Does
	Command Line Options
	The packlist.ini File

	Appendix A Generic Interfaces
	Archive Utility
	ASCII Interface
	EDIF Interfaces
	Generic Netlists

	Appendix B Simulator Interfaces
	SILOS
	Timewave History File Format
	Simulation Environment
	SPICE
	SPICE Format Conversions
	Timemill
	Verilog
	VHDL Interface
	Exporting the Stimulus File

	Index

