
Keil Software, Inc. Application Note

Using the Intel 8x930Ax and 8x930Hx with RISM251 APNT_109

Page 1 of 12 Revision date: 23-Feb-97

OVERVIEW
Intel provides the USBM Evaluation
board for developers interested in the
Universal Serial Bus (USB). The USBM
includes the 8x930Ax USB device and the
RISM251 monitor.

The Keil C251 Compiler, A251
Assembler, and dScope-251 Debugger
fully support the Intel 8x930Ax USB
device and the RISM251 monitor.

This application note describes a number
of configuration details regarding the Intel
board, the RISM monitor, and the Keil
tools.

If you have questions this application note does not address, contact our technical support group at
support@keil.com.

USBM EVALUATION BOARD CONFIGURATION
The USBM Evaluation Board from Intel lets you evaluate the 8x930Ax and 8x930Hx USB
devices. The USBM includes the following:

n An EPROM in SOCKET A that contains the RISM251 monitor.

n A 128 Kbyte RAM in SOCKET B that is used for your target program and memory.

n The 8x930 device that is the 251-compatible USB part.

n DIP switches for simple board configuration.

n Serial port jacks for the internal 8x930 UART and for a 16550 external UART.

n LEDs on P1 that you may use to prove that the board really does something.

n USB upstream and downstream jacks.

n A RESET button.

n A green power LED.

There are a few things you should check out and know about the board before you begin.

Keil Software, Inc. Application Note

Using the Intel 8x930Ax and 8x930Hx with RISM251 APNT_109

Page 2 of 12 Revision date: 23-Feb-97

8X930XX ADAPTER BOARD (DAUGHTER CARD)
The USBM evaluation board was originally designed for the 82930
USB device. This chip is now obsolete and should not be used. Intel
released a daughter card that plugs into the USBM board on top of the
82930 socket. To install the daughter card, you must perform the
following steps.

1. Unplug the power supply from the USBM board.

2. Remove the 82930 devices from the PLCC socket. We
recommend using a chip extractor to accomplish this. However,
you may also use a tiny screwdriver, a dentists’ pick, or a car key (for a really small car).

3. Remove the RISM monitor EPROM from SOCKET A.

4. Plug the daughter card into the USBM making sure the IDC connectors on the bottom of the
daughter card align with the IDC pins on the USBM.

5. Plug the new RISM monitor (ours is labeled RISM-AA 07/19/96) into SOCKET A. If your
EPROM is a 28-pin device, make sure pin 14 is plugged into pin 16 of SOCKET A.

This completes installation of the daughter card. Once again, DO NOT USE the 82930 device and
DO NOT USE the USBM without the daughter card and the new RISM monitor.

8X930AX AND 8X930HX DEVICES
In the prototyping stages of chip development, a number of 8x930 devices were manufactured that
were only marginally functional or not functional at all. In developing software for the 930, we
have noticed that some chips work and some do not. Make sure you are using the latest version of
the chips available.

POWER SUPPLY
The USBM requires an external, regulated power supply. Be extremely careful connecting power
to the USBM. Make careful note of the polarity of the plug since it is very easy to plug it in
backwards. GND and +5V are clearly marked on the board. If the polarity of the plug is not
correct, you may destroy the board.

Keil Software, Inc. Application Note

Using the Intel 8x930Ax and 8x930Hx with RISM251 APNT_109

Page 3 of 12 Revision date: 23-Feb-97

DIP SWITCHES
The USBM has 2 sets of DIP switches and a number of jumpers you must configure. Typically,
these are preset from the factory, but you should verify them anyway.

S1 Settings

S1-1
RD1

S1-2
RD0

S1-3
ADS2

S1-4
ADS1

S1-5
ADS0

S1-6
ADT1

S1-7
ADT0

S1-8
EA*

on on on off off off on on

S2 Settings

S2-1
MOD1

S2-2
MOD0

S2-3
UARTC

S2-4
ALONE

S2-5 S2-6 S2-7 S2-8

on off on on off off off off

JUMPER SETTINGS
The following jumpers on the USBM must be installed:

Jumper Description Jumper Description

JW5 P12V JW15 NON-PAGE

JW6 SHDN* JW16 NON-PAGE

JW7 FULL JW17 NON-PAGE

JW8 P5V JW18 NON-PAGE

JW9 Short pin 1 and pin 2 JW19 NON-PAGE

JW10 Short pin 1 and pin 2 JW20 NON-PAGE

JW12 NON-PAGE JW22 INT

JW13 NON-PAGE JW24 INT0

JW14 NON-PAGE

In addition to the jumpers on the USBM, the following jumpers on the daughter card must be
installed.

Jumper Description

JW2 Short pin 2 and pin 3

JW3 Short pin 1 and pin 2

JW4 Short pin 1 and pin 2

Keil Software, Inc. Application Note

Using the Intel 8x930Ax and 8x930Hx with RISM251 APNT_109

Page 4 of 12 Revision date: 23-Feb-97

EXTERNAL UART (16550)
The external 16550 UART at U14 uses the serial port connector at J2 to connect to your PC. This
is the same chip used in the PC for serial communications and it should work well with any PC.
This is the UART we recommend using.

Parameter Specification

Baud Rate 19,200

Serial Jack J2

Label UART

When you debug using the external UART, the on-chip UART of the 8x930 is available for your
target program to use.

ON-CHIP UART (8X930AX)
The on-chip UART uses the serial port connector at J1 to connect to your PC. Even though the
on-chip UART will work, we recommend that you use the external UART instead.

Parameter Specification

Baud Rate 9,600

Serial Jack J1

Label SERIAL I/O

Your target application may not use the on-chip UART when you debug using RISM251. This is
not a limitation with the Keil MON251 monitor.

STAND-ALONE PROGRAMS
When you create stand-alone programs for the 930, you do not need to take any considerations for
monitor programs or other obtrusive debugging tools. The following table lists several parameters
that should be obvious from the User’s Manuals for these chips.

Parameter Specification

Reset Vector Address 0xFF0000

Interrupt Vector Address 0xFF0003

DATA Memory 0x000000-0x00007F

EDATA Memory 0x000000-0x00041F

Keil Software, Inc. Application Note

Using the Intel 8x930Ax and 8x930Hx with RISM251 APNT_109

Page 5 of 12 Revision date: 23-Feb-97

RISM251 PROGRAMS
The RISM251 (Reduced Instruction Set Monitor 251) is the Intel monitor for the 251 and for the
8x930Ax and Hx. RISM is already programmed in the EPROM supplied with the board. RISM
communicates with a PC-hosted debugger using the serial port of the PC and a UART on the
USBM (either external or on-chip). Using RISM, you may download code, view memory, and
single-step through your program.

Debugging programs using RISM requires that you first make a few changes to your program.
The following table lists the parameters for debugging with RISM.

Parameter Specification

Reset Vector Address 0x004000

Interrupt Vector Address 0x004003

DATA Memory 0x000000-0x00001F and
0x000040-0x00007F

EDATA Memory 0x000000-0x00001F and
0x000040-0x00041F

Reserved Memory 0x000020-0x00003F

MEMORY REQUIREMENTS
RISM is not a totally unobtrusive monitor. It does use some resources of the CPU. Specifically,
you must be concerned with memory that RISM uses. Although this memory area seems to change
with each revision, the area from 0x20 to 0x3F in the DATA area seems to be fairly consistent.

First, you must inform the linker that the space from 0x000020 to 0x00003F is reserved. The
linker should not locate any variables in this area. Refer to the L251 Linker Configuration section
below.

Second, you must modify the startup code so that the internal memory is not cleared. By default,
the startup code for the Keil tools clears all internal memory from 0x000000 to 0x00041F. This
includes the area from 0x000020 to 0x00003F. Clearing this area causes RISM to crash. Refer to
the Startup Code Configuration section below.

RESET VECTOR (PROGRAM LOAD ADDRESS)
On reset, the 930 begins executing code at address 0xFF0000. When you burn an EPROM with
your target program, this is where it must start.

When debugging using RISM, the monitor must begin at this address. Since two programs cannot
occupy the same address space, your target program must be relocated. RISM assumes that your
program loads at address 0x004000 and redirects the reset vector to that location. If you write
relocatable programs, it is very easy to change the starting address using the Keil L251 Linker.
Refer to the L251 Linker Configuration section below.

Keil Software, Inc. Application Note

Using the Intel 8x930Ax and 8x930Hx with RISM251 APNT_109

Page 6 of 12 Revision date: 23-Feb-97

INTERRUPT VECTORS
The interrupt vector table for the 930 is located starting at address 0xFF0003. Each interrupt is
offset by eight bytes. For example, interrupt 0 is at address 0xFF0003, interrupt 1 is at address
0xFF000B, interrupt 2 is at address 0xFF0013, and so on.

When debugging with RISM, the monitor redirects the interrupt vectors to your target program at
offset 0x004000. For example, interrupt 0 is at address 0x004003, interrupt 1 is at address
0x00400B, interrupt 2 is at address 0x004013, and so on. If you write relocatable programs, it is
very easy to change the starting address using the Keil L251 Linker. Refer to the L251 Linker
Configuration section below.

MONITOR CAVEATS
Debugging using any MONITOR program has certain limitations that are not present in a
simulator or a real-time emulator.

n The MONITOR is a software application that runs on your target hardware. You must be
careful to work within the boundaries set by the MONITOR. For example, if the MONITOR
uses a certain area of memory, your program must avoid that memory area.

n Stepping over code that changes the stack point will probably cause the monitor to crash. This
is true because the monitor uses the hardware stack for its calls.

RISM CAVEATS
Debugging using RISM has certain limitations that you must consider before you begin debugging
your program.

n RISM uses data memory from 0x000020 to 0x0003F. Your program must avoid this memory
area.

n RISM uses the serial interrupt (at the highest priority level) to communicate with the host PC.
You cannot debug other interrupts that run at the highest priority level.

n RISM expects that your target program starts at 0x004000 and that the interrupt vector table
starts at 0x004003. You must take steps to locate your reset and interrupt vectors
appropriately.

Keil Software, Inc. Application Note

Using the Intel 8x930Ax and 8x930Hx with RISM251 APNT_109

Page 7 of 12 Revision date: 23-Feb-97

APBUILDER NOTES
The Intel ApBuilder program helps you get started generating code for the 930. Unfortunately, the
code emitted by ApBuilder is not relocatable. This is OK if you don’t mind changing your
program each time you switch between debugging with RISM and making a stand-alone program
in EPROM.

By writing relocatable programs, you can use the Keil L251 linker/locator to relocate your
program automatically. Then, it becomes easy to switch between debugging with RISM and
making a stand-alone program.

The following notes will help to convert the ApBuilder output

1. Copy REG930AX.INC from the Keil \C251\ASM directory and include it instead of
930AXREG.INC. 930AXREG.INC is not complete and its HEX constants do not include the
requires starting digit (0-9).

2. Add the following lines to REG930AX.INC. These are 16-bit SFRs that are used by the
program.

RXCNT DATA 0E6h
TXCNT DATA 0F6h

3. In ENUM_AX.ASM, change the include directive to be path insensitive. This makes examples
that can be located in any directory.

4. In ENUM_AX.ASM, change the ORG 00:40?? statements to CSEG AT 00??h statements.
This does several good things:

n It tells the assembler that the following stuff is a CODE segment (CSEG).

n It gets rid of those pesky “Error 37” messages.

n Rather than specifying an absolute address, it specifies an offset within the CODE
segment. Why is this a big deal? Well, if you develop the code for the RISM board, you
want the code to start at 00:4000h. However, if you develop a stand-alone program for
your own hardware, you want it to start at 0FF:0000h. If you use absolute addresses in
your program, then you have to make a RISM version and a stand-alone version of the
program. You don’t need to do that with the Keil tools if you make a relocatable program.

n The linker can easily relocate the program to any location.

5. In ENUM_AX.ASM, put comments (;) in front of all of the COMMENT blocks so that the
assembler doesn’t try to interpret it as program stuff.

Keil Software, Inc. Application Note

Using the Intel 8x930Ax and 8x930Hx with RISM251 APNT_109

Page 8 of 12 Revision date: 23-Feb-97

6. In ENUM_AX.ASM, locate the STATE and PHASE variable declarations and move them out
of the middle of the program code. We suggest that you copy the following code above the
RESET vector stuff and declare the STATE and PHASE variables to use DATA memory.
This is the fastest way to go. However, since RISM uses some amount of DATA memory you
may want to put these variables in EDATA.

 ;MYSEG SEGMENT DATA ; DATA segment definitions
 MYSEG SEGMENT EDATA ; EDATA segment definitions
 RSEG MYSEG

 ; ---------
 ; Variables
 ; ---------
 ; STATE variable -- set in Check_State
 ; if 1, in control read
 ; if 2, control write
 ; if 3, no data control write
 STATE: DS 1 ; reserve 1 byte

| ; PHASE variable
 ; if 1, in setup phase
 ; if 2, in data phase
 ; if 3, in status phase
 PHASE: DS 1 ; reserve 1 byte

Keil Software, Inc. Application Note

Using the Intel 8x930Ax and 8x930Hx with RISM251 APNT_109

Page 9 of 12 Revision date: 23-Feb-97

KEIL TOOLS CONFIGURATION
There are essentially four components of the Keil C251 software that you must configure to use
RISM and the Intel USBM evaluation board. They are:

n Startup Code,

n C251 Compiler,

n A251 Assembler,

n L251 Linker/Locator.

STARTUP CODE CONFIGURATION
The startup code for the Keil compiler is pre-assembled and stored in the library. If you do not
explicitly include startup code in your project, the L251 linker will automatically include the
startup code from the library.

Usually, the default startup code is acceptable for most programs. However, the default startup
code causes RISM to crash. This is due to the memory clearing performed by the startup code.

To create programs for use with RISM, you must modify the startup code to leave memory intact.
This is a 2-step process.

1. Copy the startup code (START251.A51) from the \C251\LIB directory to your project
directory.

2. Edit your copy of START251.A51 and change EDATALEN from 420h to 0h as shown below.

;---
;
; User-defined Power-On Zero Initialization of Memory
;
; With the following EQU statements the zero initialization of memory
; at processor reset can be defined:
;
; ; the absolute start of EDATA memory is always 0
EDATALEN EQU 0H ; the length of EDATA memory in bytes.
 ; put 0h here to use RISM-251
;
XDATASTART EQU 10000H ; the absolute start-address of XDATA memory
XDATALEN EQU 0 ; the length of XDATA memory in bytes.
;
HDATASTART EQU 10000H ; the absolute start-address of HDATA memory
HDATALEN EQU 0 ; the length of HDATA memory in bytes.
;
; Note: The EDATA space overlaps physically the DATA, IDATA, BIT and EBIT
; areas of the 251 CPU.
;
;---

Keil Software, Inc. Application Note

Using the Intel 8x930Ax and 8x930Hx with RISM251 APNT_109

Page 10 of 12 Revision date: 23-Feb-97

C251 COMPILER CONFIGURATION
Configuring the Keil C251 compiler is easy
using the µVision integrated development
environment. There are only three items you
must configure for the compiler.

n Include or Exclude Debug Information.

n Interrupt Stack Frame Size (2 bytes or 4
bytes).

n Binary Mode or Source Mode.

Debug Information
To include debug information like line numbers and symbolic information in the object file that
C251 generates, make sure to check the Include debug information check box. There is really no
reason to exclude debugging information, so this box should always be checked.

Interrupt STack Frame Size
The 930 chip can be configured to save 2 bytes or 4 bytes on the stack when an interrupt occurs.
When saving 2 bytes, the lower 2 bytes of the program counter are saved. When saving 4 bytes,
the lower 3 bytes of the program counter and the PSW1 register are saved.

The C251 Compiler must know the frame size supported by your hardware so that it can take
appropriate steps in the interrupt code it generates. For example, if the CPU saves only 2 bytes on
the stack, the compiler must generate code to save the PSW register on the stack. However, if the
CPU already saves the PSW, there is no need for the compiler to generate redundant code and
waste space and time in your program.

If your CPU is configured to save only 2 bytes in an interrupt, you must check the Save PSW1 in
C251 interrupt code check box. This instructs the C251 compiler to generate code to push and
pop PSW1.

If your CPU is configured to save all 4 bytes in an interrupt, make sure the Save PSW1 in C251
interrupt code check box is unchecked.

Note that the Intel USBM evaluation board configures the CPU to save all 4 bytes in an interrupt.

Binary Mode and Source Mode
The DIP switch and jumper setting specified above for the Intel USBM evaluation board specify
binary mode. If you want to use source mode, you must change the appropriate DIP switches and
the Code Generation method in the C251 Compiler Options dialog box.

Debug
Information

2-byte or
4-byte
stack
frames.

Source
mode or
Binary
mode.

Keil Software, Inc. Application Note

Using the Intel 8x930Ax and 8x930Hx with RISM251 APNT_109

Page 11 of 12 Revision date: 23-Feb-97

A251 ASSEMBLER CONFIGURATION
Configuring the Keil A251 assembler is easy
using the µVision integrated development
environment. There are only two items you
must configure.

n Include or Exclude Debug Information.

n Binary Mode or Source Mode.

Debug Information
To include debugging information like line numbers and symbolic information in the object file that
A251 generates, make sure to check the Include debug information check box. There is really no
reason to exclude debugging information, so this box should always be checked.

Binary Mode and Source Mode
The DIP switch and jumper setting specified above for the Intel USBM evaluation board specify
binary mode. If you want to use source mode, you must change the appropriate DIP switches and
the Code Generation method in the A251 Assembler Options dialog box.

L251 LINKER CONFIGURATION
To link your programs to use RISM, you
must configure the linker to relocate the
reset and interrupt vectors to start at
0x0040000 and you must reserve the
memory used by RISM.

Controls in the L251 Linker Options dialog
box under the Misc tab let you set segment
class offsets and reserve memory areas.

Setting the Code Offset

To set the offset for the CODE class, you must enter the following in one of the Class 1, Class 2,
Class 3, or Class 4 input lines.

code($0x004000, 0x004000)

In this command, $0x004000 tells the linker that the program counter starts at 0x004000. This is
only used by the debugger to properly locate the program counter for non-standard programs
(standard programs start at 0xFF0000).

Debug
Information.

Source
mode or
Binary
mode.

Keil Software, Inc. Application Note

Using the Intel 8x930Ax and 8x930Hx with RISM251 APNT_109

Page 12 of 12 Revision date: 23-Feb-97

The second 0x004000 tells the linker to offset all absolute CODE segments by 0x004000. In
other words, code generated by the following assembly code…

 CSEG at 0
 NOP

is located at 0x004000 rather than at offset 0.

By default, the CODE segment is assumed to have an offset of 0xFF0000 (since that is where the
930 begins executing code after reset) and the program counter is assumed to begin at 0xFF0000.

To change your project to create a stand-alone program that will not use RISM, you may remove
the CODE class setup shown above.

Reserving Memory
To reserve an area of memory you must enter the starting and ending addresses separated by a
dash (‘-’) in either the Reserve 1 or Reserve 2 input line. To reserve the memory area from
0x000020 to 0x00003F (which is required by RISM), you must enter the following:

0x000020-0x00003F

To change your project to create a stand-alone program that will not use RISM, you may remove
the memory reservation shown above.

CONCLUSION
Using relocatable programs makes configuring your USB programs for stand-alone operation and
for RISM debugging relatively easy.

Copyright © 1997 Keil Software, Inc. All rights reserved.

In the USA: In Europe:
Keil Software, Inc. Keil Elektronik GmbH
16990 Dallas Parkway, Suite 120 Bretonischer Ring 15
Dallas, TX 75248-1903 D-85630 Grasbrunn b. Munchen
USA Germany

Sales: 800-348-8051 Phone: (49) (089) 45 60 40 - 0
Phone: 972-735-8052 FAX: (49) (089) 46 81 62
FAX: 972-735-8055

E-mail: sales.us@keil.com Internet: http://www.keil.com/ E-mail: sales.intl@keil.com
support.us@keil.com support.intl@keil.com

