
CPC945 Bridge and Memory Controller

User Manual

A15-6010-02a

Preliminary
February 1, 2008

Title Page

®

© Copyright International Business Machines Corporation 2006, 2008

All Rights Reserved
Printed in the United States of America February 2008.

The following are trademarks of International Business Machines Corporation in the United States, or other countries, or
both.
IBM PowerPC
ibm.com PowerPC Architecture
IBM Logo

Other company, product, and service names may be trademarks or service marks of others.

All information contained in this document is subject to change without notice. The products described in this document
are NOT intended for use in applications such as implantation, life support, or other hazardous uses where malfunction
could result in death, bodily injury, or catastrophic property damage. The information contained in this document does not
affect or change IBM product specifications or warranties. Nothing in this document shall operate as an express or implied
license or indemnity under the intellectual property rights of IBM or third parties. All information contained in this docu-
ment was obtained in specific environments, and is presented as an illustration. The results obtained in other operating
environments may vary.

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROVIDED ON AN “AS IS” BASIS. In no event will IBM be
liable for damages arising directly or indirectly from any use of the information contained in this document.

IBM System and Technology Group
2070 Route 52, Bldg. 330
Hopewell Junction, NY 12533-6351

The IBM home page can be found at ibm.com®

The IBM Semiconductor solutions home page can be found at ibm.com/chips

A15-6010-02a
February 1, 2008

Note: This document contains information on products in the sampling and/or initial production phases of
development. This information is subject to change without notice. Verify with your IBM field applications
engineer that you have the latest version of this document before finalizing a design.

While the information contained herein is believed to be accurate, such information is preliminary, and should not be
relied upon for accuracy or completeness, and no representations or warranties of accuracy or completeness are made.

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
Contents

Page 3 of 655

Contents

List of Figures ... 17

List of Tables ... 21

1. Overview .. 27
1.1 Introduction ... 27
1.2 Features .. 27
1.3 Block Diagrams ... 28

2. Functional Description ... 29
2.1 External Interfaces .. 29

2.1.1 Processor Interconnect (PI) ... 29
2.1.2 SDRAM Interface ... 30
2.1.3 PCI Express Interface .. 30
2.1.4 HyperTransport Host Bridge .. 30
2.1.5 DRAM I2C Master Interface .. 30
2.1.6 I2C Slave Configuration Register Interface ... 30
2.1.7 Interrupt Controller ... 31

2.2 Implementation .. 31
2.2.1 CPC945 Clocking .. 31

2.2.1.1 Processor Interconnect Clock .. 31
2.2.1.2 DDRClk .. 31
2.2.1.3 PCI Express Clocking ... 31
2.2.1.4 HyperTransport Clock .. 32
2.2.1.5 Power Manager Clock .. 32

2.2.2 ROM Controller .. 32
2.2.3 CPC945 Core Interface (API Interface) ... 32
2.2.4 PCI Express and HyperTransport Bus Interfaces .. 33

2.2.4.1 PCI Express and HyperTransport Transactions ... 33
2.2.4.2 Processor Interconnect to PCI Express Transaction Mapping 33
2.2.4.3 Processor Interconnect to HyperTransport Transaction Mapping 33
2.2.4.4 PCIe/HT-to-Processor Interconnect Virtual Transaction Mapping 33
2.2.4.5 PCIe Transaction Ordering ... 34
2.2.4.6 Data Consistency/Memory Coherence ... 34
2.2.4.7 Endianess ... 34

2.2.5 Exceptions ... 36
2.2.5.1 Invalid Addresses ... 36
2.2.5.2 Invalid Burst Transactions .. 36
2.2.5.3 Invalid Transaction Types .. 36

2.2.6 Interrupts ... 37

3. CPC945 Core Interface (API Interface) .. 39
3.1 CPC945 Core Interface Overview ... 39

3.1.1 General Description of the Request Interfaces .. 41
3.1.1.1 CRRAI / CWRAI – Coherent Read/Write Request Address Interface 42
3.1.1.2 NCRAI – Non-Coherent Request Address Interface .. 42

User Manual

CPC945 Bridge and Memory Controller Preliminary

Contents
Page 4 of 655 February 1, 2008

3.1.1.3 TRAI / TWAI – Target Read/Write Address Interface ... 42
3.1.1.4 TAI – Target Address Interface .. 42

3.1.2 General Description of the Data Interfaces .. 42
3.1.2.1 WDI – Write Data Interface .. 44
3.1.2.2 RDI – Read Data Interface ... 44
3.1.2.3 MWDI – Memory Write Data Interface .. 44
3.1.2.4 MRDI – Memory Read Data Interface .. 44
3.1.2.5 AMRDI – API from Memory Read Data Interface ... 44
3.1.2.6 MWDBI – Memory Write Data Buffer Interface ... 44

3.2 Illustration of Requests and Dataflow within PI ... 45
3.2.1 HT Inbound Request .. 45
3.2.2 PCIe Inbound Request ... 47
3.2.3 PI Target Requests .. 49

3.3 PI Bus Timing Parameters .. 51
3.4 DMA Address Relocation Table (DART) ... 53

3.4.1 DART Format in Main Memory .. 54
3.4.2 DART Translation Process .. 55
3.4.3 DART TLB Format ... 57
3.4.4 DART TLB Translation ... 60

3.5 Processor Interconnect Interface Microarchitecture .. 61
3.5.1 System Overview ... 61
3.5.2 ApiIf Operation ... 61

3.5.2.1 Commands from Processor .. 63
3.5.2.2 Resources .. 69
3.5.2.3 Resource Descriptions ... 69

3.5.3 Ordering of Operations .. 73
3.5.3.1 Processor Commands .. 73

4. Processor Interconnect Bus ... 77
4.1 Processor Interface Alignment Procedure ... 78

4.1.1 Determining PI Bus Parameters .. 79
4.1.2 Error Register Information .. 83
4.1.3 Additional Debug Information ... 83
4.1.4 API Programming Procedure ... 84
4.1.5 Configuring for Single PI Port Usage ... 87
4.1.6 Internal versus External APSync ... 88

4.2 Processor Interface Endian Order ... 89
4.3 Processor Interface Balanced Encoding ... 90
4.4 Bus Snoops and Coherency .. 90
4.5 Processor Interface Slave Transactions .. 91
4.6 Processor Interface Master Transactions .. 92
4.7 TEA, DERR, Checkstop .. 93

4.7.1 Transfer Error Acknowledge .. 93
4.7.2 Data Error Signal and Checkstop .. 93
4.7.3 Additional System Exceptions .. 94

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
Contents

Page 5 of 655

5. PCI Express ... 95
5.1 Introduction ... 95

5.1.1 PCIe Registers .. 97
5.1.2 Addressing ... 97
5.1.3 DART ... 97
5.1.4 PCIe Bus I/O Space .. 97
5.1.5 CPC945 PCIe Bus Address Decoding .. 97

5.2 PCI Express Concepts .. 98
5.2.1 Transmit Layer Packet ... 98
5.2.2 PI Versus TL Data Formatting Differences .. 102
5.2.3 Error Checking ... 106
5.2.4 Message Decode ... 108

5.3 Configuration Register Access .. 109
5.3.1 Indirect Method .. 109
5.3.2 Limited Direct Access Method ... 112
5.3.3 Direct Access Method .. 113
5.3.4 SBus Direct Configuration Access Method .. 113
5.3.5 I2C Direct Configuration Access Method ... 113

6. HyperTransport ... 115
6.1 Overview ... 115
6.2 Initializing HyperTransport Core in the CPC945 ... 115

6.2.1 Programming the HyperTransport core ... 117
6.2.1.1 HT1 Address Mask Register (0xF8070200) ... 117
6.2.1.2 Link Config/Control Register (0xF8070110) ... 117
6.2.1.3 LinkFreqCap/LinkError/Link Freq/RevisionID Register (0xF8070120) 117
6.2.1.4 Error Handling/Enumeration Scratchpad Register (0xF807140) 117
6.2.1.5 Example of Programming Sequence .. 117

6.3 DART .. 118
6.4 HyperTransport Read Size Restriction .. 118
6.5 HyperTransport Address Space .. 118
6.6 HyperTransport Bus Address Decoding .. 118
6.7 HyperTransport Address Mapping .. 119

6.7.1 Downstream Requests .. 119
6.7.2 Upstream Requests ... 121

6.8 Reset ... 122
6.9 Exceptions to HT Specification 1.04 ... 123

6.9.1 Bridge Control Register ... 123
6.9.2 Updating the PLL ... 123
6.9.3 Ordering through CPC945’s Primary Interface .. 124
6.9.4 HyperTransport SERR# .. 125

6.10 HyperTransport Registers ... 127

7. DDR2 Memory Controller ... 129
7.1 Feature Summary ... 129
7.2 Memory Controller Basics ... 130
7.3 Memory Configurations ... 131

User Manual

CPC945 Bridge and Memory Controller Preliminary

Contents
Page 6 of 655 February 1, 2008

7.4 Supported Memories ... 132
7.4.1 Sizes .. 132
7.4.2 Speeds ... 132
7.4.3 DDR2 Features .. 133
7.4.4 DIMMs .. 133

7.5 Clocks .. 134
7.6 Data Transfers ... 134
7.7 Operational States ... 135

7.7.1 Power On Reset ... 135
7.7.2 Memory Controller Bring-up Summary .. 136
7.7.3 Normal Operation ... 138

7.7.3.1 Page Access ... 138
7.7.3.2 Power Management During Normal Operation .. 139

7.7.4 Self Refresh ... 139
7.7.4.1 Self Refresh Entry .. 140
7.7.4.2 Self Refresh Exit from Chip Sleep .. 140
7.7.4.3 Self Refresh Exit from Chip Power On ... 141

7.8 Internal Operation Overview .. 142
7.8.1 Control ... 143
7.8.2 Data ... 145

7.8.2.1 Read-Modify-Writes .. 145
7.8.3 DDR2 PHY ... 146

7.9 Memory Programming Control .. 147
7.9.1 MemInitReg Execution ... 147
7.9.2 Looping .. 148
7.9.3 Termination .. 148
7.9.4 First Use ... 148
7.9.5 Auto Refresh .. 148
7.9.6 SDRAM Commands ... 150

7.10 Memory Device Initialization .. 151
7.10.1 MRS Settings ... 152
7.10.2 EMRS Settings ... 153

7.11 MRS Register .. 154
7.12 Refresh .. 154
7.13 Memory Request Arbiter ... 155
7.14 Address Decode .. 156

7.14.1 64/128 Cfg/Bus .. 156
7.14.2 DIMMs/DIMM pairs .. 156
7.14.3 Installed DIMMs ... 156
7.14.4 Single-Sided/Double-Sided .. 156
7.14.5 Chip Size and Organization ... 157
7.14.6 Page Policy .. 157
7.14.7 Interleave Mode ... 157
7.14.8 Chip Select Mode ... 158
7.14.9 Start Address, Add 2G/Sub 2G .. 161
7.14.10 DIMM Configuration Algorithm ... 163
7.14.11 DIMM Configuration Examples .. 165

7.14.11.1 Example 1 ... 165
7.14.11.2 Example 2 ... 166

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
Contents

Page 7 of 655

7.14.11.3 Example 3 .. 167
7.14.11.4 Example 4 .. 168

7.14.12 Address Mapping ... 169
7.14.13 Address Mapping Exceptions .. 170

7.15 Timing Parameters .. 175
7.15.1 Data Bus Delay Greater than tCK ... 175
7.15.2 Restrictions .. 176
7.15.3 Timing Parameter Examples ... 176

7.16 Page Table/Timers .. 180
7.17 Reorder Queues .. 180

7.17.1 Queue Sizes .. 180
7.17.2 Queue Filling ... 181
7.17.3 Queue Entries .. 181
7.17.4 Queue Page Policy .. 182
7.17.5 Queue Entry Aging .. 183
7.17.6 Queue Write Conflicts .. 184
7.17.7 Queue Write High Watermarks .. 184
7.17.8 Queue Grant Mode .. 185

7.18 Command Arbiter .. 186
7.18.1 Queue to Queue Arbitration ... 188
7.18.2 Fast Path ... 188
7.18.3 Intra Queue Arbitration .. 189
7.18.4 RW Arbitration Mode ... 189
7.18.5 Two Cycle Addressing ... 190
7.18.6 Multiple Commands ... 190

7.18.6.1 RMW .. 190
7.18.6.2 128 Byte Transfers ... 191

7.18.7 Enforced Ordering ... 191
7.19 ECC ... 191

7.19.1 ECC Introduction ... 191
7.19.2 Writes .. 194
7.19.3 Reads .. 195
7.19.4 Partial Writes ... 195
7.19.5 Syndrome Decode ... 196

7.19.5.1 Nibble in Error .. 196
7.19.5.2 Bits in Error ... 203
7.19.5.3 Single Bit Errors ... 204
7.19.5.4 Address Parity and Special Uncorrectable Errors .. 205
7.19.5.5 Syndrome Decode Summary ... 205

7.19.6 Error Logging ... 205
7.19.7 Error Reporting .. 206
7.19.8 Error Injection .. 207
7.19.9 Byte Lane Substitution ... 207

7.20 Scrub ... 208
7.20.1 General .. 208
7.20.2 Scrub Arbitration .. 208
7.20.3 Scrub Addresses ... 208
7.20.4 Immediate with Fill Mode ... 209
7.20.5 Background Mode ... 210
7.20.6 Immediate Mode .. 210

User Manual

CPC945 Bridge and Memory Controller Preliminary

Contents
Page 8 of 655 February 1, 2008

7.21 External Connections Overview .. 211
7.21.1 Bus Configurations ... 212
7.21.2 External Data Multiplexers ... 212
7.21.3 Unused I/O ... 213

7.22 DDR2 PHY .. 213
7.22.1 Byte Lanes ... 213
7.22.2 Clusters .. 214
7.22.3 Relationship to Board Wiring ... 214
7.22.4 Bus Driving ... 215
7.22.5 Verniers .. 215
7.22.6 1/2 Bit Time Averager .. 216
7.22.7 DQS 1/2 Bit Time Offset .. 218

7.23 I/O Pad Control .. 220
7.23.1 I/O Pad Bit Settings .. 220
7.23.2 Relationship to Memory Chip Settings ... 222

7.24 Memory Clocks .. 222
7.25 Memory Control Signals .. 223

7.25.1 Adjustable Cycle Delay .. 223
7.25.2 Command .. 224
7.25.3 Address .. 224
7.25.4 Chip Select ... 224
7.25.5 CKE - Clock Enables ... 224
7.25.6 Dynamic CKE ... 225
7.25.7 ODT - On Die Termination ... 225

7.25.7.1 ODT Operation ... 225
7.25.7.2 ODT Timing .. 226
7.25.7.3 Other ODT Considerations ... 226

7.25.8 Control Signal Summary .. 227
7.26 Data Timing Coarse Controls .. 229
7.27 Write Data Timing .. 229

7.27.1 Write Coarse Timing .. 229
7.27.2 Write Vernier Timing .. 230

7.28 Read Data Timing ... 233
7.28.1 Read Timing Overview ... 233
7.28.2 Read ResetLdEn Timing .. 236
7.28.3 Read Unload Timing .. 238

7.29 Output Enable Timing .. 240
7.29.1 OE Coarse Timing ... 240
7.29.2 OE Vernier Timing ... 241

7.30 External Multiplexer Timing ... 242
7.30.1 ExtMux Coarse Timing ... 242
7.30.2 ExtMux Vernier Timing ... 244

7.31 DDR2 PHY Calibration Logic .. 245
7.31.1 Calibration Logic Overview .. 245
7.31.2 Calibration Bit DQS Capture Latches .. 249
7.31.3 Calibration Load Monitor .. 251

7.31.3.1 Summary of Load Calibration in Pulsed Mode ... 252
7.31.3.2 Summary of Load Calibration in Continuous Mode .. 252

7.31.4 ResetLdEnable .. 253

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
Contents

Page 9 of 655

7.31.5 Calibration Unload Monitor .. 254
7.31.6 Jitter Considerations .. 258
7.31.7 Calibration Setup ... 260
7.31.8 Single Step Mode .. 261

7.31.8.1 Single Step Use Summary ... 261
7.31.9 Autocalibration Mode ... 262

7.31.9.1 Autocal Overview ... 262
7.31.9.2 Bytelane Selection .. 262
7.31.9.3 Calibration Mode Selection .. 262
7.31.9.4 Generated Vernier Control Values ... 263
7.31.9.5 FSM Pass/Fail Determination ... 264
7.31.9.6 Control and Delay Measurement .. 265
7.31.9.7 Autocalibration Use Summary .. 265

8. I2C Interfaces .. 267
8.1 Overview ... 267
8.2 I2C Slave Interface .. 267

8.2.1 I2C Slave Interface Transactions .. 267
8.2.1.1 Control Register transaction types ... 267
8.2.1.2 I2C Transactions to any Physical Memory Location .. 271

8.3 I2C Master Interface .. 275
8.3.1 Overview .. 275
8.3.2 I2C Master Control Registers .. 275

8.3.2.1 MODE Register Usage ... 276
8.3.2.2 CNTRL Register Usage .. 276
8.3.2.3 STATUS Register Usage ... 276
8.3.2.4 ISR & IER Register Usage ... 276
8.3.2.5 ADDR, SUBADDR, & DATA Register Usage ... 277
8.3.2.6 REV Register .. 277
8.3.2.7 RISETIMECNT Register ... 277
8.3.2.8 BITTIMECNT Register ... 277

9. MPIC ... 279
9.1 Feature Summary ... 279
9.2 MPIC Organization .. 280
9.3 Interrupt Inputs .. 281

9.3.1 Interrupt 0, I2C Master ... 281
9.3.2 Interrupt 1, PCIe Link Error .. 281
9.3.3 Interrupt 2, HT Link .. 281
9.3.4 Interrupt 3, PCIe Slot ... 281
9.3.5 Interrupts 4:7, PM_Sleep[0:3] .. 282
9.3.6 Interrupts 8:123, HT Posted Write Interrupts, and PCIe Message Signaled Interrupts 282

9.3.6.1 HT Posted Write Interrupts ... 282
9.3.6.2 PCIe Message Signaled Interrupts ... 283
9.3.6.3 Merging of HT and PCIe Interrupts .. 283
9.3.6.4 Generating Interrupts with Register Writes .. 283

9.3.7 Interrupt Input Summary .. 284
9.4 Interrupt Outputs ... 285
9.5 Interrupt Controller .. 285

User Manual

CPC945 Bridge and Memory Controller Preliminary

Contents
Page 10 of 655 February 1, 2008

9.5.1 Global Reset/Enable .. 285
9.5.1.1 Toggle Register, MPICReset Bit ... 285
9.5.1.2 MPIC Global Configuration Register, Reset Controller Bit ... 285
9.5.1.3 MPIC Global Configuration Register, 8259 Pass Through Enable bit 286

9.5.2 Global Enable Summary .. 286
9.5.3 Registers .. 286

9.5.3.1 OpenPIC ... 286
9.5.3.2 OpenPIC Compliance ... 287
9.5.3.3 Deviations from the OpenPIC Specification ... 287

9.5.4 Interrupt Setup ... 290
9.5.4.1 Mask Bits .. 290
9.5.4.2 Sense Bits .. 290
9.5.4.3 Vectors ... 290
9.5.4.4 Priorities .. 290

9.5.5 Changing the Interrupt Setup ... 291
9.5.6 Interrupt Sequence .. 291
9.5.7 Nesting of Interrupt Events .. 292
9.5.8 Spurious Interrupts ... 293
9.5.9 Delivery Modes .. 293

9.5.9.1 Directed Mode .. 293
9.5.9.2 Distributed Mode .. 293
9.5.9.3 Exactly Once Delivery .. 293

9.5.10 Processor Identification .. 294
9.5.11 I/O Interrupts .. 294
9.5.12 Interprocessor Interrupts .. 294

9.5.12.1 IPI Priority Level Restrictions .. 295

10. System Initialization Sequence .. 297
10.1 Introduction .. 297
10.2 Power Sequencing .. 297
10.3 Power-On Reset .. 298

10.3.1 Hardware Reset Sequence .. 298
10.3.2 CPC945 Initialization .. 299
10.3.3 CPC945 Clocking Initialization ... 300

11. Power Management and Clocks ... 303
11.1 Introduction .. 303
11.2 System Power Management ... 303

11.2.1 CPC945 and Processor State Definitions .. 303
11.2.2 CPC945 Top Level Power Manager .. 306
11.2.3 PLLs ... 306
11.2.4 Clock Stoppers ... 306

11.3 CPU Power Management .. 307
11.3.1 CPU Power Manager ... 307
11.3.2 Processor Interconnect Power Manager .. 310

11.3.2.1 PLL1 ... 310
11.3.3 DDR2 Power Management (PLL2) .. 312
11.3.4 PCI Express Power Management .. 312

11.3.4.1 PLL3 ... 312

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
Contents

Page 11 of 655

11.3.5 HyperTransport Power Management .. 314
11.3.5.1 LDTReq and LDTStop Generation ... 314
11.3.5.2 HyperTransport Power Manager .. 315
11.3.5.3 PLL4 .. 315

11.4 Power Tuning .. 316
11.5 PI Frequency Change Operation .. 319
11.6 PLL Programming ... 322

11.6.1 PLL1 and PLL2 .. 322
11.6.2 PLL3 .. 324
11.6.3 PLL4 .. 325

12. Programmer’s Interface .. 327
12.1 Memory Map ... 327
12.2 Memory-Like Space .. 328

12.2.1 DRAM .. 328
12.2.2 Noncoherent DRAM Access .. 329
12.2.3 ROM .. 329
12.2.4 Control Registers ... 329
12.2.5 PCI Express Configuration Space ... 329

12.3 Control Register Memory Map .. 331
12.4 CPC945 Control Registers .. 332

12.4.1 CPC945 Revision Register .. 333
12.4.2 Who Am I Bus Master ID Register ... 334
12.4.3 Processor Semaphore Register .. 335
12.4.4 Hardware Initialization State Register ... 336
12.4.5 CPC945 Toggle Register ... 337

12.5 Clocks and Power Management Registers ... 338
12.5.1 Clock Control Register ... 338
12.5.2 System Power Management Register ... 341
12.5.3 CPU Power Management Register ... 342
12.5.4 CPU Quiesce Timing Register ... 344
12.5.5 HyperTransport Power Management Register .. 345
12.5.6 PLL1 Control Register ... 346
12.5.7 PLL2 Control Register ... 350
12.5.8 PLL3 Control Register ... 352
12.5.9 PLL4 Control Register ... 355
12.5.10 PLL/Clock Visibility and Test ... 358

12.6 MPIC Registers ... 359
12.6.1 MPIC Feature Reporting Register ... 360
12.6.2 MPIC Global Configuration Register 0 .. 361
12.6.3 MPIC Vendor ID Register .. 362
12.6.4 MPIC Processor Initialization Register .. 362
12.6.5 MPIC IPI (0,1,2,3) Vector/Priority Registers .. 363
12.6.6 MPIC Spurious Vector Register ... 363
12.6.7 MPIC Interrupt Source 0-123 Vector/Priority Registers ... 364
12.6.8 MPIC Interrupt Source 0-123 Destination Registers ... 365
12.6.9 MPIC CPU(0-3) IPI(0-3) Dispatch Command Registers .. 366
12.6.10 MPIC CPU(0-3) Current Task Priority Registers ... 367
12.6.11 MPIC CPU(0-3) Interrupt Acknowledge Registers .. 368

User Manual

CPC945 Bridge and Memory Controller Preliminary

Contents
Page 12 of 655 February 1, 2008

12.6.12 MPIC CPU(0-3) End-of-Interrupt Registers ... 369
12.7 PI Physical Interface Registers ... 370

12.7.1 APIPhy Command and Status Register Bus .. 370
12.7.2 PI Physical Interface Registers .. 374
12.7.3 APIPhy Configuration Registers .. 375

12.7.3.1 APIPhy Driver IAP Pattern Mask (APIPhyDRVIAPPATMASK) 375
12.7.3.2 APIPhy Receiver IAP Pattern Mask (APIPhyRCVIAPPATMASK) 376

12.7.4 APIPhy Configuration 0 Register (APIPhyCONFIGREG0) .. 377
12.7.4.1 APIPhy Configuration 1 Register (APIPhyCONFIGREG1) ... 379
12.7.4.2 APIPhy Shorts Test Configuration Register (APIPhySTR) ... 381
12.7.4.3 APIPhy Status 0 Register (APIPhySTAT0) .. 382
12.7.4.4 APIPhy Receiver Mode and Command Register (APIPhyRcvModeCmd) 385
12.7.4.5 APIPhy Receiver IAP State Register (APIPhyRIAPSTATE) 387
12.7.4.6 APIPhy Data Error 0 Register (DATAERROR0) ... 388
12.7.4.7 APIPhy Data Error 1 Register (DATAERROR1)... 389
12.7.4.8 APIPhy Data Error 2 Register (DATAERROR2) ... 390
12.7.4.9 APIPhy Data Error 3 Register (APIPhyDATAERROR3) .. 391
12.7.4.10 APIPhy Data Error 4 Register (APIPhyDATAERROR4) .. 392
12.7.4.11 APIPhy Data Error 5 Register (APIPhyDATAERROR5) ... 393
12.7.4.12 APIPhy I/O Control Register (APIPhyIOCTRL) .. 394
12.7.4.13 APIPhy PMR I/O Control Register (APIPhyPMRIOCTRL) 396

12.7.5 Related Registers .. 397
12.7.5.1 Bus Encode Disable ... 397

12.8 DRAM I2C Master Controller Registers .. 398
12.8.1 I2C Controller MODE Register ... 398
12.8.2 I2C Controller CNTRL Register ... 400
12.8.3 I2C Controller STATUS Register ... 401
12.8.4 I2C Controller Interrupt Status (ISR) Register ... 402
12.8.5 I2C Controller Interrupt Enable (IER) Register .. 403
12.8.6 I2C Controller ADDR Register ... 404
12.8.7 I2C Controller SUBADDR Register .. 404
12.8.8 I2C Controller Data Transmit/Receive Register ... 405
12.8.9 I2C Controller Revision Register .. 405
12.8.10 I2C Controller RISETIMECNT Register ... 406
12.8.11 I2C Controller BITTIMECNT Register .. 407

12.9 Advanced Processor Interconnect Registers .. 408
12.9.1 API Proc Command Slot Configuration Register (APIProcCmd) 409
12.9.2 API I/O Pending Queue Configuration Register (APIIOPnd) ... 411
12.9.3 API Command Arbitration Register (APICmdArb) ... 412
12.9.4 API Target Request Queue Configuration Register (APITRqCfg) 414
12.9.5 API Target Response Queue Configuration Register (APITRspCfg) 415
12.9.6 API Target Data Queue Configuration Register (APIDtQCfg) ... 416
12.9.7 API Write Data Buffer (WDB) Configuration Register (APIWdbCfg) 417
12.9.8 API Intervention Buffer Configuration Register (APIIntCfg) ... 418
12.9.9 API Memory Request Configuration Register (APIMemReqCfg) 419
12.9.10 API Memory Read Configuration Register (APIMemRdCfg) ... 421
12.9.11 API Exception Register (APIExcp) ... 423
12.9.12 API Exception Mask 0 Register (APIMask0) .. 424
12.9.13 API Exception Mask 1 Register (APIMask1) .. 426
12.9.14 API Target Request Queues Guarantees Register (APITRqGuar) 427

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
Contents

Page 13 of 655

12.9.15 API Snoop Slot Configuration Register (APISnpSltCfg) .. 429
12.9.16 API Bus Configuration Registers ... 430

12.9.16.1 PI PAAM Window (APIPaamWin) .. 430
12.9.16.2 API Snoop Window (APISnoopWin) ... 431
12.9.16.3 I/O Snoop Window (APIIOSnoopWin) .. 432
12.9.16.4 API Handshake Status Latency (APIStatLat) ... 433
12.9.16.5 API Snoop Latency Values (APISnoopLat) .. 434

12.9.17 PSRO Register (PSRO) .. 435
12.9.18 PI System Command Registers .. 436

12.9.18.1 System Command Control [0:1] Registers (SysCmdCntl[0:1]) 437
12.9.18.2 System Command Status Register (SysCmdStat) .. 438
12.9.18.3 System Command Data0 Register (SysCmdDt0) .. 439
12.9.18.4 System Command Data1 Register (SysCmdDt1) .. 439
12.9.18.5 System Command Data2 Register (SysCmdDt2) .. 440
12.9.18.6 System Command Data3 Register (SysCmdDt3) .. 440

12.9.19 DART Control Register (DARTCNTL) .. 441
12.9.20 DART Base Register (DARTBASE) .. 442
12.9.21 DART Size Register (DARTSIZE) .. 442
12.9.22 DART Exception Status Register (DARTEXCP) .. 443
12.9.23 Entry in DART TLB Tag Array Register (DARTTAG) .. 445
12.9.24 Entry in DART TLB Data Array Register (DARTDATA) .. 446

12.10 Memory Control Registers .. 447
12.10.1 Memory Timing Parameter Registers .. 449

12.10.1.1 RAS Command Timer0 Register (RASTimer0) ... 450
12.10.1.2 RAS Command Timer1 Register (RASTimer1) ... 451
12.10.1.3 CAS Command Timer0 Register (CASTimer0) .. 452
12.10.1.4 CAS Command Timer1 Register (CASTimer1) .. 453

12.10.2 Memory Refresh Control Register (MemRfshCntl) .. 454
12.10.3 Memory Programming Control Register (MemProgCntl) ... 456
12.10.4 Mode Register Set (MRS) Register (MRSRegCntl) and Extended Mode

Register Set Register (EMRSRegCntl) .. 457
12.10.5 Memory Mapping Exception Registers .. 460

12.10.5.1 Memory Mapping Exception Address Register (MemMapExcpAd) 460
12.10.5.2 MemMapExcpCtl Register (MemMapExcpCtl) ... 461

12.10.6 Memory Initialization Registers [0:15] (MemInitReg[0:15]) .. 462
12.10.7 DIMM Configuration Registers .. 463
12.10.8 Memory Arbiter Weight Register (MemArbWt) .. 464
12.10.9 Memory User Configuration Register (UsrCnfg) .. 465
12.10.10 Memory Read Request Queue Configuration Register (MemRdQCnfg) 467
12.10.11 Memory Write Request Queue Configuration Register (MemWrtQCnfg) 468
12.10.12 Memory Reorder Queue Arbitration Register (MemQArb) .. 470
12.10.13 Memory R/W Arbitration Register (MemRWArb) ... 471
12.10.14 Memory Bus Configuration Register (MemBusConfig) .. 472
12.10.15 Memory Bus Configuration Register 2 ... 474
12.10.16 ODT Control Register (ODTCntl) ... 475
12.10.17 Memory Scrub Control Register (MSCR) .. 476
12.10.18 Memory Scrub Range Start Register (MSRSR) .. 477
12.10.19 Memory Scrub Range End Register (MSRER) ... 478
12.10.20 Memory Scrub Pattern Register (MSPR) .. 478
12.10.21 Memory Check Control Register (MCCR) ... 479

User Manual

CPC945 Bridge and Memory Controller Preliminary

Contents
Page 14 of 655 February 1, 2008

12.10.22 Memory Error Address Registers ... 480
12.10.22.1 MEAR0 Register (MEAR0) ... 480
12.10.22.2 MEAR1 Register (MEAR1) ... 481

12.10.23 Memory Error Syndrome Register (MESR) ... 482
12.10.24 Memory Mode Control Register (MemModeCntl) .. 483
12.10.25 Mem PHY Mode Control Register (MemPhyModeCntl) ... 485
12.10.26 I/O Pad Control Register (IOPadCntl) .. 487
12.10.27 Write Strobe Control Registers (ByteWrClkDelay) ... 489
12.10.28 Read Data Strobe Control Registers (ReadStrobeDelay) .. 491
12.10.29 CK Control Registers (CKDelay) .. 493
12.10.30 Reset LdEn Offset Delay Registers (RstLdEnVerniersCn) .. 494
12.10.31 External Data Multiplexer Delay Registers (ExtMuxVernier) ... 495
12.10.32 Calibration Control and Delay Measurement Registers ... 496

12.10.32.1 Half Bit Time Measurement Results ... 497
12.10.33 Calibration Configuration Registers ... 499
12.10.34 Calibration Read Margin Result Registers ... 502

12.11 PCI Express Registers .. 505
12.11.1 PCIe Configuration Registers .. 505

12.11.1.1 PCI 2.3 Configuration Space Header ... 507
12.11.1.2 PCI Power Management Capability Structure .. 520
12.11.1.3 PCI Express Capability Structure ... 524
12.11.1.4 Advanced Error Reporting Extended Capability Structure 538

12.11.2 XBus PCI Express Configuration Registers .. 551
12.11.2.1 Legacy Interrupt Control Register .. 553
12.11.2.2 Link Integrity Interrupt Control Register .. 554
12.11.2.3 Link Down Interrupt Control Register ... 555
12.11.2.4 PCI Express 0 Address Mask Register .. 556
12.11.2.5 Memory Read Completion Time-Out Register ... 558
12.11.2.6 I/O Completion Time-Out Register ... 558
12.11.2.7 Configuration Completion Time-Out Register ... 559
12.11.2.8 Local Completion Time-Out Register ... 559
12.11.2.9 Maximum Advertised Posted Credits Register ... 560
12.11.2.10 Maximum Advertised Nonposted Credits Register ... 561
12.11.2.11 Number of Reserved Posted Credits Register ... 562
12.11.2.12 Number of Reserved Nonposted Credits Register ... 563
12.11.2.13 Maximum Available Tags Register ... 564
12.11.2.14 Completion Arbiter Priority Register ... 565
12.11.2.15 Version Number Register ... 566
12.11.2.16 L1 Power Mode Request Response Register .. 567
12.11.2.17 Interrupt Filter Register (UNUSED) .. 568
12.11.2.18 Last NAK’d Write Address Register .. 568
12.11.2.19 Transmission Error Count Register .. 569
12.11.2.20 Dispatch Read Mode Register .. 569
12.11.2.21 No Snoop Request Mode Register ... 570
12.11.2.22 Direct Access Mode Register ... 571
12.11.2.23 L23 Message Time-Out Register .. 572
12.11.2.24 Invalid Transaction Register ... 572
12.11.2.25 Configuration 4 Or 8 Register ... 574
12.11.2.26 Unlock Protected Register .. 575
12.11.2.27 Coherent Memory Write Tag Delay Register (UNUSED) 576

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
Contents

Page 15 of 655

12.11.2.28 Block Transactions During Configuration Reads Register 577
12.11.2.29 CRC Error Count Register .. 578
12.11.2.30 Unsupported Request Or Completer Abort Register .. 578
12.11.2.31 Enable Transaction Error Acknowledge On Unsupported Request

Completion Register .. 579
12.11.2.32 Enable Transaction Error Acknowledge On Completer Abort

Completion Register .. 580
12.11.2.33 Enable Transaction Error Acknowledge On Configuration Retry

Time-Out Register ... 581
12.11.2.34 Enable Transaction Error Acknowledge On Completion Time-Out Register 582
12.11.2.35 Set PCIE04 Received Completer Abort On Completer Abort Register 583

12.11.3 PCI Express GCR Registers ... 584
12.11.3.1 CORE_X: PI Core Interface Parameters Register ... 586
12.11.3.2 BEACON: Beacon Support Register .. 587
12.11.3.3 LOOPBACK: Loopback Control and Status Register ... 588
12.11.3.4 SCRAMBLE: Data Scrambling Configuration Register .. 589
12.11.3.5 SLOT: Slot Management Register ... 590
12.11.3.6 POWER: Power Management Register ... 591
12.11.3.7 VC_STAT: Virtual Channel Status Register ... 592
12.11.3.8 AL_CFG: Application Layer Configuration Register .. 593
12.11.3.9 IO_CFG: I/O Configuration Register .. 594
12.11.3.10 RX_LANE: I/O Receive Configuration Register ... 594
12.11.3.11 I/O_LANEn: I/O Status and Control Register for Lane n

(n ranges from 0..15) ... 595
12.11.3.12 DIAG_IBCPL: Diagnostic Register for Application Layer Inbound

Completion (IbCpl) .. 597
12.11.3.13 DIAG_IBCMGR: Diagnostic Register for Application Layer Inbound

Completion Manager (IbCMgr) ... 598
12.11.3.14 DIAG_IBRQ: Diagnostic Register for Application Layer Inbound

Request (IbRq) .. 599
12.11.3.15 DIAG_IBTLIF: Diagnostic Register for Application Layer Inbound

TL Interface (IbTLIf) ... 600
12.11.3.16 DIAG_IBWD: Diagnostic Register for Application Layer Inbound

Request (IbWD) .. 601
12.11.3.17 DIAG_OBCPL: Diagnostic Register for Application Layer Outbound

Completion (ObCpl) .. 603
12.11.3.18 DIAG_OBMSG: Diagnostic Register for Application Layer Outbound Message

(ObMsg) ... 604
12.11.3.19 DIAG_OBNP: Diagnostic Register for AL Outbound Nonposted (ObNP) 605
12.11.3.20 DIAG_OBP: Diagnostic Register for Application Layer Outbound

Posted (ObP) ... 606
12.11.3.21 DIAG_OBTLIF: Diagnostic Register for Application Layer Outbound

Posted (ObTLIf) ... 607
12.11.3.22 MASK_MPIC_IBCPL: MPIC Masking for DIAG_IBCPL ... 608
12.11.3.23 MASK_MPIC_IBCMGR: MPIC Masking for DIAG_IBCMGR 608
12.11.3.24 MASK_MPIC_IBRQ: MPIC Masking for DIAG_IBRQ .. 609
12.11.3.25 MASK_MPIC_IBTLIF: MPIC Masking for DIAG_IBTLIF .. 609
12.11.3.26 MASK_MPIC_IBWD: MPIC Masking for DIAG_IBWD ... 610
12.11.3.27 MASK_MPIC_OBCPL: MPIC Masking for DIAG_OBCPL 611
12.11.3.28 MASK_MPIC_OBNP: MPIC Masking for DIAG_OBNP ... 611

User Manual

CPC945 Bridge and Memory Controller Preliminary

Contents
Page 16 of 655 February 1, 2008

12.11.3.29 MASK_MPIC_OBP: MPIC Masking for DIAG_OBP ... 612
12.11.3.30 MASK_MPIC_OBTLIF: MPIC Masking for DIAG_OBTLIF 613

12.12 HyperTransport Registers (HT1) ... 614
12.12.1 HT Device ID/Vendor ID Register (Device ID/Vendor ID) .. 619
12.12.2 Status/Command Register (Status/Command) .. 620
12.12.3 Class Code/Revision Register (Class Code/Revision ID) .. 621
12.12.4 BIST/Header Type Register (BIST/Header Type) .. 622
12.12.5 Capabilities Pointer Register (Capability1) .. 623
12.12.6 Interrupt Line Register (IntrLine) .. 624
12.12.7 Command/Pointer/Capability ID Register (HTCapability00) .. 625
12.12.8 Link Config/Link Control Register (HTCapability04) ... 626
12.12.9 LinkFreqCap/Link Error/Link Freq/ Revision ID Register .. 628
12.12.10 Feature Capability Register (Feature) .. 629
12.12.11 Error Handling/Enumeration Scratchpad Register (ErrCtrl/Enum) 630
12.12.12 HT Address Mask Register ... 632
12.12.13 HT1/PI Interface Control Register .. 633
12.12.14 Memory Read Delay for Memory Read Data Interface (HtMemDly) 633
12.12.15 Write TA delay for Write Data Interface (WrTADly) ... 634
12.12.16 HTG Configuration (HTGCFG) .. 635
12.12.17 Bridge Control Register (BrCtrl) ... 636
12.12.18 TxCtl/Rx Data Buffer Allocation Register (TxCtl/RxDataBufAlloc) 638
12.12.19 Maximum Transmit Buffer Counters Register (TxBufCountMax) 639
12.12.20 Diagnostic CRC Registers (DiagRxCrc) .. 640
12.12.21 Receive and Transmit Synchronization FIFOs (Sri[Rx/Tx]Numerator) 641

12.12.21.1 SriRxNumeratorLower: Receive Synchronization FIFO Register
Description (Bits [0:31]) ... 642

12.12.22 Receive and Transmit Synchronization Override Values Register (SriOveride) 643
12.12.23 Control bits for the HT PHY (HtPHYCtl) ... 644

13. References ... 645

14. Glossary ... 647

 Revision Log ... 653

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
List of Figures

Page 17 of 655

List of Figures
Figure 1-1. CPC945 Bridge and Memory Controller Block Diagram .. 28
Figure 2-1. PI to PCIe Bus Data Byte Swapping in Big-Endian Mode .. 35
Figure 3-1. CPC945 Core Interface Block Diagram ... 40
Figure 3-2. CPC945 Core Request Interfaces .. 41
Figure 3-3. CPC945 Core Data Interfaces ... 43
Figure 3-4. HT Inbound Request Core Interfaces .. 46
Figure 3-5. PCIe Inbound Request Core Interfaces ... 48
Figure 3-6. PI Target Request Interfaces ... 50
Figure 3-7. Processor and CPC945 Bus Timing Parameters ... 52
Figure 3-8. The DART Translation Process ... 55
Figure 3-9. The TLB Translation Process ... 58
Figure 3-10. CPC945 Processor Interface Environment .. 61
Figure 3-11. CPC945 PI Unit .. 62
Figure 4-1. Two Processors Connected to the CPC945 .. 77
Figure 4-2. Processor and CPC945 Interface Timing Parameters ... 81
Figure 4-3. Physical PI Bits to Logical PI Bits Mapping .. 90
Figure 4-4. Checkstop Connections ... 93
Figure 5-1. CPC945 PCI Root Complex High Level Block Diagram .. 95
Figure 5-2. TLP Header for Requests with 32 Bit Addressing (3 DWord Header) 98
Figure 5-3. TLP Header for Configuration Requests (reads and writes) .. 98
Figure 5-4. TLP Header for Completions .. 99
Figure 5-5. TLP Header for Messages ... 99
Figure 5-6. PI Data Bit and Byte Ordering .. 103
Figure 5-7. System Memory to TL Interface Data Formatting Changes ... 104
Figure 5-8. Configuration Address Register Formatted For A Type 0 Configuration Transaction 110
Figure 5-9. Configuration Address Register Formatted For A Type 1 Configuration Transaction 110
Figure 5-10. Transmission Type By Target .. 111
Figure 5-11. Address Field For Limited Direct Configuration Transactions .. 112
Figure 6-1. Initialization Sequence ... 116
Figure 7-1. DDR2 Memory Controller ... 130
Figure 7-2. External Memory Configurations .. 131
Figure 7-3. Memory Controller Internals ... 142
Figure 7-4. Chip Select and Interleave Mode Addressing .. 160
Figure 7-5. Command Arbiter Flow .. 187
Figure 7-6. External Multiplexers .. 213
Figure 7-7. Example Timing Verniers ... 217
Figure 7-8. 1/2 Bit Time Averager .. 218
Figure 7-9. DQS Offset Delta ... 219

User Manual

CPC945 Bridge and Memory Controller Preliminary

List of Figures
Page 18 of 655 February 1, 2008

Figure 7-10. CK Timing Adjustment ..223
Figure 7-11. Control Signal Wiring Summary ...228
Figure 7-12. Write Data Timing Example ..230
Figure 7-13. Byte Lane Write Verniers ..232
Figure 7-14. Read Data Capture FIFO ...233
Figure 7-15. Read DQS ..234
Figure 7-16. Byte Lane Read Control ...237
Figure 7-17. Read Reset Ld En Timing Example ...238
Figure 7-18. Read UnloadPtr Timing Example ...239
Figure 7-19. RdOEOffDly Timing Example ...240
Figure 7-20. DQ and DQS Tri-state Timing Example ...241
Figure 7-21. External multiplexer Basic Timing ..242
Figure 7-22. External multiplexer Read Timing Example ..243
Figure 7-23. Cluster MuxEn Verniers ..244
Figure 7-24. Simplified Byte lane with Calibration Bit ...245
Figure 7-25. Calibration Bit DQS Capture FIFO ...249
Figure 7-26. Calibration Load Monitor ..251
Figure 7-27. Calibration Unload Monitor ...254
Figure 7-28. Unload Monitor Small Offset Timing ...256
Figure 7-29. Unload Monitor Large Offset Timing ...257
Figure 7-30. UnLd Calibration Sense Mode ..259
Figure 9-1. MPIC ..280
Figure 10-1. CPC945 Power On Reset Procedure ...301
Figure 11-1. Run to Sleep Transition ..304
Figure 11-2. Wake Sequence ...305
Figure 11-3. Clock Stopper Logic ...306
Figure 11-4. CPU Power Manager (1 of 2) ..308
Figure 11-5. CPU Power Manager (2 of 2) ...309
Figure 11-6. PLL1 Clock Stopper ..311
Figure 11-7. PLL3 ...313
Figure 11-8. PLL3 Startup Sequence ...314
Figure 11-9. HT Warm Reset ..315
Figure 11-10. PLL4 ...316
Figure 11-11. Power Tuning Sequence ..317
Figure 11-12. Power Tuning Logic ..318
Figure 11-13. Power Tuning Timing ..319
Figure 11-14. Timing Diagram for Frequency Change Operation in PI ..320
Figure 11-15. Block Diagram for a Frequency Change Operation in PI ...321
Figure 11-16. PLL1/ PLL2 Internal Block Diagram ...322

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
List of Figures

Page 19 of 655

Figure 11-17. PLL 3 Internal Block Diagram .. 324
Figure 11-18. PLL 4 Internal Block Diagram .. 325
Figure 12-1. PCIe XBus Configuration Space .. 330

User Manual

CPC945 Bridge and Memory Controller Preliminary

List of Figures
Page 20 of 655 February 1, 2008

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
List of Tables

Page 21 of 655

List of Tables
Table 2-1. PI to PCIe Bus address mapping in Big-Endian Mode for Memory Space 35
Table 2-2. PI to PCIe Bus Address Mapping in Big-Endian Mode for I/O Space 35
Table 3-1. DART Mapping Range ... 53
Table 3-2. Format of a DART Entry in Main Memory .. 54
Table 3-3. LPN Address to access the DART TLB ... 59
Table 3-4. Format of a DART Tag Entry in TLB (cache) ... 59
Table 3-5. Format of DART Data Entry in TLB (cache) ... 59
Table 3-6. Response to Bus Operations from the Processor. ... 63
Table 3-7. Operations (I/O Commands) from Other Agents .. 68
Table 3-8. Resources Required for Reflecting .. 73
Table 4-1. Big-Endian Processor Interface to Little-Endian PCIe Bus Address Mapping 89
Table 4-2. CPC945 Responses to PI Transfer Types ... 91
Table 5-1. TLP Header Fields ... 99
Table 5-2. CPC945 Advertised PCIe Credits .. 102
Table 5-3. Supported PCIe Outbound Request Types .. 104
Table 5-4. Ordering Rules for PCIe AL Outbound Requests .. 105
Table 5-5. Physical Layer Errors ... 106
Table 5-6. Data Link Layer Errors ... 106
Table 5-7. Transaction Layer Errors .. 106
Table 5-8. PCI Express Stack Errors Addressed by Application Layer ... 107
Table 5-9. Allowed Inbound TLPs Types and Destinations ... 108
Table 5-10. Message Decode ... 108
Table 5-11. Configuration Access Registers ... 109
Table 7-1. Supported Memory Sizes ... 132
Table 7-2. Memory Bandwidths (Peak) ... 132
Table 7-3. SDRAM Commands (Simplified) .. 150
Table 7-4. Example DDR2 SDRAM Initialization Sequence ... 151
Table 7-5. 64-Bit Configuration and 64-Bit Bus Settings ... 156
Table 7-6. Memory Modes .. 157
Table 7-7. DIMM Configuration Example 1 - DIMM Characteristics .. 165
Table 7-8. DIMM Configuration Example 1 - Sorted Group List .. 165
Table 7-9. DIMM Configuration Example 1 - Register Fields .. 165
Table 7-10. DIMM Configuration Example 1 - Register Values ... 165
Table 7-11. DIMM Configuration Example 2 - DIMM Characteristics .. 166
Table 7-12. DIMM Configuration Example 2 - Sorted Group List .. 166
Table 7-13. DIMM Configuration Example 2 - Register Fields .. 166
Table 7-14. DIMM Configuration Example 2 - Register Values ... 166
Table 7-15. DIMM Configuration Example 3 - DIMM Characteristics .. 167

User Manual

CPC945 Bridge and Memory Controller Preliminary

List of Tables
Page 22 of 655 February 1, 2008

Table 7-16. DIMM Configuration Example 3 - Sorted Group List ..167
Table 7-17. DIMM Configuration Example 3 - Register Fields ..167
Table 7-18. DIMM Configuration Example 3 - Register Values ...167
Table 7-19. DIMM Configuration Example 4 - DIMM Characteristics ..168
Table 7-20. DIMM Configuration Example 4 - Sorted Group List ..168
Table 7-21. DIMM Configuration Example 4 - Register Fields ..168
Table 7-22. DIMM Configuration Example 4 - Register Values ...168
Table 7-23. Memory Mapping for Bank Interleaving at SDRAM Page Boundary (128-bit Configuration) 171
Table 7-24. Memory Mapping for Bank Interleaving at Cache Line Boundary (128-bit Configuration) ...172
Table 7-25. Memory Mapping for Bank Interleaving at SDRAM Page Boundary (64-bit Configuration) .173
Table 7-26. Memory Mapping for Bank Interleaving at Cache Line Boundary (64-bit Configuration)174
Table 7-27. tRCD, tRP and tRC ...176
Table 7-28. tRTP, tWR and tRRD ..177
Table 7-29. tRTP+tRP, tWR + tRP ..177
Table 7-30. Example Timing Parameters ..178
Table 7-31. RASTimer0/1 Register Values ..179
Table 7-32. CASTimer0/1 Register Values ..179
Table 7-33. Hamming Matrix ...193
Table 7-34. Hamming Matrix Continued ..193
Table 7-35. Check Bit Summary ..195
Table 7-36. MemBusConfig Width Settings ...212
Table 7-37. DQS Bit Numbering ..220
Table 8-1. Twenty-two Bit I2C System Command Request Definition ...268
Table 8-2. I2C Write Transaction (Includes Number of Bits Transmitted for Each Action)269
Table 8-3. Bit Sequence on the I2C Bus for a Control Register Write Transaction269
Table 8-4. Bit Sequence on the I2C Bus for a Control Register Read Transaction270
Table 8-5. Byte Sequence on the I2C Bus for Writing the SysCmdCntl1 Register272
Table 8-6. Byte Sequence on the I2C Bus for Writing the SysCmdCntl0 Register273
Table 9-1. Interrupt Input Summary ...284
Table 9-2. Register Summary ..289
Table 10-1. CPC945 System Support Signal Pins ..298
Table 11-1. CPC945 and Processor Power Management State Definitions ...303
Table 11-2. PLL1 and PLL2 Tune Bit Settings, 1 of 2 ...323
Table 11-3. PLL1 and PLL2 Tune Bit Settings, 2 of 2 ...323
Table 12-1. 36-bit Extended Memory Map ..327
Table 12-2. Control Register Memory Map ..331
Table 12-3. CPC945 Control Register Addresses ...332
Table 12-4. PMR Address Space ..338
Table 12-5. PLL1 Clock Settings ...347

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
List of Tables

Page 23 of 655

Table 12-6. PLL2 DDR2 Core Speed .. 349
Table 12-7. PLL3 Default Settings .. 352
Table 12-8. PLL4 Control Register Default Values ... 355
Table 12-9. Register Addresses .. 359
Table 12-10. I/O Group Select Register Settings, iogrp_sel[0:3] .. 370
Table 12-11. Status data select register, data_stat_sel[0:2] - io_group_sel = 0x0 370
Table 12-12. Status data select register, data_stat_sel[0:2] - io_group_sel = 0xF 371
Table 12-13. Changing the PI clock delay (command_data[0:14],ncommand_load) 373
Table 12-14. PI Physical Interface Register Address Space ... 374
Table 12-15. CPC945 I2C Control Register Addresses .. 398
Table 12-16. PI Registers .. 408
Table 12-17. Memory Controller Register Address Space .. 447
Table 12-18. DIMM Configuration Registers ... 463
Table 12-19. PCIe Configuration Registers Blocks ... 505
Table 12-20. PCI Configuration Space Header ... 506
Table 12-21. PCI Power Management Capability Structure .. 520
Table 12-22. PCI Express Configuration Space .. 524
Table 12-23. XBus PCIe Configuration Registers ... 551
Table 12-24. Coarse Address Select Field .. 556
Table 12-25. Fine Address Select Field .. 557
Table 12-26. Invalid Transaction Types .. 573
Table 12-27. PCI Express GCR Registers .. 584
Table 12-28. Driver Power Levels Control Encoding for Transmit Function ... 596
Table 12-29. FIR Coefficient Table ... 596
Table 12-30. Device Header HyperTransport Register ... 614
Table 12-31. Capabilities Block HyperTransport Registers ... 615
Table 12-32. CPC945-Specific HyperTransport Registers .. 615
Table 12-33. HyperTransport Performance Monitor Counter Registers .. 616
Table 12-34. HyperTransport Registers .. 616

User Manual

CPC945 Bridge and Memory Controller Preliminary

List of Tables
Page 24 of 655 February 1, 2008

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
About This Manual

Page 25 of 655

About This Manual
This book describes the CPC945 Bridge and Memory Controller, the frontside bus controller companion chip
that is compatible with the PowerPC® 970MP and 970FX RISC microprocessors. A general overview of the
device, which is also called the CPC945, and functional descriptions of the subsystems are provided, as well
as register descriptions.

Who Should Read This Manual

Software designers and system architects of PowerPC 970xx applications should use this document to effec-
tively incorporate the IBM CPC945 Processor Bridge and Memory Controller architecture into a design.
Readers should be familiar with the PowerPC Architecture and the general constraints and requirements of
developing personal computers. Information about IBM CPC945 Processor Bridge and Memory Controller
hardware considerations and IBM CPC945 Processor Bridge and Memory Controller signal descriptions are
contained in the CPC945 Bridge and Memory Controller Datasheet.

Related Publications

PowerPC Microprocessor Documentation

The latest version of this manual, errata, and other IBM documents listed below can be found at:
ibm.com/chips/techlib.

• CPC945 Bridge and Memory Controller Datasheet
• PowerPC 970FX RISC Microprocessor Datasheet
• PowerPC 970MP RISC Microprocessor Datasheet
• PowerPC 970FX RISC Microprocessor User’s Manual
• PowerPC 970MP RISC Microprocessor User’s Manual

Architecture and Specifications

• Double Data Rate (DDR2) SDRAM Specification, JESD79-2B
www.jedec.org

• HyperTransport I/O Link Specification, revision 1.04
www.hypertransport.org

• I2C-Bus Specification, version 2.1
www.semiconductors.philips.com

• May, Cathy, et. al., eds. The PowerPC Architecture: A Specification for a New Family of RISC Proces-
sors, Second Edition. San Francisco: Morgan-Kaufmann, 1994.

• PCI Express® Base Specification, version 1.0a.
www.pcisig.com

http://www-3.ibm.com/chips/techlib
http://www.jedec.org
http://www.hypertransport.org
http://www.semiconductors.philips.com
http://www.pcisig.com
http://www.pcisig.com

User Manual

CPC945 Bridge and Memory Controller Preliminary

About This Manual
Page 26 of 655
26

February 1, 2008

Conventions Used in This Book
• A lowercase x precedes hexadecimal values. For example: x‘0B00’.

• Binary values in text are either spelled out (zero and one) or appear in single quotation marks.
For example: ‘10101’. In tables, these quotation marks are omitted.

• Differential pairs of signals are designated by _P for the positive signal and _N for the negative signal.
For example: DDR_CK_A_P and DDR_CK_A_N.

• Overbars designate active-low, nondifferential signals. For example: PI_CSTP.

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
Overview

Page 27 of 655

1. Overview

1.1 Introduction

The IBM CPC945 Bridge and Memory Controller is a frontside bus controller that is compatible with the
PowerPC 970FX and 970MP RISC microprocessors.

The CPC945 provides a 5-way interconnection among:

• Two PowerPC 970MP or 970FX processor interfaces
• A DDR2 SDRAM memory subsystem
• PCI Express bus
• A HyperTransport host bridge

The boot ROM is connected to an I/O device attached to the system via the HyperTransport bus. The
CPC945 includes two master-only I2C interfaces for configuring the memory subsystem. An I2C slave inter-
face connects the CPC945 to a single-chip microcontroller for power management and processor interface
configuration. A multiprocessor-capable interrupt controller collects and distributes system interrupts from the
PCI Express and HyperTransport blocks.

To software, the CPC945 appears as:

• A processor interface to the PCI Express root complex
• A processor interface to the HyperTransport host bridge
• A memory controller
• An interrupt controller
• A set of control registers

1.2 Features
• Dual PowerPC® 970MP or 970FX processor interface buses with cache coherency and snooping proto-

cols supporting up to four processor cores.

• PCI Express x1, x4, x8, or x16 interface
• 128/144-bit, 533-Mega Transfers per second (MTps) double data rate 2(DDR2) synchronous DRAM

(SDRAM) controller and interface with ECC
• 800 MHz (1600 Mtps DDR2) HyperTransport host bridge with 16-bit wide data interface and flash ROM

support
• One slave and two master I2C interfaces
• Interrupt controller
• Point-to-point internal architecture provides high-speed non-blocking performance
• 40-bit logical/36-bit physical memory address space
• 1182-pin flip-chip plastic ball grid array (FC-PBGA) single chip implementation
• Processor interface interconnection speed of up to 625 MHz (1250 Mbps double data rate)
• Support for eight outstanding transactions per master
• Support for read pipelining and write combining from the processor interface or PCI bus
• Support for read-around-write on the processor interface with PCI ordering
• Support for eight 64/72-bit double-sided dual inline memory modules (DIMMs) arranged in pairs
• PCI and HyperTransport transactions snooped on the processor interface

User Manual

CPC945 Bridge and Memory Controller Preliminary

Overview
Page 28 of 655 February 1, 2008

• Power management support for the CPC945 through clock control
• DMA address relocation table (DART) provides flexible I/O memory space relocation and consolidation

1.3 Block Diagrams

Figure 1-1. CPC945 Bridge and Memory Controller Block Diagram

HyperTransport
Bridge

General
Control

Registers

Interrupt
Controller

I2C Master

I2C SlavePCIe
Root

Memory
Controller

DDR2 SDRAM
(8 DIMMs, 8 Ranks)

16-bit HyperTransport

I2C Slave

I2C Masters

Clocks, Resets,
System Support,

Two Processor Interfaces

16 bit PCI Express

128-bit plus ECC

2500 MTps

Power and Ground

533 MHz Core

970MP or 970FX
Processors 0,1

Power Management

CPC945
MTps: Million transfers per second

 1250 MTps (Maximum)

up to 1600 MTps

Processor Interrupts

and Test
 533 MTps (Maximum)

PowerPC
970MP or 970FX
Processors 2,3

PowerPC

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
Functional Description

Page 29 of 655

2. Functional Description

2.1 External Interfaces

The CPC945 core logic has nine basic interfaces:

• Two processor interfaces for 2-way (single-core processor) or 4-way (dual-core processor) connection

• A DDR2 SDRAM interface for system memory connection

• A PCI Express interface

• A HyperTransport host bridge

• Two port I2C master interface

• A I2C slave interface

• A system interrupt controller (MPIC)

The primary function of the core logic is to convey transactions between these interfaces.

2.1.1 Processor Interconnect (PI)

The CPC945 has two Processor Interconnects each capable of directly connecting to a single or dual core
PPC970xx. The PI bus consists of a 35-bit (logical)/44-bit (physical) multiplexed address/data (AD) bus
segment, a 1-bit (logical/physical) transfer handshake bus segment, and a 2-bit (logical)/4-bit (physical)
snoop response bus segment in each direction per directly connected processor. In total, each PI interface
consists of 76 bits (logical)/100 bits (physical), wherein each bus segment uses point-to-point connections. A
system consisting of a single PI simply leaves the second PI unconnected.

The PI supports split transactions for read and write operations using a packet-passing protocol between the
processors and CPC945. Addresses and data are transmitted and received in packets over the AD busses.
Acknowledgements are sent over the transfer handshake bus segment, and snoop responses are sent over
the snoop response bus segment.

Memory/cache coherency is maintained by using a global snooping mechanism. The CPC945 PI reflects
inbound command packets back to the processors for global snooping. As all connections are point-to-point,
any interaction between processors and other processors, memory, PCI, etc., must be routed through the
CPC945. The CPC945 contains sufficient buffering to hold eight outstanding requests and data to keep the
processors from stalling.

The PI interface is asynchronous from the CPC945 core clock frequency. In initial implementations, the
Processor Interconnect runs at up to 625 MHz DDR2. For more information, see Section 3.5 Processor Inter-
connect Interface Microarchitecture on page 61.

User Manual

CPC945 Bridge and Memory Controller Preliminary

Functional Description
Page 30 of 655 February 1, 2008

2.1.2 SDRAM Interface

CPC945 supports a memory subsystem with up to eight 64-bit wide double-sided DDR2 DIMMs organized in
pairs. (See Section 7 DDR2 Memory Controller on page 129.) This interface is asynchronous from the PI
interface at up to 266 MHz for the Memory Controller (533 MHz for the DDR2 DIMMs). With 4-bank DDR2
SDRAM parts, it is possible to construct a memory subsystem with 32 internal banks. The memory controller
provides support to utilize up to 32 open banks. This further increases bandwidth and reduces the latency of
a DDR2 SDRAM-based memory subsystem. The SDRAM interface uses two of the DDR2 DIMMs to produce
a 128 bit wide data bus. Data can only be accessed in a set of four data beats (4 × 128 / 8 = 64 bytes) or two
sets of 4 beats (128 bytes = 1 PPC970xx cache line).

2.1.3 PCI Express Interface

The CPC945 implements a PCI Express root complex interface for use with peripheral endpoints. This PCI
Express interface consists on a single point-to-point link that can be configured as a x1, x4, x8, or x16 lane
and operates at 2.5 GHz. For additional details on this interface, see Section 5 PCI Express on page 95.

2.1.4 HyperTransport Host Bridge

The CPC945 has a 16-bit wide HyperTransport host bridge. (See Section 6 HyperTransport on page 115.)
This interface is used to attach I/O devices to the CPC945. In addition the HyperTransport bridge is used to
access the boot ROM during system boot-up. The HyperTransport channel is also used to communicate
interrupt information between the I/O subsystem and CPC945. HyperTransport can only perform 64 byte
accesses to memory. For details on HT address mapping see Section 6.7 HyperTransport Address Mapping
on page 119.

2.1.5 DRAM I2C Master Interface

The CPC945 provides a simple Master-only I2C interface based on "The I2C-Bus Specification," Version
2.1, January 2000., for use in reading and writing the DRAM memory DIMM SPD configuration registers. The
interface operates at the standard mode frequency of 100 kbps. It can also be programmed to run at 50 kbps
and 25 kbps. This interface on the CPC945 has two pairs of clock and data pins SYS_ISCL0/SYS_ISCA0 and
SYS_ISCL1/SYS_ISCA1. Only one pair can be active at a time. When the interface is idle, software can
switch between these two pairs. (See Section 8.3 I2C Master Interface on page 275.)

2.1.6 I2C Slave Configuration Register Interface

The CPC945 provides a standard two wire I2C slave interface as defined in "The I2C-Bus Specification,"
Version 2.1, January 2000., and is capable of transferring data in both standard (100kbps) and fast (400kbps)
modes. The bidirectional line, PI_ISCA is used for reading and writing data. The clock line, PI_ISCL is always
driven from the external master device however on read cycles the CPC945 can hold off the clock until data is
ready. Both lines are “open drain” and require an external pullup. This interface is used by the microcontroller
that manages the system configuration to control the setup of the Processor Interconnect physical interface,
to access any CPC945 control register, and to generate read or write cycles to any address in the system by
accessing a pair of system command registers and the associated data registers. (See Section 8.2 I2C Slave
Interface on page 267.)

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
Functional Description

Page 31 of 655

2.1.7 Interrupt Controller

The CPC945 includes a Multi Processor Interrupt Controller (MPIC) based on the OpenPIC standard. Inter-
rupt information from the southbridge is communicated to the CPC945 using the HyperTransport. The MPIC
in the CPC945 supports 124 I/O interrupt sources and four interprocessor interrupts, and delivers interrupts to
four processors.

2.2 Implementation

2.2.1 CPC945 Clocking

CPC945 has five basic clock domains:

• The processor bus clock and internal advanced Processor Interconnect bus clock

• The DDR2 memory clock

• The PCI Express related clocks

• The HT clock

• The power manager unit clock.

2.2.1.1 Processor Interconnect Clock

Section 12.5.6 PLL1 Control Register on page 346 describes the dividers provided for different Processor
Interconnect bus operation frequencies. All internal Advanced Processor Interconnect (API) interface clocks
are generated from PLL1. The Processor Interconnect interface requires an externally generated APsync
signal to establish “time zero” with the processor chips. This is required for system synchronization, and
allows the processor and bus clocks to be synchronized to identify a unique cycle.

2.2.1.2 DDRClk

The internal interconnect memory clock, DDRClk, provides a maximum of 533 MHz distributed to the PI bus,
the Memory Controller, and portions of the PCI Express interfaces (for synchronization). The clock is gener-
ated by PLL2 and the phase reference is used to remove the insertion delay of the clock tree. Insertion delay
removal is required to shorten the input hold time and the output delay. The SDRAM controller generates the
266 MHz clock for the SDRAM system. The DDR_REFCLK clock input to the CPC945 is a 66 MHz clock,
which is multiplied by the on-chip PLL.

2.2.1.3 PCI Express Clocking

The PCI Express bus operates at the fixed rate of 2.5GHz. The PCI-E_REFCLK clock input frequency is
100 MHz which is used for PLL3. The output of PLL3 multiplies this up to 625 MHz as an intermediate
frequency for the PCI Express PHY. Within the PHY is a second PLL which steps the frequency down to
250 MHz for use within the PCI Express protocol stack.

User Manual

CPC945 Bridge and Memory Controller Preliminary

Functional Description
Page 32 of 655 February 1, 2008

2.2.1.4 HyperTransport Clock

The HyperTransport interface is capable of sending data at up to 800 MHz DDR2 or 1600 MTps. The clock
for HyperTransport is generated from a 66.7 MHz HT_REFCLK clock input. The on-chip PLL4 multiplies this
up to 800 MHz and the PLL outputs drive the HyperTransport logic. The same 66.7 MHz input must be
applied to all HyperTransport devices connected to CPC945 so that the synchronous mode of operation can
be used with the HyperTransport interface. Synchronous mode is a HyperTransport term which means that
all devices operate at the same frequency, but the phase angle between devices is unknown.

2.2.1.5 Power Manager Clock

The power manager clock is not under the control of a PLL. It is a direct input to the CPC945 so that it is func-
tional even if all else on the module is not operational. In addition to driving the power manager logic, the
PMR_CLK is used to clock the I2C slave logic and an internal bus that accesses all of the internal registers
(registers accessed at addresses F8xxxxxx). It is essential that the PMR_CLK is running. Only a 300 MHz
frequency is supported for the PMR_CLK.

2.2.2 ROM Controller

The boot ROM for the CPC945 is accessed through the HT interface. Typically, it is attached to a southbridge
module.

PPC970xx ROM accesses are in the address space 0x‘FFxxxxxx’, a space of 16 Mbytes. The on-chip Hyper-
Transport interface (HT) decodes addresses in the ROM space and forwards those transactions out the
HyperTransport interface. If there are HyperTransport tunnel devices between CPC945 and the southbridge,
the transactions must be forwarded by the tunnel devices. This should be the case at power on because at
power on all tunnels forward transactions other than configuration transactions that are directed to their
device number. Once the system has been initialized, the ROM address space should be assigned to the
southbridge and transactions will be forwarded to it.

The PPC970xx initially fetches from address 0x‘00000100’, but on bootup, its hypervisor address can be set
to 0x‘FF000000’. The CPC945 is hardcoded to make the initial fetch come from 0x‘FF000100’ in the HT
space.

2.2.3 CPC945 Core Interface (API Interface)

The CPC945 core interface (Advanced Processor Interface or API) is basically responsible for interfacing
between the following major blocks:

• HyperTransport Interface
• PCI Express Interface (PCIe™)
• General Control Registers (GCR)
• Processor Interconnect
• Memory Controller (DDR2)

In addition, it also contains an address re-mapping table (DART) for HT and PCI Express coherent requesters
as well as snoop logic to maintain/enforce memory coherency requirements of the CPU.

The API connects the processors and the rest of the system. The interface receives and decodes all address
transactions flowing across the processor bus. These transactions can originate from other primary units or
the processors residing on the PI. The received address transactions are decoded and queued in the PI and
then forwarded to the target unit.

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
Functional Description

Page 33 of 655

The data read or written by these address transactions flows directly between the requester and the target
unit. Therefore, the API has no involvement in the data transfers between other primary interface units of the
CPC945. However, the API does contain the data path required to support a processor’s access to all system
address space.

2.2.4 PCI Express and HyperTransport Bus Interfaces

2.2.4.1 PCI Express and HyperTransport Transactions

CPC945 generates the following PCI Express transactions:

• Configuration Read (Type 0 and 1)

• Configuration Write (Type 0 and 1)

• I/O Read

• I/O Write

• Memory Read

• Memory Read Line

• Memory Write

2.2.4.2 Processor Interconnect to PCI Express Transaction Mapping

The Processor Interconnect slave interface can receive read and write transactions of all legal sizes destined
for addresses on the PCI Express bus interface. Note that these transactions only map to PCI Express.

2.2.4.3 Processor Interconnect to HyperTransport Transaction Mapping

The Processor Interconnect Slave interface will receive read and write transactions of all legal sizes destined
for addresses on the HT bus interface. HyperTransport follows the same rules as PCI for transaction
mapping.

2.2.4.4 PCIe/HT-to-Processor Interconnect Virtual Transaction Mapping

PCI Express receives Memory Read and Memory Write transactions destined for addresses in system
memory space. Likewise the HyperTransport interface receives these transactions from the HyperTransport
bus. All addresses sent to Processor Interconnect on the PCI Express interface or the HyperTransport inter-
face are re-mapped using the DART, described in Section 3.4 DMA Address Relocation Table (DART),
before accessing system memory.

The PCI Express or HyperTransport Bus interface is bridged to the Processor Interconnect in such a way that
it appears that CPC945 contains a Processor Interconnect-to-PCI Express Bus Bridge and a Processor Inter-
connect-to-HyperTransport Bus Bridge. Since there are no Processor Interconnect slaves other than
CPC945, the only reason to bridge I/O transactions to the Processor Interconnect is to maintain main memory
coherency.

User Manual

CPC945 Bridge and Memory Controller Preliminary

Functional Description
Page 34 of 655 February 1, 2008

CPC945 does not pass any write data from the PCI Express or HT buses across the Processor Interconnect.
The data to satisfy a PCI Express or HT read request comes from the memory subsystem or the other
PCIe/HT bus interface directly. In the case of intervention cycles, the data returned by the intervention cycle
is treated like a write flush. The data is flushed to its destination before the PCIe/HT read request are
completed.

For more detail on PCI Express to Processor Interconnect Transactions see Section 5 PCI Express on
page 95.

For more detail on HyperTransport to Processor Interconnect Transactions see Section 6 HyperTransport on
page 115.

2.2.4.5 PCIe Transaction Ordering

See the “PCI-SIG, "PCI Express Base Specification Revision 1.0a", PCI Express, April 15, 2003.”

2.2.4.6 Data Consistency/Memory Coherence

CPC945 does not provide any coherency mechanism for memory located on the PCI Express or HyperTrans-
port buses. Any processor that wishes to cache memory located on the PCI Express bus will need to use a
software coherency mechanism to ensure proper operation.

2.2.4.7 Endianess

The Processor Interconnect is defined to be big-endian byte ordering while the PCI Express and HyperTrans-
port buses are defined to be little-endian byte ordering. CPC945 performs the appropriate byte conversions.
Byte addressing is similarly numbered in conflicting order on either side of the bridge. CPC945 supports one
mode of byte swapping: big-endian mode (ByteSwap=1) as shown in Figure 2-1. Table 2-1 and Table 2-2
detail the mapping of Processor Interconnect to PCI Express Bus addresses in big-endian mode.

In the following figures and tables, “MSB” and “LSB” are denoted with respect to how the data appears in the
microprocessor’s internal register, which is always in big-endian format.

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
Functional Description

Page 35 of 655

Figure 2-1. PI to PCIe Bus Data Byte Swapping in Big-Endian Mode

Table 2-1. PI to PCIe Bus address mapping in Big-Endian Mode for Memory Space .

Processor Interconnect (PI) Address PCI Express Address Comment

[32] [31]

[33] [30]

.. ..

[60] [3]

[61] [2]

[62] [1] = 0, BEs encoded Linear Incrementing Mode

[63] [0] = 0, BEs encoded Linear Incrementing Mode

Table 2-2. PI to PCIe Bus Address Mapping in Big-Endian Mode for I/O Space .

Processor Interconnect Address PCI Express Address

[32] [31]

[33] [30]

.. ..

[62] [1], BEs encoded

[63] [0], BEs encoded

D[0:63]

A[61:63]

Byte0 Byte1 Byte2 Byte3 Byte4 Byte5 Byte6 Byte7

0 63
000 001 010 011 100 101 110 111

MSB LSB

Byte7 Byte6 Byte5 Byte4

31 0

31 0
MSB

LSB

AD2 = 0
Cycle0

PCI AD[31:0]

AD2 = 1 Cycle1
PCI AD[31:0]

Byte3 Byte2 Byte1 Byte0

PI

User Manual

CPC945 Bridge and Memory Controller Preliminary

Functional Description
Page 36 of 655 February 1, 2008

2.2.5 Exceptions

The exceptions that can occur on the PI interface are caused by three fundamental errors:

• Invalid addresses
• Invalid burst transactions
• Invalid transaction types

Invalid addresses can also result in Master Abort and Target Abort terminations on HyperTransport or down-
stream PCI Bus interfaces. Accesses to an unmapped address will generally be reflected back to the PI inter-
face if a processor was the source of the bad address. Some exceptions are normal events that occur in the
course of system initialization, but others are gross errors that must be communicated to the system software,
and in some cases, corrected.

2.2.5.1 Invalid Addresses

An invalid address is defined as an address that is not mapped, or is not responded to by a downstream slave
device (Master Abort), or does not result in a normal completion status (Target Abort).

All I/O transactions will be acknowledged by the Processor Interconnect Slave interface of CPC945 with an
Sresp Null. If CPC945 later determines that the address associated with that transaction is not mapped to an
interface or device, then CPC945 will terminate the data tenure of that transaction by asserting DERR.

A Master Abort that occurs during a configuration read cycle initiated on the Processor Interconnect interface
will result in normal completion on Processor Interconnect, however the read data returned will be forced to
all 1’s and the RcvdMAbort status bit will not be set in the Legacy PCI Status Register, which is part of the
PCI Express interface register set. If a configuration write cycle is terminated by a Master Abort, the data will
be discarded. A Master Abort termination during any other PCI Express Bus access from Processor Intercon-
nect will result in the RcvdMAbort bit being set in the Legacy PCI status register. If a read transaction results
in a Master Abort, then the Processor Interconnect data tenure will be terminated with DERR. If a write trans-
action results in a Master Abort, then the write data will be discarded.

A Target Abort termination during a PCI Express Bus access from Processor Interconnect will result in the
RcvdTAbort bit set in the Legacy PCI status register. If a read transaction results in a Target Abort, then the
Processor Interconnect data tenure will be terminated by a DERR. If a write transaction results in a Target
Abort, then the write data will be discarded.

For more detail on Legacy PCI status registers, seeSection 12.11 PCI Express Registers on page 505.

2.2.5.2 Invalid Burst Transactions

If any type of burst access is attempted to CPC945’s control registers’ space, the transaction data tenure will
be terminated by DERR.

2.2.5.3 Invalid Transaction Types

Only two transaction types are considered invalid: the special graphics operations ecowx and eciwx. The
generation of either of these transaction types in a CPC945-based system results in a software error. The
transaction data tenure will be terminated by DERR.

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
Functional Description

Page 37 of 655

2.2.6 Interrupts

The CPC945 MPIC (Multiprocessor Interrupt Controller) supports 8 internal I/O interrupts, 116 external I/O
interrupts, and 4 IPI (Interprocessor Interrupts). It forwards these interrupts to 4 external IRQ signals, which
connect to up to 4 processors. The 116 external I/O interrupts are a mixture of interrupts which have been
forwarded to the CPC945 on the PCI Express and HyperTransport buses.

PCI Express supports two types of interrupts: legacy PCI (INT A, B, C, D), and Message Signaled Interrupts
(MSI). The legacy interrupts are presented a single level sensitive interrupt, one of the 8 internal interrupts, to
the MPIC controller. The legacy interrupts are automatically assigned to INT 3. The MSI interrupts are
presented to MPIC as 1 of the 116 external edge triggered interrupts. The assignment of MSI interrupt level is
always done by software.

HyperTransport supports one type of interrupt: the Interrupt Packet. The HT Interrupt Packets are presented
to MPIC as 1 of the 116 external edge triggered interrupts. Assignment of HT Interrupt Packet level is always
done by software.

Software must coordinate interrupt source assignment among all interrupting devices on the PCI Express that
use MSI interrupts and downstream devices on the HyperTransport interface.

Interrupts from devices on CPC945 (for example, error interrupts related to PCI Express link errors or Hyper-
Transport link error), generate different internal MPIC interrupts and do not use messages carried on Hyper-
Transport. (See Section 9 MPIC on page 279.)

User Manual

CPC945 Bridge and Memory Controller Preliminary

Functional Description
Page 38 of 655 February 1, 2008

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
CPC945 Core Interface (API Interface)

Page 39 of 655

3. CPC945 Core Interface (API Interface)
The CPC945 core interface (Advanced Processor Interface or API), as illustrated in Figure 3-1 on page 40,
basically serves as a crossbar switch for CPU and I/O requests to and from memory.

The API interface consists of various queues and data buffers that hold both requests and data respectively
from its originators and is responsible for dispatching these to their intended destinations. In addition, it also
contains a DMA address relocation table (DART) for HT and PCIe coherent requesters as well as snoop logic
to maintain/enforce memory coherency requirements of the CPU.

3.1 CPC945 Core Interface Overview

The CPC945 core interface (API) is responsible for interfacing between the following major blocks:

• HyperTransport Interface (HT)
• PCI Express Interface (PCIe)
• General Control Registers (GCR)
• Processor Interconnect (PI)
• Memory Controller (DDR2)

User Manual

CPC945 Bridge and Memory Controller Preliminary

CPC945 Core Interface (API Interface)
Page 40 of 655 February 1, 2008

Figure 3-1. CPC945 Core Interface Block Diagram

DIMM

PI
WDB

PCIe
WDB

HT
WDB

M
E

M
O

R
Y

 (
D

D
R

2)

C
O

N
T

R
O

LL
E

R

P
C

I E
X

P
R

E
S

S

CPC945 CORE INTERFACE

HYPERTRANSPORT

INTERFACE (HT)

IN
T

E
R

FA
C

E
 (

P
C

Ie
)

Rd Wr Rd Wr

w/WrTag

w/Rd Tag

w/Wr Tag

(PI Interface)

w/Rd Tagw/Tag

w/Wr Tag

w/Rd Tag

Non-Coh

Tag

GCR

MISC

(pmr,...)

C
P

C
94

5
P1P0

switch

P3P2

switch

DIMM
DIMM

DIMM

Hyper-

Transport

G
ra

ph
ic

s

PI(PIPhy) PI(PIPhy)

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
CPC945 Core Interface (API Interface)

Page 41 of 655

3.1.1 General Description of the Request Interfaces

Figure 3-2 shows the request interfaces between the various internal blocks. The different types of request
interfaces are described in the following subsections.

Figure 3-2. CPC945 Core Request Interfaces

GCR

HT

CRRAI

NCRAI

NCRAI

TWAI

TAI

TAI

IB

OB

CWRAI

TRAI

TWAI

TRAI

CRRAI

CWRAI

TWAI

TRAI

CRRAI

CWRAI

CRRAI

CWRAI

IB

TWAI

OB

TRAI

PCIE

DDR

TAI

TAI

API

User Manual

CPC945 Bridge and Memory Controller Preliminary

CPC945 Core Interface (API Interface)
Page 42 of 655 February 1, 2008

3.1.1.1 CRRAI / CWRAI – Coherent Read/Write Request Address Interface

This interface is used for coherent inbound read/write requests from HT and PCIe. The requests are sent to
the API logic block to be snooped by the processor’s caches before they are sent to the various targets.

The interface contains address, cycles, tag, and control information. There are separate interfaces for reads
(CRRAI) and writes (CWRAI). The tag provided is used to specify the source of the data for writes, and the
destination of the data for reads.

All requests not going to or from memory are done in order. Requests to memory can be reordered with
respect to the data. On reads to memory the tag is returned with the data on the Memory Read Data Inter-
face. On writes to memory, the tag is used to read the write data from the Write Data Buffer. (See
Section 3.1.2 General Description of the Data Interfaces on page 42.)

3.1.1.2 NCRAI – Non-Coherent Request Address Interface

This interface is used for non-coherent inbound read and write requests from PCIe. The requests are sent
directly to the Memory Controller without being snooped by the processor’s caches.

The interface contains address, cycles, tag, and control information. There is one interface for both reads and
writes.

3.1.1.3 TRAI / TWAI – Target Read/Write Address Interface

This interface is used for sending outbound read/write requests to HT and PCIe after they have been
snooped. These requests could have originated from the processors or as inbound requests from HT or PCIe.

The interface contains address, cycles, and control information. There are separate interfaces for reads
(TRAI) and writes (TWAI).

3.1.1.4 TAI – Target Address Interface

The TAI is the same as TRAI and TWAI except there is a common interface for both reads and writes.

This interface is used for sending read and write requests to DDR2 and GCR after they have been snooped.
These requests could have originated from the processors or as inbound requests from HT or PCIe.

The interface contains address, cycles, and control information.

3.1.2 General Description of the Data Interfaces

Figure 3-3 on page 43 shows the data interfaces between the various internal blocks. These data interfaces
are described in the following subsections.

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
CPC945 Core Interface (API Interface)

Page 43 of 655

Figure 3-3. CPC945 Core Data Interfaces

PCIE

HT

MWDI

IB

OB

MRDI

MWDI

MRDI

MWDI
MRDI

IB

OB

API

MWDI

MRDI

WDI

WDI

RDI

RDI

WDI
RDI

WDI
RDI

WDI

WDI
RDI

WDI
RDI

WDI
RDI

WDI
RDI

WDI
RDI

WDI
RDI

GCR

RDI

DDR

AMRDI

MWDBI

AMRDI

MWDBI

User Manual

CPC945 Bridge and Memory Controller Preliminary

CPC945 Core Interface (API Interface)
Page 44 of 655 February 1, 2008

3.1.2.1 WDI – Write Data Interface

The Write Data Interface is used for transferring write data between the various blocks except for memory. It
is used for HT inbound write operations to PCIe and GCR, PCIe inbound write operations to HT and GCR,
and PI write operations to PCIe, HT, and GCR. Except for GCR, the interface consists of 128 bits of data
along with 16 bits of byte enables and control. The interface to GCR is only 64 bits of data with 8 bits of byte
enables. The write data is expected to be available by the source when the request is issued. The target of
the request pulls the data when it is able to execute the write operation.

3.1.2.2 RDI – Read Data Interface

This interface is used for transferring read data between the various blocks except for memory. It is used for
HT inbound read operations to PCIe and GCR, PCIe inbound read operations to HT and GCR, and PI read
operations to PCIe, HT, and GCR. Except for GCR, the interface consists of 128 bits of data along with 16
bits of byte enables. The interface to GCR is only 64 bits of data with 8 bits of byte enables. The source is
expected to provide a buffer for the read data when the read operation is issued. The target of the request
pushes the read data to this buffer when it has the data available.

3.1.2.3 MWDI – Memory Write Data Interface

This interface is used for transferring write data to memory (DDR2) from HT and PCIe inbound write opera-
tions. The interface consists of 128 bits of write data, 16 bits of byte enables, a Write Data Buffer (WDB)
address where the write data is to be written, and control. The write data is written to the WDB before the
request is issued to insure that the data is available in the WDB when the write request is executed. A Tag is
sent with the write request that indicates where the write data from this operation is located in the WDB. The
WDBs reside in the API block. The write data is sent across to the DDR2 block on the AMWD interface.

3.1.2.4 MRDI – Memory Read Data Interface

This interface is used for transferring read data from memory (DDR2) for HT and PCIe inbound read opera-
tions. The interface consists of 128 bits of read data and a tag that was carried along with the request
because the memory controller might have issued the read out-of-order.

3.1.2.5 AMRDI – API from Memory Read Data Interface

Read data from memory is sent on the AMRD interface. This interface is similar to the MRDI except that part
of the ECC correction is done in the API block to save latency.

3.1.2.6 MWDBI – Memory Write Data Buffer Interface

Write data from the various requesters is sent first on the requesters MWDI (see above) to the API block
where it is buffered in Write Data Buffers. When the write to memory is actually performed, the memory
controller requests the data from the WDBs and the data is sent to the memory controller on the MWDBI
Interface.

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
CPC945 Core Interface (API Interface)

Page 45 of 655

3.2 Illustration of Requests and Dataflow within PI

This section illustrates the request and dataflow for HT and PCIe inbound requests and PI target requests.

3.2.1 HT Inbound Request

Figure 3-4 on page 46 shows the request data interfaces for HT inbound read and write requests to DDR2,
PCIe, and GCR.

The HT block sends inbound requests to the API block to be translated by the DART and snooped by the
processors. The requests are then mapped and sent to a target (DDR2, PCIe, or GCR).

The Target request contains a Requester ID to tell the Target where to return data on reads and where to get
the data on writes.

Requests to PCIe and GCR are in order. Read data is returned and write data is received in the same order
as the requests.

Requests to memory can be reordered in the memory controller. To keep track of the reorder, a Tag is
provided on memory read requests that is returned with the read data. On memory write requests a Tag is
provided that specifies the WDB location for write data.

User Manual

CPC945 Bridge and Memory Controller Preliminary

CPC945 Core Interface (API Interface)
Page 46 of 655 February 1, 2008

Figure 3-4. HT Inbound Request Core Interfaces

HT Inbound

Core Interfaces

Snoop

api

ddr

Pcie

TR

RqQ

Gcr

TRW

RqQ

api ddr
inbound

HtRRq

PCIE

HtWRq

Sync

Mem

WDt

ddrht

pcie

Api

R

Api

W

GCR

Ht

RDt

Ht

WDt
Api

RW

api

HtRRq

HtWRq

DART

Mem

RDt

Pci

WDt

Pci

RDt

Gcr

WDt

Gcr

RDt

apiddr

Mem I/F

Cmnd

Data

HT

WDB

Re

Ordr

Tagged

Tagged

Pcie

TW

RqQ

pcie

ddrHt

WDt

Ht

RDt

HT

outbound

from HT
outbound

from HT

Tg,Idx,Rid

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
CPC945 Core Interface (API Interface)

Page 47 of 655

3.2.2 PCIe Inbound Request

Figure 3-5 on page 48 shows the request data interfaces for PCIe inbound read and write requests to DDR2,
PCIe, and GCR.

The PCIe block sends coherent inbound requests to the API block to be translated by the DART and snooped
by the processors. The requests are then mapped and sent to a target (DDR2, HT, or GCR).

The Target request contains a Requester ID to tell the Target where to return data on reads and where to get
the data on writes.

The PCIe block can also send non-coherent inbound requests directly to DDR2.

Requests to HT and GCR are in order. Read data is returned and write data is received in the same order as
the requests.

Requests to memory can be reordered in the memory controller. To keep track of the reorder, a Tag is
provided on memory read requests that is returned with the read data. On memory write requests a Tag is
provided that specifies the WDB location for write data.

The same data buses are used to memory for both coherent and noncoherent requests.

User Manual

CPC945 Bridge and Memory Controller Preliminary

CPC945 Core Interface (API Interface)
Page 48 of 655 February 1, 2008

Figure 3-5. PCIe Inbound Request Core Interfaces

PCIE Inbound

Core Interfaces

Snoop

api

ddr

Ht

TR

RqQ

Gcr

TRW

RqQ

api ddr
inbound

HT

Sync

Mem

WDt

apipcie

Api

R

Api

W

GCR

Pcie

RDt

Pcie

WDt
Api

RW

PcieRRq

PcieWRq

DART

Mem

RDt

Ht

WDt

Ht

RDt

Gcr

WDt

Gcr

RDt

Mem I/F

Cmnd

Data

PCIE

WDB

Re

Ordr

Tagged

Tagged

Ht

TW

RqQ

ht

ddrPcie

WDt

Pcie

RDt

PCIE

outbound

from PCIE
outbound

from PCIE

PcieNC

RWRq

Tagged

ddrpcie

PcieRRq

PcieWRq

Tg,Idx,Rid

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
CPC945 Core Interface (API Interface)

Page 49 of 655

3.2.3 PI Target Requests

Figure 3-6 on page 50 shows the request data interfaces for Processor Interface (PI) Requests to DDR2,
PCIe, HT, and GCR.

The API block receives requests from the processors through the Address DataOut (ADO) side of the APIPhy
Bus. These requests are snooped by the processors, mapped and sent to a target (DDR2, PCI, HT, or GCR).

The Target request contains a Requester ID to tell the Target where to return data on reads and where to get
the data on writes.

Requests to PCIe, HT, and GCR are in order. Read data is returned and write data is received in the same
order as the requests.

Requests to memory can be reordered in the memory controller. To keep track of the reorder, a Tag is
provided on memory read requests that is returned with the read data. On memory write requests a Tag is
provided that specifies the WDB location for write data.

User Manual

CPC945 Bridge and Memory Controller Preliminary

CPC945 Core Interface (API Interface)
Page 50 of 655 February 1, 2008

Figure 3-6. PI Target Request Interfaces

Tg

API Request

Core Interfaces

Snoop

api

ddr

Pcie

TR

RqQ

Gcr

TRW

RqQ

api ddr

PCIE

Sync

Api

R

Api

W

GCR

Api

RDt

Api

WDt
Api

RW

Api

RDt

Api

WDt

Mem I/F

Cmnd

Data

API

WDB

Re

Ordr
Tagged

Pcie

TW

RqQ

ht

ddrApi

WDt

Api

RDt

outbound

from Proc

from Proc

api
ApiR

ApiW

Ht

outbound

from Proc

Api1Api0

API

RDB

Gcr

WDt

Pcie

WDt

Ht

WDt

Ht

TR

RqQ

Ht

TW

RqQ

Api1Api0

Gcr

RDt

Pcie

RDt

Ht

RDt

ADO-0 ADO-1 ADI-0 ADI-1

NMem

RqQ

pcie api

pcie ddr

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
CPC945 Core Interface (API Interface)

Page 51 of 655

3.3 PI Bus Timing Parameters

The example in Figure 3-7 on page 52 (for illustrative purposes only) shows the relationship between the
various bus configuration timing parameters using a hypothetical CPU access. The numbers in brackets are
provided for illustrative purposes only, and represent latency/propagation delay in terms of the number of bus
beats, which is half of the api_clock period.

The CPU issues a command on the bus and this makes its way to the “ADO” pins of the CPU. Accounting for
a board delay of 1 data beat in this example, the CPC945 sees this “ADO” signal internally after 5 beats,
accounting for the 4 data beats latency through the Processor Interface (PI) for this particular target time
setting. The CPC945 then takes 4 data beats to generate the required transfer handshake and it takes
another 4 data beats to leave the CPC945 for the CPU. If the PI inbound delay for the CPU is 3 beats, then
the STATLAT seen from the CPU’s perspective would be 18 in total.

Concurrently, when the CPC945 receives the “ADO” signals, it queues up the request in its various slots and
queues and waits for the correct moment to send out the reflection packet for snooping by the processors.
This can take a varying amount of time and depends on the queue conditions of the various FIFOs inside the
API block.

When the CPC945 is ready to reflect the command packets, it begins its countdown of its own STATLAT
counter, which differs from that of the CPU. Referring to the various delays shown in Figure 3-7, the CPC945
STATLAT is the round trip delay from the time the CPC945 first generates its reflection packet (internally) to
the time it receives its transfer handshake (internally) from the CPU. As shown in Figure 3-7, this includes the
latency through the PI for both the CPC945 and CPU, the I/O delays as well as the wire delays on the board.
In this example the total delay is 25 bus beats.

In addition to the STATLAT countdown that is initiated, the CPC945 also initiates the countdown of its
SNOOPLAT counter. Referring to the various delays shown in Figure 3-7, the CPC945 SNOOPLAT is the
round trip delay from the time the CPC945 first generates its reflection packet (internally) to the time it
receives its snoop response (internally) from the CPU. As shown in Figure 3-7, this includes the latency
through the PI for both the CPC945 and CPU, the I/O delays as well as the wire delays on the board. In this
example the total delay is 23 bus beats.

The CPC945 takes the snoop responses from all the CPU attached and generates a combined/accumulated
snoop response back to the CPU. From the CPU’s perspective, the SNOOPACC is the round trip delay from
the time the individual snoop response leaves its “SRO” pins to the time it receives the “SRI” signal internally
as shown in Figure 3-7. In this example the total delay is 16 bus beats.

The SNOOPLAT parameter of the CPU depends on the type of processor family that is attached and typically
is 5 for the 970FX and 6 for the 970MP.

The PAAMWIN parameter of the CPC945 is calculated based on the formula shown in Figure 3-7.

User Manual

CPC945 Bridge and Memory Controller Preliminary

CPC945 Core Interface (API Interface)
Page 52 of 655 February 1, 2008

Figure 3-7. Processor and CPC945 Bus Timing Parameters

PAD
Wire
Delay (1)

CPC945 PI
Inbound
Delay (4)

PAD
ADO

CPC945 PI
Outbound
Delay (5) PAD PAD

THI

CPC945 PI
Outbound
Delay (5) PAD PAD

ADI

CPU PI
Outbound

Delay PAD
Wire
Delay (1)

CPC945 PI
Inbound
Delay (4)

PAD
SRO

PAD
Wire
Delay (1)

CPC945 PI
Inbound
Delay (4)

PAD
THO

CPC945 PI
Outbound
Delay (5) PAD

CPU PI
Inbound
Delay

PAD
SRI

CPU Issues
Command

STATLAT_CPU

NB generate
Reflection packets

NB generate
Transfer Handshake

CPU generate
Transfer Handshake

NB generates
combined snoop

response (2)
SNOOPACC_CPU

STATLAT_NB

SNOOPLAT_NB

CPU

SNOOPLAT_CPU

Wire
Delay (1)

Wire
Delay (1)

Wire
Delay (1)

(4)

PI Inbound Delay depends
on the target time setting

PI Outbound Delay is usually fixed.

NOTE:

(varies)

PAAMWIN_NB =
SNOOPLAT_CPU+
SNOOPACC_CPU+5

CPC945

CPU PI
Inbound
Delay

CPU PI
Inbound
Delay

CPU PI
Outbound

Delay

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
CPC945 Core Interface (API Interface)

Page 53 of 655

3.4 DMA Address Relocation Table (DART)

Requests from PCI and HT undergo a mapping from their 40-bit logical address to a 36-bit physical address
needed by memory.

Not all 40-bit addresses are mapped. Address bits 24:32 define ranges where mapping does not occur. This
is described in the following table.

The mapping consists of accessing a table in memory to translate the Logical 4 KB Page Number (LPN) (27
bits, address [25:51]) to a Physical 4 KB Page Number (PPN) (24-bits, address [28:51]). This table is referred
to as the DMA Address Relocation Table (DART).

When bit [24] is a one, mapping is disallowed. An access beyond the range of physical memory causes an
address exception. See Section 12.9.22 DART Exception Status Register (DARTEXCP) on page 443.

Table 3-1. DART Mapping Range.

High Order Bits of
40-bit Address [24:32]

Binary

Address Range [24-63]
Hexadecimal DART Enabled Mapping

0000 0000 0
0x00 0000 0000 -
0x00 7FFF FFFF

Mapping occurs if DART
enabled.

0000 0000 1
0x00 8000 0000 -
0x00 FFFF FFFF

---- Mapping disallowed.

0000 0001 -
0000 001- -
0000 01-- -
0000 1--- -

0x01 0000 0000 -
0x0F FFFF FFFF

Mapping occurs if DART
enabled.

0001 ---- -
001- ---- -
01-- ---- -

0x10 0000 0000 -
0x7F FFFF FFFF

DART enabled Mapping occurs.

DART
disabled

Undefined Space.
Addressing Exception reported.

1000 ---- -
0x80 0000 0000 -
0x8F FFFF FFFF

Mapping disallowed.
Direct access by dropping bits 24:27.

1001 ---- -
101- ---- -
11-- ---- -

0x90 0000 0000 -
0xFF FFFF FFFF ----

Undefined Space.
Addressing Exception reported.

User Manual

CPC945 Bridge and Memory Controller Preliminary

CPC945 Core Interface (API Interface)
Page 54 of 655 February 1, 2008

3.4.1 DART Format in Main Memory

The DART is a table in main memory (DRAM) that contains one 32-bit entry for every page that it maps.
Table 3-2 shows the format for a DART entry.

The Valid bit (V) indicates whether this entry has a correctly enabled translation. If this bit is zero and used for
a translation, a DART Entry Exception is reported. See Section 12.9.22 DART Exception Status Register
(DARTEXCP) on page 443.

The Read Protection bit (R) indicates whether this entry is protected against read operations. If this bit is zero
then translations due to read operations are allowed to access this table entry. It this bit is one (and the Valid
is one) and the entry is being used to translate an address for a read operation then a DART Read Protection
Exception is reported. See Section 12.9.22 on page 443.

The Write Protection bit (R) indicates whether this entry is protected against write operations. If this bit is zero
then translations due to write operations are allowed to access this table entry. If this bit is one (and the Valid
bit is one) and the entry is being used to translate an address for a write operation then a DART Write Protec-
tion Exception is reported. See Section 12.9.22 on page 443.

Table 3-2. Format of a DART Entry in Main Memory .

Bits Field Description

0 V Valid Entry (1: Valid)

1 R Read Protection Bit (1: Page is protected)

2 W Write Protection Bit (1: Page is protected)

3:7 Undefined.

8:31 PPN 24-bit Physical Page Number representing address [28:51]

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
CPC945 Core Interface (API Interface)

Page 55 of 655

3.4.2 DART Translation Process

The DART translation consists of taking the 40-bit logical address (bits 24:63) from the I/O and examining the
27-bit (bits 25:51) Logical Page Number (LPN) as illustrated in Figure 3-8.

Figure 3-8. The DART Translation Process

DART PAGE DART
INDEX

41 42 51 52 63
LOW-ORDER
ADDRRESS

40 Bit Logical I/O Address

24 25
E

V R W --- PPN

0 31

V R W --- PPN

V R W --- PPN

V R W --- PPN

V R W --- PPN

V R W --- PPN

DARTSIZE = 1

DARTBASE

DARTSIZE = 3

DARTSIZE=n-1

DARTSIZE = n

DARTSIZE = 2

DARTSIZE=n-2

DARTSIZE=n-3

+17 bit DART Page

||10 bit DART Index

24 bit Page
Address
(4K aligned
boundary)

36 bit Address
to main memory
word (32 bit)
aligned.

51 52 63
LOW-ORDER
ADDRRESS

28

PHYSICAL PAGE NUMBER

36Bit Physical Address

A Single
DART
Page

Each DART page in memory requires
4096 bytes and since each DART

entry is 4 bytes, a single DART page
in main memory holds 1024 DART

entries.

User Manual

CPC945 Bridge and Memory Controller Preliminary

CPC945 Core Interface (API Interface)
Page 56 of 655 February 1, 2008

A DART page in main memory (DRAM) is defined to be 4K in size and holds 1024 DART entries. See Table
3-2 Format of a DART Entry in Main Memory on page 54 for the bit definitions in memory.

This 27-bit LPN is then divided into 2 fields, the DART_Page and the DART_Index as follows:

DART_Page = LPN[25:41] (17 bits)

DART_Index = LPN[42:51] (10 bits)

For DART size checking, the DART_Page is compared to the DARTSIZE value to see if the mapping will fit in
the DART.

If it does not fit, a DART Out-of-bounds Exception is set. A DARTSIZE of zero indicates that the entire
address space is mapped and no OutOfBounds Exception will be issued.

OutOfBoundsException = (Size != 0) & (Size <= DART_Page)

If it fits (Size > DART_Page), the DART_Page is added to the DART_BASE to determine what page is
accessed. The word index into the page comes from the remaining bits, DART_Index. The DART entry
address in the main memory is computed as follows:

DART Entry Address = (DART_BASE + DART_Page) || DART_Index || b00

The Valid bit from the fetched DART entry is checked and if found to be not valid, a DART Entry Exception is
set. See Section 12.9.22 DART Exception Status Register (DARTEXCP) on page 443.

If Valid, the Read and Write Protection bits are checked. If there are no exceptions, the 24-bit Physical Page
Number (PPN) that was fetched from memory is concatenated with the 12 low-order address bits 52:63 to
form the 36-bit physical address. This is illustrated in Figure 3-8 The DART Translation Process on page 55.

Recently used DART table entries are cached in the DART TLB (translation look-aside buffer).

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
CPC945 Core Interface (API Interface)

Page 57 of 655

3.4.3 DART TLB Format

The DART Translation Look-aside buffer (TLB) is a cache of recently used DART Table Entries and is imple-
mented as internal SRAMs.

The DART TLB consists of a 256-entry DART TLB Tag RAM (DARTTAG) in a 4-way set-associative arrange-
ment (64 sets of 4 ways per set) and a corresponding 1024-entry DART TLB Data RAM (DARTDATA).

Each TLB entry is capable of mapping 4 logical addresses using 4 entries of the TLB Data Ram. This gives
the TLB the capability of mapping a total of 1024 pages.

To access the TLB, the 27-bit (bits 25:51) LPN is divided into three parts:
• TLB Logical Page Tag (TLBTAG),
• TLB Index (TLBIDX), and
• TLB Quad Select (TLBSEL).

Since there are 4 DART entries for each TLB entry, the 2 low order bits LPN[40:41] are used for the TLBSEL.
The next six bits are used to index the 64 sets of the TLB. The remaining 19 bits (bits 25:43) are used for the
TLBTAG. This is illustrated in Figure 3-9.

User Manual

CPC945 Bridge and Memory Controller Preliminary

CPC945 Core Interface (API Interface)
Page 58 of 655 February 1, 2008

Figure 3-9. The TLB Translation Process

DART PAGE DART
INDEX

41 42 51 52
LOW-ORDER
ADDRRESS

40 Bit Logical I/O Address
24 25
E

V R W Ex
0 31

51 52
LOW-ORDER
ADDRRESS

28

PHYSICAL PAGE NUMBER

36Bit Physical Address

-- PPN

V R W Ex -- PPN

V R W Ex -- PPN

V R W Ex -- PPN

V R W Ex -- PPN

V R W Ex -- PPN

V R W Ex -- PPN

0

1

2

3

4

1023

1022

DART DATA RAM

VRWTLBTAG VRWTLBTAG VRWTLBTAG VRWTLBTAG
VRWTLBTAG VRWTLBTAG VRWTLBTAG VRWTLBTAG
VRWTLBTAG VRWTLBTAG VRWTLBTAG VRWTLBTAG

VRWTLBTAG VRWTLBTAG VRWTLBTAG VRWTLBTAG
VRWTLBTAG VRWTLBTAG VRWTLBTAG VRWTLBTAG
VRWTLBTAG VRWTLBTAG VRWTLBTAG VRWTLBTAG

0
1
2

61
62
63

DART TAG RAM

WAY 0 WAY 1 WAY 2 WAY 3

TLB TAG TLB
INDEX

43 44 51 52
LOW-ORDER
ADDRRESS

24 25 49 50
TLB
SEL

19
TAG

12
VRW

19
TAG

12
VRW

19
TAG

12
VRW

19
TAG

12
VRW

TAG COMPARATOR, VALID CHECKS

2
HIT WAY

6
TA

G
 R

A
M

 A
D

D
R

ES
S19

TL
B

 T
A

G 2
V

R
W

 S
EL

EC
T

TLB
INDEX

TLB
SEL

HIT
WAY

10
TAG DATA ADDRESS

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
CPC945 Core Interface (API Interface)

Page 59 of 655

Each entry of the DARTTAG consists of the TLBTAG and 4 sets of control bits corresponding to the 4 Page
Numbers of the DART Entry.

Each set of control bits consist of a Valid bit (V), and Read (R) and Write (W) Protection bits.

Each entry of the TLBData RAM consists of one Physical Page Number (PPN).

The DART TLB is accessible through memory-mapped addresses.

Table 3-3. LPN Address to access the DART TLB.

Bits Field Description

0:24 - Unused

25:43 TLBTAG Used as tag entries, TLB logical page tag

44:49 TLBIDX Used as a lookup into the cache, TLB index

50:51 TLBSEL Used as the way select. TLB quad select

52:63 unmapped These are not considered during lookup

Table 3-4. Format of a DART Tag Entry in TLB (cache).

Bits Field Description

0 – Unused. Read and write access. (Initial value undefined)

1:19 TLBTAG 19–bit TLB logical page tag (Initial value undefined)

20:22 V0, R0, W0 Valid 0 (1: Valid), Read 0, Write 0 (1: Protected) (Initial value: 0b000)

23:25 V1, R1, W1 Valid 1 (1: Valid), Read 1, Write 1 (1: Protected) (Initial value: 0b000)

26:28 V2, R2, W2 Valid 2 (1: Valid), Read 2, Write 2 (1: Protected) (Initial value: 0b000)

29:31 V3, R3, W3 Valid 3 (1: Valid), Read 3, Write 3 (1: Protected) (Initial value: 0b000)

Table 3-5. Format of DART Data Entry in TLB (cache).

Bits Field Description

0 V Copy of valid bit for this entry. (used by hardware) (Initial value undefined)

1 R Copy of read bit for this entry. (used by hardware) (Initial value undefined)

2 W Copy of write bit for this entry. (used by hardware) (Initial value undefined)

3 Ex Exception flag. (used by hardware) (Initial value undefined)

4:7 – Unused

8:31 PPN 24-bit physical page number, Ad[28:51] (Initial value undefined)

User Manual

CPC945 Bridge and Memory Controller Preliminary

CPC945 Core Interface (API Interface)
Page 60 of 655 February 1, 2008

3.4.4 DART TLB Translation

The translation process using the TLB consists of using the TLBIDX to access the 4 ways of DARTTAG
entries.

The DARTTAGs from the 4 ways are compared to the TLBTAG field. On entries that match, the Valid bit is
selected based upon the TLBSEL. If the entry is valid, the read and write protection bits selected by TLBSEL
are checked.

If the operation is allowed on this page, the way number is encoded and used along with the TLBIDX and the
TLBSEL to access the 1024-entry DARTDATA cache RAM. The 24-bit Physical Page Number (PPN) is
fetched from the DARTDATA cache RAM and is concatenated to the 12 low-order address bits 52:63 to
complete the physical address. This process is illustrated in Figure 3-9 on page 58.

If no match is found in the DART TLB, the DART Table entry in memory (Figure 3-8 on page 55) is fetched
and used to complete the mapping. The TLB entry in the cache is then updated with this new entry.

A LRU (Least-Recently-Used) replacement mechanism is used to determine which entry is updated. An entry
is considered “used” when a valid mapped request hits in the entry. The initial state (after the TLB is invali-
dated) of a set of 4 entries is the order (0, 1, 2, 3) where way-0 is the least-recently-used (LRU) and way-3 is
the most-recently-used (MRU).

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
CPC945 Core Interface (API Interface)

Page 61 of 655

CPC945 Core Interface (API Interface)

3.5 Processor Interconnect Interface Microarchitecture

3.5.1 System Overview

The Processor Interconnect Interface (ApiIf) Block interfaces the two processor interfaces to the rest of the
agents on the CPC945 chip (Figure 3-10).

The main functions of the PI block are:

• Collecting requests from the processor and coherent requests from the other agents and dispatching
them to their respective targets within CPC945.

• Ensuring cache coherency by reflecting the requests from the processors and other agents back to the
processors so that the processor's caches can be snooped.

• Translating requests from PCI Express and HyperTransport interfaces from logical to physical addresses
through a DART.

3.5.2 ApiIf Operation

Figure 3-11 shows CPC945’s major functional PI blocks and is to be used with the descriptions of PI opera-
tion contained in this section.

Figure 3-10. CPC945 Processor Interface Environment

DDR

GCR

RDB

MemRq

IO Data Qs

WDB

PIPI

arb
IntvQ

DART

arb

Snp
Pipe

IO Req Qs

API

PCIE

HT

User Manual

CPC945 Bridge and Memory Controller Preliminary

CPC945 Core Interface (API Interface)
Page 62 of 655 February 1, 2008

Figure 3-11. CPC945 PI Unit

HtW

RQ

HtR

RQ

PeR

RQ

PeW

RQ

DART

HtWCRq

HtRCRq

PeWCRq
PeRCRq

API0
ADO

API1
ADO

API0
ADI

API1
ADI

PeR
PQ

PeW
PQ

HtR
PQ

HtW
PQ

Arb Arb

Arb

Wtr
Q A

rb

Snp
Slots

Cmd
Q

Intv
Q

Mem
RdB0

Mem
Rsp0

Mem
RdB1

Intv
Q

Mem
RSp1

ECC
Chk

ApiDdr
RdDt,Tg

PeR
DtQ

HtR
DtQ

GcrR
DtQ

PcRdDt

HtRdDt

GcrRdDt

Byps
Q

PCIeDdrWrDt

HTDdrWrDt

PCIe
WDB

HT
WDB

PeRspQ

HTRspQ

GcrRspQ

API
WDB

DdrWdbAd

DdrWdbApiDt

DdrWdbHTDt
DdrWdbPCIeDt

Gcr
WrDtQ

HT
WrDtQ

PCIe
WrDtQ CPC945

API Interface
Gcr

WrDt
HT

WrDt
PCIe
WrDt

Mem
ReqQ

APIMemRq

PcWQ

HTWQ

GCRWQ

Sync
ReqQ

Gcr
TRqQ

HTR
TRqQ

HTW
TRqQ

PeR
TRqQ

PeW
TRqQ

Gcr
TRq

HTR
TRq

HTW
TRq

PeR
TRq

PeW
TRq

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
CPC945 Core Interface (API Interface)

Page 63 of 655

3.5.2.1 Commands from Processor

Table 3-6 lists CPC945’s response to Bus Operations from the processor. All operations reflect the command
back to the processors and receive an Accumulated Snoop Response. The “PI Action” indicates what
happens after the snoop response has been received. “Target” in the table refers to Memory, HT, and/or
PCIe.

Table 3-6. Response to Bus Operations from the Processor.

Bus Operation Acc Snoop Response PI Action Note

Read

Clean (Null),
Shared

Send Read Request to Target

Retry Do nothing

Modified Intervention

Send Write Request to Target
Wait for Read Data Response from Exclusive Processor
Send Read Data to Requesting Processor
Send Data to Target

1

Shared Intervention
Wait for Read Data Response from Shared Processor
Send Read Data to Requesting Processor

1

Anything Else Generate an Exception

RWITM

Clean (Null) Send Read Request to Target

Retry Do nothing

Modified Intervention,
Shared Intervention

Wait for Read Data Response
Send Read Data to Requesting Processor

1

Anything Else Generate an Exception

Write with Flush, Kill,
Clean

Clean (Null) Send Write Request to Target

Retry Do nothing

Anything Else Generate an exception

Sync
EIEIO

Clean (Null) Add indicator to PCIe, HT Interfaces to prevent combining

Retry Do nothing

Anything Else Generate an exception

Power tuning Any See section on power tuning

Other Any Do nothing

Note:
1. Intervention responses are only allowed on accesses to Memory. Intervention responses to non-memory generate an exception.

User Manual

CPC945 Bridge and Memory Controller Preliminary

CPC945 Core Interface (API Interface)
Page 64 of 655 February 1, 2008

Processor Read [and read with intent to modify (RWITM)] Commands to Memory

1. A command to read a block comes from a processor’s ADO interface.

2. A read data buffer is allocated, if available. If not available, then the command is retried with the Transfer
Handshake signals.

3. The command is loaded into the CmdQ, if there is space. If there is no space, then the command is
retried with the Transfer Handshake signals.

4. All read commands (and RWITM) are also “bypassed” to memory. This means the read request to mem-
ory is seen before the command is reflected and snooped by the processors.

5. To insure cache coherence, the read address is compared to addresses of the commands that are in front
of it waiting to be reflected (including I/O commands). If there is a match to the same cache line, there is
a potential for the commands to be reflected in a different order than the order of the requests going to
memory. This could lead to incorrect data being read from the bypassed read request. A command is
marked as having a “conflict” if this occurs and the bypassed read is effectively aborted allowing the nor-
mal read to occur after it has been snooped (See Snoop Bypass on page 75).

6. The command waits for arbitration between processor commands and other agents (PCIe and HT).

7. When granted, the command proceeds to a SnoopSlot and is removed from the CmdQ.

8. Upon entering a SnoopSlot, the command is checked against the other commands to see if it is targeting
the same cache line. This information is used to insure that the PAAM window constraints are met (see
PAAMWIN).

9. The command in a SnoopSlot reflects its command to the other processors at an appropriate time
according to priority with other commands, the Snoop Window, and the PAAM Window. Also, before
reflecting, the command waits in a SnoopSlot until its resources (Request Queues, Write Data Buffer,
etc.) are available (see Table 3-8 Resources Required for Reflecting on page 73). Any resources that
have a potential to be needed are allocated.

10. After reflecting its command, the SnoopSlot waits a fixed amount of time (SNOOPLAT) before receiving
its accumulated Snoop Status.

11. The command proceeds depending on the accumulated snoop response value:

– If the status is retry, the command is completed and will be reissued again by the processor.

– If the status is clean or shared, then a request is sent to the MemRqQ and the MemRsp state is
updated (See Snoop Bypass on page 75).

– If the status is shared intervention, the intervening processor will return the data. No memory
request is needed. Only an Intervention Queue entry is needed.

– If the status is modified intervention, the intervening processor will return the data, but unless the
command is a RWITM, the data also needs to be written to memory. On a RWITM, no write to mem-
ory is needed because the requesting processor becomes the owner of the line with it in a Modified
state. The read command generates a write request to the memory (See Intervention Processing
below).

12. Any resources that were allocated before reflecting the command and are not needed after the Snoop
Response are de-allocated (see Table 3-8 Resources Required for Reflecting on page 73).

13. The read (or a write in the case of a Modified Intervention) is sent to the memory controller.

14. Some time later the read data is returned with a tag indicating which read data buffer the data corre-
sponds to.

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
CPC945 Core Interface (API Interface)

Page 65 of 655

15. The data is loaded into the read data buffer and then sent to the processor after arbitrating for the ADI
bus.

Processor Read (and RWITM) Commands to I/O

1. A command to read a block comes from the processor’s ADO interface.

2. The command is loaded into the CmdQ, if there is space. If there is no space, then the command is
retried with the Transfer Handshake signals.

3. The command waits for arbitration between processor commands and other agents (PCIe and HT).

4. When granted, the command proceeds to a SnoopSlot and is removed from the CmdQ.

5. Upon entering a SnoopSlot, the command is checked against the other commands to see if it is targeting
the same cache line. This information is used to insure that the PAAM window constraints are met (See
PAAMWIN).

6. The command in a SnoopSlot reflects its command to the other processors at an appropriate time
according to priority with other commands, the Snoop Window, and the PAAM Window. Also, before
reflecting, the command waits in a SnoopSlot until its resources (Request Queues, Write Data Buffer,
etc.) are available (see resource table, Table 3-8 on page 73). Any resources that have a potential to be
needed are allocated.

7. After reflecting its command, the SnoopSlot waits a fixed amount of time (SNOOPLAT) before receiving
its accumulated Snoop Status.

8. The command proceeds depending on the accumulated snoop response value:

– If the status is retry, the Command is completed and will be reissued again by the processor.

– If the status is clean or shared, then a request is sent to the appropriate Target’s Read Request
Queue and Response.

9. Any resources that were allocated before reflecting the command and are not needed after the Snoop
Response are de-allocated (see resource table, Table 3-8).

10. The read operation in the Target Read Request Queue waits for space in the Read Data Queue. When
the space is ready, a read is sent to the target.

11. The returning read data is put into the appropriate Read Data Queue according to the target of the
request. The next entry in the corresponding Response Queue is fetched. The Response Queue entry
determines who was the original requestor and contains the header for the ReadDataResponse to the
processor. The data is then sent to that requestor over the appropriate ADI bus.

Processor Write Commands to Memory

1. A command to write a block comes from the processor’s ADO interface.

2. The command is loaded into the CmdQ, if there is space. If there is no space, then the command is
retried with the Transfer Handshake signals.

3. A Write Data Buffer (WDB) is also allocated to the command, if available. If not available, then the com-
mand is retried with the Transfer Handshake signals.

4. If the command is accepted, the data following it is written to the assigned WDB location.

5. While the data is being written, the command waits for arbitration between processor commands and
other agents (PCIe and HT).

6. When granted, the command proceeds to a SnoopSlot and is removed from the CmdQ.

User Manual

CPC945 Bridge and Memory Controller Preliminary

CPC945 Core Interface (API Interface)
Page 66 of 655 February 1, 2008

7. Upon entering a SnoopSlot, the command is checked against the other commands to see if it is targeting
the same cache line. This information is used to insure that the PAAM window constraints are met (See
PAAMWIN).

8. The command in a SnoopSlot reflects its command to the other processors at an appropriate time
according to priority with other commands, the Snoop Window, and the PAAM Window. Also, before
reflecting, the command waits in a SnoopSlot until its resources (Request Queues, Write Data Buffer,
etc.) are available (seeTable 3-8 Resources Required for Reflecting on page 73). Any resources that
have a potential to be needed are allocated.

9. After reflecting its command, the SnoopSlot waits a fixed amount of time (SNOOPLAT) before receiving
its accumulated Snoop Status.

10. The command proceeds depending on the accumulated snoop response value.

– If the status is retry, the command is completed and will be reissued again by the processor.

– If the status is not retry, then a request is sent to MemReqQ

11. Any resources that were allocated before reflecting the command and are not needed after the Snoop
Response are de-allocated (see Table 3-8 Resources Required for Reflecting on page 73).

12. The write is sent to the memory controller.

13. Some time later the write command is issued to memory. The memory controller fetches the write data
from the Write Data Buffer and sends it to memory at the appropriate time. When the write is complete,
the WDB tag is sent back to the PI unit indicating that the WDB location can now be freed and used for
another command.

Processor Write Commands to I/O

1. A command to write a block comes from the processor’s ADO interface.

2. The command is loaded into the CmdQ, if there is space. If there is no space, then the command is
retried with the Transfer Handshake signals.

3. A Write Data Buffer (WDB) is also assigned to the command, if available. If not available then the com-
mand is retried with the Transfer Handshake signals.

4. If the command is accepted, the data following it is written to the assigned WDB location.

5. While the data is being written, the command waits for arbitration between other processor commands
and other agents (PCIe and HT).

6. When granted, the command proceeds to a SnoopSlot and is removed from the CmdQ.

7. Upon entering a SnoopSlot, the command is checked against the other commands to see if it is targeting
the same cache line. This information is used to insure that the PAAM window constraints are met (See
PAAMWIN).

8. The command in a SnoopSlot reflects its command to the other processors at an appropriate time
according to priority with other commands, the Snoop Window, and the PAAM Window. Also, before
reflecting, the command waits in a SnoopSlot until its resources (Request Queues, Write Data Buffer,
etc.) are available (see Table 3-8 on page 73). Any resources that have a potential to be needed are allo-
cated.

9. After reflecting its command, the SnoopSlot waits a fixed amount of time (SNOOPLAT) before receiving
its accumulated Snoop Status.

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
CPC945 Core Interface (API Interface)

Page 67 of 655

10. The command proceeds depending on the accumulated snoop response value.

– If it is a retry, the command is completed and will be reissued again by the processor.

– If the status is not retry, then a request is sent to the appropriate Target’s Request Queue and a WDB
Read is issued to the WDB. A WDB read causes the write data to be fetched from the WDB and writ-
ten to the appropriate Write Data Queue.

11. Any resources that were allocated before reflecting the command and are not needed after the Snoop
Response are de-allocated (see Table 3-8 Resources Required for Reflecting on page 73).

12. The write operation in the Target Write Request Queue waits for its data to appear in the write data
queue. When the data is ready, a write is sent to the target. (The target request queue is only used for
nonmemory writes in CPC945)

Intervention Processing

1. Intervention processing occurs when a processor returns a modified or shared intervention accumulated
snoop response to a command to memory space. I/O transactions do not get an intervention. Instead the
processor’s read data response goes direct to memory and the I/O transaction reads the data from mem-
ory.

2. After the snoop response, the ApiIf waits for the intervening processor to send the data with a read data
response (RDR) header.

3. The RDR contains the transfer tag of the original requesting processor. This transfer tag is used to steer
the intervention data to the appropriate processor through the intervention queue.

4. The intervention data is sent to the requesting processor as soon as it is received from the intervening
processor. If a command is interjected from the intervening processor, then null cycles might be inserted
into the data stream to the requesting processor.

5. If a write to memory is also needed (see Table 3-6 Response to Bus Operations from the Processor. on
page 63), the intervention data is also written to the write data buffer (WDB). The transfer tag is used to
select which WDB entry to use. The tag matches the transfer tag stored with the WBD state.

6. When the read data response has completed and the intervention data has been completely written into
the WDB, a valid indication for that buffer is sent to the memory controller. The write command for this
data can now be sent to the memory interface. The write data is then fetched from the WDB and sent to
memory at the appropriate time.

User Manual

CPC945 Bridge and Memory Controller Preliminary

CPC945 Core Interface (API Interface)
Page 68 of 655 February 1, 2008

Operations from External Agents (PCIe, HT)

Table 3-7 lists the coherent operations from other agents, how they translate into a command for reflection to
the processors and the action taken after the Accumulated Snoop response is received.

I/O Read or Write Command Processing

1. An I/O operation to read or write a block comes from the I/O Agent’s Read or Write Coherent Request
Interface and is written to its respective request queue.

2. The Request Queue entries are read, arbitrated, passed through the DART to translate into a 36-bit
Physical Address, converted into commands, and written to their respective pending queues.

3. The command waits for arbitration between processor commands and other agents (PCIe and HT). The
command has its N bit reset to insure that an Intervention Snoop Response does not occur from the Pro-
cessor.

4. When granted arbitration, the command proceeds to a SnoopSlot but is not removed from the pending
queue.

5. Upon entering a SnoopSlot, the command is checked against the other commands to see if it is targeting
the same cache line. This information is used to insure that the PAAM window constraints are met (See
PAAM Window on page 74).

6. The command in a SnoopSlot reflects its command to the other processors at an appropriate time
according to priority with other commands, the Snoop Window, and the PAAM Window. Also, before
reflecting, the command waits in a SnoopSlot until its resources (Request Queues, Write Data Buffer,
etc.) are available (see Table 3-8 on page 73). Any resources that have a potential to be needed are allo-
cated.

7. After reflecting its command, the SnoopSlot waits a fixed amount of time (SNOOPLAT) before receiving
the command’s accumulated Snoop Status.

8. The command proceeds depending on the accumulated snoop response value.

– If the status is non-retry, then a request is sent to the appropriate Target’s Request Queue for a non-
memory request or the MemReqQ for a memory request.

Table 3-7. Operations (I/O Commands) from Other Agents .

Operation from PCIe, HT Bus Operation2 Acc Snoop Response ApiIf Action

Read
Read Nonretry Send Read Request to Target

Retry See Note 1

Write with WrAll and TSize of 128
bytes.

Write with Kill Nonretry Send Write Request to Target

Retry See Note 1

Write without WrAll or TSize less
than 128 bytes

Write with Flush Nonretry Send Write Request to Target

Retry See Note 1

Notes:
1. On a retry, the Agent’s Requesting Queue is backed up to the command that was retried. Any commands that were reflected are

forced to retry, also. The Request Queue then reissues Commands starting at the original retried command. For PCIe and HT
Writes, both the Write Request Queue and Read Request are backed up and retried. For PCIe and HT reads just the Read
Request Queue is backed up and retried.

2. The Address Modifier bits for all operations are: N=0 (No Intervention), S=1 (Non-Cacheable), M=1 (Coherent), G=0 (non-
guarded), R=0 (No rerun), and P=1 (Pipeline Snoops).

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
CPC945 Core Interface (API Interface)

Page 69 of 655

– If it is a retry, then an “Abort” is sent to the Agent’s Pending Queue to backup and retry all operations.
Any of the Agent’s operations in the Snoop Slots are forced to retry and any of the Agent’s Opera-
tions waiting to reflect their command are aborted.

9. Any resources that were allocated before reflecting the command and are not required after the Snoop
Response are de-allocated (see Table 3-8 on page 73).

10. If the command was not retried then the command proceeds to access its target or memory just like a
processor command.

3.5.2.2 Resources

The PI resources are the queues and buffers that a command or request needs before it can be processed.
These resources might be needed at the input of the PI block or might be needed before a command can be
reflected and processed.

3.5.2.3 Resource Descriptions

Command Queue

The Command Queue (sometimes called Command Slots) is the holding place for Commands from the
processors. A Command Queue entry must be available before a command is accepted from the PI Bus. If an
entry is not available, the command is responded with a Transfer Handshake Retry.

Some of the Command Queue entries are reserved or guaranteed based on a per processor basis. The size
of the Command Queue is also configurable (See Section 12.9.1 API Proc Command Slot Configuration
Register (APIProcCmd) on page 409).

Write Data Buffer

The Write Data Buffer (WDB) holds write data waiting to be written to memory or sent to an I/O Write Data
queue. This data is from a processor write command or an intervention response to a read command. The
Write Data buffer holds 32 entries of 128 bytes.

For write commands from a processor, a WDB entry must be available before the write command is accepted
by the Command Slots. If an entry is not available, the PI responds with a Transfer Handshake Retry. If an
entry is available, the address of the entry is remembered and kept with the command as it is processed. The
WDB entry is released if the write command gets a Retry status or when the data is sent to memory or one of
the I/O write data queues.

For processor read commands, a WDB entry needs to be allocated before the read command is reflected. If
an entry is not available the command waits until one is available. A WDB entry is required because the read
might receive a modified intervention response. The Intervention data needs to be sent to memory in addition
to being sent to the requesting processor. In that case, the read command turns into a write command and
uses the WDB allocated. For RWITM commands, a WDB entry is not required because the possible Interven-
tion data does not need to be sent to memory, because the requesting processor becomes the owner of the
data. For reads, the WDB entry is released if a status that is not Modified Intervention is received or when the
Intervention data is written to memory.

The WDB entries are reserved based upon on a per processor basis and the type of data, Write Data, or
Intervention Data. The size of the WDB is also configurable (See Section 12.9.7 API Write Data Buffer (WDB)
Configuration Register (APIWdbCfg) on page 417).

User Manual

CPC945 Bridge and Memory Controller Preliminary

CPC945 Core Interface (API Interface)
Page 70 of 655 February 1, 2008

Read Data Buffer

The Read Data Buffer (RDB) holds read data that is received from Memory before it is sent to the requesting
processor. There is a dedicated RDB for each PI Port (0,1). Each buffer holds 16 entries of 128 bytes. For a
read command from a processor, a RDB entry must be available before the read command is accepted. If an
entry is not available, the command is responded with a Transfer Handshake Retry. If an entry is available the
address of the entry is remembered and is kept with the command as it is processed. Read commands to
memory proceed to the Snoop Pipe to be processed while being “bypassed” to send an early request to
memory. For a RDB to be released both the normal “snoop” path and the “bypass” path must be finished with
the buffer. (See Bypass Queue on page 72.)

The RDB entries are reserved based upon on a per processor basis. The size of the RDB is also configurable
(See Section 12.9.10 API Memory Read Configuration Register (APIMemRdCfg) on page 421).

Intervention Buffer

The Intervention Buffer holds Intervention packets as they are sent from one processor to another. Interven-
tion packets are Read Data Response packets. Each packet contains an 8 byte header and 128 bytes of
data. There are dedicated Intervention Buffers for each PI Port (0,1).

For read and RWITM commands from a processor, an Intervention Buffer entry needs to be allocated before
the command is reflected. If an entry is not available the command waits until one is available. An intervention
buffer entry is required because the read might get an intervention response. If an intervention response is
not received, the intervention buffer is released. If an intervention response is received, the buffer is released
when the intervention packet is completely sent to the requesting processor.

The intervention buffer entries are reserved based upon on a per processor basis. The size of the intervention
buffer per port is also configurable. (See Section 12.9.8 API Intervention Buffer Configuration Register
(APIIntCfg) on page 418.)

I/O Input Queues

The I/O input queues hold I/O requests while they are waiting for arbitration to be translated in the DART.
There are 4 I/O input queues (see PI unit diagram), 1 each for PCIe reads (PeRRqQ), PCIe writes (PeQRqQ),
HT reads (HtRRqQ), and HT writes (HtWRqQ). A request is removed from the queue only when it is able to
complete its DART translation and be sent to its I/O pending queue. When an entry is removed, an Acknowl-
edge (credit) is sent to the appropriate I/O interface indicating to the requestor that another entry is available.
It is up to the requestor to keep track of the number of queue entries available. The sizes of the I/O input
queues are configurable and are the responsibility of the requestor. (See Section 12.12.13 HT1/PI Interface
Control Register on page 633 and Section 12.11.3.1 CORE_X: PI Core Interface Parameters Register on
page 586.)

I/O Pending Queues

The I/O pending queues hold I/O requests while they are waiting for arbitration and space in the Snoop Slots.
There are 4 I/O Pending Queues (Figure 3-11 CPC945 PI Unit on page 62), 1 each for PCIe reads (PeRPQ),
PCIe writes (PeWPQ), HT reads (HtRPQ), and HT writes (HtWPQ). Requests wait in the I/O input queues
until there is space available in the I/O pending queues. Entries are fetched from the I/O pending queues
when they are granted arbitration and there is room for their type in the Snoop Slots (Snoop Slots on
page 71). The requests are not removed, though, until the request has received a nonretry snoop status.
Whenever a retry status is received, the request is re-fetched from the queue and arbitrates again.

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
CPC945 Core Interface (API Interface)

Page 71 of 655

The sizes of the I/O Pending Queues are configurable. (See Section 12.9.2 API I/O Pending Queue Configu-
ration Register (APIIOPnd) on page 411.)

Snoop Slots

The Snoop Slots are a holding place for commands while they are waiting to be reflected until their snoop
status has come back and their PAAMWIN has expired. Commands sit in the command queue or the I/O
pending queues and only arbitrate for access to the Snoop Slots if a Snoop Slot is available for that type.
Once a command is in a Snoop Slot it waits to be reflected to the processors until the command becomes
high enough priority and its downstream resources are available (see Summary of Resources Needed to
Reflect on page 73). Once reflected the command stays active for a fixed number of cycles until its snoop
response returns (SNOOPLAT) and it PAAM Window is exhausted (PAAMWIN).

The Snoop Slot entries are reserved based upon the requester and type of command (Processor, PCIe read,
PCIe write, HT read, HT write). The number of the Snoop Slots is also configurable. (See Section 12.9.15 API
Snoop Slot Configuration Register (APISnpSltCfg) on page 429.)

Sync and Target Request Queues

The Sync and Target Request Queues contain requests targeting PCIe, HT, or GCR. The Sync Queue is
used to cross the asynchronous boundary from PI clk to DDR2 clk and is used for HT and GCR targets. There
are 5 Target Queues, one each for reads and writes to GCR (GcrTRqQ), reads to HT (HtRTRqQ), writes to
HT (HtWTRqQ), reads to PCIe (PeRTRqQ), and writes to PCIe (PeWTRqQ). For read operations the
requests stay in the queues until the Target has space in its receiving queue and, for processor-initiated
requests, there is space in the corresponding Read Data Queue. For write operations the requests stay in the
queues until the Target has space in its receiving queue and, for processor initiated requests, there is data in
the corresponding Write Data Queue.

The Sync and Target Queues are resources that are needed before a command can be reflected (See
Summary of Resources Needed to Reflect). The PCIe and HT Target Queue entries are reserved based
upon the requestor (I/O or Processor). The number of entries in the Sync and Target Request Queues is also
configurable.)See Section 12.9.4 API Target Request Queue Configuration Register (APITRqCfg) on
page 414.)

Space in a target’s receiving queue is determined by how many requests have been sent on the Target
Request Address Interface and have not been “acknowledged” (received a credit). This is compared to the
number of entries in the receiving queue. There are 5 receiving queues for the 5 interfaces, PCIe Read,
PCIe Write, HT Read, HT Writes, and GCR. The number of entries in the PCIe and HT receiving queues is
configurable. (See Section 12.9.4 API Target Request Queue Configuration Register (APITRqCfg) on
page 414.)

Target Response Queues

The Target Response Queues contain requests targeting PCIe, HT, or GCR that originate from a processor.
There are 3 Target Response Queues, one each for reads to GCR (GcrRspQ), HT (HtRspQ), and PCIe
(PeRspQ). The response queues contain information necessary to generate a Read Data Response header
when the data comes back from the Target.

User Manual

CPC945 Bridge and Memory Controller Preliminary

CPC945 Core Interface (API Interface)
Page 72 of 655 February 1, 2008

The Target Response Queues are resources that are needed before a Command can be reflected. (See
Summary of Resources Needed to Reflect on page 73.) The number of entries in Target Response Queues is
configurable. (See Section 12.9.5 API Target Response Queue Configuration Register (APITRspCfg) on
page 415.)

Target Read and Write Data Queues

The Target Read and Write Data Queues contain the data for requests targeting PCIe, HT, or GCR that orig-
inated from a processor. There are 3 Target Read Data Queues, one each for reads to GCR (GcrRDtQ), HT
(HtRDtQ), and PCIe (PeRDtQ). There are 3 Target Write Data Queues, one each for writes to GCR
(GcrWDtQ), HT (HtWDtQ), and PCIe (PeWDtQ). For read requests there must be space in the corresponding
read data queue before the read request is sent to the target. For Write requests the data must be fetched
from the WDB and be in the Write Data Queue before the write request is sent to the target.

The Target Read and Write Data Queues are not required resources before a Command is reflected. The
number of entries in Target Data Queues is configurable. (See Section 12.9.6 API Target Data Queue
Configuration Register (APIDtQCfg) on page 416.)

Bypass Queue

The Bypass Queue contains processor read requests to memory. Read requests are sent to the Command
Queue and the bypass path where they are written into the Bypass Queue if the conditions are not right for
the requests to be sent to the Memory Controller (See “Snoop Bypass” on page 75). The size of the Bypass
Queue is large enough so that it should never overflow. It can accommodate more than the number of Read
Requests that are possible in the Snoop Slots and Command Queue. The size of the Bypass Queue is
configurable (See Section 12.9.9 API Memory Request Configuration Register (APIMemReqCfg) on
page 419), but it should not be changed from its default of 32 entries.

Memory Request Queue

The memory request queue (MemReqQ) contains requests from processors or I/O that are targeting memory.
These requests are waiting to be sent to the memory controller and can originate from bypassed requests,
snoop slot requests, or DART miss requests. Bypassed requests can be queued here as long as the bypass
cutoff amount has not been reached or the bypass guarantee has not been satisfied (See Snoop Bypass on
page 75). Otherwise they need to wait in the bypass queue.

Requests from the snoop slots need to allocate a MemReqQ entry before being reflected. After a request is
reflected, the snoop status that is returned determines whether a memory request is sent to the MemReqQ. If
a memory request is not needed and a MemReqQ entry was allocated, the entry is de-allocated when the
snoop status is returned. Otherwise, the entry is deallocated when the request is fetched from the queue.

DART miss requests can only occupy one entry of the MemReqQ. This entry is guaranteed and is always
available. Only when the request is removed from the queue can another DART request be sent. In addition
to 1 reserved entry each for DART miss and bypass requests, the MemReqQ entries reserved for “snooped”
requests are based upon the requestor (either processor or I/O). The size of the MemReqQ is also config-
urable. (See Section 12.9.9 API Memory Request Configuration Register (APIMemReqCfg) on page 419.)

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
CPC945 Core Interface (API Interface)

Page 73 of 655

Summary of Resources Needed to Reflect

Table 3-8 lists the resources needed before a command can be reflected to the processors and sent down
the Snoop Pipe. Except where indicated these resources are allocated before the command is reflected.
Resources indicated with an asterisk (*) are allocated when the command is accepted on the PI interface.

3.5.3 Ordering of Operations

3.5.3.1 Processor Commands

The CPC945 chip assumes that the processor insures correct ordering of operations affected by Sync and
EIEIO instructions before the Accumulated Snoop Response time. After the Accumulated Snoop Response
time, the operations to memory are sequentially ordered. Because of this, no special consideration is needed
for Sync and EIEIO instructions to memory.

For PCIe and HT ordering, Sync and EIEIO instructions provide a barrier so that read or write combining does
not occur across the barrier.

Table 3-8. Resources Required for Reflecting.

Requestor Target Command Resources

Processor

Memory

Read

Memory Request Queue for Processor
Port Number Intervention Buffer for Processor Number
Write Data Buffer for Intervention and Processor Number
*Read Data Buffer for Port Number

RWITM
Memory Request Queue for Processor
Port Number Intervention Buffer for Processor Number
*Port Number Read Data Buffer

Write
Memory Request Queue for Processor
*Write Data Buffer for Write and Processor Number

Other None

HT,
PCIe

Read,
RWITM

HT/PCIe Target Read Request Queue for Processor
HT/PCIe Target Read Response Queue

Write
HT/PCIe Target Write Request Queue for Processor
*Write Data Buffer for Write and Processor Number

GCR

Read,
RWITM

GCR Target Request Queue
GCR Target Response Queue

Write
GCR Target Request Queue
*Write Data Buffer for Write and Processor Number

HT,
PCIe

Memory
Read,
Write

Memory Request Queue for I/O

HT,
PCIe

Read HT/PCIe Target Read Request Queue for I/O

Write HT/PCIe Target Write Request Queue for I/O

GCR
Read,
Write

GCR Target Request Queue

User Manual

CPC945 Bridge and Memory Controller Preliminary

CPC945 Core Interface (API Interface)
Page 74 of 655 February 1, 2008

I/O Requests

The CPC945 core interface specification requires that all PCIe and HT requests stay in order with respect to
their request buses (HT reads stay in order, PCIe writes stay in order, etc.). In addition to this in-order
constraint, Reads have to wait until all writes from the same requestor that occurred earlier have been
completely (reads push writes).

To accomplish this, any I/O request that is retried (with a snoop response of retry) must retry any I/O request
of the same requestor and same command type that has also been reflected. In addition to this, since reads
push writes, any write from an I/O requestor that is retried must also retry any reads from the same requestor
that have been reflected.

PAAM Window

PAAMWIN specifies the number of beats (PI clks) that have to occur between reflecting successive
commands that target the same 128-byte block address. Every time a command is reflected, a window
(PAAM Window) is generated that is PAAMWIN cycles wide. There can be many PAAM Windows active at
various stages of time. When a new command enters the Snoop Slots, a qualification is made whether this
new command should check the PAAM Windows. If this command is from an HT or PCIe source and its desti-
nation is HT or PCIe, or if it is a power tuning command, then the check is not made. All other commands
check the PAAM Windows. If the block address of the new command matches the address of the PAAM
Window command, or the P Bit of the new command is 0 and the P bit of the PAAM Window command is 0,
then the new command waits until the PAAM Window has completed.

In the implementation of the PAAMWIN check, a new command checks all the commands currently active in
the SnoopSlots whether they have been reflected or not. If the check matches, then this new command must
wait until any matching commands have been reflected and their PAAM window has timed out. This has the
effect of ordering operations that have matching PAAM window constraints.

Ordering Deadlocks

The ordering requirements of I/O Operations in combination with the implementation of the PAAM window
checking could lead to deadlocks in the snoop slots. For example a read from HT to PCIe could be waiting to
be reflected and not proceed because a stream of reads is held up in front of it. A read from HT to memory
location X could be held up behind it and not proceed because HT reads have to be processed in order. A
Write from PCIe to memory location X, that entered the snoop slots after the HT read to memory, is also held
up because of the PAAM window checking. This could lead to a deadlock because the PCIe write to memory
is held up. In general, writes should not be held up throughout the system so that writes can pass reads
preventing these types of deadlocks.

In this situation, the implementation of the PAAM window checking is artificially causing the PCIe write to
memory to be held up. Since the HT read to memory is held up the PCIe write to memory could be reflected
first without violating any ordering constraints. Although, this is not how the PAAM window checking works.

To break these types of deadlocks, a Snoop Watchdog Timer is implemented (see “API Command Arbitration
Register (APICmdArb)” on page 412). This Timer is continually counting down except when a Processor
request is granted arbitration. It is then reset to an initial value defined in the APICmdArb register. If the
counter reaches zero, then the highest priority command waiting to be reflected is reflected. The reflected
command’s Snoop Status is forced to “retry” and will be re issued. This allows any Commands behind it to be
freed and allowed to proceed.

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
CPC945 Core Interface (API Interface)

Page 75 of 655

Snoop Bypass

Snoop bypass refers to the feature of reducing the processor-to-memory latency by allowing processor reads
to get a request sent to the memory controller before the command has been “snooped” by the other proces-
sors. The read is eventually snooped to make sure that another processor does not have ownership of the
line, in which case, the “bypassed” read is discarded.

In CPC945 all processor to memory reads are “bypassed”. This feature requires a method of checking to
make sure that cache coherency is maintained, since the order that the memory controller sees the requests
might be different than the order that requests are snooped. For example, suppose a write to a line has been
reflected, but a memory request has not been made, and a read to the same line is bypassed. If the memory
controller sees the bypassed read first, it will return the old and not the new data that is expected since the
write was reflected first.

The mechanism necessary to support snoop bypass involves a method for checking for conflicts, a method
for communicating between the snooped read and the bypassed read, and a method for discarding bypassed
data that might be incorrect.

Snoop Bypass Conflict Detection

Insuring cache coherency between bypassed reads and other transactions requires comparing the bypassed
address to the all the possible requests that are in front of it that could or have already reflected their
addresses. This means that the bypassed address is checked against all reads and writes in the command
queue, all the I/O pending queues, and all the snoop slots. If a match occurs, the bypassed memory read
request is marked as having a “conflict”. This “conflict” indication is carried with the request until the point
where it receives snoop status. This “conflict” might change its action on the return of the snoop status.

In addition to conflict detection, any I/O request that is fetched from a I/O pending queue checks to see if
there are any matching read commands in the command queue that have not been marked with a conflict. If
there are, then the I/O request is held off to allow the processor read command from the command queue to
be sent to the snoop slots first. The processor read is then reflected first because of the PAAM window
checking.

User Manual

CPC945 Bridge and Memory Controller Preliminary

CPC945 Core Interface (API Interface)
Page 76 of 655 February 1, 2008

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
Processor Interconnect Bus

Page 77 of 655

4. Processor Interconnect Bus
The CPC945 Bridge and Memory Controller connects the system microprocessors to memory and I/O
devices through the processor interface bus, also called the Processor Interconnect. The interface consists of
two parts: the slave, which is used by the processor to access memory and I/O, and the master, which is used
to pass coherency information between the I/O devices and the processor. The IBM CPC945 Bridge and
Memory Controller supports two complete processor interfaces. The two halves of each interface are unidi-
rectional and point-to-point. The processor interface supports the 128-byte line size of the PowerPC 970xx
processor.

As all connections between the processor and the CPC945 are point-to-point, any interaction between
processors and other processors, memory, the peripheral component interconnect (PCIe), and so forth is
routed through the CPC945 as shown in Figure 4-1. The signals are labeled from the perspective of the
processor. The CPC945 buffers can hold outstanding requests and data.

Figure 4-1. Two Processors Connected to the CPC945

P
I0

_A
D

O
[0

:4
3]

 (D
at

a,
 A

dd
re

ss
, C

on
tro

l)

P
I0

_B
C

LK
I_

P
P

I0
_B

C
LK

I_
N

P
I0

_S
R

O
[0

:1
]

P
I0

_S
R

O
I[0

:1
]

P
I0

_B
C

LK
O

_P
P

I0
_B

C
LK

O
_N

PI
0_

A
D

I[0
:4

3]
 (D

at
a,

 A
dd

re
ss

, C
on

tro
l)

PI
0_

S
R

I[0
:1

]
P

I0
_S

R
II[

0:
1]

PowerPC 970xx RISC Processor 0
P

I1
_A

D
O

[0
:4

3]
 (D

at
a,

 A
dd

re
ss

, C
on

tro
l)

P
I1

_B
C

LK
I_

P
P

I1
_B

C
LK

I_
N

P
I1

_S
R

O
[0

:1
]

P
I1

_S
R

O
I[0

:1
]

P
I1

_B
C

LK
O

_P
P

I1
_B

C
LK

O
_N

P
I1

_A
D

I[0
:4

3]
 (D

at
a,

 A
dd

re
ss

, C
on

tro
l)

P
I1

_S
R

I[0
:1

]
P

I1
_S

R
II[

0:
1]

PowerPC 970xx RISC Processor 1

Processor Interface 0 Processor Interface 1

CPC945 Bridge and Memory Controller

User Manual

CPC945 Bridge and Memory Controller Preliminary

Processor Interconnect Bus
Page 78 of 655 February 1, 2008

4.1 Processor Interface Alignment Procedure

The processor interface is a high-speed, double data rate, source-synchronous interface. Its speed requires
that all of the bits on the interface bus be precisely deskewed to maintain bit alignment around the clock
edges that travel alongside the data bits. An initialization alignment procedure (IAP) state machine, which
detects and deskews the flight time differences between the different bits of the interface, is implemented on
the CPC945, as well as on the PowerPC 970xx processor.

It is assumed that all power and clocks have been correctly programmed and are stable. The processor inter-
face bus clock from the PowerPC 970xx must be running and stable before releasing reset to the CPC945.
There are two complete PI busses on the CPC945, PI0 and PI1. Even though the PowerPC 970MP is a dual
core part it has a single PI interface. Both PI busses are only used in quad core systems with the 970MP.

1. Configure the APIPhy Configuration 0 Registers for PI0 and PI1 (address: 0xF802_2020 and
0xF802_3020)

• target_time [61:63] - valid values are 0 - 4.
• data_wind[20:23] - suggested value of 3 or 4.

2. Reset the Processor Interface enables
• write all zeros to APIPhy Configuration 1 Registers for PI0 and PI1 (address: 0xF802_2030 and

0xF802_3030) except the APSyncRcv_en bit to 1 to enable external APSync.

3. Configure the CPU Power Management Register (address: 0xF800_0820)
• Disable all power down related functions.
• Ensure that the E [25] bit is set for external APSync mode.

4. Configure the APIPhy PMR IO Control Register (address: 0xF802_20F0 and 0xF802_30F0)
• Suggested value for external APSync mode: 0x2400.0000.0000.0019

5. Program the IAP Pattern Mask (address: 0xF802_2000 - 0xF802_2010 and 0xF802_3000 -
0xF802_3010)

• In case the default value is not applicable, set identical values for both APIPhy Driver IAP Pattern
Mask and APIPhy Receiver IAP Pattern Mask registers.

6. Program the APIPhy IO Control Register (address: 0xF802_20E0 and 0xF802_30E0)
• Some suggested values, depending on system requirements/configuration:

0x0000.0000.073A.0306
0x0000.0000.2F2A.0306
0x0000.0000.2F3A.0304
0x0000.0000.2712.0304

7. Prepare the CPU
• The attached processors continue through their POR sequence. During IPL2 (MASTER CFG), the

service processor scans the appropriate mode ring values into the PowerPC 970xx processor.
• Once the mode ring has been loaded, the IAP on each of the processor interfaces can begin.

8. Assert the driver on the CPC945 (address: 0xF802_2030 and 0xF802_3030)
• Set wiap bit [62] in APIPhy Configuration 1 Register
• The CPC945 IAP signature will be continuously transmitted by the processor physical interface so as

to allow the attached processor to properly align its receivers. The patterns should not be stopped
until the receiving side (PowerPC 970xx processor) has completed the alignment.

9. CPU executes its IAP.
• The processor continues through IPL3 (MASTER SYNC) and IPL4 (MASTER IOSYNC) sequence.
• The CPC945 can now begin synchronization of its processor interface receivers.

10. Enable the receiver on the CPC945 RIAP (address: 0xF802_2030 and 0xF802_3030)

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
Processor Interconnect Bus

Page 79 of 655

• Set riap bit [63] in APIPhy Configuration 1 Register.

11. Wait for IAP to complete on the CPC945
• Wait time of approximately 80 ms.

12. Check the PI training status
• Read the APIPhy Status 0 Register (address: 0xF802_2050 and 0xF802_3050).
• riap_done bit [1] should be set - indicates completion.
• rcv_status[48:63] should be all zero - indicates IAP completed without error.

13. Stop the training sequence
• Deassert wiap and riap bits 62:63 in APIPhy Configuration 1 Register (address: 0xF802_2030 and

0xF802_3030).
• Deassert the wiap and riap bits on the PowerPC 970xx.
• Assuming that the IAP has completed without error on both the PowerPC 970xx and CPC945, the

target cycles that do not result in an IAP error are noted. Note there is typically only 2 or 3 latencies,
depending on the frequency of the PI bus clock and PCB trace delays.

4.1.1 Determining PI Bus Parameters

This section describes a typical procedure for determining valid values for the following PI bus parameters:

• PAAM Window (APIPaamWin 0xF803_0100)
• Snoop Window (APISnoopWin 0xF803_0110)
• I/O Snoop Window (APIIOSnoopWin 0xF803_0120)
• Status Latency (APIStatLat 0xF803_0130)
• Snoop Latency (APISnoopLat 0xF803_0140)

In general, the values programmed into these registers depend on the system (length of PCB traces, clock
speed of the bus, etc.) and are usually obtained empirically through a trial and error approach. This section
also describes the relevant bus parameters on the CPU side.

All values described here are in decimal, unless otherwise stated.

The example in Figure 4-2 (for illustrative purposes only) shows the relationship between the various bus
parameters.

1. Determine working CPU StatLat.

a. Set APIStatLat Register to a value of 22. This is just a recommended starting point.
b. Set the target cycles for the CPU and CPC945.
c. Power-on reset (POR) the system and issue the first fetch.
d. Start with a CPU StatLat of 8 and attempt one CPU StatLat value per POR attempt.
e. Increase by one until the TH Null error is no longer present (scom 0xA0001, bit[49]).
f. Note that there is only one valid value per target cycle setting.
g. If the error still persists in step 1e, then select a different target time combination in step 1b and

repeat the procedure.
h. Record all working combinations of CPU target cycle, CPC945 target cycle and CPU StatLat values.

2. Determine working APIStatLat.

a. Work with the values obtained in step 1h.
b. POR the system and issue the first fetch.
c. Starting with APIStatLat value of 16 and attempt one APIStatLat value per POR attempt.
d. Before finishing POR, clear the Adi0Excp and Adi1Excp bits in the CPC945 APIExcp Register

0xF80300A0.

User Manual

CPC945 Bridge and Memory Controller Preliminary

Processor Interconnect Bus
Page 80 of 655 February 1, 2008

e. Increase APIStatLat by 1 until no error is recorded in CPC945 APIExcp Register 0xF8030060.
f. Note that there is only one valid value per target cycle setting, but the system will function properly

whether APIStatLat is set correctly or not.
g. Record all working combinations for CPU target cycle, CPC945 target cycle, CPU StatLat and

APIStatLat.

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
Processor Interconnect Bus

Page 81 of 655

Figure 4-2. Processor and CPC945 Interface Timing Parameters

PAD
Wire
Delay (1)

CPC945 PI
Inbound
Delay (4)

PAD
ADO

CPC945 PI
Outbound
Delay (5) PAD PAD

THI

CPC945 PI
Outbound
Delay (5) PAD PAD

ADI

CPU PI
Outbound
Delay (4)PAD

Wire
Delay (1)

CPC945 PI
Inbound
Delay (4)

PAD
SRO

PAD
Wire
Delay (1)

CPC945 PI
Inbound
Delay (4)

PAD
THO

CPC945 PI
Outbound
Delay (5) PAD

CPU PI
Inbound
Delay (3)

PAD
SRI

CPU Issues
Command

STATLAT_CPU(18)

CPC945 generate
Reflection packets

CPC945 generate
Transfer Handshake

CPU generate
Transfer Handshake

CPC945 generates
combined snoop

response (2)
SNOOPACC_CPU

STATLAT_NB

SNOOPLAT_NB

CPU

SNOOPLAT_CPU

Wire
Delay (1)

Wire
Delay (1)

Wire
Delay (1)

(4)

(7)

(23)

(25)

(5)

(16)

PI Inbound Delay depends
on the target time setting

PI Outbound Delay is usually fixed.

NOTE:

(varies)

PAAMWIN_NB (26) =
SNOOPLAT_CPU+
SNOOPACC_CPU+5

CPC945

CPU PI
Inbound
Delay (3)

CPU PI
Inbound
Delay (3)

CPU PI
Outbound
Delay (4)

User Manual

CPC945 Bridge and Memory Controller Preliminary

Processor Interconnect Bus
Page 82 of 655 February 1, 2008

3. Determine working APISnoopLat

a. Work with the values obtained in step 2g.
b. Fix CPU SnoopLat to minimum allowed value: PPC970FX = 5, PPC970MP = 6.
c. POR the system and execute code such that a line is modified in the L2. This can be done by using a

store or dcbz instruction.
d. Start with APISnoopLat value of 16.
e. Use the CPC945 System Command Registers (0xF803_0200 - 0xF803_0210) to drive in a read

snoop from CPC945.
f. Check snoop response received in CPC SysCmdStat Register 0xF803_0220.
g. Increase APISnoopLat until a Retry snoop response is recorded.
h. Note that there is only one valid value per target cycle setting.
i. Record all the working combinations for CPU target cycle, CPC945 target cycle, CPU StatLat and

APIStatLat, CPU SnoopLat and APISnoopLat.

4. Determine working CPU SnoopAcc

a. Work with the values obtained in step 3i.
b. POR the system and execute code such that a line is modified in the L2. This can be done by using a

store or dcbz instruction.
c. Start with CPU SnoopAcc value of 5.
d. Access the modified line in cache with a cache-inhibited read. This is I-bit aliasing and causes a

Retry snoop response.
e. Increase CPU SnoopAcc until code completes, and the I = ‘1’ access gets the correct data and there

are no L2 or BUS FIR bits set.
f. Note that there is only one valid value per target cycle setting.
g. Record all the working combinations for CPU target cycle, CPC945 target cycle, CPU StatLat and

APIStatLat, APISnoopLat, CPU SnoopLat and CPU SnoopAcc.

5. Set APIPaamWin to a value of CPU SnoopLat + CPU SnoopAcc + 5 for combinations obtained in 4g.

6. Set APISnoopWin and APIIOSnoopWin to the same value as the CPU Compace, which is usually 4.

7. Determining stable values.

a. Start with the values obtained in step 4g, 5, and 6.
b. Run extended tests on different parts (fast, slow, normal) with some temperature variation.
c. Record the stable combinations for CPU target cycle, CPC945 target cycle, CPU StatLat and

APIStatLat, APISnoopLat, CPU SnoopAcc, CPU SnoopLat, APIPaamWin, APISnoopWin, APIIOS-
noopWin and CPU Compace.

d. Choose a combination from 7c that works for the desired frequency and temperature range and pro-
gram these into the respective registers.

e. Note that APIPaamWin and APIIOSnoopWin might need minor corrections to get better system per-
formance.

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
Processor Interconnect Bus

Page 83 of 655

4.1.2 Error Register Information

4.1.3 Additional Debug Information

1. Coherency issues most likely indicate that CPU SnoopAcc is off by more than 2.

2. I/O, DMA errors indicate that CPC945 SnoopLat is incorrect.

3. Additional I-bit aliasing information (SnoopAcc test).

a. CPC945 SnoopLat wrong
• CPC945 sees Null, returns the wrong data.
• CPC945 sees Intervention, CPC945 waits for intervention data and hangs.
• CPC945 sees Retry, CPC945 aborts operation, does write, waits for new operations.

b. CPU SnoopAcc / CPC945 SnoopLat (Null)
• CPU sees Null, gets wrong data.
• CPU sees Intervention, pulls L2 FIR[58].
• CPU sees Retry, gets wrong data and pulls L2 FIR[50].

c. CPU SnoopAcc / CPC945 SnoopLat (Retry)
• CPU sees Null, hang.
• CPU sees Intervention, pulls L2 FIR[58].
• CPU sees Retry, works properly.

Register Bit Debug Description/Information

L2 FIR
(SCOM 0x40000)

50

Unexpected data return
1. Phase of CPC945 might be off.
2. PID might be set incorrectly.
3. CPU StatLat might be 1 too large.
4. Logical CPU StatLat maximum has been hit.

58 Illegal CRESP, SnoopAcc is off by 1.

60 PAAM error, PaamWin has been calculated incorrectly.

BUS FIR
(SCOM 0xA0001)

47 CPU detects parity error, CPU target cycle not stable at this frequency, bus ratio.

48 CPC945 detects parity error, CPC945 target cycle not stable at this frequency, bus ratio.

49 TH Null, adjust CPU StatLat until correct.

51 Illegal CRESP, SnoopAcc is off by 1.

52 CPU detects parity error, CPU target cycle not stable at this frequency, bus ratio.

57 PAAM error, PaamWin has been calculated incorrectly.

59:63 Tag of command associated with error.

CPC945 APIExcp Register
(0xF80300A0)

1 StatLat error on PI port 0.

2 StatLat error on PI port 1.

CPC945 APIPhySTAT0
(0xF8022050, 0xF8023050) 0 CPC945 detects parity error, CPC945 target cycle is not stable at this frequency, bus ratio.

User Manual

CPC945 Bridge and Memory Controller Preliminary

Processor Interconnect Bus
Page 84 of 655 February 1, 2008

4.1.4 API Programming Procedure

The core interface registers in general configures the size of the various queues for each requester (CPU and
I/O). The following procedure represent a typical programming sequence for the core interface registers.

1. APIProcCmd Register (0xF803_0000)

a. ApiPortSel [30] should be left as it was.

b. ApiEn [29] must be 0.

c. MinGuarP0Cmd [5:6] should be between 1 and 3.

d. MinGuarP1Cmd [9:10] should be between 1 and 3, where relevant.

e. MinGuarP2Cmd [7:8] should be between 1 and 3, where relevant.

f. MinGuarP3Cmd [11:12] should be between 1 and 3, where relevant.

g. Calculate the sum of (MinGuarP0Cmd[5:6] + MinGuarP1Cmd[9:10] + MinGuarP2Cmd[7:8] +
MinGuarP3Cmd[11:12] + 3).

h. If the value in step g) is greater than 7, then NumProcCmd[0:4] should be between this value and the
maximum value of 16. If the value is less than 7, NumProcCmd[0:4] should be 7.

i. PE128WrKill [13] is 0 or 1 depending on requirements.

j. CQNoFP [15] is 0 or 1 depending on requirements.

k. DartDebugHalt[16] must be 0.

2. APIIOPnd Register (0xF803_0010)

a. SizPcRPndQ[0:3] should be between values of 1 and 8 depending on requirements.

b. SizPcWPndQ[4:7] should be between values of 1 and 8 depending on requirements.

c. SizHtRPndQ[8:11] should be between values of 1 and 8 depending on requirements.

d. SizHtWPndQ[12:15] should be between values of 1 and 8 depending on requirements.

3. APICmdArb Register (0xF803_0020)

a. ArbWtProc [0:1] should be between values of 0 and 3 depending on requirements.

b. ArbWtPcW [2:3] should be between values of 0 and 3 depending on requirements.

c. ArbWtHtW [4:5] should be between values of 0 and 3 depending on requirements.

d. DynArbWtEn [6] should be 1.

e. DynArbWtCnt [7:10] should be 8.

f. DynArbWtProc [11:12] should be 3.

g. PcieWtrqEn [13] should be left at their default values.

h. HtWtrqEn [14] should be left at their default values.

i. DisArbProcTOLmt should be 1.

j. ArbProcTOLmt [16:31] should have a value greater than 100.

4. APITRqGuar Register (0xF803_00D0)

a. This register needs to be programmed before the APITRqCfg register gets programmed.

b. MinGuarIOHtWTRqQ [0:1] should be between 1 and 3 depending on requirements. Then,
MinGuarProcHtWTRqQ [2:3] should be between 1 and (4 - MinGuarIOHtWTRqQ).

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
Processor Interconnect Bus

Page 85 of 655

c. MinGuarIOHtRTRqQ [4:5] should be between 1 and 3 depending on requirements.Then,
MinGuarProcHtRTRqQ [6:7] should be between 1 and (4 - MinGuarIOHtWRTRqQ).

d. MinGuarIOPCWTRqQ [8:9] should be between 1 and 3 depending on requirements. Then,
MinGuarProcPcWTRqQ [10:11] should be between 1 and (4 - MinGuarIOPCWRTRqQ).

e. MinGuarIOPcRTRqQ [12:13] should be between 1 and 3 depending on requirements. Then,
MinGuarProcPcRTRqQ [14:15] should be between 1 and (4 - MinGuarIOPcRTRqQ).

f. NumHtRTaiTrgt [16:19], NumHtWTaiTrgt [20:23], NumPcRTaiTrgt [24:27] and
NumPcWTaiTrgt [28:31] should be between 1 and 4 depending on requirements.

5. APISnpSltCfg Register (0xF803_00E0)

a. NumSnpSlts [0:3] should be between 6 and 12 depending on requirements.

b. MinGuarProcSnpSlt [4:7] should be between 2 and (NumSnpSlts - 4). It has to be 4 less because the
other minimum guarantees are all 1.

c. MinGuarHtWrSnpSlt [8:11] should be between 1 and (NumSnpSlts - MinGuarProcSnpSlt - 3).

d. MinGuarHtRdSnpSlt [12:15] should be between 1 and (NumSnpSlts - MinGuarProcSnpSlt -
MinGuarHtWrSnpSlt -2)

e. MinGuarPcWrSnpSlt [16:19] should be between 1 and (NumSnpSlts - MinGuarProcSnpSlt -
MinGuarHtWrSnpSlt - MinGuarHtRdSnpSlt - 1).

f. MinGuarPcRdSnpSlt [20:23] should be between 1 and (NumSnpSlts - MinGuarProcSnpSlt -
MinGuarHtWrSnpSlt - MinGuarHtRdSnpSlt - MinGuarPcWrSnpSlt).

g. SafeQCntDisable [24] should be 1 if any of the “size”, “number” or “guarantee” values of the API
queues and buffers change from their default value.

h. SnpWtrqBypsDis [25] is 0 or 1 depending on requirements.

6. APITRqCfg Register (0xF803_0030)

a. SizeSyncTRqQ [0:3] should be between 4 and 8.

b. SizePcWTRqQ [4:6] should be between (MinGuarIOPCWTRqQ[8:9] +
MinGuarProcPcWTRqQ[10:11]) in the APITRqGuar Register (0xF803_00D0) and 4.

c. SizePcRTRqQ [7:9] should be between (MinGuarProcPcRTRqQ[14:15] +
MinGuarIOPcRTRqQ[12:13]) in the APITRqGuar Register (0xF803_00D0) and 4.

d. SizeHtWTRqQ [10:12] should be between (MinGuarIOHtWTRqQ[0:1] + MinGuarProcHtWTRqQ[2:3])
in the APITRqGuar Register (0xF803_00D0) and 4.

e. SizeHtRTRqQ [13:15] should be between (MinGuarIOHtRTRqQ[4:5] + MinGuarProcHtRTRqQ[6:7])
in the APITRqGuar Register (0xF803_00D0) and 4.

f. SizeGcrTRqQ[16:17] should be between 1 and 2.

g. EorSDisable[18] is 0 or 1 depending on requirements.

7. APITRspCfg Register (0xF803_0040)

a. SizePcRspQ [0:3] should be between 4 and 8 depending on requirements.

b. SizeHtRspQ [4:7] should be between 4 and 8 depending on requirements.

c. SizeGcrRspQ [8:10] should be between 2 and 4 depending on requirements.

User Manual

CPC945 Bridge and Memory Controller Preliminary

Processor Interconnect Bus
Page 86 of 655 February 1, 2008

8. APIDtQCfg Register (0xF803_0050)

a. SizePcRdDtQ [0:4] should be between 8 and 16 depending on requirements.

b. SizePcWtDtQ [5:9] should be between 8 and 15 depending on requirements.

c. SizeHtRdDtQ [10:14] should be between 8 and 16 depending on requirements.

d. SizeHtWtDtQ [15:19] should be between 8 and 15 depending on requirements.

e. SizeGcrRdDtQ [20:11] should be between 1and 2 depending on requirements.

f. SizeGcrWtDtQ [22:23] should be between 1and 2 depending on requirements.

9. APIWdbCfg Register (0xF803_0060)

a. MinGuarWdbP0Wr [6:7] should be 2 or 3 depending on requirements.

b. MinGuarWdbP0Int [8:9] should be between 1 and 3 depending on requirements.

c. MinGuarWdbP1Wr [10:11] should be 2 or 3 depending on requirements.

d. MinGuarWdbP1Int [12:13] should be between 1 and 3 depending on requirements.

e. MinGuarWdbP2Wr [14:15] should be 2 or 3 depending on requirements.

f. MinGuarWdbP2Int [16:17] should be between 1 and 3 depending on requirements.

g. MinGuarWdbP3Wr[18:19] should be 2 or 3 depending on requirements.

h. MinGuarWdbP3Int[20:21] should be between 1 and 3 depending on requirements.

i. NumWDB[0:5] should be between (MinGuarWdbP0Wr[6:7] + MinGuarWdbP0Int[8:9] +
MinGuarWdbP1Wr[10:11] + MinGuarWdbP1Int[12:13] + MinGuarWdbP2Wr [14:15] +
MinGuarWdbP2Int[16:17] + MinGuarWdbP3Wr[18:19] + MinGuarWdbP3Int[20:21]) and 32.

10. APIIntCfg Register (0xF803_0070)

a. MinGuarIntP0 [8:9] should be 2 or 3 depending on requirements.

b. MinGuarIntP1 [10:11] should be 2 or 3 depending on requirements.

c. NumIntBfr0 [0:3] should be between (MinGuarIntP0[8:9] + MinGuarIntP1[10:11]) and 15.

d. MinGuarIntP2 [12:13] should be 2 or 3 depending on requirements.

e. MinGuarIntP3 [14:15] should be 2 or 3 depending on requirements.

f. NumIntBfr1[4:7] should be between (MinGuarIntP2[12:13] + MinGuarIntP3[14:15]) and 15.

11. APIMemReqCfg Register (0xF803_0080)

a. BypsDis [0] is either 0 or 1 depending on requirements.

b. SizBypsQ [2:7] should be 32.

c. SizMemSyncQ [25:27] should be 4.

d. SizMemReq [8:12] should be between 5 and 16 if SafeQCnt is disabled. If SafeQCnt is enabled, it
should be between 6 and 16.

e. MinGuarMemRqProc [13:16] should be between 1 and (SizMemReq[8:12] - 4) if SafeQCnt is dis-
abled. If SafeQCnt is enabled, it should be between 1 and (SizMemReq[8:12] - 5).

f. MinGuarMemRqIO [17:20] should be between 1 and (SizMemReq[8:12] -
MinGuarMemRqProc[13:16] - 3) if SafeQCnt is disabled. If SafeQCnt is enabled, it should be
between 1 and (SizMemReq[8:12] - MinGuarMemRqProc[13:16] - 4).

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
Processor Interconnect Bus

Page 87 of 655

g. NumBypsCutOff [0:3] should be between 1 and (SizMemReq[8:12] - MinGuarMemRqProc[13:16] -
MinGuarMemRqIO[17:20] - 2).

h. NumAvlInMemReqQ [0:3] should be between (MinGuarMemRqProc[13:16] +
MinGuarMemRqIO[17:20] + 4) and SizMemReq[8:12]. If the value is greater than or equal to 16, set
the value to 15 instead.

12. APIMemRdCfg Register (0xF803_0090)

a. MinGuarMemRd0Proc [10:12] should be between 3 and 7 depending on requirements.

b. MinGuarMemRd1Proc [13:15] should be between 3 and 7 depending on requirements.

c. NumMemRdBfrA[0:4] should be between (MinGuarMemRd0Proc[10:12] +
MinGuarMemRd1Proc[13:15]) and 16.

d. MinGuarMemRd2Proc [16:18] should be between 3 and 7 depending on requirements.

e. MinGuarMemRd3Proc [19:21] should be between 3 and 7 depending on requirements.

f. NumMemRdBfrB[0:4] should be between (MinGuarMemRd2Proc[16:18] +
MinGuarMemRd3Proc[19:21]) and 16.

g. ApiMemDly [22:25] should match the value in the ApiRdTgDelay field in the DDR2 MemBusCnfg2
register.

h. RdTgQSrchLmt [26:29] should be left with the default value.

i. MemRdFastPathEn [30] should be 0 or 1 depending on requirements.

13. APIMask0 Register (0xF803_00B0)

a. Individual exception enable bits are set depending on requirements.

14. APIMask1 Register (0xF803_00C0)

a. Individual exception enable bits are set depending on requirements.

15. Enable the API interface.

a. In the APIProcCmd Register (0xF803_0000), set ApiEn [29] bit to 1 and leave all other bits as pro-
grammed previously.

4.1.5 Configuring for Single PI Port Usage

Assuming that port0 is being used and port1 is unused, and it is configured for external APSync mode:

1. Allow the PI port1 registers (0xF802_3000 to 0xF802_3FFF) to power up to their default reset state.

2. Write zeros to all register bits except the APsyncRcv_en bit [22] (set to 1) in the port1 APIPhy Configura-
tion 1 Register (0xF802_3030).

3. Write zeros to all register bits in the port1 APIPhy IO Control Register (0xF802_30E0).

4. In the port1 APIPhy PMR IO Control Register (0xF802_30F0), set APsync_ovr bit [0] to 1, clear APsyn-
cDrvEnable to 0 and leave all the other bits in their default settings.

5. Clear the Adi1 Mask0 bit [2] to zero in the APIMask0 Register (0xF803.00B0) to prevent the assertion of
the Check stop signal.

6. Clear the Adi1 Mask1 bit [2] to zero in the APIMask1 Register (0xF803.00C0) to prevent the assertion of
the chip fault signal.

During IAP, do not initiate any training sequence for port1.

User Manual

CPC945 Bridge and Memory Controller Preliminary

Processor Interconnect Bus
Page 88 of 655 February 1, 2008

Since API_QREQ2 and API_QREQ3 are active low inputs, these need to be tied to 0 on the board, so that
power tune operations can proceed with the other attached processor when it needs to.

In the API core, for the purpose of optimizing the buffer allocation:

1. In the Api Proc Command Slot Configuration register (0xF803_0000), set the “minimum guaranteed cmd
proc2” and “minimum guaranteed cmd proc3” values to its minimum value of 1.

2. In the Api Write Data Buffer Configuration register (0xF803_00060), set the “minimum guaranteed for
proc2 writes”, “minimum guaranteed for proc2 interventions”, “minimum guaranteed for proc3 writes” and
“minimum guaranteed for proc3 interventions” to their minimum values.

3. In the Api Intervention Buffer Configuration register (0xF803_0070), set the “number Intervention buffers
for Port1” to a value of 2 and set the “minimum guaranteed intervention Bfr Proc2” and “minimum guaran-
teed intervention Bfr Proc3” to their minimum values.

4. In the Api Memory Read Configuration register (0xF803_0090), set the “minimum guaranteed MemRead
proc2” and “minimum guaranteed MemRead proc3” to their minimum. values.

5. In the Api Exception Mask 0 Register (0xF803_00B0) write the ADI1_Mask0 bit to zero.

6. In the Api Exception Mask 0 Register (0xF803_00C0) write the ADI1_Mask1 bit to zero.

4.1.6 Internal versus External APSync

The difference between the two modes for APsync in the northbridge (NB) (internal versus external) is which
chip is generating the APsync for all of the chips in the system (processors and NB). In internal APsync
mode, the NB generates APsync for itself and the processors in the system. In external APsync mode, the
system clock chip that generates the reference clocks for the processors and the NB generates the APsync.

The circuit within NB that creates the internal timezeros for NB will sample a localized (NB)APsync (as
opposed to the system wide APsync) that the NB power manager unit generates to create the timezeros. The
NB power manger generates this localized (NB)APsync from a circuit but manages its phase relationship
differently depending if the system is programmed to be in internal APsync mode versus external APsync
mode.

If the system is programmed to be in internal APsync mode, the localized (NB)APsync is generated by the NB
power manager and sent to the timezero generator within NB and driven as an output from NB through the
APsync0 and APsync1 pins. These APsync0 and APsync1 pins must be connected to the APsync inputs of
the respective processors in the system.

If the system is programmed to be in external APsync mode, the APsync0 pin becomes an input to NB. The
APsync0 pin must be connected to the APsync output of the system clock chip. The NB power manager unit
still generates a localized (NB)APsync for internal timezeros in NB but this time it samples the APsync input
to NB and locks the localized (NB)APsync phase to the sampled APSync that is driven by the system clock
chip.

APsync is required to be seen by all chips in the system at the same time so that all chips generate their
respective timezeros at the same time.

In internal APsync mode, NB power manager generates (NB)APsync on one sysclock edge and the NB
internal timezero generator creates the timzeros for NB the next sysclock edge. To adhere to the requirement
that APsync must be seen by all chips in the system at the same time, this means that there is at most 1
sysclock delay allowed to send the APsync out of NB, through the APsync board traces, and into the proces-
sors for sampling.

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
Processor Interconnect Bus

Page 89 of 655

As systems start running at higher frequencies, timing analysis shows that there will not be enough time for
APsync to leave NB and reach the processors within 1 sysclock. We would run into a case, where the NB
sampled the APsync 1 cycle it was generated to generate the timezeros while the processors sampled
APsync more than 1 cycle after it was generated to generate its timezeros. This is a scenario where all chips
on the system were seeing different timezeros. For this reason, external APsync mode was created.

If an external clock chip generated APsync and the APsync traces between the clock chip and the other chips
in the system (NB, processors) were matched, then this timing requirement of 1 sysclock delay would not be
needed. The only requirement would be that the traces are matched and could be as long as reasonably
required and it becomes a more traditional clock insertion delay issue like all other reference clock routes. If
the traces were such that they were say 5 sysclocks long, given that the APsync traces are matched, all chips
would see the first rising edge of the APsync at the same 5 sysclocks after it was launched from the clock
chip.

Although the APSync could be launched from NB ‘early’ by a programmable amount to allow for operation
where the APSync propagation delay was longer than 1 sysclock cycle, this could potentially introduce
complexities when the propagation delay is approximately on a sysclock cycle boundary.

Note: Only the external APSync mode is recommeded for CPC945 systems.

4.2 Processor Interface Endian Order

The processor interface is defined with big-endian byte ordering while the PCIe and HyperTransport buses
are defined with little-endian byte ordering. The CPC945 performs the appropriate byte swapping and
address mapping to support the differences. Byte addressing is similarly numbered in conflicting order on
either side of the bridge. Table 4-1 on page 89 describes the mapping of the processor interface to the PCIe
bus addresses in big-endian mode for both memory and I/O accesses.

Table 4-1. Big-Endian Processor Interface to Little-Endian PCIe Bus Address Mapping.

Processor Interface Address Bit PCIe Address Bit Comment

32 31

33 30

.

60 3

61 2

62 1 = ‘0’ Linear incrementing mode. These 2 bits are
encoded into byte enables on the PCIe bus
to select which bytes are involved in the
transaction.

63 0 = ‘0’

User Manual

CPC945 Bridge and Memory Controller Preliminary

Processor Interconnect Bus
Page 90 of 655 February 1, 2008

4.3 Processor Interface Balanced Encoding

The processor interface provides a feature that reduces current-spike noise on the voltage supplies that
power the processor bus. The balanced encoding mode of operation ensures that an equal number of zeros
and ones are always present on the processor address and data buses for every transaction. This reduces
the switching current variations in the bus drivers resulting in a more stable power supply and better signal
quality. The feature is controlled by bit [31] of Section 12.9.1 API Proc Command Slot Configuration Register
(APIProcCmd) on page 409. When this bit is set to ‘0’, the outgoing encoders and incoming decoders are
turned on and the 36 bits of data and address and a generated parity bit are encoded into an equal number of
high and low bits on the 44 address and data lines as illustrated in Figure 4-3. The receiving agent, which
must also have its encoding enabled, converts the 44 signals back into the original 36 data bits. When this bit
is set to ‘1’, the encoders and decoders are disabled, and the transfer-handshake and parity bits are sent
alongside the data. The balanced coding feature allows the processor interface signals to have a higher
signal-to-noise ratio with less chance of edge-alignment interference from spike-induced noise on the power
supply line.

4.4 Bus Snoops and Coherency

Memory cache coherency is maintained through a global snooping mechanism. The CPC945 processor inter-
face reflects inbound command packets back to the second processor to allow it to snoop the address. The
CPC945 does not provide any coherency mechanism for memory located on the PCIe or HyperTransport
buses. Any need to cache memory located on those buses requires a software coherency mechanism to
ensure proper operation.

Figure 4-3. Physical PI Bits to Logical PI Bits Mapping

48

44

1

4

2

35 8

Physical PI Bits

complement
pair

SNOOP
RESPONSE

ADDR/
DATA TH PARITY

22 22

35 1

18 18

BCM
Decode

BCM
Decode

ADDR/
DATA

TH

BCM Encoding,
44 bits split into
2 groups of 22 bits each.

Non-BCM Encoding,
44 bits split into 3
groups of 35, 1
and 8 bits.

36 bits split into
2 groups of 35 and
1 bits.

48 bits split
into 2 groups
of 4 and 44 bits.

NOTE: The number in each circle represents
represents the number of bits

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
Processor Interconnect Bus

Page 91 of 655

4.5 Processor Interface Slave Transactions

As a processor interface slave, the CPC945 acknowledges all transactions initiated on the processor inter-
face. The CPC945 is also the source of the transfer-handshake response signal. The processor interface
implements a 35-bit address and data (AD) bus segment, a one-bit transfer-handshake bus segment, and a
2-bit snoop-response bus segment in each direction per connected processor. A beat in the processor inter-
face in the CPC945 is equal to 32 bits of data. Because data is transferred on both edges of the clock on the
processor interface, two beats will take a full bus clock cycle. The CPC945 is capable of completing the
following data transfer transactions:

• 1 to 8-byte, 2-beat read

• 1 to 8-byte, 2-beat write

• 16-byte, 4-beat read (aligned)

• 16-byte, 4-beat write (aligned)

• 32-byte, 8-beat read (critical word first)

• 32-byte, 8-beat write (critical word first)

• 64-byte, 16-beat read (critical word first)

• 64-byte, 16-beat write (critical word first)

• 128-byte, 32-beat read (critical word first)

• 128-byte, 32-beat write (critical word first)

The CPC945 can also forward address-only cycles by reflecting the address (no data is transferred in an
address-only cycle).

When the CPC945 receives a synchronization cycle from the processor, it stalls new memory accesses until
store operations issued before the synchronization cycle are complete. When the CPC945 receives an
enforce in-order execution of I/O (EIEIO) cycle from a processor, it accepts and propagates the transaction
toward memory-mapped I/O storage. It does not allow any cache-inhibited storage accesses to bypass the
transaction. The CPC945 conducts the cache-to-cache data intervention cycles that are defined for the
processor interface protocol. Table 4-2 lists the transfer types defined for the processor interface and indi-
cates how the CPC945 responds to each of the given types. If the CPC945 receives a transaction with an
unsupported transfer type and transfer size combination, an error is returned during the data phase.

Table 4-2. CPC945 Responses to PI Transfer Types. (Sheet 1 of 2)

Address Modifiers
(WIMGRP)

Transfer
Type

(TT[0:4])
Bus Operation Class of

Operation CPC945 Response

XXMXRP 00000 Clean Normal Address only transaction

WIMXRP 00010 Write with Flush Normal Write indicated to address

XXMXRP 00100 Flush Normal Address only transaction

WXM0RP 00110 Write with Kill Normal Write indicated to address

WXM1RP 00110 Write with Clean Normal Write indicated to address

XXMXRP 01000 SYNC Normal Address only synchronization function applied

Note:
W = write through, M = memory coherent, N = intervention, A = atomic, R = rerunning, I = cache inhibited, S = noncaching coherent read,
P = pipelined snoops, G = guarded read, X = drive ‘0’ when driving signal and don’t care when receiving the signal.

User Manual

CPC945 Bridge and Memory Controller Preliminary

Processor Interconnect Bus
Page 92 of 655 February 1, 2008

4.6 Processor Interface Master Transactions

All transactions on the processor interface bus are packet based. As a processor interface master, the
CPC945 reflects all transactions to the processors to maintain memory coherence when there is an access to
system memory. Accesses to memory or I/O address space that come from the PCI Express or from Hyper-
Transport devices are reflected on the processor interface. Inter-HyperTransport accesses are not reflected
onto the processor interface and remain on the HyperTransport bus. See Section 3.4 on page 53 for a
description of the DMA re-mapping logic.

NSMGRP A1010 Read Normal Read of indicated address

XXMXRP 01100 Data Kill (DKill) Normal Address only transaction

NXMXRP A1110 Read with Intent to Modify
(RWITM) Normal Read of indicated address

XXMX0P 10000 EIEIO Normal Address only EIEIO function applied

XXMXXX 11100 Reserved Error Address only transaction

XXMX0P 11000 Translation Lookaside Buffer
Invalidate Entry (TLBIE) Normal Address only transaction

XXMXXX 10100 Reserved Error Address only transaction

XXMXRP 00001 LARX-Reserve Normal Address only transaction

XXMXRP A0011 Data Line Claim Transaction
(DClaim) Normal Address only transaction

XXMXXX 001X1 Reserved Error Address only transaction

XXMXRP 01001
Translation Lookaside Buffer
Synchronization Instruction

(TLBSYNC)
Normal Address only transaction

XXMXXX 01X11 Reserved Error Address only transaction

XXMX0P 01101 Instruction Kill (IKill) Normal Address only transaction

XXMXXX 10001 Reserved Error Address only transaction

XXMXXX 10010 Reserved Error Address only transaction

XXMXRP 10101 Deallocate Directory Tag Normal Address only transaction

XXMXXX 1011X Reserved for customers Error Address only transaction

XXMXXX 110X1 Reserved Error Address only transaction

XXMX0P 11101 Rerun Normal Address only transaction

XXMX0P 11111 Null Normal Null

Table 4-2. CPC945 Responses to PI Transfer Types. (Sheet 2 of 2)

Address Modifiers
(WIMGRP)

Transfer
Type

(TT[0:4])
Bus Operation Class of

Operation CPC945 Response

Note:
W = write through, M = memory coherent, N = intervention, A = atomic, R = rerunning, I = cache inhibited, S = noncaching coherent read,
P = pipelined snoops, G = guarded read, X = drive ‘0’ when driving signal and don’t care when receiving the signal.

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
Processor Interconnect Bus

Page 93 of 655

4.7 TEA, DERR, Checkstop

4.7.1 Transfer Error Acknowledge

A master abort or a target abort on a PCIe bus would normally result in single transfer error acknowledge
(TEA) that is passed back to the processor. The processor interface bus on the CPC945 does not have a
TEA signal. Transfer errors are returned to the processor as a DERR in bit 34 of the first data beat on the
processor interface. The DERR indicates an off-bus data error has occurred, and the full data transfer is not
valid. An internal bus TEA that is propagated to the processor interface DERR causes either an exception or
a checkstop. See Section 4.7.2 Data Error Signal and Checkstop on page 93 for details.

A TEA is only generated in response to a read request. Write data that encounters an abort is simply
discarded.

Any TEA generated by the PCIe master that is produced during a transfer results in signaling an error for the
entire transfer. As a PCIe slave, the correct number of TEAs is accumulated to complete the transaction, and
a target abort is returned on the PCIe bus.

Any TEAs generated by the HyperTransport receiver result in an error for the entire transfer. For a Hyper-
Transport transmitter, any TEAs detected result in a HyperTransport response of nonexistent address (NXA).

4.7.2 Data Error Signal and Checkstop

During the data portion of a data packet, the DERR within the processor interface is used to validate the
current data beat pair on the processor interface bus. When DERR is received, the CPC945 can be
programmed to issue a checkstop, PI_CSTP, which can generate either an exception or a full stop of the
processor.

Figure 4-4 shows one possible way to implement the interconnections for the PowerPC 970xx pins: check-
stop and machine check. The CPC945 checkstop pin, PI_CSTP, is connected to the processor’s machine
check pin. Depending on how the PowerPC 970xx processor is configured, an assertion of PI_CSTP gener-
ates an exception or issues a checkstop to halt the processor’s operation. In Figure 4-4, two resistor pads are

Figure 4-4. Checkstop Connections

PowerPC 970xx

CPC945

Jumper
Checkstop

Machine Check

PI_CSTP

Option

User Manual

CPC945 Bridge and Memory Controller Preliminary

Processor Interconnect Bus
Page 94 of 655 February 1, 2008

placed on the printed circuit board to accept an optional 0-Ω jumper that can short two circuit paths. The
resistor is not populated during manufacturing, but can be added for diagnostic purposes if the processor
must be halted during a checkstop event or checkstopped for debug purposes. In the unpopulated state, a
machine check is generated in the event of a checkstop assertion. If the jumper is added, then a checkstop
assertion halts the processor, allowing the processor state to be examined through the I2C or JTAG inter-
faces.

If the processor interface encounters an exception, the error is unrecoverable and the PI_CSTP checkstop
pin is asserted until the CPC945 is reset. The CPC945’s API Exception Register (APIExcp) on page 423 can
be read through the I2C bus or from the processor to determine if the processor interface generated the
exception. If the processor interface did generate the exception, the (APIExcp Register might only be read-
able through the I2C bus (see Section 12.9.11 API Exception Register (APIExcp) on page 423). The
PowerPC 970xx processor’s machine check pin is an input-only signal, and the CPC945’s checkstop pin
should only be connected to the processor’s machine check pin.

4.7.3 Additional System Exceptions

ECC memory error conditions are also logged in the PI exception register. With appropriate mask register
settings, detected error conditions can be made to cause processor check stop and/or to assert a special chip
fault pin (CHP_FAULT_N). This external signal (CHP_FAULT_N) can be used to signal an external interrupt
to the processor or to external logic.

Settings in the PI Exception Mask Register (APIMASK) and the PI Exception Mask 1 Register specify what
action are to be taken upon ECC detection. For more information, see Section 12.9.11 API Exception
Register (APIExcp) on page 423, and Section 12.9.13 API Exception Mask 1 Register (APIMask1) on
page 426.

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
PCI Express

Page 95 of 655

5. PCI Express

5.1 Introduction

The CPC945 incorporates a single ×16 Link PCI Express Root Complex for interfacing into external compo-
nents. This x16 interface is also referred to as a Root Port1. The overall PCI Express stack has 3 primary
layers, referred to as the Transaction, Data Link, and Physical layers. The Base specification is very explicit
as to the intended functionality contained in each of these layers. In addition to the stack layers depicted
above, the CPC945 introduces an Application Layer (AL) to interface the PCIe stack into its backbone. The
PCIe Root Complex as implemented in the CPC945 is depicted in Figure 5-1.

The CFG Regs module provides all of the configuration register space that is required by PCIe. It interfaces
into the Application, Transport, and Data Link layers. The PHYIF and HSS modules collectively provide the
PCIe Physical layer functionality.

1. The PCI Express specification allows for configurations with more than one Root Port in the Root Complex. Each Root port can be of
any valid Link width and the entire set of Root ports is collectively referred to as a Root Complex. In the CPC945 implementation,
there is a single Root Port that can be configured as either a x16, a x8, x4 or x1 link. Bifurcation is not supported.

Figure 5-1. CPC945 PCI Root Complex High Level Block Diagram

Transaction
Layer

Data Link
Layer

API

Application
Layer

PCIE fabric

PHYIF

HSS

Provides
- Conversion from PIPE i/f protocol
- HSS power management

Provides
- x16 SERDES parallel to serial
- Physical I/Os

IFPLL

Provides
- PLL for multiplying PCIE
reference frequency (100 MHz) to
that required by HSS core (625 Hz)

CFG
Regs

PIPE protocol i/f to DL

User Manual

CPC945 Bridge and Memory Controller Preliminary

PCI Express
Page 96 of 655 February 1, 2008

The CPC945 Root Complex supports the following features.

• Compatible with the PCI Express Base Specification 1.0a.

• X16 Link operating as x16, x8, x4, or x1.

• Supports up to 8 outstanding outbound reads to the PCIe endpoint (for example, graphics) in 64-byte
request mode, or 4 outstanding reads in 128-byte request mode.

• Outbound Posted writes limited only by Endpoint.

• Supports up to 16 incoming reads and 16 incoming (Posted) writes from the endpoint at max request
size.

• 128 byte maximum request size.
Note: The Max read_request field is not programmable and is set for 128 bytes. See Section 12.11.1.3
PCI Express Capability Structure on page 524 for details.

• 128 maximum payload size (that is, for reads or writes - matches read request size).

• Supports PCIe Active State Power Management (ASPM) L1 requests from endpoint.

• Supports PCIe Advanced Error Reporting as described in “Advanced Error Reporting Extended Capabil-
ity Structure” on page 538.

• Master mode loopback for Link error debugging and system analysis.

• All reads to the memory controller, coherent and non-coherent, use Tags to uniquely identify (specific to
the requester) the request. Completions for requests will be returned out of order and therefore the Tag is
used to associate the Completion with the Request. The width of the Tag field is 6 bits.

• All writes to the memory controller, coherent and non-coherent, have their data written directly into an 8
cache line deep queue that resides in the memory controller (a cache line in the CPC945 is 128 bytes).
The Requester has complete control of this write data interface. The write request for this transaction will
only be issued to the PI interface (for coherent requests) or the memory controller interface (for non-
coherent requests) concurrent with or after the last beat in the data transfer. Therefore there can be at
most eight outstanding write transaction to the memory controller from a Requester (for example, PCIe)
at any time.

• All coherent requests are issued synchronous to the PI clock domain. All data transfers (regardless of
source or destination) over the PI, as well as non-coherent requests to the memory controller interface,
are synchronous to the DDR2 clock domain.

• Both coherent and non-coherent write data transfers to the memory controller share the same write data
bus.

• Both coherent and non-coherent read completion data transfers from the memory controller share the
same completion data bus.

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
PCI Express

Page 97 of 655

5.1.1 PCIe Registers

PCI Express (PCIe) register space consists of three separate groupings of registers: the PCIe Configuration
Registers, the XBus Configuration Registers and the PCIe interface logic General Control Registers. For
more information see, “PCIe Configuration Registers” on page 505. “Configuration Register Access” on
page 109 also discusses the six different methods of accessing the PCIe configuration registers. This section
discusses DART, HT to PCIe transactions, and address mapping.

5.1.2 Addressing

The CPC945 responds to addresses on the Processor Interconnect and the PCIe Bus as a function of the
PCIe Address Mask Register that exists in the PCIe XBus Configuration register space. See
Section 12.11.2.4 PCI Express 0 Address Mask Register on page 556. This register identifies the address
ranges that belong to the PCIe Bus. The PCIe Address Mask Register is also used by the PI core interface to
determine which transactions are destined for the PCIe Bus, rather than the Processor Interconnect memory
sub-system.

5.1.3 DART

Coherent PCIe DMA accesses are remapped using a DMA address relocation table (DART) so that I/O
devices can transfer data directly to any memory location in the 36-bit extended memory map. The OS estab-
lishes entries in the DART when a buffer area is requested by a driver. The “physical” addresses the system
passes back to the driver are then mapped by the DART when the device accesses memory via these
addresses. The OS removes DART entries when the driver indicates the buffer area is no longer required.
More details of the DART implementation in CPC945 are available in Section 3.4 DMA Address Relocation
Table (DART) on page 53.

5.1.4 PCIe Bus I/O Space

The CPC945 uses two separate buses for expansion in a 36-bit extended address map: PCIe and Hyper-
Transport (HT). These two expansion buses exist in the PCIe and HT bridge spaces within the memory map.
These ranges are further allocated to allow all possible PCIe/HT Bus cycles from the processor.

5.1.5 CPC945 PCIe Bus Address Decoding

Processor Interconnect read or write accesses by the CPU to the PCIe bus memory space defined in
Table 12-1 on page 327 are serviced by the CPC945 and forwarded onto the PCIe Bus as memory read/write
commands. The CPC945 passes the Processor Interconnect address to the PCIe bus address unmodified.
The range of addresses responded to by the CPC945 from the PI is defined in “PCI Express 0 Address Mask
Register” on page 556. This register defines fifteen coarse regions (256 MB) and sixteen fine regions (16 MB)
of the 32-bit address space that CPC945 responds-to/ignores-from Processor Interconnect and PCIe Bus.
The CPC945 implements a decode/antidecode scheme whereby, if a given address is decoded to be passed
from the PI to the PCIe Bus, the same address is not allowed to pass from the PCIe Bus to the PI.

User Manual

CPC945 Bridge and Memory Controller Preliminary

PCI Express
Page 98 of 655 February 1, 2008

5.2 PCI Express Concepts

5.2.1 Transmit Layer Packet

The basic construct of the PCIe Express packet is referred to as the Transmit Layer Packet, or TLP. The
components of the Header within the TLP vary depending on whether the TLP is a nonposted request, a
Posted request, or a Completion packet. The basic organization of the TLP Header for (Memory) Requests is
shown in Figure 5-2, for Configuration Requests in Figure 5-3, and for Completions in Figure 5-4. Note that
Figure 5-2 details a 3 DWord Header, used for 32 bit addressing. For those packets requiring an address (for
example, Posted), PCIe supports 32 bit and 64 bit addressing. From a TLP perspective, the difference is in an
additional DWord in the Header for the upper 32 bits when 64 bit addressing is required. Only 32 bit
addressing is allowed for outbound requests and therefore all outbound requests will use a 3 DWord Header,
with the exception of the Message TLP which always uses a 4 DWord Header. For inbound requests (such
as, from an Endpoint), either 3 or 4 DWord Headers can be received since any required page translation to
map 32 bit virtual addressing into larger physical address space is performed by the Endpoint and not by the
Root Complex. Note that all completions (outbound and inbound) are constrained to only use a 3 DWord
Header. A description of the meaning and use of all indicated fields in the TLPs shown are presented in
Table 5-1.

Figure 5-2. TLP Header for Requests with 32 Bit Addressing (3 DWord Header)

Figure 5-3. TLP Header for Configuration Requests (reads and writes)

Device Number[4:0]

Address[31:2]

Byte 0

7 6 5 4 3 2 1 0

Byte 1

7 6 5 4 3 2 1 0

Byte 2

7 6 5 4 3 2 1 0

Byte 3

7 6 5 4 3 2 1 0

R

R Fmt[1:0] Type[4:0] R TC[2:0]
T
D

E
P

Attr[1:0] RR Length[9:0]

Tag[7:0]Bus Number[7:0]

DWord 0
(Byte 0)

>

DWord 1
(Byte 4)

>

DWord 2
(Byte 8)

>

First DWord
BE[3:0]

Function
Number[2:0]

Last DWord
BE[3:0]

Device Number[4:0]

Byte 0

7 6 5 4 3 2 1 0

Byte 1

7 6 5 4 3 2 1 0

Byte 2

7 6 5 4 3 2 1 0

Byte 3

7 6 5 4 3 2 1 0

R

R Fmt[1:0] Type[4:0] R TC[2:0]
T
D

E
P

Attr[1:0] RR Length[9:0]

Tag[7:0]

Bus Number[7:0]

DWord 0
(Byte 0)

>

DWord 1
(Byte 4)

>

DWord 2
(Byte 8)

>

First DWord
BE[3:0]

Function
Number[2:0]

Last DWord
BE[3:0]

Requester ID[15:0]; = {BusNum[7:0], DevNum[4:0], FuncNum[2:0]} of Requester

R
Extended Register

Number[3:0]
Register

Number[3:0]

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
PCI Express

Page 99 of 655

Figure 5-4. TLP Header for Completions

Figure 5-5. TLP Header for Messages

Table 5-1. TLP Header Fields

TLP Field Description

Fields Common to all TLPs (See Section 2.2.1, page 45 of the PCI Express Base Specification 1.0a for more information.)

R These bits are reserved and must be filled with all 0’s.

Fmt[1:0] Format of the TLP header, as follows.
00 3 DWord header without data
01 4 DWord header without data (will never be generated by the AL)
10 3 DWord header with data
11 4 DWord header with data (will never be generated by the AL)

Type[4:0] Indicates the type of transaction contained in the TLP. See Section 2.2.1, page 47 of the PCI Express
Base Specification 1.0a for a complete description of type filed encodings.

TC[2:0] Indicates the traffic class of the TLP transaction. Traffic Classes are not supported in the CPC945 imple-
mentation and this field will therefore always equal 000.

TD Indicates the presence of a TLP Digest in the transmitted packet. TLP Digests are not supported in the
CPC945 implementation and this field will therefore always equal 0.

EP Indicates that the transmitted (or received) TLP contains “poisoned” (for example, bad) data;
0 Data payload is good
1 Data payload is bad.

Note:
1. I/O requests are not supported in the AL for inbound requests and will be returned as an unsupported request.

B
C
M

Completion
Status[2:0]

Byte 0

7 6 5 4 3 2 1 0

Byte 1

7 6 5 4 3 2 1 0

Byte 2

7 6 5 4 3 2 1 0

Byte 3

7 6 5 4 3 2 1 0

R

R Fmt[1:0] Type[4:0] R TC[2:0]
T
D

E
P

Attr[1:0] RR Length[9:0]

Tag[7:0]

Byte Count[11:0]

DWord 0
(Byte 0)

>

DWord 1
(Byte 4)

>

DWord 2
(Byte 8)

> Lower Address[6:0]Requester ID[15:0]; = {BusNum[7:0], DevNum[4:0], FuncNum[2:0]} of Requester

Completer ID[15:0]; = {BusNum[7:0], DevNum[4:0], FuncNum[2:0]} of Completer

Byte 0

7 6 5 4 3 2 1 0

Byte 1

7 6 5 4 3 2 1 0

Byte 2

7 6 5 4 3 2 1 0

Byte 3

7 6 5 4 3 2 1 0

R Fmt[1:0] Type[4:0] R TC[2:0]
T
D

E
P

Attr[1:0] RR Length[9:0]

Tag[7:0]

DWord 0
(Byte 0)

>

DWord 1
(Byte 4)

>

DWord 2
(Byte 8)

>

Requester ID[15:0]; = {BusNum[7:0], DevNum[4:0], FuncNum[2:0]} of Requester

(Fields in Bytes 8 through 15 depend on type of message)

Message Code[7:0]

DWord 3
(Byte 12)

>

User Manual

CPC945 Bridge and Memory Controller Preliminary

PCI Express
Page 100 of 655 February 1, 2008

Attr[1:0] Indicates the Attributes of the TLP, as follows.
Attr[1] = Relaxed Ordering indication for TLP. For the CPC945 implementation this bit will always = 0
(and will be forced to 0 if set to 1 on a received packet).
0 TLP must be compliant with PCI strong order rules.
1 TLP can use relaxed ordering rules as outlined in the PCI-X® specification.
Attr[0] = No Snoop indication for TLP. Will always equal ‘1’ for outbound TLPs, but can equal ‘0’ or ‘1’ for
inbound TLPs.
0 Hardware enforced cache coherency expected.
1 Hardware enforced cache coherency not expected.
Attr[1:0] will always equal 00 for message TLPs.

Length[9:0] Length of the data payload in DWords. For TLPs containing no data this field is undefined and must
equal 0x000.

Fields Specific to Memory Requests1 (See Section 2.2.7, page 59 of the PCI Express Base Specification 1.0a for more
information.)

Bus Number[7:0] The primary bs number assigned to the root port in the PCI Express Type1 configuration space header
(offset 0x18). This field, along with the device number and function number, is used to construct the
requester ID for the root port. For the CPC945 implementation of the AL, the bus number will most prob-
ably be 0x00.

Device Number[4:0] The device number used for Type 0 configuration accesses to the root port. This value can be extracted
from bits 15:11 of the CONFIG_ADDRESS register used for software generation of configuration trans-
actions (as performed in the CPC945) when the bus number in bits 23:16 matches the bus number at
offset 0x18 in the AL’s configuration space header. This field, along with the Bus Number and Function
Number, is used to construct the Requester ID for the root port. For the CPC945 implementation of the
AL, the device number is fixed to 0x00.

Function Number[2:0] The function number used for type 0 configuration accesses to the root port. This value can be extracted
from bits 10:8 of the CONFIG_ADDRESS register used for software generation of configuration transac-
tions (as performed in CPC945) when the bus number in bits 23:16 matches the bus number at offset
0x18 in the AL’s configuration space header. This field, along with the bus number and device number,
is used to construct the requester ID for the root port. For the CPC945, the AL is a single function device
and therefore the device number is fixed to 0x0.

Tag[7:0] The Tag field of the packet header is an 8-bit value assigned to each nonposted requests issued by a
requestor. (Note that posted requests never require a transaction Tag.) This value must be unique for all
outstanding requests. When the requestor ID and tag are combined (in that order) they form the Trans-
action ID of the packet.

Last DWord BE[3:0] The last double word byte enable field of the packet header contains the byte enables for the last double
word referenced by a request. If the length field indicates a length of only one Double Word, this field
must be filled with all 0’s. Byte enables are active high, and can be noncontiguous. BE[0] corresponds to
byte 0 of the last double word, BE[1] corresponds to byte 1, etc.

First DWord BE[3:0] The first double word byte enable field of the Packet Header contains the byte enables for the first (or
only) Double Word referenced by a request. Byte enables are active high, and can be noncontiguous.
BE[0] corresponds to byte 0 of the first double word, BE[1] corresponds to byte 1, etc.

Address[31:2] The upper 30 bits of a 32-bit address targeting a 4 GB address space. (Note that the lower 2 bits of the
address are not required, as all PCIe accesses are DWord oriented.)

Fields Specific to Configuration Requests (read and write) (See Section 2.2.7, page 59 of the PCI Express Base Specification
1.0a for more information.)

Requester ID[15:0] This 16-bit field is the concatenation of the BusNumber[7:0], DeviceNumber[4:0], and FunctionNum-
ber[2:0] fields of the original requester of the transaction. For the CPC945, this field will always equal
0x0000.

Table 5-1. TLP Header Fields (Continued)

TLP Field Description

Note:
1. I/O requests are not supported in the AL for inbound requests and will be returned as an unsupported request.

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
PCI Express

Page 101 of 655

Tag[7:0] The Tag field of the packet deader is an 8-bit value assigned to each nonposted requests issued by a
Requestor. (Note that posted requests never require a transaction Tag.) This value must be unique for
all outstanding requests. When the requestor ID and tag are combined (in that order) they form the
transaction ID of the packet.

Last DWord BE[3:0] The last double word byte enable field of the packet header contains the byte enables for the last double
word referenced by a request. Note that since all configuration requests are only ever one DWord in
length, this field must always = 0x0 for configuration requests.

First DWord BE[3:0] The first double word byte enable field of the packet header contains the byte enables for the first (or
only) double word referenced by a request. Byte enables are active high, and can be noncontiguous.
BE[0] corresponds to byte 0 of the first double word, BE[1] corresponds to byte 1, and so on.

Bus Number[7:0] The bus number used for type 0 configuration accesses to the endpoint or type 1 accesses through a
downstream bridge component. This field, along with the device number and function number, is used to
direct the configuration access to its ultimate destination.

Device Number[4:0] The device number used for type 0 configuration accesses to the endpoint or type 1 accesses through a
downstream bridge component. This field, along with the bus number and function number, is used to
direct the configuration access to its ultimate destination.

Function Number[2:0] The function number used for type 0 configuration accesses to the endpoint or type 1 accesses through
a downstream bridge component. This field, along with the bus number and device number, is used to
direct the configuration access to its ultimate destination.

Extended Register Num-
ber[3:0]

The extended register number is used as the upper 4 bits of a 10-bit address to select one of 1024
dword registers in the PCIe configuration space. The lower 6 bits of this address are defined in the Reg-
ister Number[5:0] field.

Register Number[5:0] The Register Number is used as the lower 6 bits of a 10-bit address to select one of 1024 dword regis-
ters in the PCIe configuration space. The upper 4 bits of this address are defined in the Extended Reg-
ister Number[5:0] field. Note that this field performs precisely the same function as the Register
Number[5:0] field in the PCI configuration space and addresses the PCI compatible configuration space
in PCIe is Extended Register Number[3:0] = 0000.

Fields Specific to Completions (See Section 2.2.9, page 75 of the PCI Express Base Specification 1.0a for more information.)

Completer ID[15:0] This 16-bit field is the concatenation of the BusNumber[7:0], DeviceNumber[4:0], and FunctionNum-
ber[2:0] fields of the endpoint completing the transaction.

Completion Status[2:0] The Completion Status filed indicates whether or not the target of the transaction was able to complete
it successfully, as follows:
000 Successful Completion (SC)
001 Unsupported Request (UR)
010 Configuration Request Retry Status (CRS)
011 Reserved (should never occur)
100 Completer Abort (CA)
101 Reserved (should never occur)
11X Reserved (should never occur)

BCM Byte count modified bit. This bit will never be set by PCI Express completers. It could only be set by PCI-
X completers (that is, which would be on the secondary side of a PCIe to PCI-X bridge).

Byte Count[11:0] The actual byte count remaining to complete the transaction. For completions that are completed within
the current TLP this field will contain the total number of bytes contained within the TLP data payload.
Since completions can be split across several TLPs (PCIe rules permitting), this field can be a greater
value that the total number of returned bytes in the TLP data payload. Note that for the CPC945, all
requests will never require more than 1 Completion TLP.

Requester ID[15:0] This 16-bit field is the concatenation of the BusNumber[7:0], DeviceNumber[4:0], and FunctionNum-
ber[2:0] fields of the original requester of the transaction. For the CPC945, this field will always =
0x0000.

Table 5-1. TLP Header Fields (Continued)

TLP Field Description

Note:
1. I/O requests are not supported in the AL for inbound requests and will be returned as an unsupported request.

User Manual

CPC945 Bridge and Memory Controller Preliminary

PCI Express
Page 102 of 655 February 1, 2008

The flow of transmitted packets across the Link is controlled through the use of Flow Control Credits, or
Credits for short. In PCI Express, there are separate Credits pools for NP, P, and Cpl TLP headers and data
payloads, resulting in 6 discrete areas of credit management. The CPC945 will advertise the following Credits
for P, NP, and Cpl packets.

5.2.2 PI Versus TL Data Formatting Differences

As data is transferred from system memory across the PI and ultimately to the TL interface for packeting and
transmission over the PCIe, the formatting of the data must go through several transformations. This is
predominantly due to the big-endian formatting of data in system memory and in the CPC945 versus

Tag[7:0] The Tag field of the packet deader is an 8-bit value assigned to each nonposted requests issued by a
Requestor. For Completions, this filed allows the Completion to be paired with the original request at the
Requester.

Lower Address[6:0] For memory read completions, this field is equal to the lower 6 bits of the first returned data byte. For all
other completions, this field must equal 0x00.

Fields Specific to Messages (See Section 2.2.8, page 62 of the PCI Express Base Specification 1.0a for more information.)

Requester ID[15:0] This 16-bit field is the concatenation of the BusNumber[7:0], DeviceNumber[4:0], and FunctionNum-
ber[2:0] fields of the original requester of the transaction. For the CPC945, this field will always equal
0x0000.

Tag[7:0] The Tag field of the packet header is an 8-bit value assigned to each nonposted requests issued by a
requestor. For completions, this filed allows the completion to be paired with the original request at the
requester.

Message Code[7:0] Specifies the particular message embodied in the request.

(Bytes 8 -15) of TLP Depend on type of message.

Table 5-2. CPC945 Advertised PCIe Credits

Credit Pool Advertised Value Meaning

Posted headers 16 Can accept 16 inbound posted headers (for example, write requests).

Posted data 0 Can always accept maximum payload size for each posted request. (Maximum
data payload for the CPC945 will be 128 bytes ⇒ 2048 bytes total.)

Nonposted headers 16 Can accept 16 inbound nonposted headers (that is, read requests – the
CPC945 will not accept any other inbound nonposted requests).

Nonposted data 0

The CPC945 never accepts any inbound nonposted write (that is, configuration
or I/O). Therefore this “infinite” setting is really a degenerate case because any
other value would indicate the ability to accept inbound nonposted requests
with data payloads.

Completion header 0 The CPC945 always accepts a completion for a previously issued outbound
nonposted request.

Completion data 0

Can always accept maximum payload size for each outbound nonposted read
request issued by the CPC945 to an endpoint. Maximum data payload for the
CPC945 will be 128 bytes ⇒ 512 bytes total as the CPC945 limits maximum
issued outbound nonposted requests to four 128-byte requests. Alternatively,
the CPC945 also supports eight 64-byte requests. The specific mode the
CPC945 uses is configured at power-on-reset (POR) and can not be changed
during the operational state.

Table 5-1. TLP Header Fields (Continued)

TLP Field Description

Note:
1. I/O requests are not supported in the AL for inbound requests and will be returned as an unsupported request.

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
PCI Express

Page 103 of 655

little-endian formatting of data in the PCIe, but also due to bit ordering nomenclature differences as well. Bit
ordering in system memory and on the PI is such that the leftmost, or most significant bit of data is defined as
bit 0, whereas the rightmost, or least significant bit of data is defined as bit (n-1), where n is the width of the
bus (for example, for a 64 bit bus, n = 64, and therefore the least significant bit is bit 63). This is shown in
Figure 5-6 for a 128-bit bus.

In PCIe, although the leftmost bit is still the most significant bit it is designated as bit (n-1), and the rightmost,
least significant bit is bit 0. The process of converting the data format from system memory and the ordering
of data bytes throughout this process is illustrated in Figure 5-6. For outbound data flow, the TL interface
uses a single 128-bit interface that must be “packed”; that is, if a data payload follows a 3 Dword TLP Header
then the first DWord of the Data Payload must be included in the first 128-bit transfer over the TL interface.
This packing is not required with a 4 Dword header as the full 128-bit interface will be utilized by the TLP
Header. Note that for this 128 bit/16 byte transfer over the TL interface, Byte 0 (0x04 as depicted below) is
transmitted first over the PCIe, while Byte 15 (0x31 as depicted below) is transmitted last. (For a Link width
greater than 1 Lane, note that there will be more than one byte transmitted over the Link during any given TL
bus interface cycle. However, the general order of byte transmission will always be from lowest to highest.)
Within each byte, the least significant (rightmost, bit 0) bit is transmitted first, with the most significant (left-
most, bit 7) transmitted last1.

Figure 5-6. PI Data Bit and Byte Ordering

1. Note that the byte itself is not transmitted in its native form. Rather the byte is converted into a 10-bit “symbol” according to
the rules outlined in section 4.2.1 (page 152) of the PCI Express Base Specification 1.0a. Within each symbol, bit 0 is trans-
mitted first and bit 9 last.

Most Significant Bit
(MSB) of QuadWord

Least Significant Bit

(MSB) of QuadWord

Byte 0 of QuadWord
(Taddr[60:63] = 0000)

Byte 1 of QuadWord
(Taddr[60:63] = 0001)

… bits 16 – 111 …
(Bytes 2 – 13)

Byte 14 of QuadWord
(Taddr[60:63] = 1110)

Byte 15 of QuadWord
(Taddr[60:63] = 1111)

2 3 4 5 6 710 10 11 12 13 14 1598 114 115 116 117 118 119113112 122 123 124 125 126 127121120

User Manual

CPC945 Bridge and Memory Controller Preliminary

PCI Express
Page 104 of 655 February 1, 2008

The supported types of outbound PCIe requests in the CPC945 are shown in Table 5-3.

All outbound requests are strictly ordered. Additionally, all outbound requests over the Link obey the PCI strict
ordering rules, with the exception that all writes are strictly ordered (that is, there is no tracked distinction in
the two differing types of writes). The consequence of this exception is that posted writes cannot pass
nonposted writes and that therefore read completions cannot pass nonposted writes (since all writes are
treated the same with respect to ordering). The outbound ordering rules for the PCIe AL are shown in
Table 5-4.

Figure 5-7. System Memory to TL Interface Data Formatting Changes

Table 5-3. Supported PCIe Outbound Request Types

PCIe Request Type Posted/Nonposted Supported in PCIe AL for Outbound Requests

Configuration reads Nonposted Yes

Configuration writes Nonposted Yes

I/O reads Nonposted Yes

I/O writes Nonposted Yes

Memory reads Nonposted Yes

Memory writes Posted Yes

Messages Posted No

Data Structure

01 02 03 04

11 12 13 14

21 22 23 24

31 32 33 34

0127

Order of Transaction

01 02 03 04
100 104 108 10C

100 104 108 10C

U4X Image

TL Interface

Structure Image
after status command

Structure Image
at location x‘100’ 11 12 13 14 21 22 23 24 31 32 33 34

04 03 02 01 14 13 12 11 24 23 22 21 34 33 32 31

31 32 33 34 21 22 23 24 11 12 13 14 01 02 03 04

04 03 02 01 14 13 12 11 24 23 22 21 34 33 32 31

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
PCI Express

Page 105 of 655

The maximum outbound write transfer size that the CPC945 will deal with is 64 bytes, as follows.

• For writes from the processor, PCIe is considered non-prefetchable memory space, and therefore non-
cacheable. The maximum size transfer the processor can make to non-cacheable space is 64 bytes.

• For writes from HyperTransport, the maximum size transfer over HyperTransport is 64 bytes.

The AL stores up to 8 outbound writes internally which results in a 512-byte buffer, organized as thirty-two
128-bit-wide entries1. Whereas an outbound memory write transfer can be up to 64 bytes in length, a
nonposted write should only have a data payload of one doubleword in a PCIe configuration. From the
context of the system, the CPC945 looks like a PCI to PCI Bridge device, and therefore responds to “local”
Type 0 configuration requests but passes on Type 1 configuration requests to the Link. Within the CPC945,
Type 1 configuration requests are either translated into Type 0 configuration requests if targeting a bridge or
an endpoint on its secondary bus, or left as Type 1 configuration requests if targeting a bridge or an endpoint
on an attached bridge’s subordinate bus. The CPC945 does not support direct attachment to a switch. Type1
configuration transaction attempts to target a device with a nonzero device number on a secondary bus are
considered invalid transactions and will not go out on the PCIe interface. The error will be indicated by bits 2
or 9 in the Invalid Transaction Register. Type1 configuration transaction attempts to target a device with a
nonzero device number on a subordinate bus are considered valid transactions and will go out on the PCIe
interface.

The CPC945 supports up to 64 local Dword registers (256 bytes) for the CPC945-specific configuration and
control. All local registers are located in the PCIe 1 KB configuration space (as opposed to PCI’s 256 byte
space). The CFG core has an extended configuration bus (XBUS) output from the CFG module. All local
Type 0 configuration accesses that are not contained in the CFG register space are automatically passed to
the XBUS. Therefore, access to these local registers is performed as normal Type 0 configuration access. In
order to facilitate accesses to local registers, the CPC945 also incorporates a direct access mechanism.

Table 5-4. Ordering Rules for PCIe AL Outbound Requests

Request Type ↓→
Row pass Column? Memory Write Memory Read Nonposted Write Read Completion

Memory Write No Yes No Yes

Memory Read No No No Yes

Nonposted write No No No Yes

Read Completion No Yes No/Yes – see note1 Yes2

Notes:
1. Since there is no distinction between a posted and nonposted write within the CPC945, it is not possible to allow read completions

to pass nonposted writes. However, once the nonposted write is scheduled to be transmitted over the Link, meaning that it has
been “popped” from the outbound write command buffer even though has not yet been committed to begin transmission over the
Link, it is then possible to distinguish between a posted and nonposted write and therefore at this point a read completion is permit-
ted to pass the pending outbound nonposted write and be issued over the Link.

2. From differing interfaces or from memory controller interface.

1. The specific organization of the Outbound Write Data Buffer is such that it will hold either eight 64-byte requests or four
128-byte requests (this is a POR configurable condition).

User Manual

CPC945 Bridge and Memory Controller Preliminary

PCI Express
Page 106 of 655 February 1, 2008

5.2.3 Error Checking

There are error checks that are performed within the PCI Express stack some of which are detected and dealt
with in lower layers of the stack. According to the PCI Express Base Specification 1.0a, errors are catego-
rized as Correctable or Uncorrectable errors. Uncorrectable errors are further categorized as Non-Fatal or
Fatal errors (see Section 6.2 of the PCI Express Base Specification 1.0a for more information). The complete
list is shown in Table 5-5. The errors that the AL must check for are indicated in the tables with a gray back-
ground.

Table 5-5. Physical Layer Errors

Error Type Description Action Logged in CFG

Receive Correctable Symbol or packet framing errors Link is retrained, packet is re-transmit-
ted Yes, if enabled

Training Uncorrectable (Fatal) Non-coherent Memory ERR_FATAL sent to Root Complex Yes, if enabled

Table 5-6. Data Link Layer Errors

Error Type Description Action Logged in CFG

Bad TLP Correctable Calculated LCRC in incorrect Packet is re-transmitted Yes, if enabled

Bad DLLP Correctable DLLP has bad CRC DLLP is discarded Yes, if enabled

Replay timeout Correctable TLP re-transmission timeout Data Link layer initiates reply

Replay Num
Rollover

Correctable TLP re-transmitted too many times Link is retrained, packet is re-trans-
mitted

Data Link
Layer Protocol
Error

Uncorrectable (Fatal) DLLP is unrecognized ERR_FATAL sent to Root Complex

Table 5-7. Transaction Layer Errors

Error Type Description Action Logged in CFG

Poisoned TLP Uncorrectable (Nonfatal) Poisoned TLP bit set in Header
Packet is discarded or passed
along; ERR_NONFATAL sent to
Root Complex

Yes w/ TLP
Header, if enabled

ECRC incor-
rect Uncorrectable (Nonfatal) Incorrect End-to-End CRC

Application dependent (but usually
fatal); ERR_NONFATAL sent to
Root Complex

Yes, w/ TLP
Header

Unsupported
Request (UR) Uncorrectable (Nonfatal) Received TLP indicates request

that is not supported

Send Unsupported Request comple-
tion to requester; ERR_NONFATAL
sent to Root Complex

Yes, w/ TLP
Header

Completion
Timeout Uncorrectable (Nonfatal) Timeout timer expired before

receipt of completion

Application dependent (but usually
fatal); ERR_NONFATAL sent to
Root Complex

Yes

Completer
Abort Uncorrectable (Nonfatal) Target aborted transaction

Application dependent (but usually
fatal); ERR_NONFATAL sent to
Root Complex

Yes, w/ TLP
Header

Unexpected
Completion Uncorrectable (Nonfatal) Completion TLP received when

none expected

Application dependent (but usually
fatal); ERR_NONFATAL sent to
Root Complex

Yes, w/ TLP
Header

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
PCI Express

Page 107 of 655

Malformed TLP errors have several sub-categories, not all of which are checked for by the AL (that is, some
of them are detected by the TL). The complete list of errors that the AL will check for are listed in Table 5-8.

If the received TLP passes these basic integrity checks as listed above, it is passed up to the higher-level
functions for processing. There are basically five types of legitimate TLPs that can be received as detailed in
Table 5-9.

Receiver Over-
flow Uncorrectable (Fatal) Received request when no

credits available
Fatal system error; ERR_FATAL
sent to Root Complex Yes, if enabled

Flow Control
Protocol Error Uncorrectable (Fatal) Error in Flow Control processing

and/or updating
Fatal system error; ERR_FATAL
sent to Root Complex Yes, if enabled

Malformed TLP Uncorrectable (Fatal) Any errors associated with the
construction of received TLPs

Fatal system error; ERR_FATAL
sent to Root Complex

Yes, w/ TLP
Header

Table 5-8. PCI Express Stack Errors Addressed by Application Layer

Error Subtype Description Action taken by AL

Bad TLP N/A Calculated LCRC in incorrect Packet is ignored (it will be retransmitted)

Poisoned TLP N/A Poisoned TLP bit set in Header Packet is passed along; Fatal system error
(SERR# generated)

ECRC incorrect N/A Incorrect End-to-End CRC Packet is passed along; Fatal system error
(SERR# generated)

Unsupported
Request (UR) N/A Received TLP indicates request that is

not supported
Send Unsupported Request completion to
requester

Completion Time-
out N/A Timeout timer expired before receipt

of completion Fatal system error (SERR# generated)

Completer Abort N/A Target aborted transaction Application dependent (but usually fatal);
ERR_NONFATAL sent to Root Complex

Unexpected Com-
pletion N/A Completion TLP received when none

expected Fatal system error (SERR# generated)

Malformed TLP Byte Enable Error BE<3..0> and/or BE<7..4> have
invalid values Fatal system error (SERR# generated)

Malformed TLP Address Boundary Error Transaction crosses 4 KByte naturally
occurring address boundary Fatal system error (SERR# generated)

Malformed TLP RCB Error
Completion does not conform to per-
missible Read Completion Boundary
rules

Fatal system error (SERR# generated)

Malformed TLP Configuration Retry Error Illegal (unexpected) receipt of a Con-
figuration Retry Request Fatal system error (SERR# generated)

Table 5-7. Transaction Layer Errors (Continued)

Error Type Description Action Logged in CFG

User Manual

CPC945 Bridge and Memory Controller Preliminary

PCI Express
Page 108 of 655 February 1, 2008

5.2.4 Message Decode

The Message Decode function is responsible for handling inbound Message TLPs transmitted from the
Endpoint. the CPC945 will accept only the following inbound messages as shown in (see the PCI Express
Base Specification 1.0a, section 2.2.8, page 62 for a complete list of all PCI Express Messages.

Table 5-9. Allowed Inbound TLPs Types and Destinations

TLP Type Targeted Destination

Posted Write

Coherent Memory

Non-coherent Memory

HyperTransport

Register File

Memory Read Request (Nonposted)

Coherent Memory

Non-coherent Memory

HyperTransport

Register File

Completions

Outbound side of AL (for completion indication of outbound nonposted write)

Processor Interface

Hypertransport

Messages

Depends on type of message. Messages that are INTX assertions are decoded as issued
“out of band” inside the CPC945. Other messages (for example, PME_To_Ack) are
decoded and routed as required. Note that Vendor Specific Messages are not supported
in the CPC945 and will be ignored.

Message Signaled Interrupts (MSIs) MSIs are issued as posted writes and will be forwarded to the PI interface.

Table 5-10. Message Decode

Message Description

INTx Interrupt Signaling
Used to assert and de-assert a virtual INTx wire. If this message is received an output from the
CPC945 will reflect the state indicated in the message. (This output would be attached to the CPC945
interrupt controller, if INTx interrupts are support.)

Power Management

Used in the inbound direction to either indicate an Endpoint has a PME event (not supported in the
CPC945) or that an Endpoint is responding to a request sent to it from the CPC945 to enter the L2/3
Ready state (see the PCI Express Base Specification 1.0a, section 5, page 221 for more information
on power management in PCI Express devices). Upon receiving this Message, the CPC945 will indi-
cate to the CPC945 Power Manager that the PCIe Endpoint has entered a low power state and is pre-
pared to have its power removed.

Error Signaling Used to indicate that some form of error has occurred in a PCI Express device. See the “PCI Express
Base Specification, Version 1.0a” for more information on PCI Express errors.

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
PCI Express

Page 109 of 655

5.3 Configuration Register Access

Accessing the configuration registers can be done one of three ways. The first, known as traditional configu-
ration access, employs two access registers to initiate a configuration transaction. The second, known as
direct configuration access, allows all local (on-chip registers) configuration registers to be accessed just like
normal memory, but should be used only for testing purposes. The third, known as limited direct configuration
access, allows a single cycle method of performing both type 0 and type 1 configuration transactions, so long
as the target register lies within the first 256 bytes of the target device’s configuration space. Figure 12-1
PCIe XBus Configuration Space shows all of the XBus configuration registers with the address offset for each
of the three access methods described above. The upper nibble of the offset is the extended register number.
The lower eight bits is the byte address. Since each register is 32 bits, the register number is the top six bits
of the byte address.

On top of this there are three more ways supported by CPC945: SBus, I2C, and PI. The description for these
three methods can be found in “SBus Direct Configuration Access Method” on page 113, “I2C Direct Configu-
ration Access Method” on page 113, and “PI System Command Registers” on page 436.

5.3.1 Indirect Method

Traditional configuration accesses are performed via two access registers: the Configuration Address
Register and the Virtual Configuration register. First a write is performed to the Configuration Address register
identifying the target of the configuration transaction. This is followed by a read or a write to the Virtual
Configuration Data register, which causes the transaction to be issued. A read to the Virtual Configuration
Data register causes a read to the target identified in the Configuration Address register, while a write to the
Virtual Configuration Data register causes the write data to be written to the target identified in the Configura-
tion Address register.

Table 5-11. Configuration Access Registers

Address Register Name Type Initial Value

0xF0800000-
0xF0BFFFFC

32-bit Configuration Address (direct configuration access mode disabled)
The bottom two address bits determine if the access is a type 0 (0b00) or type 1 (0b01)
configuration access.

R/W N/A

0xF0800000-
0xF0BFEFFC

32-bit Configuration Address (direct configuration access mode enabled) R/W N/A

0xF0C00000-
0xF0FFFFFC

32-bit Virtual Configuration Data R/W N/A

User Manual

CPC945 Bridge and Memory Controller Preliminary

PCI Express
Page 110 of 655 February 1, 2008

The Configuration Address Register

The Configuration Address Register is a 32-bit register that exists in the range of addresses from
0xF0800000 to 0xF0BFFFFC (0xF0BFEFFC when direct access mode is enabled). Writing to this register is
the first step in generating a traditional configuration transaction.

The format of the Configuration Address Register varies depending on what type of configuration transaction
is being performed. The type of transaction is determined by the lowest two bits of the register. A value of
0b00 indicates the register is formatted for a type 0 configuration transaction, while a value of 0b01 indicates
the register is formatted for a type 1 configuration transaction. Any other values are invalid.

Type 0 configuration transactions (Figure 5-8) target local configuration memory space (addresses from
0xF0BFF000 – 0xF0BFFFFC). In order to successfully target this memory space, all reserved bits (R) must
be 0, while the cycle bit (C) must be 1. For those familiar with the PCI specification, the cycle bit is actually the
IDSelect (address bit 11) for the device. Also, because this is not a multifunction device, the Function Number
must be 0. If these conditions are not met, any attempt to perform a traditional configuration transaction
results in a master abort. Note that the Extended Register Number field is composed of the most significant
four bits of the Configuration Address Register, bits that are traditionally reserved according to the PCI speci-
fication.

Unlike type 0 configuration transactions, type 1 configuration transactions target PCI Express devices located
downstream from the PCI Express Application Layer. However, type 1 transactions must sometimes be
converted to type 0 transactions before transmission. Whether this conversion is performed is based on what
downstream device is targeted by the transaction. If the transaction is targeting the next downstream device
(A), it is transmitted as a type 0 configuration transaction. If the transaction is targeting a device further down-
stream (B or C), it is transmitted as a type 1 transaction. Note that the Extended Register Number field is
placed in the most significant four bits of the Configuration Address Register, bits that are traditionally
reserved according to the PCI specification.

Figure 5-8. Configuration Address Register Formatted For A Type 0 Configuration Transaction

Figure 5-9. Configuration Address Register Formatted For A Type 1 Configuration Transaction

Ext Reg Num R C Fu
nc

tio
n

N
um

be
r

Register Number 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Ext Reg Num R Bus Number Device Number Fu
nc

tio
n

N
um

be
r

Register Number 0 1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
PCI Express

Page 111 of 655

In order to determine which device is being targeted by a given type 1 configuration transaction, it is neces-
sary to examine the Device Number field and to compare the Bus Number field to both the Secondary Bus
Number and the Subordinate Bus Number. Both of these values are located in configuration space at location
0xF0BFF018 (bits 15:8 and 23:16, respectively). If the Device Number is 0 and the Bus Number is equal to
the Secondary Bus Number, the transaction is transmitted as a type 0 configuration transaction. If instead the
Bus Number is greater than the Secondary Bus Number and less than or equal to the Subordinate Bus
Number, the transaction is transmitted as a type 1 configuration transaction. If neither of these conditions are
true, a master abort occurs.

The Virtual Configuration Data Register

The Virtual Configuration Data Register is, as its name suggests, a virtual register that exists in the range of
addresses from 0xF0C00000 to 0xF0FFFFFC. Though reads and writes can target this virtual register, they
are actually being performed on whatever register is indicated in the Configuration Address Register. If the
address in the Configuration Address Register is invalid, the transaction results in a master abort.

Figure 5-10. Transmission Type By Target

Root
Complex

B

A

C Type 1

Type 0

User Manual

CPC945 Bridge and Memory Controller Preliminary

PCI Express
Page 112 of 655 February 1, 2008

5.3.2 Limited Direct Access Method

The limited direct configuration access mode was developed in order to provide system software with a single
cycle method of performing both type 0 and type 1 configuration transactions. This method was based on the
existing HyperTransport method of performing single cycle configuration transactions.

In the HyperTransport method, two 16 MB (24 bit) memory apertures exist in the system memory map. These
apertures allow address bit patterns needed to form a configuration access to be forwarded directly (for
example, a read or a write to one of these locations is interpreted as a configuration transaction). One aper-
ture produces type 0 transactions, while the other produces type 1.

For the CPC945 PCI Express port, only one memory region is available to direct access transactions: the
memory space 0xF1000000 through 0xF1FFFFFF. This means that reads from or writes to any address
beginning with 0xF1 will be interpreted as a configuration transaction.

In order to determine the characteristics of the configuration transaction, it is necessary to examine the lowest
24 bits of the target address as shown in Figure 5-11 (the upper 8 being fixed as 0xF1). Bits 23:16 make up
the 8 bit bus number, bits 15:11 make up the 5 bit device number, bits 10:8 make up the 2-bit function
number, and bits 7:2 make up the 6 bit register number. The lowest 2 bits of the address are “don’t cares”.
Note that because there are only 24 bits of each address available for defining the specifics of a configuration
transaction, there is no way to access extended configuration space in limited direct mode.

Instead of relying on which memory region is used for a given transaction in order to distinguish between type
0 and type 1 (as is done in HyperTransport), the CPC945 relies on examining the bus number to make the
distinction. If the bus number (bits 23:16 of the address field) matches the primary bus number, the transac-
tion is type 0. If not, the transaction is type 1. A type 1 transaction is forwarded over the link as a type 0 if the
bus number matches the secondary bus number. Otherwise, it is forwarded as a type 1. It is necessary to
note that, at the very least, the primary bus number must be set via the classic two-step configuration mode
before limited direct transactions can be attempted.

To access the CPC945 XBus Configuration registers, use the same address offset as shown in Figure 12-1
on page 330, but add 0xF1BFF as the upper bits instead of 0xF0BFF as shown in Table 12-23 on page 551.
For example, to access the 32-bit Legacy Interrupt Control Register through a Limited Direct Configuration
Access use the address 0xF1BFF0F0 instead of the address 0xF0BFF0F0 used for a traditional configuration
access.

Figure 5-11. Address Field For Limited Direct Configuration Transactions

1 1 1 1 0 0 0 1 Bus Number Device Number Fu
nc

tio
n

N
um

be
r

Register Number X X

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
PCI Express

Page 113 of 655

5.3.3 Direct Access Method

Direct configuration accesses, which are simply standard reads and writes directly targeting configuration
registers, are disabled by default. In order to enable direct configuration accesses, simply write 0x1 to the
Direct Address Mode Register (detailed in Section 12.11.2.22 on page 571) using a traditional configuration
access. Note that even when direct configuration access mode is enabled, traditional configuration accesses
can be made, though the supported address range of the Configuration Address register is reduced. The
direct access mode is only meant for accessing the CPC945’s configuration registers and therefore all
accesses are Type 0. Direct accesses are always in the address range: 0xF0C00000 to 0xF0FFFFFC.

5.3.4 SBus Direct Configuration Access Method

The CPC945 also allows the processor another method of direct access for any PCIe registers located off of
the SBUS. The address range 0xF8090000 - 0xF809FFFF is reserved for PCI Express Configuration Regis-
ters. Note that SBUS only decodes the upper four nibbles (0xF809) and passes the lower portion of the
address to the PCIe configuration registers. The PCIe configuration registers only decode the lower fourteen
bits, so the top two bits of the address passed to the PCIe configuration registers are don’t cares. Figure 12-1
on page 330 only shows the register offsets for the standard method of accessing the PCIe configuration
registers. For accessing the configuration registers through the SBus or I2C, the offsets must be shifted left by
two bits. This means that the Legacy Interrupt Control register uses the offset 0x03C0 (0xF80903CD) instead
of 0x0F0 when accessed by the SBus or I2C

5.3.5 I2C Direct Configuration Access Method

The CPC945 also allows a method of direct access for any PCIe registers located off of the SBUS using I2C.
Details are in “CPC945 Address Specification” on page 173 and use the same addresses as given in “SBus
Direct Configuration Access Method”, above.

User Manual

CPC945 Bridge and Memory Controller Preliminary

PCI Express
Page 114 of 655 February 1, 2008

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
HyperTransport

Page 115 of 655

6. HyperTransport

6.1 Overview

The CPC945 HyperTransport interface responds to addresses forwarded from the Processor Interconnect
(PI) interface that fall into the range of “valid addresses” as specified by the HT Address Mask Register.
Addresses on the external HyperTransport bus are qualified in the same manner.

6.2 Initializing HyperTransport Core in the CPC945

The initialization sequence of the HyperTransport unit is dependent on the detection of the ‘sync’ state.
Figure 6-1 illustrates a HyperTransport initialization sequence, followed by an HT_LDTSTOP_L.

The first half of the link initialization is automatically attempt by the core when the link powers up. The core
begins this sequence by asserting the HT_RESET_L. In the initialization sequence, the link width is based on
the maximum width of the smallest transmitter or receiver, but limited to 8. The default clock frequency is
200 MHz for all devices. Figure 6-1 demonstrates that first half of the initialization.

While HT_RESET_L is asserted during a cold reset, each device drives its CTL signal to a logical 0, and
drives its output CAD signals to a value that is based on the width of its receiver. At the deasserting edge of
HT_RESET_L, each device samples its input CAD signals and uses this sampled value to determine its
transmitter and receiver widths then updates the LinkWidthIn and LinkWidthOut Registers. After the deasser-
tion of HT_RESET_L, each device asserts its CTL signal across a rising CLK edge, initiating a sync
sequence. The assertion of the CTL signal serves to indicate to the device at the other side of the link that this
device is ready to complete initialization of the link.

At this time, the HyperTransport is active.

However, the second stage of the initialization is driven by the system firmware. This stage is used to operate
at the maximum clock frequency and link width.The firmware reads the LinkWidthIn and LinkWidthOut Regis-
ters to determine the link’s maximum width. The firmware also determines the links frequency cababilites. It
then updates the corresponding control registers for link width and frequency in both upstream and down-
stream traffic. Lastly, the firmware asserts the HT_LDTSTOP_L to force the updated values to take effect.

User Manual

CPC945 Bridge and Memory Controller Preliminary

HyperTransport
Page 116 of 655 February 1, 2008

Figure 6-1. Initialization Sequence

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
HyperTransport

Page 117 of 655

6.2.1 Programming the HyperTransport core

The HyperTransport Core synchronizes its transmit and receive clocks through a hardware initialization at
power up (see Section 6.2 Initializing HyperTransport Core in the CPC945 on page 115). However the link
width and frequency can be optimized with programming the HypterTransport core. This section discusses
those registers and others that are important basic configurations.

6.2.1.1 HT1 Address Mask Register (0xF8070200)

The HT1 Address Mask Register defines the range of addresses that the HyperTransport will forward read or
write from the CPU/PCIe Master to the HT Bus Memory Space. The Address Mask Register defines fifteen
coarse regions (256 MB each) and sixteen fine regions (16 MB each) of the lower 32-bit address space that
CPC945’s HyperTransport responds to or ignores from the PI and PCIe Busses.

6.2.1.2 Link Config/Control Register (0xF8070110)

The Link Config Register has four register fields that pertain to the HyperTransport link width. Link-
WidthOut(Out) and LinkWidthIn(In) are the utilized link widths. With a cold link reset, they are reset to zero,
then are set by hardware during the Link Width Initialization.

The MaxLinkWidthOut(MaxOut) and MaxLinkWidthIn(MaxIn) reflect the physical width present on the device.

The low order half [16:31] of this register pertains to the link control register fields. These fields control various
behaviors such as how to respond to CRC errors.

6.2.1.3 LinkFreqCap/LinkError/Link Freq/RevisionID Register (0xF8070120)

This register has register fields that pertain to the frequency of the link.The LinkFreqCap is a read-only
register that defines what frequencies the CPC945 HyperTransport can support. The LinkFreq register field
represents the link frequency.

6.2.1.4 Error Handling/Enumeration Scratchpad Register (0xF807140)

The ErrCtrl/Enum Register contains routing enables from the various error log bits to the various error
reporting mechanisms, as well as the Chain Fail and Response Error status bits.

6.2.1.5 Example of Programming Sequence

1. Set the HT Address Mask Register (0xF8070200).

2. Set unique unitIds to all HT devices. The CPC945 hypertransport’s unitId is hard wired, however the HT
devices need to be unique on the link.

3. Set optimal speed frequency - LinkFreqCap/Link Error/Link Freq/ Revision ID Register (0xF8070120).

4. Set optimal link width- Link Config Register (0xF8070110).

The HT link must then be reset with either a cold reset (asserting HT_RESET_L) or assert HT_LDTSTOP_L.
The HT devices then begin an initialization sequence.

5. Reassign unique unitIds to all HT if applicable. The asserting of HT_RESET_L clears all unitIds.

6. Set up any error handling features.

User Manual

CPC945 Bridge and Memory Controller Preliminary

HyperTransport
Page 118 of 655 February 1, 2008

6.3 DART

Coherent HyperTransport DMA accesses are remapped via a DMA Address Relocation Table (DART) so that
I/O devices can transfer data directly to any memory location in the 36-bit Extended memory map. The oper-
ating system (OS) establishes entries in the DART when a buffer area is requested by a driver. The “physical”
addresses the system passes back to the driver are then mapped by the DART when the device accesses
memory via these addresses. The OS removes DART entries when the driver indicates the buffer area is no
longer required. More details of the DART implementation in CPC945 are available in Section 3.4 DMA
Address Relocation Table (DART) on page 53.

Software must insure that the least significant nibble of the Configuration Data register address on the PI is
set to the appropriate value to cause the proper offset for CPC945 Configuration Accesses.

6.4 HyperTransport Read Size Restriction

On the CPC945 HyperTransport interface, read operations to downstream devices are always 64 bytes in
length, regardless of actual data size requested. Some processor initiated read transactions could be in
excess of 64 bytes, so programmers should be aware of the need for software checks to ensure that this
does not cause problems. When HyperTransport must respond to a read command sent from a HT device,
64 bytes is always requested from memory. 64 bytes is both the largest transfer size available on the HT bus
and the smallest transfer size from DRAM. The HyperTransport interface extracts the actual bytes requested
from the returning data and returns the extracted bytes to the requesting HT device.

6.5 HyperTransport Address Space

CPC945 uses two separate buses for expansion, PCI Express and a 16-bit wide HyperTransport Bus.
CPC945 reserves the address range 0x0F2000000 through 0x0F4FFFFFF for HyperTransport. HyperTrans-
port uses this memory range as shown in Table 6-1.

6.6 HyperTransport Bus Address Decoding

Read or write requests originating from either the CPU or a PCIe master to the HT Bus Memory space
defined in Table 12-1 on page 327 are serviced by the CPC945 and forwarded onto the HT Bus as Memory
read/write commands. CPC945 passes the PI Address to the HT Bus address un-modified. The range of

Table 6-1.HyperTransport Portion of the Memory Map.

Start
Address

End
Address Name Comments Page

0x0F2000000 0x0F2FFFFFF HT Type 0 Configu-
ration Space

HyperTransport interface is used to connect to I/O devices
outside of CPC945 (no other bridges in CPC945). 120

0x0F3000000 0x0F3FFFFFF HT Type 1 Configu-
ration Space

HyperTransport interface is used to connect to I/O devices
outside of CPC945 (no other bridges in CPC945). 120

0x0F4000000 0x0F43FFFFF HT I/O Access HyperTransport I/O Access space for CPC945 HT interface. 120

0x0F4400000 0x0F47FFFFF HT EOI HyperTransport End-of-Interrupt space for CPC945 HT
interface. 120

0x0F4800000 0x0F4FFFFFF Reserved Reserved for HyperTransport. 120

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
HyperTransport

Page 119 of 655

addresses responded to by HyperTransport from the PI is defined by the Section 12.12.12 HT Address Mask
Register on page 632. This register defines fifteen coarse regions (256 MB each) and sixteen fine regions (16
MB each in 0xF8000000-0xF8FFFFFF) of the lower 32-bit address space that CPC945’s HyperTransport
responds to/ignores from the PI, and PCIe Buses. CPC945 implements a decode/anti-decode scheme
whereby, if a given address is decoded to be passed from the PI to the HT Bus, the same address is not
allowed to pass from the HT Bus to the PI Bus. The fine grain decodes are defined in Table 6-1.

HyperTransport is only one agent requiring address space within CPC945. PCI Express, DRAM, CPC945
Registers, and ROM all require address space as well. When setting address spaces to HyperTransport,
ensure other consumers of address space are not acquiring the same address space. For example, it is easy
to give the PCI Express 0 Address Mask Register and HyperTransport (Section 12.12.12 HT Address Mask
Register) the same address range. In the event that an address space is accidentally assigned to both Hyper-
Transport and PCI Express, the requests will always be routed to HyperTransport space. (That is, Hyper-
Transport always “wins” in case of duplicate assignments.)

6.7 HyperTransport Address Mapping

Determination of which transactions pass to and from the HyperTransport interface is controlled by the
CPC945 address map. See Table 12-1. HyperTransport’s portion of the address map (Table 6-1) is deter-
mined by both fixed and programmable means. Requests generated by either a processor or a PCIe master,
and destined for the HyperTransport interface, are referred to as downstream requests. Requests that origi-
nate from the HyperTransport chain destined for Main Memory, PCI Express, or CPC945 register space are
referred to as upstream requests. Mapping of upstream and downstream requests are handled differently and
described separately. Any access to system memory from HyperTransport is always coherent. Access to
memory residing on the PCI Express or HyperTransport Busses is always non-coherent.

6.7.1 Downstream Requests

For downstream requests the maximum transfer size allowed is 64 bytes. For requests originating from PCI
Express this limit is ensured via hardware. The processor interface can transfer up to 128 bytes in a single
transfer, so this limitation must be enforced in software for requests originating on the PI interface.

The following address regions are fixed in the CPC945 memory map. A read or write to these spaces results
in a transaction being sent to the HyperTransport chain. See the HyperTransport I/O Link Specification
(Chapter 9, Address Map) for more information on the individual HyperTransport address regions. The actual
implementation of this decode is achieved by forcing the appropriate Fine Address Select bit in the HT
Address Mask Register (Section 12.12.12 HT Address Mask Register).

User Manual

CPC945 Bridge and Memory Controller Preliminary

HyperTransport
Page 120 of 655 February 1, 2008

0xF2000000 -
0xF2FFFFFF

Requests in this address range are mapped into the “Type 0” Configuration region of the
HyperTransport address map. This is accomplished by converting the upper byte (F2) of
the original 32 bit address into the upper two bytes (FDFE) of the 40 bit HyperTransport
Type 0 configuration cycle. The lower 24 bits of the original address pass unchanged. As
with accesses to all system and configuration registers, the size of transfers to this region
must not exceed 4 bytes in length and not cross aligned four byte boundaries. For more
information on HyperTransport configuration cycles see chapter 7 (Configuration
Accesses) of the HyperTransport I/O Link Specification.

Note: The actual implementation of this decode is achieved by forcing the appropriate
“Fine Address Select” bit in the HT1 Address Mask Register (see Section 12.12.12 HT
Address Mask Register on page 632).

0xF3000000 -
0xF3FFFFFF

Requests in this address range are mapped into the “Type 1” Configuration region of the
HyperTransport address map. This is accomplished by converting the upper byte (F3) of
the original 32 bit address into the upper two bytes (FDFF) of the 40 bit HyperTransport
Type 1 configuration cycle. The lower 24 bits of the original address pass unchanged. As
with accesses to all system and configuration registers, the size of transfers to this region
must not exceed 4 bytes in length and not cross the aligned four byte boundaries. For
more information on HyperTransport configuration cycles see the HyperTransport I/O
Link Specification (Chapter 7, Configuration Accesses). The implementation of this
decode is achieved by forcing the appropriate Fine Address Select bit in the HT1
Address Mask Register (see Section 12.12.12 HT Address Mask Register on page 632).

 0xF4000000 -
0xF43FFFFF

Requests in this address range are mapped into the I/O region of the HyperTransport
address map. This is accomplished by converting the upper ten bits (1111_1000_00) of
the original 32 bit address into the upper 18 bits (1111_1101_1111_1100_00) of the 40
bit HyperTransport I/O cycle. The lower 22 bits of the original address pass unchanged.
As with accesses to all system and configuration registers, the size of transfers to this
region must not exceed 4 bytes in length and not cross aligned four byte boundaries. The
implementation of this decode is achieved by forcing the appropriate Fine Address Select
bit in the HT1 Address Mask Register (see Section 12.12.12 HT Address Mask Register
on page 632).

0xF4400000 -
0xF47FFFFF

Requests in this address range are mapped into the Interrupt/EOI region of the Hyper-
Transport address map. This is accomplished by converting the upper ten bits
(1111_1000_01) of the original 32 bit address into the upper 18 bits
(1111_1101_0000_0000_00) of the 40 bit HyperTransport I/O cycle. The lower 22 bits of
the original address pass unchanged. The transfer sizes must not exceed 4 bytes in
length and must not cross aligned four byte boundaries. The implementation of this
decode is achieved by forcing the appropriate Fine Address Select bit in the HT Address
Mask Register (see Section 12.12.12 HT Address Mask Register on page 632).

0xF4800000 -
0xF4FFFFFF

Reserved.

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
HyperTransport

Page 121 of 655

Programmable regions: The HT Address Mask register (address 0xF8070200, Section 12.12.12 HT
Address Mask Register) is used to map other portions of the system memory map into HyperTransport
Memory-Mapped I/O space. In CPC945 based systems, the lower 2 GB of the address range
(0x00000000-0x7FFFFFFF) is mapped to DRAM. Addresses from 0x80000000 to 0xEFFFFFFF of the
memory map can be mapped to the HyperTransport using the Address Mask Register, Coarse Address
Space Select. Addresses from 0xF0000000 to 0xFFFFFFFF of the memory map can be mapped to the
HyperTransport using the Address Mask Register, Fine Address Space Select. As mentioned above, the only
transfer size limitation to this region is that the request must not exceed 64 bytes in length.

6.7.2 Upstream Requests

The following address regions are fixed in the CPC945 memory map. A read or write to these regions results
in transaction acceptance by the HyperTransport chain. All addresses that are reserved or fall outside the
regions listed above are reflected back down the HyperTransport chain (peer-to-peer). If no HyperTransport
device accepts the address, then it reaches the end of the chain and causes a master abort. Note that Hyper-
Transport uses 40 bit addresses, but CPC945 only accepts 32 bit addresses except for DMA accesses to
System memory routed through the DART or in the case of interrupts.

0xFF000000 -
0xFFFFFFFF

Requests in this address range pass unchanged to HyperTransport (bits 39:32 are
padded with zeroes). This address range is dedicated to system ROM and serviced by
the HyperTransport device connected to ROM. The implementation of this decode is
achieved by forcing the appropriate Fine Address Select bit in the HT Address Mask
Register (Section 12.12.12 HT Address Mask Register).

0x0000000000-
0x007FFFFFFF

Requests in this address range are mapped to main system memory via the DART. See
Section 6.3 DART on page 118. All possible sizes of read and write operations available
on HyperTransport can be accepted by CPC945. All sizes of reads to this region results
in a 64 byte read request being issued to the Memory Controller. This is allowable, as
system memory is considered prefetchable, meaning the memory has no read side
effects. Writes to this part of the memory map are mapped into the smallest power of two
sized transfer that contains all of the write data. For example, an unaligned 32 byte write
results in a 64 byte write being issued to the Memory Controller with the required 32 byte
enable bits asserted.

0x00F8000000 -
0x00F8FFFFFF

Requests in this address range are mapped to the CPC945 Control Registers. All
requests to this address range must not exceed 4 bytes in length. Non-posted requests
of greater than 4 bytes return an error response. Posted requests of greater than 4 bytes
are silently dropped.

0x00F9000000 -
0x00FFFFFFFF

Access through this address range is achieved by forcing the appropriate Fine Address
Select bit in the PCI Express Address Mask Register. See Section 12.12.12 HT Address
Mask Register on page 632.

0x0100000000 -
0xFCFFFFFFFF

Reserved - CPC945 only supports 32-bit addressing from HyperTransport.

User Manual

CPC945 Bridge and Memory Controller Preliminary

HyperTransport
Page 122 of 655 February 1, 2008

Programmable Regions: The PCI Express Address Mask register is used to map other portions of the
system memory map into CPC945 memory space. (See Section 12.11.2.4 PCI Express 0 Address Mask
Register on page 556.) The HyperTransport address decode logic uses the PCIe address mask register to
determine if a transaction should be accepted and forwarded to the PCI Express interface. Since this portion
of the address range is not considered prefetchable, read requests from HyperTransport must be presented
to the CPC945 interface in such a way that the byte enable information for the request can be accurately
communicated to the PCI Express master interface logic. This can result in the original request being divided
into smaller requests (up to 6 in the worst case). The resulting sequence of read requests transfer at least
one byte of data for every QW (8 bytes) of read data requested. The worst case example of one HyperTrans-
port read resulting in 6 CPC945 read requests being generated occurs when a 14 DW (56 bytes) read from
HyperTransport has a starting address offset of 4 within an aligned 64 byte block. This results in the following
sequence of read requests to CPC945:
4 byte read from offset 4
8 byte read from offset 8
16 byte read from offset 16
16 byte read from offset 32
8 byte read from offset 48
4 byte read from offset 56

Writes to this area of the memory map are mapped into the smallest power of two sized transfer that contains
all of the write data. For example, an unaligned 32 byte write results in a 64 byte write issued to the Memory
Controller (with the required 32 byte enable bits asserted).

6.8 Reset

The HyperTransport link/chain can be reset by software using the SecBusReset bit in the Bridge Control
Register (Section 12.12.17 Bridge Control Register (BrCtrl) on page 636) through a cold link reset (cold
means that PwrOk is deasserted during the sequence) or a warm link reset. The setting of cold vs. warm link
reset is controlled by the WarmReset bit in the Command/Pointer/Capability ID Description Register
(Section 12.12.7 Command/Pointer/Capability ID Register (HTCapability00) on page 625). Note that a soft-
ware link reset can be achieved with back-to-back writes to the SecBusReset bit since no hold time is
required. When CPC945 is reset through a cold or warm system reset, all HyperTransport logic is reset,
resulting in a HyperTransport link cold reset. The HyperTransport specification defines both a cold and warm
reset, but the CPC945 HyperTransport implementation does not provide for a means of generating a Hyper-
Transport warm reset directly from a system warm reset.

A HyperTransport link warm reset affects the four register fields listed below. Each field description consists
of the register name and the field name. In parentheses below is the field name used in the HyperTransport
Specification and a brief description of what happens on reset.

• Link Control Register, Init (InitializationComplete) -Resets to 0, 1 when link initialization is complete

0xFD00000000 -
0xFDF8FFFFFF

Write requests in this address range are mapped to the MPIC Interrupt controller in
CPC945 (See MPIC registers in Section 12.11.3). Address bits 23:16 are right shifted to
select a register within the MPIC interrupt controller. This implementation accepts only
write requests to a subset of the interrupt address range described in the HyperTransport
Link Specification. Read requests to this range are not supported and can result in unex-
pected behavior.

0xFDF9000000 -
0xFFFFFFFFFF

Reserved.

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
HyperTransport

Page 123 of 655

• Link Control Register, EOC (EndOfChain) - Device or software can set it afterwards
• Link Control Register, TXO (TransmitterOff) - Transmitter is turned on after reset
• Error Handling Register, ChainFail (ChainFail) - cleared on reset

A HyperTransport link cold reset affects the previous four register fields as well as:
• Link Control Register, In (LinkWidthIn) - Resets to zero, then set by hardware during link width initializa-

tion
• Link Control Register, Out (LinkWidthOut) - Resets to zero, then set by hardware during link width initial-

ization

A Warm Link Reset of a HyperTransport Link causes the Reset Line to be low (asserted) and the PwrOk Line
to be high (asserted). Warm link resets can be used to remove sync flooding or change the HyperTransport
link width. A Cold Link Reset on a HyperTransport Link causes the Reset Line to be low (asserted) and the
PwrOk Line to be low (deasserted). A cold reset (due to a CPC945 reset) resets the HyperTransport link to its
initial boot state.

6.9 Exceptions to HT Specification 1.04

This section lists all exceptions to the HT Specification, Version 1.04 implemented in CPC945 HyperTrans-
port. If an exception is not listed below, CPC945 HyperTransport adheres to the HT Specification. The excep-
tions are as follows:

• Use of SERR# and SYNC
• CPC945 does not stop the HyperTransport clocks to change HyperTransport’s PLL
• Bridge Control Register
• CPC945 has no primary HT interface (see Section 6.9.1 Bridge Control Register)
• CPC945 primary interface has only one write and one read pipe
• No CPC945 support for HT atomic operations
• CPC945-specific registers
• CPC945 performance counters

Note: CPC945’s HyperTransport registers do not follow the standard PCI header format, particularly as
address decode is concerned, but this is a PCI issue more than a HyperTransport issue.

6.9.1 Bridge Control Register

One required deviation from the device header format is the addition of a “Bridge Control Register (BrCtrl)” on
page 636. The Bridge Control Register is used to specify the error and reset behavior of the HyperTransport
link connected to the host (primary interface). The Bridge Control Register takes the place of the host header
and includes the SecStatus/DetSerr bit.

6.9.2 Updating the PLL

The HyperTransport Specification describes the HT PLL as capable of being changed without placing the
PLL in reset. However, the CPC945 HT PLL can only be changed when the PLL is in reset or by using the
ForcePLLReset. Use of the ForcePLLReset bit is not recommended as data present on the HyperTransport
bus can be lost.

The HyperTransport Specification mandates the HT clocks continue running while the clocks are changed.
However, the CPC945 power manager design requires stopping the clocks while the PLL is changed.

User Manual

CPC945 Bridge and Memory Controller Preliminary

HyperTransport
Page 124 of 655 February 1, 2008

6.9.3 Ordering through CPC945’s Primary Interface

HyperTransport performs ordering through three pipes: posted, non-posted, and response. The CPC945 bus
is used for the HyperTransport Host bridge’s primary interface. The CPC945 bus has two pipes: reads and
writes. Both interfaces have ordering rules between their respective pipes. Since the primary interface has
only two pipes compared to HyperTransport’s three pipes, CPC945 does not adhere to all of the ordering
rules of HyperTransport.

6.9.3.1 Downstream Requests

Downstream writes that become nonposted when entering HyperTransport cause a conflict in ordering rules.
The only nonposted writes are configuration writes and HyperTransport I/O (see Table 6-1). Since CPC945
only performs posted writes, a configuration write is treated as posted within CPC945, but converted to a
nonposted write when the write reaches HyperTransport. When the nonposted write returns a response
packet to CPC945 over HyperTransport the response packet is ignored by CPC945. This means that config-
uration writes and HyperTransport I/O from CPC945 are posted writes. From an ordering point of view,
CPC945 handles all writes as posted internally. Therefore, the completion of a nonposted write (tgtDone issu-
ance) does not imply the write data reached its final destination.

The CPC945 issues only one nonposted write and waits until the target is done with the first nonposted write
before another one is issued. One outstanding at a time is the rule. From the CPC945 perspective, all writes
are strongly ordered, and all reads have to push all writes. This requires CPC945 posted writes to push
nonposted writes, CPC945 nonposted writes to push nonposted writes, and reads to push nonposted writes.
To create this effect on HyperTransport, there are two choices. Putting a nonzero sequence ID on all reads
and nonposted writes takes care of the second and third items. Since HyperTransport does not have any way
to make a posted write push a nonposted write (this would result in a deadlock-prone design), the only way to
cover the first item is to block posted writes while nonposted writes are outstanding. Sequencing all reads has
a potentially bad performance effect, and nonposted writes are believed to be rare. Therefore, it was decided
to stall reads on nonposted writes as well, rather than sequence the entire nonposted channel.

To summarize, CPC945 keeps reads in order, writes in order, and reads push writes. This is supported in
HyperTransport until a nonposted write is issued. If a nonposted write is issued, no other transaction can be
issued from CPC945 to HyperTransport until the response packet from the nonposted write is returned. Upon
receipt of the response packet, CPC945 allows transactions for HyperTransport to proceed normally, and the
response packet is discarded.

6.9.3.2 Upstream Requests

The HyperTransport Specification contains upstream I/O ordering and host ordering requirements. However,
CPC945 implements an alternative scheme because CPC945 doesn’t support the proper primitives. CPC945
instead implements a simplified scheme which is a superset of the requirements in the HyperTransport Spec-
ification, Table 22.

The ordering rules for CPC945 are as follows: Compare 2 received packets according to the virtual channel/
unitId/seqId rules specified in HyperTransport Specification, Table 21. If the compare indicates a depen-
dence, the ordering points are determined according to the target of the request (CPC945, including memory,
registers, or PCI Express; or peer-to-peer), following the rules listed in Table 6-2.

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
HyperTransport

Page 125 of 655

Once a packet is handed to the CPC945 bus logic it is the responsibility of the CPC945 bus logic, and the
receiver, to keep writes strongly ordered and make reads push writes. Once a packet is queued for transmis-
sion downstream it is the responsibility of any intermediate tunnels and the destination device to keep
packets ordered to their final destinations.

Example of an Upstream CPC945 read following a Peer2Peer write (5th entry in Table 6-2):

The first transaction is a peer-to-peer write and the second transaction is a read to CPC945. There-
fore, the second transaction is issued across CPC945, after the first transaction is queued for trans-
mission downstream.

The requirement is that the peer-to-peer request is “ordered” before the read is passed upstream
across CPC945. In this case, “ordered” is defined as meaning that the write must be queued for trans-
mission in such a way that any traffic issued from the CPC945 after the CPC945 receives the read
(that could in some way depend upon the read) must not be able to pass the write.

Specifically, in the case of the example listed here, the requirement is that the read response (coming
from the CPC945) push the write out to HyperTransport. The read is prevented from being issued to
the CPC945 until the write receives the handshake indicating it has been queued for transmission.

6.9.4 HyperTransport SERR#

HyperTransport within CPC945 has implemented DetSerr (Bridge Control Register, bit 0) and not imple-
mented SerrEN (Bridge Control Register, bit 14). To clarify the reasoning behind this, here is a brief discus-
sion of SERR/sync flood handling for CPC945. First the general use of SERR# in PCI is discussed, then the
general use of syncs in HT. The last part of this section describes how sync is used in CPC945. Note for the
discussion below that Cmd/SerrEn and SecStatus/DetSerr are not implemented in CPC945. It is suggested
that this entire section be read, before looking for any register fields named in the discussion.

Note: X/Y denotes field Y of CSR X.

For PCI, SERR# is a separate wire that acts purely an error status indicator, which propagates upstream
towards the host. Devices on a bus can assert SERR# to indicate a bus error or internal error, if Cmd/SerrEn
is asserted. Bridges can drive SERR# due to an internal error on their primary interface, if Cmd/SerrEn is
asserted. Bridges detect the assertion of SERR# on their secondary interface, and set SecStatus/DetSerr. If
BrCtrl/SerrEn and Cmd/SerrEn are both set, they also assert SERR# on their primary interface when they

Table 6-2.CPC945 Upstream (from CPC945 to HT device) Ordering Rules .

First Transaction Second Transaction Ordering

CPC945 Request CPC945 Request Requests are issued across CPC945 in order.

CPC945 Request CPC945 Response The second transaction is issued across CPC945 after the first transaction clears the snoop
pipeline.

CPC945 Request Peer2Peer The second transaction is issued downstream after the first transaction clears the snoop
pipeline.

CPC945 Response * No requirement (nothing is ever ordered behind responses).

Peer2Peer CPC945 The second transaction is issued across CPC945 after the first transaction is queued for
transmission downstream.

Peer2Peer Peer2Peer Reflected packets are issued downstream in order.

User Manual

CPC945 Bridge and Memory Controller Preliminary

HyperTransport
Page 126 of 655 February 1, 2008

detect SERR# on their secondary interface. Bridges never drive SERR# on their secondary interface, and
have no mechanism for logging SERR# assertion by other parties on their primary interface. Both devices
and bridges (on their primary interface) log when they assert SERR# using the Status/SigdSerr bit
(0xF8070010, bit 1).

In the HT world, we have sync flooding. Sync flooding places sync transactions on the HT bus, not on a sepa-
rate wire like SERR#. This serves two error-processing purposes:

• It signals the host that something has gone wrong on the link.
• It stops data flow on the link, to prevent potentially-corrupted packets from reaching their destinations.

As such, sync flooding in HT is a superset of SERR# signaling in PCI. Function #1 of sync flooding is consid-
ered to be equivalent to SERR#, for purposes of propagation and logging. Therefore, devices and bridges (on
their primary interface) initiating sync flooding require Cmd/SerrEn to be set, and Status/SigdSerr is set when
it happens. Bridges will set SecStatus/DetSerr when they observe sync flooding on their secondary inter-
faces, and will propagate it to their primary bus if Cmd/SerrEn and BrCtrl/SerrEn are both set. In addition, all
devices and bridges propagate sync floods from their receivers to their transmitters on the same chain, and
bridges will propagate sync floods from their primary to their secondary interfaces, without requiring any
enables to be set, or performing any logging.

There are typically three enables associated with HT link errors – one each enabling the error to be reported
via sync flooding, fatal error interrupt, or nonfatal error interrupt. The sync flood enables always gate sync
flooding, regardless of whether the link is on the primary or secondary interface of a bridge. In general, it is
expected that sync flooding will always be on for the errors that indicate something basic is wrong (CRC,
protocol, buffer overflow) -- the enables are provided primarily to allow faulty error checking hardware to be
turned off. Bridges can initiate sync floods on their secondary bus if these enables are set, without requiring
Cmd/SerrEn to be set or setting a log bit. This will cause SecStatus/DetSerr to be set, and the SERR can then
propagate to the primary bus as described above. In addition, the HT spec allows a detected SERR# on the
secondary bus to be forwarded as an interrupt on the primary bus, based on the ErrCtrl/SerrFatalEn
(0xF8070140, bit 8) and ErrCtrl/SerrNonFatalEn (0xF8070140, bit 8) CSR bits.

CPC945 is in some ways a hybrid between a device and a bridge. It has a device header, with some bridge
functions tacked on in a register called the Bridge Control register. However, this register is only tangentially
related to the Bridge Control register in a bridge header, since standard software won't be looking for it, it isn't
in the correct location, and has a slightly non-standard layout. CPC945 does, however, implement a standard
HT host capability block.

CPC945 doesn't implement a SerrEn bit, because it doesn't really have a primary interface to propagate
SERRs to; it also does not implement the SigdSerr log bit, for the same reason. CPC945 does implement the
DetSerr bit, which is located in the BrCtrl register. The DetSerr bit is set whenever the link is sync flooded by
a downstream HT device. When CPC945 sync floods the link, the DetSerr bit is not changed.

Sync flooding of the link by CPC945 requires having the appropriate sync flood enable bit set for the partic-
ular error condition, but no global enable. The ErrCtrl/SerrFatalEn and SerrNonFatalEn are implemented, and
can be used to map detected sync floods to interrupts. In general, one of them should always be set so the
host can detect a link failure.

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
HyperTransport

Page 127 of 655

6.10 HyperTransport Registers

The registers listed in Section 12.12 HyperTransport Registers (HT1) on page 614 control the HyperTrans-
port Host bridge logic found in the CPC945 design. The layout of HyperTransport registers is intended to
comply as much as possible with the governing specifications (PCI Local Bus Specification, Revision 2.2 and
HyperTransport I/O Link Specification, Revision 1.04).

The set of registers described here is composed of three sub-sets of registers, the HyperTransport Header,
the HyperTransport Interface Capabilities Block, and implementation specific registers. The header portion of
the register block is declared as a Device Header. One required deviation from the Device header format is
the addition of the “Bridge Control Register (BrCtrl)” on page 636 at address 0xF8070300.

The Bridge Control Register is used to specify the error and reset behavior of the HyperTransport link
connected to the host (primary interface). The HyperTransport Interface Capabilities section of the register
block is used for configuration and status of the HyperTransport specific portions of the interface. The final
section of registers controls items that fall outside the scope of the PCI and HyperTransport specifications.
The top view of the HyperTransport register block is:

0xF8070000 - 0xF80700F3h: Device Header

0xF8070100 - 0xF80701F3h: Capabilities Block(s)

0xF8070200 - 0xF80703F3h: CPC945 Specific Registers

0xF8070500 - 0xF80705F3h: Performance Registers

User Manual

CPC945 Bridge and Memory Controller Preliminary

HyperTransport
Page 128 of 655 February 1, 2008

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
DDR2 Memory Controller

Page 129 of 655

7. DDR2 Memory Controller

7.1 Feature Summary

Following are features of the CPC945 Memory Controller:

• DDR2, 533 MHz and 400 MHz.

• 144-bit data bus (ECC) or 128-bit data bus (no ECC).

• JESD79-2 JEDEC 256 Mb, 512 Mb, 1 Gb and 2 Gb chip sizes and ×4, ×8 and ×16 organizations sup-
ported.The ×8 and ×16 chips might be mixed. When using ×4 chips, all chips must be ×4.

• Support for 8 ranks. 8 DIMMs max (4 double-sided pairs).

• 64 GB max capacity using 4 pairs of 8 GB double-sided DIMMs. (Only 62 GB addressable due to 2 GB
I/O hole.)

• ECC supports single symbol (4-bit) correction and double symbol error detection. Chip kill correction
with ×4 chips only.

• ECC scrub supported.

• Programmable SDRAM page policies (leave open, leave close), address interleave modes, and chip
select decodes (optional “striping” across ranks) allow SDRAM page accesses to be optimized as appro-
priate for system configuration (for example, 1-way versus 4-way MP).

• Memory accesses are reordered to keep SDRAM pages open as long as possible (for low latency and
maximum bandwidth). A variety of controls on the internal reorder queues (queue size, queue lookahead
depth, read versus write selection, read aging, write high watermarks) allow the system to tune for high
probability of hitting an open page for commonly accessed pages while not starving/blocking accesses to
infrequently accessed pages.

• Programmable SDRAM timing parameters (CL, tRAS, tRP, tRC, and so on).

• Programmable refresh rate. Deferred refreshes supported.

• Support for dynamic power management (CKEs to SDRAMs are disabled after a period of inactivity).

• Support for self refresh (clocks to SDRAMs can be slowed or stopped and SDRAMs will retain their data).

• Programmable delay of SDRAM control signals (1/2 CK increments).

• Vernier control of CK, DQS, and data control signals (approximately 25 ps increments).

• Calibration logic for measuring internal data load/unload timings.

User Manual

CPC945 Bridge and Memory Controller Preliminary

DDR2 Memory Controller
Page 130 of 655 February 1, 2008

7.2 Memory Controller Basics

The CPC945 DDR2 memory controller provides access to external DDR2 memories. It responds to memory
write and read requests in the ranges 0x000000000 through 0x07FFFFFFF (0 to ‘2 GB-1’) and 0x100000000
through 0xFFFFFFFFF (4 GB to’ 64 GB-1’).

The memory controller maps requests to installed memory to account for the 2 GB I/O hole (from 2 GB to
‘4 GB-1’). For example, if 8 GB are installed, the controller will respond to requests in the 0 to ‘2 GB-1’
address range, making use of 2 GB of the installed memory, and requests in the 4 GB to ‘10 GB-1’ address
range, making use of the remaining 6 GB of installed memory.

The memory controller programming registers occupy the address space 0x0F8002xxx.

As shown in Figure 7-1, the memory controller responds to memory requests from two sources:
• PI. These accesses are the aggregation of all coherent memory requests: the CPUs, HT, PCIe coherent,

and debug (I2C).
• PCIe non-coherent.

(Also, the memory controller responds to internally generated Refresh and Scrub requests.)

In general the memory controller contains all the CPC945 functions required for DDR2 support except:

1. Setting the clock frequency. This function is provided by PLL2 in the Power Manager, which generates
the CPC945 “core” interconnect clock used by the memory controller and other units in the CPC945.

2. Reading Serial Presence Detect (SPD) data. The SPD ports on the memory DIMMs are I2C slaves, and
are typically accessed using a port of the CPC945 I2C Master (or some other I2C master).

Figure 7-1. DDR2 Memory Controller

PCIe

PI
DDR2
Memory
Controller

I2C
Master

PLL2

HT

I2C
Slave

CPU 0/1

CPU 2/3

DDR2 Memory

Non-coherent

CPC945

I2C

HT

PCIe

...

(Configuration info only)

ddr_clk PMU

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
DDR2 Memory Controller

Page 131 of 655

7.3 Memory Configurations

The memory controller has a 144-bit data bus (128 for data, and 16 for check bits if ECC is used). There are
3 configurations for attaching memory to this bus:

1. 128-bit configuration, 128-bit bus. This is the default. Pairs of DIMMs are required, either pairs of 64-bit
DIMMs for non-ECC operation, or pairs of 72-bit DIMMs for ECC. Data is transferred 128-bits per beat.

2. 64-bit configuration, 64-bit bus. Single 64-bit DIMMs are used, connected to data bus bits 0:63. ECC is
not supported. Data is transferred 64-bits per beat.

3. 64-bit configuration, 128-bit bus. Single 64-bit DIMMs are used. Half of the supported DIMMs attach to
bits 0:63 and half attach to bits 64:127. ECC is not supported. Data is transferred 64 bits per beat.

The configuration is programmed using the 64BitCfg and 64BitBus bits in the MemBusConfig Register
(0xF80022D0). Setting 64BigCfg=0 and 64BitBus=1 is an illegal combination.

In all 3 configurations, a maximum of 8 ranks is supported. Therefore the two 64-bit configurations have 1/2
the maximum amount of memory that can be attached, compared to the 128-bit configuration (as well as 1/2
the bandwidth).

To support the default 128-bit operation the memory controller data path and the internal buses that connect
the memory controller to PI, HT and PCIe are all 128-bits wide. When configured for 64-bit operation, the
memory controller assembles every two 64-bit external transfers into 128-bit internal transfers, and data is
transferred on the internal buses every other clock.

Figure 7-2. External Memory Configurations

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3

4 5 6 7

RANK

DIMM

RANK

DIMM

0:63,
128:135

64:127,
136:143

0 1 2 3 4 5 6 7

0 1 2 3

RANK

DIMM

0:63

0 1 2 3

0 1

2 3

RANK

DIMM

DIMM

0:63

64:127

4 5 6 7RANK

(1) Default:
128-bit config
128-bit bus
128-bit data transfers

(2) 64-bit Bus:
64-bit configuration
64-bit bus
64-bit data transfers

(3) Hybrid:
64-bit configuration
128-bit bus
64-bit data transfers

User Manual

CPC945 Bridge and Memory Controller Preliminary

DDR2 Memory Controller
Page 132 of 655 February 1, 2008

7.4 Supported Memories

7.4.1 Sizes

The CPC945 memory controller supports the ×4, ×8 and ×16 variations of the 256 Mb, 512 Mb, 1 Gb, and
2 Gb chips identified in the JESD79-2 DDR2 JEDEC Standard. 4 Gb chips are not supported.

With the 128-bit configuration, 8 ranks, and 2 Gb chips organized ×4 (32 chips/rank = 8 GB/rank) there is a
theoretical maximum of 64 GB installed memory that can be supported. (But because of the 2 GB I/O hole, if
64 GB is installed only 62 GB can be accessed.)

7.4.2 Speeds

The memory controller supports DDR2 devices with two data transfer speeds: 533 MT/s and 400 MT/s.
These devices are designated by JEDEC as DDR2-533 and DDR2-400 for chips, and PC2-3200 and
PC2-4300 for DIMMs. These speeds provide the peak bandwidths given in Table 7-2.

Table 7-1. Supported Memory Sizes.

Chip Size Organization
64-bit Configurations 128-bit Configuration

Single Rank DIMMs Double Rank DIMMs Single Rank DIMMs Double Rank DIMMs

256 Mb 16 Mb x 16 128 MB 256 MB 256 MB 512 MB

256 Mb 32 Mb x 8 256 MB 512 MB 512 MB 1 GB

256 Mb 64 Mb x 4 512 MB 1 GB 1 GB 2 GB

512 Mb 32 Mb x 16 256 MB 512 MB 512 MB 1 GB

512 Mb 64 Mb x 8 512 MB 1 GB 1 GB 2 GB

512 Mb 128 Mb x 4 1 GB 2 GB 2 GB 4 GB

1 Gb 64 Mb x 16 512 MB 1 GB 1 GB 2 GB

1 Gb 128 Mb x 8 1 GB 2 GB 2 GB 4 GB

1 Gb 256 Mb x 4 2 GB 4 GB 4 GB 8 GB

2 Gb 128 Mb x 16 1 GB 2 GB 2 GB 4 GB

2 Gb 256 Mb x 8 2 GB 4 GB 4 GB 8 GB

2 Gb 512 Mb x 4 4 GB 8 GB 8 GB 16 GB

Table 7-2. Memory Bandwidths (Peak).

Speed 64-bit Configurations 128-bit Configurations

533 MT/s 4.264 GB/s 8.528 GB/s

400 MT/s 3.2 GB/s 6.4 GB/s

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
DDR2 Memory Controller

Page 133 of 655

7.4.3 DDR2 Features

Following are DDR2 features:

• CL (CAS Latencies) of 3, 4, and 5 are supported.

• ODT (On Die Termination) is supported. See Section 7.25.7 ODT - On Die Termination on page 225.

• Differential DQS/DQS is supported for ×8 and ×16 memories. For ×4 memories only single-ended DQS is
supported; the I/O circuits providing the differential DQS and DQS signals for every 8 DQ signals is con-
figured (under program control) to provide two single-ended DQS signals, one each for every 4 DQ sig-
nals.

• Posted CAS operation is not supported. AL (Additive Latency) must be set to 0.

• For the 128-bit configuration the burst length is always 4. For the 64-bit configurations the burst length is
always 8.

• DM (Data Mask) is not supported.

7.4.4 DIMMs

Following are the restrictions on DIMM characteristics:

• When ECC is enabled 72-bit wide DIMMs are required; otherwise 64-bit wide DIMMs are used.

• The memory controller supports both registered DIMMs and unbuffered (no register) DIMMs.

• Both single-sided and double-sided DIMMs are supported. These terms refer to DIMMs with one rank
(one select) and two ranks (two selects).

(The distinction is made because DIMMs using ×4 chips use both sides of the DIMM even when they only
have one rank. DIMMs using ×4 chips with 2 ranks use both sides, with stacked chips.)

(In general, DIMMs using ×8 and ×16 chips are physically single-sided when populated with one rank and
double-sided when populated with two ranks.)

• The speeds of the DIMMs might be mixed. When this is the case, the PLL2 frequency must be set to
match the speed of the slowest DIMM, and the memory controller must be programmed to use that slow-
est speed.

• CAS Latencies of the DIMMs might be mixed. When this is the case, the memory chips and the memory
controller must be programmed to use the largest CAS Latency in the mix.

• The installed memory must be all registered DIMMs or all unbuffered DIMMs; they cannot be mixed.

• For the 128-bit configuration, the 2 DIMMs of a given pair must be the same:
• Both DIMMs must have the same chip size and organization.
• Both DIMMs must be single-sided or double-sided.

• Single-sided and double-sided DIMMs might be mixed with the 64-bit configurations. Single-sided pairs
and double-sided pairs canbe mixed with the 128-bit configuration.

• When using ×4 chips all memories must be ×4, due to the requirement that ×4 chips require the IOs to be
set to single-ended operation, one DQS per 4-bits = one DQS per chip for a given rank.

• ×8 and ×16 chips can be mixed, since ×8 chips have one DQS/DQS pair = one DQS/DQS pair per 8-bits,
while ×16 chips have two DQS/DQS pairs = one DQS/DQS pair per 8-bits for a given rank.

User Manual

CPC945 Bridge and Memory Controller Preliminary

DDR2 Memory Controller
Page 134 of 655 February 1, 2008

7.5 Clocks

The memory controller uses 2 clocks: the ddr_clk from PLL2 (533 MHz), and mem_clk, where
mem_clk = ddr_clk/2 (266 MHz).

The ddr_clk frequency generated by PLL2 is set in the Clock Control Register (0x0F8000800) in the Power
Manager. Although 8 different clock frequencies can be generated only 533 MHz and slower are supported.

The half speed mem_clk is used to clock the circuitry generating the address and control signals to memory.
It is also used to provide the clocks to memory (CK/CK), and the data strobes (DQS/DQS) for writes.

The full speed ddr_clk is used for the bulk of the data path. The double data rate transfers on the external
memory bus are transferred to/from the data path pipeline running at the ddr_clk rate.

7.6 Data Transfers

Internal to the CPC945 the memory controller transfers data to/from PI, PCIe and HT on 128-bit data buses
clocked at the ddr_clk speed (for example, 533 MHz).

(The PI, PCIe, and HT “cores” all run at different speeds but are required to speed match to the ddr_clk
frequency for their internal buses that attach to the DDR2 memory controller core. For this reason the ddr_clk
frequency set by PLL2 is also called the “core” clock frequency.)

PI, PCIe and HT can request reads and writes to memory with transfer sizes of:

• 1, 2, 3, 4, 5, 6, 7, or 8 bytes

• 1 quadword (16 bytes)

• 2 quadwords (32 bytes)

• 4 quadwords (64 bytes)

• 8 quadwords (128 bytes)

Note that a quadword is transferred using a single beat on both the internal and external 128-bit data buses.

For the 128-bit configuration the memory controller translates these requests to external DDR2 memory
transfers as follows:

• An 8 quadword request is transferred as two 4-beat back to back bursts.

• A 4 quadword request is transferred as a single 4-beat burst.

• For reads, any request of less than 4 quadwords is handled as a 4-beat burst from memory (64 bytes).
Bytes that were not requested are ignored by the requestor (PI, PCIe, HT).

• For writes of less than 64 bytes, the memory controller reads a 4-beat burst from memory, substitutes the
write bytes into this 64-byte quantity, then writes the updated 64 bytes back to memory using a 4-beat
burst.

For the 64-bit configurations 8-beat bursts are used instead of 4-beat bursts.

Maximum use of the DDR2 data bus is achieved with 64-byte and 128-byte transfers. Since CPU requests to
memory are usually 128-byte cache line reads the bandwidth between the CPUs and memory comes closest
to optimum.

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
DDR2 Memory Controller

Page 135 of 655

If I/O requests are predominately less than 64-bytes then DDR2 bandwidth will be degraded. For example, if
a graphics card performs a series of back-to-back 32-byte transfers, half of the bandwidth to DDR2 memory
will be wasted.

7.7 Operational States

7.7.1 Power On Reset

After powering on and resetting the CPC945, the following conditions apply to the memory controller:

• The memory controller will be clocking at the default PLL2 speed, which is 400 MHz. To run the memories
at a different speed the PLL2 speed needs to be changed, as described in Section 12.5.7 PLL2 Control
Register on page 350.

• The CKE and ODT outputs are low (required by JEDEC).

• The CK clocks to the memories are disabled. They need to be enabled (Memory Mode Control Register
(MemModeCntl) on page 483, CK_On bit).

• The registers are at their default values. In general, most of the registers will need to be programmed to
match the external DIMM types and configurations, the memory speed, board delays, desired memory
access and queue options, desired performance versus power-savings options, and so on.

• A JEDEC-specified initialization sequence needs to be supplied to the memories. This is done by pro-
gramming and running the Memory Programming Control (Section 7.9 on page 147).

The first steps of the initialization sequence (after clocks are running) are supplied automatically by the
memory controller: the CKEs are asserted, NOP commands are issued, and a delay of at least 400ns is
applied. At that point the remainder of the initialization sequence is supplied by the Memory Initialization
Registers. See Section 7.10 Memory Device Initialization.

• If ECC is desired, enable it now (Section 7.19 on page 191).

• If desired, memory contents can be filled with a desired pattern and scrubbed of soft errors using the
Scrub facility (Section 7.20 on page 208).

• At this point the memory controller is ready to accept read and write requests. Although its arbiter will
accept requests prior to this point, software is required to ensure that no unit (the CPUs, PCIe, HT, I2C
slave) attempts to access external SDRAM memory until the above initialization steps have been per-
formed.

By default once the CKEs go high they stay high (until or unless the memory controller issues Enter Self
Refresh. See Section 7.7.4 Self Refresh). However, as discussed in Section 7.7.3.2 Power Management
During Normal Operation, dynamic CKE can be enabled, which causes the CKEs to be deasserted by the
memory controller for ranks that are not being accessed.

User Manual

CPC945 Bridge and Memory Controller Preliminary

DDR2 Memory Controller
Page 136 of 655 February 1, 2008

7.7.2 Memory Controller Bring-up Summary

The following sequence is an overview for initializion of the memory controller. The first 3 steps are usually
done well in advance of memory controller bringup, when the chip is brought out of reset and all clock speeds
are set to desired values.

1. Hold off memory accesses.

2. Read the SPD ports of the DIMMs; determine which banks are occupied, what the memory chip types are
(size, organization), speeds, CAS latencies, and so on.

3. Set PLL2 frequency to the speed of the slowest DIMM.

Memory Controller bring up starts here.

4. Write the DIMM timing registers [RASTimer0, RASTimer1, CASTimer0, CASTimer1 (0xF8002030 -
0xF8002060)] with values based on chip types, the speed of the slowest DIMM, and the largest CAS
latency value.

5. Write the Memory Refresh Control Register (0xF8002070) with values based on refresh policy and the
largest chip size.

6. Write the DIMM configuration registers Dm0Cnfg, Dm1Cnfg, Dm2Cnfg, Dm3Cfg (0xF8002200 -
0xF8002230) and UsrCfg (0xF8002290) with values based on the DIMM bank occupancy, sizes and
types.

7. Write the Memory Arbitration Weight Register (0xF8002280) with values based upon CPU versus I/O
bandwidth requirements.

8. Write the operational control registers (queue sizes, aging values, arbitration algorithm, and so on.)
MemRdQCnfg (0xF80022A0), MemWrQCnfg (0xF8002270), MemQArb (0xF80022B0), and MemRWArb
(0xF80022C0) with values based on prior performance characterization data.

9. Write the memory bus control registers [MemBusConfig (0xF80022D0) and MemBusConfig2
(0xF80022E0) and the ODT Control Register (0xF80023A0)] with values based on clock speed, types of
DIMMs, support components, prior Spice analysis and lab characterization data.

10. Write the IO Pad Control Register (0xF80029A0) strength control bits, termination value bits and termina-
tion control bits with values based on prior Spice analysis and lab characterization data. Set the
MCSE_dqs (Mode control Single Ended) bit to 1 (single ended) if the DIMMs use ×4 chips, otherwise set
to 0 for differential operation.

11. Write the MemPhyModeCntl Register (0xF8002880) with control and address clock adjust values based
on prior Spice analysis and lab characterization data. Set the Half-bit Delay Override Enable bit to ‘0’ (no
override).

12. Write the CK Control Registers (0xF8002890 and 0xF80028A0),
Write Strobe Control Registers (0xF8002800 - 0xF8002830, 0xF8002900 - 0xF8002930, 0xF8002980,
0xF8002A00 - 0xF8002A30, 0xF8002B00 - 0xF8002B30, 0xF8002B80),
Read Data Strobe Control Registers (0xF8002840 - 0xF8002870, 0xF8002940 - 0xF8002970,
0xF8002990, 0xF8002A40 - 0xF8002A70, 0xF8002B40 - 0xF8002B70, 0xF8002B90) and
RstLdEnVerniersC0-C3 Registers (0xF890028D0, 0xF80029D0, 0xF8002AD0, 0xF8002BD0) with values
based on prior lab characterization data.

13. Clocks on: (If PLL2 is not locked wait until it is locked.) Write the Memory Mode Control Register with
CK_on set to ‘1’ to enable the CK clocks to the memories.

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
DDR2 Memory Controller

Page 137 of 655

14. Clocks stable: Guarantee that 200 μs has passed since the CK_on bit was set to ‘1’ in the Memory
Mode Control Register. A way to do that is to read the Memory Mode Control Register (which forces the
write, if the write was pending), and then wait 200 μs.

15. If there are external CK buffer chips with PLLs, wait long enough such that the outputs of these chips
have been stable for at least 200 μs to the inputs of the memory chips. Also if the registered DIMMs are
used, wait long enough for their PLLs to have been stable for at least 200 μs.

16. Memory chip initialization: Write the Memory Initialization Registers (0xF8002100 - 0xF80021F0) with
values that perform the JEDEC memory initialization sequence and set the EMRS(s) and MRS. For the
MRS use the same CAS latency value that was used for programming the RAS timer and CAS timer reg-
isters. For the EMRS(1) use Rtt and a value of ‘00’ if ODT is disabled in the ODT Control Register; other-
wise set to ‘01’ (75 ohm) or ‘10’ (150 ohm) based on prior Spice analysis and lab characterization data.
Also for the EMRS(1) if ×4 memory chips are used set DQSEn_ to ‘1’ for single ended DQS operation;
otherwise set to ‘0’ for differential operation. Finish with EMRS(2) values that set the OCDs to their
default calibration.

Write values to the MRSRegCntl Register (0xF80020C0) that replicates the bits of the last MRS in the ini-
tialization sequence. Write values to the EMRSRegCntl Register (0xF80020D0) that replicates the bits of
the last EMRS(1) in the initialization sequence.

17. Write the Memory Programming Control Register (0xF80020B0) with the InitStart set to ‘1’ to kick off
memory initialization sequence.

18. Poll (read) the Memory Programming Control Register until the InitCmplt bit has a value of ‘1’.

At this point the controller and the memories are initialized and the memories can be written and
read.

The values in memory will be garbage at this point. If ECC operation is desired (and supported with 72-bit
DIMMs), then ECC must be enabled, and the garbage values replaced with good data and check bits. The
following steps are simplified, not taking into account the masking or unmasking of errors and so on:

19. (ECC only.) Continue to hold off memory accesses from the CPUs and I/O.

20. (ECC only.) Write the Memory Check Control Register (0xF8002440) with the ECC_EN bit set to ‘1’ to
enable ECC.

21. (ECC only.) Write all of populated memory with data, using 64-byte or 128-byte writes so that only pure
writes are performed (no Read-Modify-Writes). There are several ways to do this. One way is to:

a. Write the memory start and end locations to the Memory Scrub Range Start and End Registers
(0xF8002410 and 0xF8002420). Write any desired data pattern to the Memory Scrub Pattern Regis-
ter (0xF8002430).

b. Write the Memory Scrub Control Register (0xF8002400) with SCRUB_MOD set to ‘11’ to perform an
Immediate Scrub with Fill.

c. Poll (read) the Memory Scrub Control Register until the SCRUB_MOD bits read as ‘00’ (no scrub
activity). At this point all of memory has its data and check bits written to values that do not produce
ECC errors when read (assuming all good bits and timings).

22. (ECC only, optional.) Typically at this stage a diagnostic routine reads all of the memory to verify that in
general reads can be performed without errors, and to log any errors that do occur. Based on these
results, the diagnostic routine can do a number of things. For example, do a number of scrubs to deter-
mine if the failures are soft or hard, tell the operating system not to use certain address ranges, and so
on.

User Manual

CPC945 Bridge and Memory Controller Preliminary

DDR2 Memory Controller
Page 138 of 655 February 1, 2008

23. (ECC only, optional.) If desired, the CPC945 memory controller can be programmed to do background
scrubbing. If it is not already done, write the memory start and end addresses to the Memory Scrub
Range Start and End Registers. Write the Memory Scrub Control Register with SCRUB_MOD set to ‘01’
for background scrubs, and with the SI (Scrub Interval) bits set to the desired scrub interval timing.

If ECC is used, at this point the controller and the memories are initialized, the memories have good
data and check bits, and the memories can be written and read.

7.7.3 Normal Operation

Once the memory controller has been initialized as described above, the memory controller performs writes
and reads as requested (by the CPUs, PCIe (coherent and non-coherent), HT and the I2C slave).

7.7.3.1 Page Access

DDR2 SDRAMs have the characteristic that each rank is organized into banks (either 4 or 8, depending on
the chip size) and that a given bank is organized into rows and columns. There is an overhead for accessing
a row. Once a row has been accessed (it has been opened), there is only the column access time (CAS
latency) to access other columns in that row. If it is desired to access a different row the first row must first be
closed, which has some overhead, and then the second row is opened, which again has some overhead.

The amount of data that can be accessed for a given row is often called a page.

The memory controller attempts to optimize memory latency and bandwidth by minimizing page openings
and closings. It does this by placing requested reads and writes into buffers called, the read reorder queue
and the write reorder queue.

• Entries in these queues that are directed to open pages are executed by the memory controller before
those that require page closings and openings.

• Look-ahead is performed in the queues to enable opportunistic page openings (precharges) in otherwise
unused memory clock cycles. This allows the overhead of opening a page in a new bank to be hidden
(overlapped) while executing an access to a current bank.

Also, for lower latency, reads are favored over writes.

The options to control queue operation and the command arbiter that selects entries from the queues are
described in Section 7.17 and Section 7.18.

There are several options that control how the addresses of incoming requests are mapped to memory ranks
and banks. These options can optimize page access depending on the addressing characteristics of the
CPUs and I/O requests. (For example, bursts to the same address locale for uni-processor applications
versus scattered accesses due to multi-processor access.) These options are described in Section 7.14.

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
DDR2 Memory Controller

Page 139 of 655

7.7.3.2 Power Management During Normal Operation

The memory controller supports several options for reducing power during normal operation:

• SDRAM Power Management. When the Dynamic CKE option is enabled, the clock enables to memory
ranks that have been idle for 20 cycles will be deasserted. This will put the SDRAMs into a JEDEC-
defined power down mode, which draws less current than when CKE is asserted.

The trade-off is that when a new command is directed at a powered down rank (including refresh), after
asserting CKE the memory controller must wait until the memory devices in that rank have powered up,
before issuing the command. This will have a negative impact on performance for systems with low
latency requirements.

See Section 7.25.6 Dynamic CKE for additional information on dynamic CKE. See the discussion on
A[12] = Active Power Down Exit Time in Section 7.10.1 MRS Settings for information on the perfor-
mance/power savings trade-off when Power Down Mode is exited.

• Data Bus I/O Driver Power Management. The I/O drivers for the DQ and DQS signals can be set to tri-
state when there are no read or write transfers, which reduces the current draw of these I/O. The internal
terminating resistance of the receivers are also turned off. The trade-off is that when new writes and
reads are requested, the memory controller has to wait for the buses to come out of tri-state (for writes)
and for the receivers to turn on their terminators (for reads), which has a negative impact on performance.

See Section 7.22.4 Bus Driving for additional information on this option.

In addition, the I/O Pad Control register has options which control the strength of the off chip drivers and the
internal terminations of the off chip receivers, which affect I/O current draw. Power savings can or cannot be
achievable using these options, depending on the electrical analysis of the external wiring.

7.7.4 Self Refresh

DDR2 SDRAMs support a power-savings mode in which operations to memory are halted and the clocks to
memory are stopped. Minimal power is dissipated by the memories yet they maintain their data contents.
Later on the clocks can be resumed and memory operations can begin again, with the data contents
preserved from when the clocks were stopped. This is called Self Refresh mode.

The CPC945 memory controller supports Self Refresh in two scenarios. In both scenarios the memory
controller is instructed to enter Self Refresh. The difference in the two scenarios is the exit from Self Refresh:

• In one scenario the CPC945 is not powered down (and not reset). The memory controller retains its reg-
ister settings. The internal clocks can be stopped, and restarted before exiting SDRAM Self Refresh.

• In the other scenario, the CPC945 is powered down. When it is powered back up again, the memory con-
troller is in its Power On Reset condition as described above in Section 7.7, and all of the CPC945 regis-
ters, including those of the memory controller, will have to be programmed. The initialization steps
outlined in Section 7.7.1 will have to be re-run, with these exceptions:

– Instead of programming the full power on memory initialization sequence, a dummy sequence is
used to bring the SDRAMs out of Self Refresh.

Note: The CKE signals to the SDRAMs must stay low during Self Refresh. If the CPC945 stays powered
up the memory controller will hold the CKEs low. But if the CPC945 is powered off some other means
must be used to hold the CKEs low (for example, pull-down resistors to ground).

User Manual

CPC945 Bridge and Memory Controller Preliminary

DDR2 Memory Controller
Page 140 of 655 February 1, 2008

7.7.4.1 Self Refresh Entry

Before entering Self Refresh, all requests to the memory controller (from the CPUs, PCIe, HT, and I2C) must
be halted and enough time allowed for the requests to be executed by the memory controller.

It is also required that the XSR Delay bit in the MemModeCntl register (Section 12.10.24 Memory Mode
Control Register (MemModeCntl) on page 483) be set = 1.

It is the Power Management Unit which instructs the memory controller to perform the Self Refresh Entry:

• When the external signal Suspend_Request is asserted, the power manager will perform handshakes
with all units on the CPC945 to perform a variety of power savings actions. Among these, the memory
controller is sent a signal instructing it to enter sleep mode. See Section 11 Power Management and
Clocks for more information on CPC945 sleep mode.

• The memory controller does the following:
– The Enter Self Refresh sequence is sent to the SDRAMs.
– The CKEs are brought low and stay low.
– The CKEs are tri-stated if the CkeTsEn bit in the MemModeCntl register is set.
– The CK_On bit in the MemModeCntl register is reset to 0. This causes the CK clocks to the SDRAMs

to stop running.
– Both the CK and CK outputs are driven low. This is a JEDEC convention which instructs external

PLLs (for example, on registered DIMMs) to be disabled.
– The memory controller sends a signal to the power manager to indicate that the SDRAMs are in Self

Refresh. This signal can be read as the SA (Self Refresh Acknowledge) bit in the Power Manger
Debug register.

7.7.4.2 Self Refresh Exit from Chip Sleep

Following are conditions on self-refresh-exit from chip sleep:

• If the CPC945 was put to sleep by asserting Suspend_Request, then de-asserting Suspend_Request will
cause the Power Manger to handshake with the various units to bring them out of sleep, including the
memory controller.

• The following occurs:

– The memory controller completes the handshake with the Power Manager Unit.

– The Power Manager Unit re-enables the CK drivers.

The programmer is required to perform the following to complete the exit from Self Refresh.

• The Ck_On bit in the MemModeCntl register must be set to 1.

• Enough time must elapse for the CK clocks to the SDRAMs to become stable. This includes waiting for
any external PLLs (on the board or on the DIMMs) to lock and present a stable clock to the SDRAMs.

• The XSR Delay bit in the MemModeCntl register must be set to 0.

– This triggers the memory controller to raise the CKEs and send the commands to SDRAMs to Exit
Self Refresh.

• There must be a wait of at least 200 mem_clk cycles. When the SDRAMs enter Self Refresh they disable
their DLLs. When they exit Self Refresh they re-enable their DLLs. It is a JEDEC requirement that 200
cycles pass after the DLL is enabled, before read commands can be issued.

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
DDR2 Memory Controller

Page 141 of 655

At this point it is permissible for the various requestors (the CPUs, PCIe, HT, I2C) to resume write and read
requests to memory.

7.7.4.3 Self Refresh Exit from Chip Power On

The following steps are the same as those from Section 7.7.1 Power On Reset:

• The memory controller will be clocking at the default PLL2 speed, which is 400 MHz. To run the memories
at a different speed the PLL2 speed needs to be changed, as described in Section 12.5.7 PLL2 Control
Register on page 350.

• The CKE and ODT outputs are low (required by JEDEC).

• The CK clocks to the memories are disabled. They need to be enabled (Memory Mode Control Register
(MemModeCntl) on page 483, CK_On bit).

• The registers are at their default values. The bulk of the registers must be re-programmed with the same
values they had prior to entering Self Refresh.

This step deviates from the normal power on reset:

• The Memory Programing Unit should be used to initiate a programming sequence, but the only reason for
doing so is to take advantage of the fact that when a sequence is initiated (by setting the InitStart bit in the
MemProgCntl register), the CKEs are asserted and NOP commands are issued (see Section 7.9.4 First
Use). This is the sequence required by JEDEC to exit the SDRAMs from Self Refresh.

The set of commands normally found in the MemInitRegs are not needed. MemInitReg 0 should be set to
all 0’s, so that bit 0 of this register, the Enable bit, indicates that no commands are to be issued. (See
Section 7.9.1 MemInitReg Execution.)

The next step is the same as exiting from chip sleep:

• There must be a wait of at least 200 mem_clk cycles. When the SDRAMs enter Self Refresh they disable
their DLLs. When they exit Self Refresh they re-enable their DLLs. It is a JEDEC requirement that 200
cycles pass after the DLL is enabled, before read commands can be issued.

At this point it is permissible for the various requestors (the CPUs, PCIe, HT, I2C) to resume write and read
requests to memory.

User Manual

CPC945 Bridge and Memory Controller Preliminary

DDR2 Memory Controller
Page 142 of 655 February 1, 2008

7.8 Internal Operation Overview

Figure 7-3. Memory Controller Internals

DDR2
PHY

Adjust

CS,
RAS,

WE,

MAD,
CKE,
ODT,

MuxEn

BA,

PI

PCIe NC Request
Arbiter

Address
Decoder

Page
Table/

Read
ROQ

Write
ROQ

Fast Path

Cmd
Arbiter

Mem Program

Refresh Cntl

Scrub
Control

Data
Capture
Latches

Calibra-

Verniers

tion

1/2 Bit

CK

DQ

DQS
RMW

Symbol
Correct

PCIe

HT Syndrome
Gen

PI

WDB

Check Bit
Gen

(R/W
Arbiter)

Control

8
Slots

16
Slots

CAS,

Time
Averager

Memory

PI

Timers

mem_clk (266 MHz)

ddr_clk (533 MHz)

wrRequest

rdRequest

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
DDR2 Memory Controller

Page 143 of 655

A simplified diagram of the memory controller is given in Figure 7-3. The control logic occupies the top of the
diagram, the datapath occupies the bottom, and the DDR2 PHY is shown on the right. (The DDR2 PHY,
along with the I/O circuits, constitute the PHYsical interface to the external memories.)

7.8.1 Control

Write and read requests come into the memory controller from two sources:
• PI, which aggregates all coherent requests from the four CPUs, PCIe, HT, and I2C debug
• Noncoherent requests from PCIe

In addition, the memory controller can internally generate Scrub requests.

The requests from these three sources are arbitrated by the Memory Request Arbiter.

The winning request is sent to the Address Decoder, which determines the rank, bank, row and column of
the request. If the request is out of range the relevant information is latched in the Address Exception regis-
ters; otherwise the request proceeds to the Page Table.

The Page Table, also known as the Timers unit, keeps track of which pages in memory are open and closed.
It also contains timers for each page which keep track of the number of clocks needed to wait before various
SDRAM commands can be issued such as Activate, Read or Write, Precharge, and so on. The Page Table
logic looks up the page (row) address of the incoming request and returns the required first SDRAM
command and timer status for that page.

The read reorder queue holds read requests and the write reorder queue holds write requests until they are
ready to be executed. They issue SDRAM command requests (precharge, activate, read, write) to the
Command Arbiter.

The Command Arbiter (also known as the Read/Write Arbiter) arbitrates among entries in the two reorder
queues which are ready to execute, requests from the Refresh Controller. Also, there is a Fast Path into the
Command Arbiter that allows Read requests to bypass the Read Reorder Queue.

The Command Arbiter unit issues the SDRAM commands (Activate, Read, Write, Precharge, Precharge All,
Refresh, Self Refresh Entry/Exit, and so on.). These commands are sent to the DDR2 PHY where they can
be adjusted (delayed) up to 3 ddr_clks before they are sent to the external memories.

The issued commands from the Command Arbiter unit are fed back to the Page Table and Reorder Queues
so they can update their page open/close status and timer values.

Memory requests can have a size of 1 though 8 bytes and 1, 2, 4, and 8 quadwords (16, 32, 64, and 128
bytes). For incoming requests of size 64 bytes or less the memory Command Arbiter will always issue a
single memory write or read command to memory, and 64 bytes will be transferred to/from the external
memories. (A burst of 4 quadwords = 64 bytes for the 128-bit configuration, and a burst of 8 doublewords for
the 64-bit configurations.) For requests of 128 bytes the Command Arbiter will issue two back-to-back writes
or two back-to-back reads and 128 bytes will be transferred.

Entries taken from the Write Reorder Queue can be flagged as needing a Read-Modify-Write. The Command
Arbiter does this as an atomic operation, issuing a Read command, allowing the data path to merge the
partial write data, and then issuing the Write command.

The Command Arbiter unit is also responsible for generating CKE and ODT.

User Manual

CPC945 Bridge and Memory Controller Preliminary

DDR2 Memory Controller
Page 144 of 655 February 1, 2008

The Refresh Control unit shares control with the Command Arbiter of the memory controller:

• It receives control following chip reset.

• It contains the Memory Programming Control unit, used to issue the SDRAM initialization sequence
and other sequences.

• Following the SDRAM initialization sequence, the Refresh Control unit generates periodic Refresh
requests. If Scrub is enabled, it also kicks off a Scrub request to the Request Arbiter.

• The Refresh Control unit contains a state machine that mediates control for functions that are not normal
reads and writes: entry from chip reset, enter and exit from Refresh, enter and exit from Self Refresh and
running the Memory Programming Control Unit.

The Memory Programming Control unit is a general purpose unit which can send an arbitrary sequence of
commands to memory:

• Following power on the external SDRAM memories must be issued a JEDEC-specified initialization
sequence. The unit is used to generate this initialization sequence.

• The unit can also be used to generate arbitrary sequences of DDR2 commands (for example, for lab
debug).

• The unit is also used in conjunction with the DDR2 PHY calibration logic, to generate the required
SDRAM commands for calibration.

The Scrub Control unit is used to issue a special form of a Read-Modify-Write, and is used in conjunction
with ECC. The Command Arbiter issues the Read, the datapath corrects the Read data (if the data has a
correctable error), and the corrected data is written back when the Command Arbiter issues the Write.

The Scrub unit also has a fill mode in which just Writes are done, using write data supplied by a register in the
Scrub unit.

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
DDR2 Memory Controller

Page 145 of 655

7.8.2 Data

Write data from all sources - the CPUs, PCIe (coherent and non-coherent), HT, and I2C debug - is aggre-
gated in the Write Data Buffers (WDB) in the PI. When a memory write is performed the memory controller
pulls the data out from the appropriate WDB. The write data timing is adjusted in the DDR2 PHY and then
sent to memory on the DQ signals. The DDR2 PHY also generates the data strobes (DQS) and sends them
to memory, with the rising and falling edges of DQS delayed by 1/2 bit time to center them within the DQ tran-
sitions.

If ECC is enabled the write data from the WDB is sent to the Check Bit Generator, and the generated check
bits are sent out to memory along with the data. The parity of the request address (from the Address Decode
unit) can optionally be incorporated in the generation of the check bits.

When a memory read is performed, the incoming DQSs are delayed 1/2 cycle and the rising and falling edges
are used to clock the incoming data into the Capture Latches.

If ECC is enabled the captured data is sent to the Syndrome Generator, which generates a non-zero vector
(called the Syndrome) if an error is detected. Parity of the request address is also incorporated in the
Syndrome, if this option is enabled.

For read data requested by PCIe or HT, the Syndrome is decoded by the Symbol Correction unit. If the error
is correctable the data bits in error are flipped, otherwise the data is unchanged. The data is then sent to the
requesting unit. The error status and the Syndrome, if non-zero, are latched in error registers along with the
address of data containing the error.

To minimize latency from memory to the CPUs, the PI has its own Symbol Correction unit and read data
going to the CPUs (or the I2C slave) is corrected in the PI instead of the memory controller. This distinction is
invisible to the programmer: the error status, error address, and syndrome are still latched in the memory
controller.

7.8.2.1 Read-Modify-Writes

When a RWM (read-modify-write) is required the data is read from the memories as described above,
corrected (if ECC is enabled), and then sent to the RMW unit to be merged with incoming write data. The
merged data is sent to the memories. If ECC is enabled, new check bits are generated and sent along with
the data.

It is possible that read data that is written back as part of a RMW will have an uncorrectable error detected
during the read operation. In this case, a “Special UE” bit is incorporated in the generation of the check bits
such that, when next read back, the generated Syndrome will indicate that this error was detected.

Memory requests of size 128 bytes and 64 bytes will never generate RMWs. Requests of size less than
64 bytes will always generate RMWs.

User Manual

CPC945 Bridge and Memory Controller Preliminary

DDR2 Memory Controller
Page 146 of 655 February 1, 2008

7.8.3 DDR2 PHY

The main purpose of the DDR2 PHY is to provide adjustable timings to the external interface.

As noted above in Section 7.8.1, the CS, RAS, CAS, WE, BA, MAD, CKE, and ODT signals can be adjusted
with a delay of 0 to 3 ddr_clks (0 to 7 clocks for ODT). These delays are generated by piping the signals
through a set of latches clocked with ddr_clk and selecting the desired output.

A number of other signals have much finer tuning using delay Verniers. These signals are generated by
piping them through a chain of delay circuits and selecting the desired tap of the chain. The nominal granu-
larity of the generated delay is approximately 20ps.

There are two miscellaneous verniers:

• mem_clk is provided on the external interface as 2 clocks, CK_A and CK_B. Each clock is individually
adjustable.

• The timings of the MUX_EN outputs are individually adjustable for writes and reads.

The data path is divided into byte lanes. For each byte lane:

• For Write operations there is a vernier that controls the timing of the DQ out, OE (output enable of the DQ
and DQS drivers), and DQS.

• For Write Operations the outgoing DQS and DQS OE has an additional vernier used to center the DQS
within the DQ bit time window. When using ×8 and ×16 memories there is one of these verniers; when
using ×4 chips there are two verniers, one for each DQS associated with a nibble.

• For Read Operations the incoming DQS has a vernier used to center the DQS within the DQ bit time win-
dow. As with the write DQS verniers, there is one vernier when using ×8 and ×16 memories and 2 verni-
ers when using ×4 memories.

For Read operations there is another vernier:

• A vernier controls the time that clock logic for the Data Capture Latches is reset in anticipation of the
DQS toggling from the external memory chips.

The verniers that shift DQS by 1/2 bit time use the output of the 1/2 Bit Time Averager unit. This unit
measures the time from one ddr_clk to another, which equals one bit time. Since the ddr_clk itself can be
varying (from a spread spectrum reference clock), the delay is measured periodically (each time a Refresh is
performed) and averaged. The averaged result is divided by 2 and sent to the verniers that shift DQS by 1/2
bit time. A programmable +/- offset can be applied to this control value.

The Calibration unit is used to measure margins involving read operations and the Data Capture Latches.
Read strobe eye width, load time margin and unload time margin can be measured.

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
DDR2 Memory Controller

Page 147 of 655

7.9 Memory Programming Control

Memory programming control consists of the block of MemInit registers (Section 12.10.6 Memory Initialization
Registers [0:15] (MemInitReg[0:15]) on page 462), which issue a sequence of SDRAM commands to the
external memories, and the MemProgCntl register (Section 12.10.3 Memory Programming Control Register
(MemProgCntl) on page 456) which initiates the sequence and controls other aspects of the sequencing.

7.9.1 MemInitReg Execution

There are 16 MemInit registers, all of them the same. When “executed”, bits 1:3 are sent to the RAS, CAS,
and WE output pins, bits 13:15 are sent to the BA[2:0] output pins, and bits 16:31 are sent to the A[15:0]
(address) output pins (labeled as MAD[15:0] in the pin listing).

Memory programming is initiated by setting the InitStart bit in the MemProgCntl Register. When this is done,
MemInit Register 0 is examined. If bit 0, the Enable bit is set, the contents of bits 1:3, 13:15, and 16:31 of that
register will be sent out on the control and address outputs.

Chip selects will also be asserted, in sequence, every mem_clk (CK). If the InitRank bits in
MemProgCntl = 0x00 then chip selects will only be generated for occupied ranks, as determined from the
DmEn and SS bits in the DIMM configuration registers. (See Section 7.14.3 Installed DIMMs, Section 7.14.4
Single-Sided/Double-Sided and Section 12.10.7 DIMM Configuration Registers.) Otherwise the InitRank bits
determine which chip selects are generated.

In parallel with sending the commands, a timer is started that will cause the controller will wait for a number of
mem_clks, specified by the Delay field in the MemInit Register being used (bits 4:11). This delay is useful, for
example, in generating the delays required by the JEDEC initialization sequence (tRP, tRFC, 400ns, 200
clocks). (Note that the actual delay is 2 more mem_clks than the programmed value. Also note that a portion
of the delay is “hidden” during the time it takes to send out the chip selects.)

After the delay is met, MemInit register 1 is examined. If its En bit is set, it is used to send commands on the
outputs, and its delay is processed. This process continues in sequence, until either the sequence hits a
MemInit register with its En bit set to 0, or until all 16 MemInit Registers have been used.

The first MemInitReg with its En bit set to 0 determines the end of the sequence. For example, if
MemInitRegs 0:9 have their En bits set to 1, MemInitReg 10 has its En bit set to 0, and MemInitRegs 11:15
have their En bits set to 1, the sequence will stop with MemInitReg 9 and MemInitRegs 11:15 will never
execute.

User Manual

CPC945 Bridge and Memory Controller Preliminary

DDR2 Memory Controller
Page 148 of 655 February 1, 2008

7.9.2 Looping

An exception to the linear execution of MemInitRegs described above is the looping mechanism. If a
MemInitReg is executed, and its Loop bit is set (bit 12), then the sequence will reset and the next MemInitReg
to execute will be MemInitReg 0.

The memory programming control unit counts the number times a sequence loops. Looping will continue until
one of the following occurs:

• A MemInitReg is encountered with its En bit set to 0. Meaning, a register write to that register was per-
formed after looping started, to reset its En bit.

• No MemInitRegs in the sequence have their Loop bit set. Meaning, a register write was performed to any
MemInitRegs that had their Loop bit set, to reset their Loop bit.

• The loop count is met. The loop count is specified in with the InitLoopCount bits in the MemProgCntl reg-
ister.

Note: An InitLoopCount of 0 specifies an infinite loop. The only way to break the loop (short of resetting the
CPC945) is by writing to the MemInitRegs to reset their En or Loop bits.

7.9.3 Termination

When a Memory Programming Control sequence is initiated, the InitCmplt bit in the MemProgCntl register is
reset to 0. When the sequence terminates, the InitCmplt bit is set to 1, and the InitStart bit is reset to 0.

7.9.4 First Use

As noted in Section 7.7.1 Power On Reset, the CKE outputs to memory are low (deasserted) following reset,
and the first use of the Memory Initialization Registers (the first time InitStart is set following reset) will imme-
diately enable the assertions of the CKE outputs. NOP commands will be issued at that time, followed by a
delay of 160 clocks before MemInitReg 0 is executed. The intent of these actions is to satisfy the JEDEC
SDRAM initialization requirements of raising CKE, issuing NOP, and waiting 400ns before issuing the first
operation command (Precharge All).

The CKEs and Chip Selects for the NOPs are staggered, the same as the execution of the MemInitRegs. The
CKEs and Chip Selects that are generated are determined by the InitRank bits in MemProgCntl register and
the DmEn and SS bits in the DIMM configuration registers, as described above in Section 7.9.1.

The delay of 160 clocks to guarantee a 400 ns delay is derived from the fastest possible DDR2 speed speci-
fied by JEDEC: 800 MHz (= 400 MHz mem_clk = 2.5ns tCK, times 160 = 400ns).

7.9.5 Auto Refresh

As discussed below in Section 7.12 Refresh, following reset the Refresh unit is inhibited from generating
requests. If a MemInitReg sequence is initiated, at the termination of that sequence refresh requests will be
enabled if the InitBlockAutoRef bit in the MemProgCntl register is not set. This is the default.

If a single MemInitReg sequence is used in memory bring up, to issue the DDR2 SDRAM initialization
sequence, then the default setting of this bit should be used so that refreshes start after the SDRAMs are
ready for normal operations. The default should also be used when the MemInitReg sequence is used to
bring the SDRAMs out of Self Refresh, following a CPC945 power down.

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
DDR2 Memory Controller

Page 149 of 655

If memory bring up involves two MemInitReg sequences, then InitBlockAutoRef should be set to 1 for the first
sequence and to 0 for the second sequence. If this is done as just one combined sequence, then InitBlockAu-
toRef should be set to 0.

If the MemInitReg sequence is being used for lab bring up the user might or might not want to set InitBlockAu-
toRef, depending the debug operation of interest is being performed.

User Manual

CPC945 Bridge and Memory Controller Preliminary

DDR2 Memory Controller
Page 150 of 655 February 1, 2008

7.9.6 SDRAM Commands

The meaning of the SDRAM commands issued on RAS, CAS and WE are specified by JEDEC and are repro-
duced in simplified form in Table 7-3. The bits are sent directly to the output pins without any inversion, so for
the RAS, CAS, and WE outputs the corresponding bits in the MemInitRegs should be set to 1 for the deas-
serted level (High) and they should be set to 0 for the asserted level (Low). For example,
MemInitReg[1:3] = 100 means RAS = H, CAS = L, and WE = L, which is a SDRAM “Write” command.

The entries in Table 7-3 are only those SDRAM commands for which Chip Select is asserted, and CKE is
high on the current cycle and in the previous cycle. Power Down Entry/Exit and Self Refresh Entry/Exit
commands cannot be issued using the MemInitReg registers, since they require manipulation of CKE (the
memory controller issues these commands where required).

Table 7-3. SDRAM Commands (Simplified).

Function RAS CAS WE BA[2:0] A[15:11] A[10] A[9:0]

(E)MRS L L L BA O P Code

Refresh L L H - - - -

Precharge L H L BA - L -

Precharge All L H L - - H -

Activate L H H BA Row Address

Write H L L BA Column L Column

Write w/AP H L L BA Column H Column

Read H L H BA Column L Column

Read w/AP H L H BA Column H Column

NOP H H H - - - -

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
DDR2 Memory Controller

Page 151 of 655

7.10 Memory Device Initialization

The JEDEC Standard lists 12 steps to initialize DDR2 SDRAMs.

1. Apply power and maintain CKE and ODT low. During and following a CPC945 reset, CKE and ODT are
held low. See the JEDEC Standard for VDD, VDDL, VDDQ, VTT, and Vref requirements.

2. Start the clock and maintain stable condition. As described in Section 7.7.1 Power On Reset the desired
PLL2 frequency must be set, the clocks to the SDRAMs must be enabled with the CK_On bit of the Mem-
ModeCntl register must be set, and any external PLLs must be enabled.

3. Wait 200 μs after stable power and clock, then take CKE high and send a NOP command. As noted else-
where, the first time that a MemInitReg sequence is initiated (the first time that InitStart in the Mem-
ProgCntl register is set), the memory controller takes CKE high and issues a NOP command to the
SDRAMs.

The programmer is required to guarantee the 200 μs time by waiting at least 200us from the time that the
clocks are stable to the SDRAMs (including any time for PLL2 to settle, the board clocks to settle from the
external clocks being enabled with CK_On in the MemModeCntl register and the PLLs on registered
DIMMs to be enabled and settle) before writing to the MemProgCntl register to set the InitStart bit in the
MemProgCntl register.

4. Wait 400 ns, then issue Precharge All. As described above in Section 7.9.4 First Use, following the rais-
ing of CKEs and the issuing of NOPs for Step 3, the memory controller will wait for 160 clocks, which sat-
isfies the 400 ns requirement for any PLL2 frequency up to 800 MHz.

The Memory Programming Unit will then execute the MemInitRegs. MemInitReg 0 should have a Pre-
charge All command to finish this step, followed by the commands and delays for steps 5 through 12.

The following example shows how steps 4 through 12 of this memory initialization sequence can be gener-
ated with the MemInitRegs. This example assumes the following:

• DDR2-400 4-4-4 SDRAMs (400 MHz, CL = 4, tRCD = 4, tRP = 4)
• ×4 SDRAMs (single-ended DQS)
• 512 Mb SDRAMs (tRFC = 105 ns = 21 clocks)
• 128-bit Bus, 128-bit Cfg (Burst Length = 4)
• ODT is to be enabled, with a nominal termination of 75 ohms.

Note that the value entered in the Delay field = the desired delay - 2.

Table 7-4. Example DDR2 SDRAM Initialization Sequence.

JEDEC
Step Address En_RCW_Delay_L_BA_Address Comment

4 0xF8002100 1_010_00000010_0_000_0000010000000000 Precharge All, Wait tRP = 4 clocks

5 0xF8002110 1_000_00000000_0_010_0000000000000000 EMRS(2)

6 0xF8002120 1_000_00000000_0_011_0000000000000000 EMRS(3)

7 0xF8002130 1_000_00000000_0_001_0000010000000100 EMRS(1), DQS Disabled, Rtt = 75 ohms

8 0xF8002140 1_000_00000000_0_000_0001010101001010 MRS: DLL Reset, tXARDS, WR = 3, CL = 4, Intrl, BL = 4

9 0xF8002150 1_010_00000010_0_000_0000010000000000 Precharge All, Wait tRP = 4 clocks

10 0xF8002160 1_001_00010011_0_000_0000000000000000 Refresh, Wait tRFC = 21 clocks

10 0xF8002170 1_001_00010011_0_000_0000000000000000 Refresh, Wait tRFC = 21 clocks

User Manual

CPC945 Bridge and Memory Controller Preliminary

DDR2 Memory Controller
Page 152 of 655 February 1, 2008

7.10.1 MRS Settings

When the MRS command is issued the contents of A[15:0] (MemInitReg[16:31]) are written into the Mode
Register. BA[1:0] = 0 to specify MRS (versus EMRS).

• A[2:0] = Burst Length. For the 128-bit configuration BL = 4. For the two 64-bit configurations BL = 8.
A[3] = Sequential/Interleaved access. A[3] must always be set to 1 = Interleaved.

• A[6:4] = CL (CAS Latency). In the example above CL = 4.

Normally CL is the value supported by the memory device manufacturer (that is, the value in the SPD
data on the DIMM. If the installed SDRAMs have a mixture of CL values, the largest CL value must be
set.

Note: There is a special case in which the memory controller cannot operate with CL=3: When com-
mands are sent to the SDRAMs in a minimum number of clocks (unregistered DIMMs, no additional
clocked delays (registers) on the board, no additional clocks added using the MemPhyModeCntl regis-
ter), the write data to the DIMMs cannot be supplied in time if CL = 3. Therefore for this situation the min-
imum setting of CL is 4.

• A[7] = Normal/Test Mode must always be set = 0 (Normal Mode).

• A[8] = DLL Reset = No/Yes. The MRS command is issued twice. The first time (step 8), A[8] = 1 to reset
to DLL. The second time (step 11), all of bits of the MRS stay the same, but A[8] = 0 to enable the DLL.

• A[11:9] = Write Recovery for Precharge (WR). See the JEDEC Standard for setting this parameter. In
general, WR = 2, 3, 4, 5 or 6 if the SDRAM speed is 266 MHz, 400 MHz, 533 MHz, 667 MHz or 800 MHz,
respectively. So for this example WR = 3.

• A[12] = Active Power Down Exit Time (use tXARD or tXARDS). This parameter is significant for 2 cases:

a. When Dynamic CKE is enabled, as explained in Section 7.7.3.2 and Section 7.25.6, the SDRAMS of
a given rank are put into Power Down mode when that rank has been idle for 20 cycles, and then
brought out of Power Down mode when the rank is accessed (including refresh).

b. When the SDRAMs exit from Self Refresh (Section 7.7.4.2 and Section 7.7.4.3).

In both cases, the delay to when a normal command can be issued is Fast (tXARD), with high transient
power dissipation, or Slow (tXARDS) with lower transient power dissipation. Normally this trade-off is
determined by the user, but there is a case when the setting is fixed: When both ODT operation and
Dynamic CKE are enabled, A[12] must be set to 1 = tXARDS (Slow Exit).

11 0xF8002180 1_000_11111111_0_000_0001010001001010 MRS: Enable DLL, maintain settings, Wait 257 clocks

12 0xF8002190 1_000_00000000_0_001_0000011110000100 EMRS(1)

12 0xF80021A0 1_000_00000001_0_001_0000010000000100 EMRS(1)

0xF80021B0 0_000_00000000_0_000_0000000000000000 Disable (end of sequence)

0xF80021C0 0_000_00000000_0_000_0000000000000000 Don’t care

0xF80021D0 0_000_00000000_0_000_0000000000000000 Don’t care

0xF80021D0 0_000_00000000_0_000_0000000000000000 Don’t care

0xF80021D0 0_000_00000000_0_000_0000000000000000 Don’t care

Table 7-4. Example DDR2 SDRAM Initialization Sequence.

JEDEC
Step Address En_RCW_Delay_L_BA_Address Comment

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
DDR2 Memory Controller

Page 153 of 655

In this example, A[12] = 1 = Slow Exit because ODT is enabled (see EMRS, below).

• A[15:13] is required by JEDEC to = 0.

7.10.2 EMRS Settings

When the EMRS command is issued the contents of A[15:0] (MemInitReg[16:31]) are written into Extended
Mode Register 3, 2 or 1, as determined by BA[1:0].

EMRS(3) and EMRS(2) are required by JEDEC to be set but to date these registers are not used, so
A[15:0] = 0. EMRS(1) is new for DDR2.

• A[0] = DLL Disable/Enable. A[0] must be set = 0 = Enabled.

• A[1] = Output Driver Impedance Control = Normal/Weak. This setting is determined by electrical analysis
(for example, Spice) of the board wiring, memory device model, and CPC945 receiver impedance
(Section 12.10.26 I/O Pad Control Register (IOPadCntl) on page 487), and so on, for the DQ and DQS
signals. This example sets A[1] = 0 = normal.

• A[6],A[2] = Rtt = ODT Disabled/75 ohm/150 ohm. If CPC945 ODT operation is disabled (Section 7.25.7
ODT - On Die Termination on page 225, Section 12.10.16 ODT Control Register (ODTCntl) on
page 475), then A[6],A[2] must be set to 0 = ODT disabled on the SDRAM.

If CPC945 ODT operation is enabled, then A[6],A[2] must be set to 01 = 75 ohms or 10 = 150 ohms. The
setting is determined by electrical analysis of the DQ and DQS signals.

• A[5:4] = AL (additive latency). The CPC945 does not support any value of AL except 0, therefore
A[5:4] must always be set = 0.

• A[9:7] = OCD Program The user is required to set the SDRAM drivers to their default calibration. This is
shown in step 12 of the example. First EMRS(1) is set with A[9:7] = 111 to enter OCD calibration and set
the drivers to their default calibration. This is followed by an EMRS(1) with A[9:7] = 000 to exit OCD cali-
bration.

• A[10] = DQS Enable/Disable. For systems with ×8 or ×16 chips set A[10] = 0 = DQS Enable. For systems
with ×4 chips set A[10] = 1= DQS Disable.

• A[11] = RDQS Disable/Enable. Set A[11] = 0 = RDQS Disable.

• A[12] = Output Buffer Enabled/Disabled. Set A[12] = 0 = Output Buffer Enabled.

• A[15:13] is required by JEDEC to = 0.

In the example coded in Table 7-4 EMRS(1) is issued 3 times. The values of A[9:7] = OCD Program should
be set as shown in the example. This will cause the SDRAMs to use the OCD Calibration default.

The example shows the desired other values (Rtt, and so on) programmed on all three sets, but in actuality
these values only need be set with the last EMRS(1).

User Manual

CPC945 Bridge and Memory Controller Preliminary

DDR2 Memory Controller
Page 154 of 655 February 1, 2008

7.11 MRS Register

With the use of the MemInitRegisters to set the MRSvalue in the SDRAM devices, there is not necessarily
any indication in the memory controller of what this value is. (The sequence might differ from that in Table 7-4
depending on varying scenarios, or might be destroyed by reprogramming the registers.) Therefore, the
memory controller contains a register (Section 12.10.4 Mode Register Set (MRS) Register (MRSRegCntl)
and Extended Mode Register Set Register (EMRSRegCntl) on page 457) that can be used to hold a copy of
the value that was programmed into the SDRAMs.

The MRS register (0xF80020C0) is purely for the convenience of the programmer. The contents have no
effect on memory controller operation. The MRS register is not loaded automatically; it is up to the
programmer to write this register with the same value used in the initialization sequence (or any time the
MemInitRegs are used to load the SDRAM MRS).

7.12 Refresh

Following power on reset, the Refresh unit is inhibited from generating requests. Requests are enabled when:

• An initialization sequence is kicked off by setting the InitStart bit in the MemProgCntl register, AND

• The initialization sequence finishes (the InitCmplt bit goes high), AND

• The InitBlockAutoRef bit in the MemProgCntl register is not set.

Once refresh requests start, they continue to run, independent of any subsequent initialization sequences,
until the chip is reset.

Refresh is controlled by the MemRfshCntl register (Section 12.10.2 Memory Refresh Control Register
(MemRfshCntl) on page 454).

The Refresh unit makes periodic requests to the Command Arbiter. When a refresh request is granted, the
Refresh unit issues Precharge All commands to all ranks, to close all rows of all banks of all ranks. It then
issues refresh commands to the ranks. Then, following a delay specified by the tRFC field in the MemRfsh-
Cntl register, it returns control to the Command Arbiter to allow reads and writes to continue. The tRFC field
should be programmed, based on the frequency of mem_clk, with the number of clocks that satisfy the
JEDEC Standard for tRFC.

To avoid excessive current surges, the Refresh unit staggers the Precharge All and refresh commands, one
rank at a time. The commands are issued only to occupied ranks, as determined from the DmEn and SS bits
in the DIMM configuration registers. (See Section 7.14.3 Installed DIMMs, Section 7.14.4 Single-
Sided/Double-Sided and Section 12.10.7 DIMM Configuration Registers.)

The requests made by the Refresh unit to the Command Arbiter are based on a refresh period timer. This is a
13-bit counter which counts mem_clks, and indicates that a refresh period has elapsed when the counter
equals the RefTime programmed in the MemRfshCntl register. (Only the high 9 bits of the refresh period are
programmed.)

The Refresh Unit receives a “Queues Idle” signal from the Command Arbiter which indicates if the reorder
queues have any commands that are ready to execute. When a refresh interval has elapsed, if this signal
indicates that the queues are idle, the Refresh unit requests a refresh, which is immediately granted.

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
DDR2 Memory Controller

Page 155 of 655

If the Queues Idle signal indicates that the queues are not idle, the action of the Refresh unit depends on the
settings of the DeferRef bits in the MemRfshCntl register. If deferred refreshes are permitted, the Refresh unit
will not request a refresh. Instead, it counts off another refresh interval. If the queues are idle this time the
Refresh unit requests the refresh. If not, and another deferred refresh is permitted, then once again a refresh
interval is counted off. This continues until either the queues are idle, or the maximum number of deferred
refreshes has been hit, as set by the DeferRef count. When the maximum number of refreshes have been
deferred, the Refresh unit requests a refresh regardless of the state of the Queues Idle signal. The Command
Arbiter will honor this request as soon as it has finished any command in progress.

When a refresh request is made and granted, the Refresh unit will execute in series one refresh plus the
number of deferred refreshes. If more than one refresh is performed, only one PrechargeAll command per
rank is issued, followed by the refreshes.

The refresh period should be programmed to the smallest tREFI of all the memory devices (currently speci-
fied by JEDEC as 7.8 μs for all device types) based on the mem_clk frequency, even if deferred refreshes are
programmed. JEDEC permits up to 8 refreshes to be deferred.

Each time a refresh period elapses, if Scrub is enabled, the Scrub unit requests a scrub operation, regardless
if the refresh is deferred or not.

Each time a refresh is granted, the Delay Measurement Unit (1/2-bit time averager) updates its delay
measurement value. Thus, if a refresh is deferred, the update is deferred. This is to avoid having the delay
verniers in the DDR2 PHY change their delay values in the middle of a data transfer.

7.13 Memory Request Arbiter

The Memory Request Arbiter uses round-robin selection of the 3 memory requesters: PI, PCIe non-coherent,
and Scrub. The arbiter is controlled with the Memory Arbiter Weight Register (MemArbWt 0xF8002280). This
register contains weightings for the three sources.

If a requester’s weight is set to 0 it does not participate in the round-robin and only gets access when the
other requesters are idle.

Requests from PI and PCIe non-coherent stay active until they are serviced. Scrub requests are different. If a
Scrub request is made and not serviced by the time a second Scrub request is made, the first request is
discarded.

User Manual

CPC945 Bridge and Memory Controller Preliminary

DDR2 Memory Controller
Page 156 of 655 February 1, 2008

7.14 Address Decode

The Address Decode unit is controlled by:

• the 64BitCfg and 64BitBus bits in the Memory Bus Configuration Register (MemBusCnfg 0xF80022D0)

• the DIMM Configuration Registers (Dm0Cnfg 0xF8002200, Dm1Cnfg 0xF8002210, Dm2Cnfg
0xF8002220, Dm3Cnfg 0xF8002230)

• the Memory User Configuration Register (UsrCnfg 0xF8002290)

7.14.1 64/128 Cfg/Bus

The 64BitCfg and 64BitBus bits in MemBusCnfg must be set to match the desired method of access, as given
in Table 7-5.

7.14.2 DIMMs/DIMM pairs

The DIMM Configuration (DmxCnfg) and Memory User Configuration (UsrCnfg) registers control memory
addressing on a DIMM basis for the two 64-bit configurations, and on a DIMM pair basis for the 128-bit
configuration.

The discussion below will use “DIMM” in either case. For example, “DmEn is set to indicate a DIMM is
installed” means that a single DIMM is installed using one of the 64-bit configurations, or a DIMM pair is
installed for the 128-bit configuration.

7.14.3 Installed DIMMs

The DmEn (DIMM Enable) bit in the four DIMM Configuration Registers must be set to match the DIMMs that
are installed/not installed.

• The DmEn bit is set to 1 if a DIMM is installed, and 0 if no DIMM is installed.

• If DmEn = 0 in a given DmCnfg register, then the remainder of bits in that register are don’t care.

7.14.4 Single-Sided/Double-Sided

The SS (Single-Sided) bit in the four DIMM Configuration Registers must be set to 1 if the DIMM is single-
sided, and 0 if the DIMM is double-sided.

As discussed in Section 7.4.4, “single-sided” refers to DIMMs that have one rank (one Select) and “double-
sided” refers to DIMMs that have 2 ranks (two Selects).

Table 7-5. 64-Bit Configuration and 64-Bit Bus Settings.

64BitCfg 64BitBus Memory Configuration

0 0 128-bit operation, 128/144-bit bus. DIMMs must be installed in pairs.

0 1 Illegal

1 0 64-bit operation, 128-bit bus. DIMMs 0,1 on bits 0:63, DIMMs 2,3 on bits 64:127.

1 1 64-bit operation, 64-bit bus. DIMMs 0:3 on bits 0:63.

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
DDR2 Memory Controller

Page 157 of 655

7.14.5 Chip Size and Organization

The MemMd (Memory Mode) bits in the four DIMM Configuration Registers must be set to match the types of
memory chips used on the DIMM, as given in Table 7-6.

7.14.6 Page Policy

The page policy, set by the PgPolicy bits in the UsrCnfg Register, is an option that can be set irrespective of
the types of DIMMs installed. The page policy controls the setting of Column Address bit 10 (C10) when
writes and reads are issued by the memory controller and is set by the PgPolicy bits in the UsrCnfg Register.

Although the Page Policy bits are found in the UsrCnfg Register, they are not involved in address decode.
See Section 7.17.4 Queue Page Policy on page 182 for information on these bits.

7.14.7 Interleave Mode

The interleave iode, set by the IntrLvMd bit in the UsrCnfg Register, is an option that can be set irrespective of
the types of DIMMs installed.

When set to 0 = SDRAM page, accesses to the banks of a given rank are interleaved on boundaries that are
the size of the page (row) of the SDRAM being accessed. For example, the first row of Table 7-23 Memory
Mapping for Bank Interleaving at SDRAM Page Boundary (128-bit Configuration) shows the address
mapping of a 256Mb ×16 chip which uses a row size of 2**9 = 512 columns (addressed using 9 column bits).
It can be seen that sequentially incrementing the low order system address bits will address an entire row
(using system address bits 51:59) before a new bank is accessed (using system address bits 49:50).

Table 7-6. Memory Modes.

Mem
Mode
[0:3]

Chip
Size

Chip
Width

Banks/
Chip

Bank
Adrs
Bits

Row
Adrs
Bits

Col
Adrs
Bits

Page
Size/
Chip

64-bit config 128-bit config

Page
Size/
Rank

Total
Size/
Rank

Page
Size/
Rank

Total
Size/
Rank

0000

256 Mb

×16

4

2 13 9 1 KB 4 KB 128 MB 8 KB 256 MB

0001 ×8 2 13 10 1 KB 8 KB 256 MB 16 KB 512 MB

0010 ×4 2 13 11 1 KB 16 KB 512 MB 32 KB 1 GB

0100

512 Mb

×16

4

2 13 10 2 KB 8 KB 256 MB 16 KB 512 MB

0101 ×8 2 14 10 1 KB 8 KB 512 MB 16 KB 1 GB

0110 ×4 2 14 11 1 KB 16 KB 1 GB 32 KB 2 GB

1000

1 Gb

×16

8

3 13 10 2 KB 8 KB 512 MB 16 KB 1 GB

1001 ×8 3 14 10 1 KB 8 KB 1 GB 16 KB 2 GB

1010 ×4 3 14 11 1 KB 16 KB 2 GB 32 KB 4 GB

1100

2 Gb

×16

8

3 14 10 2 KB 8 KB 1 GB 16 KB 2 GB

1101 ×8 3 15 10 1 KB 8 KB 2 GB 16 KB 4 GB

1110 ×4 3 15 11 1 KB 16 KB 4 GB 16 KB 8 GB

User Manual

CPC945 Bridge and Memory Controller Preliminary

DDR2 Memory Controller
Page 158 of 655 February 1, 2008

When set to 1 = L2 Cache Line, accesses to a the banks of a given rank are interleaved on a processor L2
cache line size of 128 bytes. Given that 16 bytes are accessed at a time (with the 128-bit memory bus config-
uration), this means that accesses are interleaved every 128/16 = 8 columns. Table 7-24 Memory Mapping
for Bank Interleaving at Cache Line Boundary (128-bit Configuration) shows that only 8 columns (using 3
column bits) are accessed before another bank is accessed.

7.14.8 Chip Select Mode

The CPC945 allows memory ranks to be “grouped” together such that sequential accesses are “striped”
across the ranks within a group. Rank grouping is done on a per-DIMM basis, using 1 of 4 “Chip Select
Modes.” The rank groupings are optional, but they can only be chosen if the installed memories support the
desired grouping. The following combinations are supported:

• Any of the 4 DIMM pairs (128-bit configuration) or DIMMs (64-bit configuration), double-sided or single-
sided, can be assigned CSMode = 0 = no ranks grouped. If double-sided, all of the front-side will be
addressed before moving on to the back side.

• Any double-sided DIMM pair (128-bit configuration) or DIMM (64-bit configuration) can be assigned
CSMode = 1 = two ranks are grouped. Accesses to the 2 sides will be interleaved.

• Two single-sided DIMM pairs (128-bit configuration) or DIMMs (64-bit configuration) can be assigned
CSMode = 1 = two ranks grouped, if:

• Both DIMM pairs/DIMMs are the same type (MemMd).
• (128-bit config): The two DIMM pairs are DIMMs (0+4 and 1+5), or (2+6 and 3+7).
• (64-bit config): The two DIMMs are DIMMs (0 and 1), or (2 and 3).

Accesses to the 2 sides will be interleaved (striped across the 2 sides).

• Two double-sided DIMM pairs (128-bit configuration) or DIMMs (64-bit configuration) can be assigned
CSMode = 2 = four ranks grouped, if:

• Both DIMM pairs/DIMMs are the same type (MemMd).
• (128-bit config): The two DIMM pairs are DIMMs (0+4 and 1+5), or (2+6 and 3+7).
• (64-bit config): The two DIMMs are DIMMs (0 and 1), or (2 and 3).

Accesses to the 4 sides will be interleaved (striped across the 4 sides).

• All 4 DIMM pairs (128-bit configuration) or DIMMs (64-bit configuration) can be assigned CSMode = 2 =
four ranks grouped, if:

• All DIMMs are the same type (MemMd).
• All DIMMs are single-sided.

Accesses to the 4 sides will be interleaved (striped across the 4 sides).

• All 4 DIMM pairs (128-bit configuration) or DIMMs (64-bit configuration) can be assigned CSMode = 3 =
eight ranks grouped, if:

• All DIMMs are the same type (MemMd).
• All DIMMs are double-sided.

Accesses to the 8 sides will be interleaved (striped across the 8 sides).

• CSMode = 3 is not supported for single-sided DIMMs.

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
DDR2 Memory Controller

Page 159 of 655

The DmCsMd bits in the UsrCnfg register specify the CSModes. There are 4 sets of DmCsMd bits, one for
each DIMM. When DIMMs are grouped, the DmCsMd bits for the first DIMM in the group are the controlling
bits, and the other DmCsMd bits in that group are don’t care. For example, using a configuration in which all
DIMMs are occupied, double-sided, and the same Mem Mode:

• If it is desired to not group any ranks,
Dm0CsMd = 00, Dm1CsMd = 00, Dm2CsMd = 00, Dm3CsMd = 00

• If it is desired to group the 2 ranks of the first DIMM pair (128-bit config) or DIMM (64-bit config) and not
group any other ranks,
Dm0CsMd = 01, Dm1CsMd = 00, Dm2CsMd = 00, Dm3CsMd = 00

• If it is desired to group the 4 ranks of the first 2 DIMM pairs (128-bit config) or DIMMs (64-bit config) and
not group any other ranks,
Dm0CsMd = 10, Dm1CsMd = don’t care, Dm2CsMd = 00, Dm3CsMd = 00

• If it is desired to group all 8 ranks of the DIMMs,
Dm0CsMd = 11, Dm1CsMd = don’t care, Dm2CsMd = don’t care, Dm3CsMd = don’t care

• If it is desired to group the 4 ranks of the 2nd and 3rd DIMM pairs (128-bit config) or DIMMs (64-bit config)
and not group any other ranks,
Dm0CsMd = 00, Dm1CsMd = 10, Dm2CsMd = don’t care, Dm3CsMd = 00

• If it is desired to group the 2 ranks of the 2nd DIMM pair (128-bit config) or DIMM (64-bit config) and to
have a 2nd group of the 4 ranks of the 3rd and 4th DIMM pairs (128-bit config) or DIMMs (64-bit config),
and not group any other ranks,
Dm0CsMd = 00, Dm1CsMd = 01, Dm2CsMd = 10, Dm3CsMd = don’t care

For DIMMs that cannot be grouped, and DIMMs for which it is not desired to have any grouping, the DmCsMd
bits must be set to 00.

For DIMMs that are grouped, it is a programming convention (but not a requirement) that the DmCsMd bits of
all the DIMMs in a group are set to the DmCsMd bits of the first DIMM that defines that group. (That is, if you
set DmCsMd = 10 or 11 for some DIMM, then the remaining “don’t care” bits are set to 10 or 11, respectively.)

User Manual

CPC945 Bridge and Memory Controller Preliminary

DDR2 Memory Controller
Page 160 of 655 February 1, 2008

Figure 7-4 illustrates in a general way how the 4 Chip Select Modes and the 2 Interleave Modes affect the
SDRAM address decoding.

Table 7-23 and Table 7-24 show the detailed system address to SDRAM address mappings for 128-bit
configuration, and Table 7-25 and Table 7-26 show the mappings for 64-bit configuration. For each chip type
(MemMd) there are four system to SDRAM address mappings. The 4 encodings of the DmxCsMd bits select
which of these four mappings is used. The difference involves which system address bits are used for chip
selects, which are indicated by E[0:2] (Encoded Chip Select).

For DmCsMd = 0, the default, the high order system address bits are used for Chip Select. An entire rank of
memory is accessed before moving on to the next rank.

For DmCsMd = 1, E[2] is moved towards the lower (least significant) end of the system address, adjacent to
the bank address bits. This means, for example, that sequential accesses of increasing addresses will ping-
pong between 2 ranks, accessing only 4 pages (for SDRAM page interleave) or 4 L2 cache lines (for L2
cache line interleave) before switching ranks.

For DmCsMd = 1, E[1:2] will cause accesses to sequence across 4 ranks, and for CsMd = 2, E[0:2] will cause
accesses to sequence across all 8 ranks.

Figure 7-4. Chip Select and Interleave Mode Addressing

CSMode: 0

For Bank interleaving at DRAM page (IntrlvMd : 0)

ColBk

CSMode: 1 ColBk

CSMode: 2 ColBk

CSMode: 3 ColBk

E[0]

E[1:0]

E[2:0] Row

Row

Row

Row

CSMode: 0

For Bank interleaving at L2 Cache Line (128 bytes) (IntrlvMd : 1)

ColBk

CSMode: 1 ColBk

CSMode: 2 ColBk

CSMode: 3 ColBk

E[0]

E[1:0]

E[2:0]

Row

Row

Row

Row

Col

Col

Col

Col

Note: E[x:y] = Encoded Chip Select = Encoded Rank

E[2:1]

E[2:0]

E[2]

E[2]

E[2:1]

E[2:0]

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
DDR2 Memory Controller

Page 161 of 655

7.14.9 Start Address, Add 2G/Sub 2G

The StartAdrs field of each DmCnfg register must be programmed with the starting address of its corre-
sponding DIMM. The Add2G and Sub2G fields must be programmed such that the address decode logic
properly accounts for the 2 GB “I/O Hole.” The values of these fields are determined as follows:

• The programmer must consider the installed memory to be a set of one or more groups, as determined by
the DmCsMd bits in the UsrCnfg register. The programmer must also know the size of the groups, in
bytes. DIMMs with DmCsMd = 0 (ranks not grouped) are considered to be a group whose size is the
number of bytes on the DIMM pair (128-bit config) or DIMM (64-bit config).

• Each group will consist of one or more DIMM pairs (128-bit config) or DIMMs (64-bit config). All of the
DmCnfg registers for the DIMMs in a given group will be given the same StartAdrs, Add2G and Sub2G
values (and MemMd, SS and DmEn).

• The memory controller uses 36-bits of the 64-bit address space, that is, address bits 28:63.

• The StartAdrs field for a group is programmed with the first address of that group. Only the first nine bits,
[28:36], need to be specified. This gives a granularity of 128MB, which is the size of the smallest possible
group (one rank of memory with MemMd = 0, in 64-bit data bus configuration).

• The Dm0Cnfg through Dm3Cnfg registers are programmed in sorted group size order, with the values for
the largest group in Dm0Cnfg and the smallest in Dm3Cnfg (or the last DmCnfg Register used). Groups
with the same size can be programmed in any order.

The reason for the ordering rule is so that no group can partially overlap the 2 GB I/O hole.

• The groups must start at address 0 and be contiguous, except for the 2 GB I/O hole.

– For example: four groups each of size 512 MB.
Dm0Cnfg StartAdrs = 000000000 = 0 MB.
Dm1Cnfg StartAdrs = 000000100 = 512 MB.
Dm2Cnfg StartAdrs = 000001000 = 1024 MB = 1 GB.
Dm3Cnfg StartAdrs = 000001100 = 1536 MB = 1.5 GB.

– For example: four groups each of size 2 GB.
Dm0Cnfg StartAdrs = 000000000 = 0 GB.
Dm1Cnfg StartAdrs = 000100000 = 4 GB, I/O hole skipped.
Dm2Cnfg StartAdrs = 000110000 = 6 GB.
Dm3Cnfg StartAdrs = 001000000 = 8 GB.

– For example: four groups each of size 4 GB.
Dm0Cnfg StartAdrs = 000000000 = 0 GB, Add2G will take care of I/O hole overlap.
Dm1Cnfg StartAdrs = 000100000 = 4 GB, Add2G, Sub2G will adjust for previous overlap.
Dm2Cnfg StartAdrs = 001000000 = 8 GB, Add2G, Sub2G will adjust for previous overlap.
Dm3Cnfg StartAdrs = 001100000 = 12 GB, Add2G, Sub2G will adjust for previous overlap.

• Add2G and Sub2G are used when the first group size is greater than 2 GB, which causes it to overlap the
I/O hole. If the first group size is not larger than 2 GB, its Add2G and Sub2G fields should be set to
00001. Since the groups are programmed in decreasing size, the remaining groups, if any, will also be
have their Add2G and Sub2G fields programmed to 00001. Their StartAdrs fields should be programmed
according to the rule above that the groups are contiguous except for skipping the I/O hole.

• If a group size is larger than 2 GB and it is the first (largest) group, then it overlaps the 2 GB I/O hole. The
Add2G field for that group must be programmed with the starting address of the 2 GB space following this
group. Only 5 address bits, [28:32] are needed with a granularity of 2 GB.

User Manual

CPC945 Bridge and Memory Controller Preliminary

DDR2 Memory Controller
Page 162 of 655 February 1, 2008

For example, if a group starting at address 0 has 4 GB, the first 2 GB will map directly to the first 2 GB of
system address space. To use the remaining 2 GB, the memory controller must map system addresses
from 4 GB to 6 GB to that remaining 2 GB. With the Add2G field programmed to address bits 28:32 =
00010 = 4 GB, this indicates to the memory controller that it must add 2GB of memory, starting at
address 4 GB to the range of memory addresses that will access the group.

• If the first group overlapped the I/O hole, then subsequent groups must be adjusted to compensate for
the adjustment of that first group.

– If the next group is greater than 2 GB, the process of “borrowing” the next 2 GB continues. That is,
Add2G is set to the address following the end of the current group. Also, Sub2G is set to the Start
Address of the current group, to subtract out the 2 GB that was “awarded” to the previous group using
its Add2G field.

– The Add2G/Sub2G process continues from group to group, until there are no more groups, or until a
group is programmed whose size is not greater than 2 GB.

– When a group whose size is not greater than 2 GB follows a group of size greater than 2 GB, its start-
ing address is adjusted upward by 2 GB to compensate for the previous Add2G. The Add2G and
Sub2G fields should be set to 00001. This is the address of the I/O hole, for which the memory con-
troller never gets any requests. Subsequent groups, if any, continue setting their StartAdrs to start
contiguously after the previous group, and Add2G and Sub2G should continue to be set to 1.

• There is a special case for a maxed out system. This is for the 128-bit data bus configuration when using
a group of all 4 DIMM pairs, and the DIMM pair size is the maximum of 16 GB, for a total of 64 GB. Since
there are only 36 bits of address = 64 GB, and there is a 2 GB hole, the last 2 GB cannot be accessed.
There is no address that can be programmed in the Add2G field for this inaccessible memory. Therefore
the Add2G field should be programmed to 00001.

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
DDR2 Memory Controller

Page 163 of 655

7.14.10 DIMM Configuration Algorithm

The address decoding, or mapping, is complicated by 3 factors:

• As discussed above, there is a 2 GB “I/O hole.”

• As discussed above, the DIMMs can be “grouped” to provide striped access across the group.

• The address decode logic lies in a critical path with regard to low latency access.

The implemented decode logic, with the aid of the StartAdrs, Add2G, and Sub2G fields in the DmCnfg regis-
ters, provides for these factors. The values that must be programmed in these fields are not easy to explain:
they are intended for minimal delay decoding that than the convenience of the programmer. However, an
algorithm has been developed for the correct programming of these fields. This algorithm is presented below
in pseudocode.

// DATA32 is an unsigned data type with a size of 32 bits.
// void RegWrite(DATA32 address, DATA32 data) is a function that writes a register

// Addresses work in granularities of 128MB, so 2GB = 16 × 128MB, and so on.
#define 2GB 16;
#define 4GB 32;
#define 64GB 512;

Struct Group {
int StartDimm; // Starting DIMM in group (0,1,2,3)
int NumDimm; // Number of DIMMs in group (1,2,3,4)
DATA32 Size; // Size of group in 128MB chunks. 0 = no group
unsigned MemMd; // For filling in reg field
unsigned SS; // For filling in reg field

} GroupTable[4];

// Fill in GroupTable, with GroupTable[0] = largest group, GroupTable[1] next largest, and so on. (Not shown.)

DATA32 StartAdr = 0; DATA32 EndAdr; // only lower 9 bits used (actually 10 bits, if EndAdr goes to >64GB)
DATA32 Add2G = 1; DATA32 Sub2G = 1; // only 5 lower bits used
DATA32 RegAdr, RegData;

// Process each group, from largest to smallest
for (int i=0; i<4; i++) {

EndAdr = StartAdr + GroupTable[i].Size;

if (GroupTable[i].Size > 2GB) {
// For groups larger than 2GB, if 1st group, set Add2G to adjust for IO hole
// If subsequent group, set both Add2G and Sub2G to adjust for IO hole
Add2G = (EndAdr & 0x1F0) >> 4; // extract starting address, on 2GB boundary, of next group
if (EndAdr >= 64GB) {

// Special case for maxed out 64GB system. Need to set Add2G to “nop” value
Add2G = 1;

}

Sub2G = (StartAdr == 0) ? 1 : (StartAdr & 0x1F0) >> 4;

User Manual

CPC945 Bridge and Memory Controller Preliminary

DDR2 Memory Controller
Page 164 of 655 February 1, 2008

} else {
// If going from >2GB group to <= 2GB group, correct start and end addresses for previous Add2G
// and reset Add2G and Sub2G to “nop”
if (Add2G != 1) {

StartAdr += 2GB;
EndAdr += 2GB;
Add2G = 1;
Sub2G = 1;

}
}

// For all DIMMs in group i, fill in corresponding DmCnfg registers with:
// StartAdr (lower 9 bits), Add2G and Sub2G (lower 5 bits), Mode (4 bits) and SS (1 bit)
// and DmEn = 1, if Size > 0, else just set DmEn = 0
RegAdr = 0xF8002200 + (GroupTable[i].StartDimm * 0x10);
RegData = 0;
for (int j = 0; j < GroupTable[i].NumDimms; j++) {

if (GroupTable[i].Size != 0) {
RegData = 1; // DmEn
RegData |= GroupTable[i].SS << 1;
RegData |= StartAdr << 3;
RegData |= GroupTable[i].MemMd << 12;
RegData |= Sub2G << 19;
RegData |= Add2G << 27;
}

RegWrite(RegAdr, RegData); // <= Write the register
RegAdr += 0x10;

}

// New start address = previous end address, skipping over IO hole if necessary
if (EndAdr == 2GB)

StartAdr = 4GB;
else

StartAdr = EndAdr;
}

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
DDR2 Memory Controller

Page 165 of 655

7.14.11 DIMM Configuration Examples

7.14.11.1 Example 1

128-bit configuration, all 4 DIMM pairs occupied:

In this DIMM configuration, Dms 0 and 1 can be grouped together to define a 4-rank group. The 2 ranks of
Dm2 can be grouped into a 2-rank group. The single rank of Dm3 cannot be grouped.

The sorted list:

Note: In this example Grp1 and Grp2’s sort order does not matter because they are both 2 GB in size.

Using this sorted list with the DIMM configuration algorithm produces the following values:

Assuming, for example, IntrlvMd = 0 (DRAM page boundary) and Page Policy = 01 = usually closed:

Table 7-7. DIMM Configuration Example 1 - DIMM Characteristics.

DIMM Pair MemMd Chip Size Chip Width Double/Single-sided Total/Rank

Dm0 (DIMM slots 0 & 4) 1 256 Mb ×8 Double-Sided 512 MB

Dm1 (DIMM slots 1 & 5) 1 256 Mb ×8 Double-Sided 512 MB

Dm2 (DIMM slots 2 & 6) 8 1 Gb ×16 Double-Sided 1 GB

Dm3 (DIMM slots 3 & 7) 13 2 Gb ×8 Single-Sided 4 GB

Table 7-8. DIMM Configuration Example 1 - Sorted Group List.

Group Starting Dm Num of DIMMs/Group Group Size CS Mode

Grp0 (largest) 3 1 4 GB 0 (1 rank)

Grp1 2 1 2 GB 1 (2 ranks)

Grp2 (smallest) 0 2 2 GB 2 (4 ranks)

Table 7-9. DIMM Configuration Example 1 - Register Fields.

Register Add2G Sub2G MemMd StartAdrs SS DmEn

Dm0Cnfg 0x1 0x1 0x1 0x40 0 1

Dm1Cnfg 0x1 0x1 0x1 0x40 0 1

Dm2Cnfg 0x1 0x1 0x8 0x30 0 1

Dm3Cnfg 0x2 0x1 0xD 0x0 1 1

Table 7-10. DIMM Configuration Example 1 - Register Values.

Register Contents

Dm0Cnfg 0x08081201

Dm1Cnfg 0x08081201

Dm2Cnfg 0x08088181

Dm3Cnfg 0x1008D003

UsrCnfg 0xA4200000

User Manual

CPC945 Bridge and Memory Controller Preliminary

DDR2 Memory Controller
Page 166 of 655 February 1, 2008

7.14.11.2 Example 2

128-bit configuration, all 4 DIMM pairs occupied:

Although Dm1 and Dm2 are identical they cannot be grouped together. Dm0 and Dm1 cannot be grouped
because they are different MemMds. Same for Dm2 and Dm3. The only available possible group is the 2
ranks of Dm3.

The sorted list:

Note: In this example Grp1 and Grp2’s sort order does not matter because they are both 512 MB in size.

Using this sorted list with the DIMM configuration algorithm produces the following values:

Assuming, for example, IntrlvMd = 0 (DRAM page boundary) and Page Policy = 01 = usually closed:

Table 7-11. DIMM Configuration Example 2 - DIMM Characteristics.

DIMM Pair MemMd Chip Size Chip Width Double/Single-sided Total/Rank

Dm0 (DIMM slots 0 & 4) 0 256 Mb ×16 Single-Sided 256 MB

Dm1 (DIMM slots 1 & 5) 1 256 Mb ×8 Single-Sided 512 MB

Dm2 (DIMM slots 2 & 6) 1 256 Mb ×8 Single-Sided 512 MB

Dm3 (DIMM slots 3 & 7) 5 512 Mb ×8 Double-Sided 1 GB

Table 7-12. DIMM Configuration Example 2 - Sorted Group List.

Group Starting Dm Num of DIMMs/Group Group Size CS Mode

Grp0 (largest) 3 1 2 GB 1 (2 ranks)

Grp1 2 1 512 MB 0 (1 rank)

Grp2 1 1 512 MB 0 (1 rank)

Grp3 (smallest) 0 1 256 MB 0 (1 rank)

Table 7-13. DIMM Configuration Example 2 - Register Fields.

Register Add2G Sub2G MemMd StartAdrs SS DmEn

Dm0Cnfg 0x1 0x1 0x0 0x28 1 1

Dm1Cnfg 0x1 0x1 0x1 0x24 1 1

Dm2Cnfg 0x1 0x1 0x1 0x20 1 1

Dm3Cnfg 0x1 0x1 0x5 0x0 0 1

Table 7-14. DIMM Configuration Example 2 - Register Values.

Register Contents

Dm0Cnfg 0x08080143

Dm1Cnfg 0x08081123

Dm2Cnfg 0x08081103

Dm3Cnfg 0x08085001

UsrCnfg 0x01400000

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
DDR2 Memory Controller

Page 167 of 655

7.14.11.3 Example 3

128-bit configuration, all 4 DIMM pairs occupied:

This DIMM configuration has all four DIMMs identical and double sided, which allows for 1 group of 8 ranks.

The sorted list:

Using this sorted list with the DIMM configuration algorithm produces the following values:

Assuming, for example, IntrlvMd = 0 (DRAM page boundary) and Page Policy = 00 = usually open:

Table 7-15. DIMM Configuration Example 3 - DIMM Characteristics.

DIMM Pair MemMd Chip Size Chip Width Double/Single-sided Total/Rank

Dm0 (DIMM slots 0 & 4) 13 2 Gb ×8 Double-Sided 4 GB

Dm1 (DIMM slots 1 & 5) 13 2 Gb ×8 Double-Sided 4 GB

Dm2 (DIMM slots 2 & 6) 13 2 Gb ×8 Double-Sided 4 GB

Dm3 (DIMM slots 3 & 7) 13 2 Gb ×8 Double-Sided 4 GB

Table 7-16. DIMM Configuration Example 3 - Sorted Group List.

Group Starting Dm Num of DIMMs/Group Group Size CS Mode

Grp0 (largest) 0 4 32 GB 4 (8 ranks)

Table 7-17. DIMM Configuration Example 3 - Register Fields.

Register Add2G Sub2G MemMd StartAdrs SS DmEn

Dm0Cnfg 0x10 0x1 0xD 0x0 0 1

Dm1Cnfg 0x10 0x1 0xD 0x0 0 1

Dm2Cnfg 0x10 0x1 0xD 0x0 0 1

Dm3Cnfg 0x10 0x1 0xD 0x0 0 1

Table 7-18. DIMM Configuration Example 3 - Register Values.

Register Contents

Dm0Cnfg 0x1008D001

Dm1Cnfg 0x1008D001

Dm2Cnfg 0x1008D001

Dm3Cnfg 0x1008D001

UsrCnfg 0xFF000000

User Manual

CPC945 Bridge and Memory Controller Preliminary

DDR2 Memory Controller
Page 168 of 655 February 1, 2008

7.14.11.4 Example 4

128-bit configuration, all 4 DIMM pairs occupied:

This DIMM configuration illustrates a more complicated I/O hole configuration; Add2G and Sub2G are “fully
exercised.” Also, although the double-sided DIMMs could be given a CSMode = 1 to group their two ranks
together, in this example we assume the user does not want to stripe the accesses across ranks, and there-
fore CSMode = 0 for all DIMMs.

The sorted list:

Note: This table could have been sorted in any order, since all groups are the same size.

Using this sorted list with the DIMM configuration algorithm produces the following values:

Assuming, for example, IntrlvMd = 0 (DRAM page boundary) and Page Policy = 01 = usually closed:

Table 7-19. DIMM Configuration Example 4 - DIMM Characteristics.

DIMM Pair MemMd Chip Size Chip Width Double/Single-sided Total/Rank

Dm0 (DIMM slots 0 & 4) 9 1 Gb ×8 Double-Sided 2 GB

Dm1 (DIMM slots 1 & 5) 12 2 Gb ×16 Double-Sided 2 GB

Dm2 (DIMM slots 2 & 6) 9 1 Gb ×8 Double-Sided 2 GB

Dm3 (DIMM slots 3 & 7) 13 2 Gb ×8 Single-Sided 4 GB

Table 7-20. DIMM Configuration Example 4 - Sorted Group List.

Group Starting Dm Num of DIMMs/Group Group Size CS Mode

Grp0 (largest) 3 1 4 GB 0 (1 rank)

Grp1 2 1 4 GB 0 (1 rank)

Grp2 1 1 4 GB 0 (1 rank)

Grp3 (smallest) 0 1 4 GB 0 (1 rank)

Table 7-21. DIMM Configuration Example 4 - Register Fields.

Register Add2G Sub2G MemMd StartAdrs SS DmEn

Dm0Cnfg 0x8 0x6 0x9 0x60 0 1

Dm1Cnfg 0x6 0x4 0xC 0x40 0 1

Dm2Cnfg 0x4 0x2 0x9 0x20 0 1

Dm3Cnfg 0x2 0x1 0xD 0x0 1 1

Table 7-22. DIMM Configuration Example 4 - Register Values.

Register Contents

Dm0Cnfg 0x40308301

Dm1Cnfg 0x3020C201

Dm2Cnfg 0x20109101

Dm3Cnfg 0x11008D003

UsrCnfg 0x00200000

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
DDR2 Memory Controller

Page 169 of 655

7.14.12 Address Mapping

The mapping of the incoming 36-bit system addresses to memory rank, bank, row and column is a function of
the Memory Modes used (chip size and organization), Interleave mode, Chip Select Mode, and Data Bus
Configuration (128-bit or 64-bit). The mappings for the 128-bit bus configuration are given in Table 7-23 and
Table 7-24 and the mappings for the 64-bit configurations are given in Table 7-25 and Table 7-26.

As indicated in previous discussion for a given bus width, 128-bit or 64-bit, the appropriate table is chosen
depending on the IntrLvMd setting in the UsrCnfg register (SDRAM page boundary or cache line boundary).
For each MemMd, one of 4 rows in the table (0, 1, 2, or 3) is selected depending on the setting of the
DmCsMd bits in the UsrCnfg register.

Ex indicates the (encoded) rank bit, Bx indicates the Bank bit, Rx indicates the Row bit and Cx indicates the
Column bit. Column bit C10 is not given in these tables because it is the AP (Auto Precharge) bit.

Note that the Encoded Chip Select bits are big-endian while the Bank, Row, and Column bits are little-endian.

System address bits 60:63 are used to select one of 16 bytes within the 128-bit quantity transferred (in the
128-bit bus configuration).

For the 128-bit bus configuration the burst size is 4, that is, four 128-bit quantities are transferred. The
mappings in Table 7-23 and Table 7-24 indicate the first column that is accessed in the burst (“critical word
first”). Accesses wrap on the burst boundary. For example, if the first access maps to C1:C0 = 10, then the
next 3 C1:C0 accesses are 11, 00, 01.

The memory devices are required to be programmed to use interleaved access order (MRS bit A[3], see
Section 7.10.1 MRS Settings). If the first access maps to C1:C0 = 01, then the next 3 C1:C0 accesses are 00,
11, 10. If the first access maps to C1:C0 = 11, then the next 3 C1:C0 accesses are 10, 01, 00.

For the two 64-bit bus configurations all entries in Table 7-25 and Table 7-26 are shifted right by 1 bit relative
to Table 7-23 and Table 7-24. System address bit 28 is unused and the maximum addressability is 32 GB.
The burst length is 8. Internally the memory controller assembles the 64-bit quantities into 128-bit quantities
for reads and disassembles 128-bit quantities into 64-bit quantities on writes. For each pair of accesses in a
burst the first transfer of the pair becomes bits 0:63 (and 128:135 for ECC) and the second transfer of the pair
becomes bits 64:127 (and 136:143 for ECC). Column bit C0 is always driven to 0.

User Manual

CPC945 Bridge and Memory Controller Preliminary

DDR2 Memory Controller
Page 170 of 655 February 1, 2008

7.14.13 Address Mapping Exceptions

Illegal accesses to memory are those that exceed the upper bound of installed memory.

• If the request is a read, a read from some legal location in memory will be performed, and the data from
that location will be returned to the requestor.

• If the request is a write, the memory controller will generate all of the cycles associated with a write oper-
ation (including pulling data out of the WDB in the PI), but the chip select will be suppressed so that no
write is actually performed.

Illegal accesses are trapped by the Memory Mapping Exception Registers (Section 12.5 on page 338). The
address is captured in the MemMapExcpAd Register (0xF80020E0) and information about the access is
captured in the MemMapExcpCtl register (0xF80020F0). This information includes the Request Type
(Coherent, Non-Coherent, Scrub), read or write type, Transaction Size, and Requestor ID. The Tag and Write
All status are also captured; this information is for development engineers and might not be useful in the
general case.

The first illegal access to memory traps the address and request information in the two exception registers
and sets the MemExcpV bit in the MemMapExcpCtl Register. Subsequent illegal accesses are not trapped,
until the MemExcpV bit is cleared by reading the MemMapExcpCtl Register.

When an illegal address is trapped, an exception is generated, if enabled, with the ExcpMask bit in the
MemMapExcpCtl Register.

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
DDR2 Memory Controller

Page 171 of 655

Table 7-23. Memory Mapping for Bank Interleaving at SDRAM Page Boundary (128-bit Configuration) .
Sys Addr 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59

256Mb
×16

0 E0 E1 E2 R6 R5 R4 R2 R2 R1 R0 R12R11R10 R9 R8 R7 B1 B0 C8 C7 C6 C5 C4 C3 C2 C1 C0
1 E0 E1 R7 R6 R5 R4 R3 R2 R1 R0 R12R11R10 R9 R8 E2 B1 B0 C8 C7 C6 C5 C4 C3 C2 C1 C0
2 E0 R8 R7 R6 R5 R4 R3 R2 R1 R0 R12R11R10 R9 E1 E2 B1 B0 C8 C7 C6 C5 C4 C3 C2 C1 C0
3 R9 R8 R7 R6 R5 R4 R3 R2 R1 R0 R12R11R10 E0 E1 E2 B1 B0 C8 C7 C6 C5 C4 C3 C2 C1 C0

256Mb
×8

0 E0 E1 E2 R7 R6 R5 R4 R3 R2 R1 R0 R12R11R10 R9 R8 B1 B0 C9 C8 C7 C6 C5 C4 C3 C2 C1 C0
1 E0 E1 R8 R7 R6 R5 R4 R3 R2 R1 R0 R12R11R10 R9 E2 B1 B0 C9 C8 C7 C6 C5 C4 C3 C2 C1 C0
2 E0 R9 R8 R7 R6 R5 R4 R3 R2 R1 R0 R12R11R10 E1 E2 B1 B0 C9 C8 C7 C6 C5 C4 C3 C2 C1 C0
3 R10 R9 R8 R7 R6 R5 R4 R3 R2 R1 R0 R12R11 E0 E1 E2 B1 B0 C9 C8 C7 C6 C5 C4 C3 C2 C1 C0

256Mb
×4

0 E0 E1 E2 R8 R7 R6 R5 R4 R3 R2 R1 R0 R12R11R10 R9 B1 B0 C11 C9 C8 C7 C6 C5 C4 C3 C2 C1 C0
1 E0 E1 R9 R8 R7 R6 R5 R4 R3 R2 R1 R0 R12R11R10 E2 B1 B0 C11 C9 C8 C7 C6 C5 C4 C3 C2 C1 C0
2 E0 R10 R9 R8 R7 R6 R5 R4 R3 R2 R1 R0 R12R11 E1 E2 B1 B0 C11 C9 C8 C7 C6 C5 C4 C3 C2 C1 C0
3 R11R10 R9 R8 R7 R6 R5 R4 R3 R2 R1 R0 R12 E0 E1 E2 B1 B0 C11 C9 C8 C7 C6 C5 C4 C3 C2 C1 C0

512Mb
×16

0 E0 E1 E2 R7 R6 R5 R4 R3 R2 R1 R0 R12R11R10 R9 R8 B1 B0 C9 C8 C7 C6 C5 C4 C3 C2 C1 C0
1 E0 E1 R8 R7 R6 R5 R4 R3 R2 R1 R0 R12R11R10 R9 E2 B1 B0 C9 C8 C7 C6 C5 C4 C3 C2 C1 C0
2 E0 R9 R8 R7 R6 R5 R4 R3 R2 R1 R0 R12R11R10 E1 E2 B1 B0 C9 C8 C7 C6 C5 C4 C3 C2 C1 C0
3 R10 R9 R8 R7 R6 R5 R4 R3 R2 R1 R0 R12R11 E0 E1 E2 B1 B0 C9 C8 C7 C6 C5 C4 C3 C2 C1 C0

512Mb
×8

0 E0 E1 E2 R13 R7 R6 R5 R4 R3 R2 R1 R0 R12R11R10 R9 R8 B1 B0 C9 C8 C7 C6 C5 C4 C3 C2 C1 C0
1 E0 E1 R13 R8 R7 R6 R5 R4 R3 R2 R1 R0 R12R11R10 R9 E2 B1 B0 C9 C8 C7 C6 C5 C4 C3 C2 C1 C0
2 E0 R13 R9 R8 R7 R6 R5 R4 R3 R2 R1 R0 R12R11R10 E1 E2 B1 B0 C9 C8 C7 C6 C5 C4 C3 C2 C1 C0
3 R13R10 R9 R8 R7 R6 R5 R4 R3 R2 R1 R0 R12R11 E0 E1 E2 B1 B0 C9 C8 C7 C6 C5 C4 C3 C2 C1 C0

512Mb
×4

0 E0 E1 E2 R13 R8 R7 R6 R5 R4 R3 R2 R1 R0 R12R11R10 R9 B1 B0 C11 C9 C8 C7 C6 C5 C4 C3 C2 C1 C0
1 E0 E1 R13 R9 R8 R7 R6 R5 R4 R3 R2 R1 R0 R12R11R10 E2 B1 B0 C11 C9 C8 C7 C6 C5 C4 C3 C2 C1 C0
2 E0 R13R10 R9 R8 R7 R6 R5 R4 R3 R2 R1 R0 R12R11 E1 E2 B1 B0 C11 C9 C8 C7 C6 C5 C4 C3 C2 C1 C0
3 R13R11R10 R9 R8 R7 R6 R5 R4 R3 R2 R1 R0 R12 E0 E1 E2 B1 B0 C11 C9 C8 C7 C6 C5 C4 C3 C2 C1 C0

1Gb
×16

0 E0 E1 E2 R8 R7 R6 R5 R4 R3 R2 R1 R0 R12R11R10 R9 B2 B1 B0 C9 C8 C7 C6 C5 C4 C3 C2 C1 C0
1 E0 E1 R9 R8 R7 R6 R5 R4 R3 R2 R1 R0 R12R11R10 E2 B2 B1 B0 C9 C8 C7 C6 C5 C4 C3 C2 C1 C0
2 E0 R10 R9 R8 R7 R6 R5 R4 R3 R2 R1 R0 R12R11 E1 E2 B2 B1 B0 C9 C8 C7 C6 C5 C4 C3 C2 C1 C0
3 R11R10 R9 R8 R7 R6 R5 R4 R3 R2 R1 R0 R12 E0 E1 E2 B2 B1 B0 C9 C8 C7 C6 C5 C4 C3 C2 C1 C0

1Gb
×8

0 E0 E1 E2 R13 R8 R7 R6 R5 R4 R3 R2 R1 R0 R12R11R10 R9 B2 B1 B0 C9 C8 C7 C6 C5 C4 C3 C2 C1 C0
1 E0 E1 R13 R9 R8 R7 R6 R5 R4 R3 R2 R1 R0 R12R11R10 E2 B2 B1 B0 C9 C8 C7 C6 C5 C4 C3 C2 C1 C0
2 E0 R13R10 R9 R8 R7 R6 R5 R4 R3 R2 R1 R0 R12R11 E1 E2 B2 B1 B0 C9 C8 C7 C6 C5 C4 C3 C2 C1 C0
3 R13R11R10 R9 R8 R7 R6 R5 R4 R3 R2 R1 R0 R12 E0 E1 E2 B2 B1 B0 C9 C8 C7 C6 C5 C4 C3 C2 C1 C0

1Gb
×4

0 E0 E1 E2 R13 R9 R8 R7 R6 R5 R4 R3 R2 R1 R0 R12R11R10 B2 B1 B0 C11 C9 C8 C7 C6 C5 C4 C3 C2 C1 C0
1 E0 E1 R13R10 R9 R8 R7 R6 R5 R4 R3 R2 R1 R0 R12R11 E2 B2 B1 B0 C11 C9 C8 C7 C6 C5 C4 C3 C2 C1 C0
2 E0 R13R11R10 R9 R8 R7 R6 R5 R4 R3 R2 R1 R0 R12 E1 E2 B2 B1 B0 C11 C9 C8 C7 C6 C5 C4 C3 C2 C1 C0
3 R13R12R11R10 R9 R8 R7 R6 R5 R4 R3 R2 R1 R0 E0 E1 E2 B2 B1 B0 C11 C9 C8 C7 C6 C5 C4 C3 C2 C1 C0

2Gb
×16

0 E0 E1 E2 R13 R8 R7 R6 R5 R4 R3 R2 R1 R0 R12R11R10 R9 B2 B1 B0 C9 C8 C7 C6 C5 C4 C3 C2 C1 C0
1 E0 E1 R13 R9 R8 R7 R6 R5 R4 R3 R2 R1 R0 R12R11R10 E2 B2 B1 B0 C9 C8 C7 C6 C5 C4 C3 C2 C1 C0
2 E0 R13R10 R9 R8 R7 R6 R5 R4 R3 R2 R1 R0 R12R11 E1 E2 B2 B1 B0 C9 C8 C7 C6 C5 C4 C3 C2 C1 C0
3 R13R11R10 R9 R8 R7 R6 R5 R4 R3 R2 R1 R0 R12 E0 E1 E2 B2 B1 B0 C9 C8 C7 C6 C5 C4 C3 C2 C1 C0

2Gb
×8

0 E0 E1 E2 R14R13 R8 R7 R6 R5 R4 R3 R2 R1 R0 R12R11R10 R9 B2 B1 B0 C9 C8 C7 C6 C5 C4 C3 C2 C1 C0
1 E0 E1 R14R13 R9 R8 R7 R6 R5 R4 R3 R2 R1 R0 R12R11R10 E2 B2 B1 B0 C9 C8 C7 C6 C5 C4 C3 C2 C1 C0
2 E0 R14R13R10 R9 R8 R7 R6 R5 R4 R3 R2 R1 R0 R12R11 E1 E2 B2 B1 B0 C9 C8 C7 C6 C5 C4 C3 C2 C1 C0
3 R14R13R11R10 R9 R8 R7 R6 R5 R4 R3 R2 R1 R0 R12 E0 E1 E2 B2 B1 B0 C9 C8 C7 C6 C5 C4 C3 C2 C1 C0

2Gb
×4

0 E0 E1 E2 R14R13 R9 R8 R7 R6 R5 R4 R3 R2 R1 R0 R12R11R10 B2 B1 B0 C11 C9 C8 C7 C6 C5 C4 C3 C2 C1 C0
1 E0 E1 R14R13R10 R9 R8 R7 R6 R5 R4 R3 R2 R1 R0 R12R11 E2 B2 B1 B0 C11 C9 C8 C7 C6 C5 C4 C3 C2 C1 C0
2 E0 R14R13R11R10 R9 R8 R7 R6 R5 R4 R3 R2 R1 R0 R12 E1 E2 B2 B1 B0 C11 C9 C8 C7 C6 C5 C4 C3 C2 C1 C0
3 R14R13R12R11R10 R9 R8 R7 R6 R5 R4 R3 R2 R1 R0 E0 E1 E2 B2 B1 B0 C11 C9 C8 C7 C6 C5 C4 C3 C2 C1 C0

Sys Addr 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59

User Manual

CPC945 Bridge and Memory Controller Preliminary

DDR2 Memory Controller
Page 172 of 655 February 1, 2008

Table 7-24. Memory Mapping for Bank Interleaving at Cache Line Boundary (128-bit Configuration).
Sys Addr 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59

256Mb
×16

0 E0 E1 E2 R6 R5 R4 R2 R2 R1 R0 R12R11R10 R9 R8 R7 C8 C7 C6 C5 C4 C3 B1 B0 C2 C1 C0
1 E0 E1 R7 R6 R5 R4 R3 R2 R1 R0 R12R11R10 R9 R8 C3 C8 C7 C6 C5 C4 E2 B1 B0 C2 C1 C0
2 E0 R8 R7 R6 R5 R4 R3 R2 R1 R0 R12R11R10 R9 C4 C3 C8 C7 C6 C5 E1 E2 B1 B0 C2 C1 C0
3 R9 R8 R7 R6 R5 R4 R3 R2 R1 R0 R12R11R10 C5 C4 C3 C8 C7 C6 E0 E1 E2 B1 B0 C2 C1 C0

256Mb
×8

0 E0 E1 E2 R7 R6 R5 R4 R3 R2 R1 R0 R12R11R10 R9 R8 C9 C8 C7 C6 C5 C4 C3 B1 B0 C2 C1 C0
1 E0 E1 R8 R7 R6 R5 R4 R3 R2 R1 R0 R12R11R10 R9 C9 C3 C8 C7 C6 C5 C4 E2 B1 B0 C2 C1 C0
2 E0 R9 R8 R7 R6 R5 R4 R3 R2 R1 R0 R12R11R10 C9 C4 C3 C8 C7 C6 C5 E1 E2 B1 B0 C2 C1 C0
3 R10 R9 R8 R7 R6 R5 R4 R3 R2 R1 R0 R12R11 C9 C5 C4 C3 C8 C7 C6 E0 E1 E2 B1 B0 C2 C1 C0

256Mb
×4

0 E0 E1 E2 R8 R7 R6 R5 R4 R3 R2 R1 R0 R12R11R10 R9 C11 C9 C8 C7 C6 C5 C4 C3 B1 B0 C2 C1 C0
1 E0 E1 R9 R8 R7 R6 R5 R4 R3 R2 R1 R0 R12R11R10C11 C9 C3 C8 C7 C6 C5 C4 E2 B1 B0 C2 C1 C0
2 E0 R10 R9 R8 R7 R6 R5 R4 R3 R2 R1 R0 R12R11C11 C9 C4 C3 C8 C7 C6 C5 E1 E2 B1 B0 C2 C1 C0
3 R11R10 R9 R8 R7 R6 R5 R4 R3 R2 R1 R0 R12C11 C9 C5 C4 C3 C8 C7 C6 E0 E1 E2 B1 B0 C2 C1 C0

512Mb
×16

0 E0 E1 E2 R7 R6 R5 R4 R3 R2 R1 R0 R12R11R10 R9 R8 C9 C8 C7 C6 C5 C4 C3 B1 B0 C2 C1 C0
1 E0 E1 R8 R7 R6 R5 R4 R3 R2 R1 R0 R12R11R10 R9 C9 C3 C8 C7 C6 C5 C4 E2 B1 B0 C2 C1 C0
2 E0 R9 R8 R7 R6 R5 R4 R3 R2 R1 R0 R12R11R10 C9 C4 C3 C8 C7 C6 C5 E1 E2 B1 B0 C2 C1 C0
3 R10 R9 R8 R7 R6 R5 R4 R3 R2 R1 R0 R12R11 C9 C5 C4 C3 C8 C7 C6 E0 E1 E2 B1 B0 C2 C1 C0

512Mb
×8

0 E0 E1 E2 R13 R7 R6 R5 R4 R3 R2 R1 R0 R12R11R10 R9 R8 C9 C8 C7 C6 C5 C4 C3 B1 B0 C2 C1 C0
1 E0 E1 R13 R8 R7 R6 R5 R4 R3 R2 R1 R0 R12R11R10 R9 C9 C3 C8 C7 C6 C5 C4 E2 B1 B0 C2 C1 C0
2 E0 R13 R9 R8 R7 R6 R5 R4 R3 R2 R1 R0 R12R11R10 C9 C4 C3 C8 C7 C6 C5 E1 E2 B1 B0 C2 C1 C0
3 R13R10 R9 R8 R7 R6 R5 R4 R3 R2 R1 R0 R12R11 C9 C5 C4 C3 C8 C7 C6 E0 E1 E2 B1 B0 C2 C1 C0

512Mb
×4

0 E0 E1 E2 R13 R8 R7 R6 R5 R4 R3 R2 R1 R0 R12R11R10 R9 C11 C9 C8 C7 C6 C5 C4 C3 B1 B0 C2 C1 C0
1 E0 E1 R13 R9 R8 R7 R6 R5 R4 R3 R2 R1 R0 R12R11R10C11 C9 C3 C8 C7 C6 C5 C4 E2 B1 B0 C2 C1 C0
2 E0 R13R10 R9 R8 R7 R6 R5 R4 R3 R2 R1 R0 R12R11C11 C9 C4 C3 C8 C7 C6 C5 E1 E2 B1 B0 C2 C1 C0
3 R13R11R10 R9 R8 R7 R6 R5 R4 R3 R2 R1 R0 R12C11 C9 C5 C4 C3 C8 C7 C6 E0 E1 E2 B1 B0 C2 C1 C0

1Gb
×16

0 E0 E1 E2 R8 R7 R6 R5 R4 R3 R2 R1 R0 R12R11R10 R9 C9 C3 C8 C7 C6 C5 C4 B2 B1 B0 C2 C1 C0
1 E0 E1 R9 R8 R7 R6 R5 R4 R3 R2 R1 R0 R12R11R10 C9 C4 C3 C8 C7 C6 C5 E2 B2 B1 B0 C2 C1 C0
2 E0 R10 R9 R8 R7 R6 R5 R4 R3 R2 R1 R0 R12R11 C9 C5 C4 C3 C8 C7 C6 E1 E2 B2 B1 B0 C2 C1 C0
3 R11R10 R9 R8 R7 R6 R5 R4 R3 R2 R1 R0 R12 C9 C6 C5 C4 C3 C8 C7 E0 E1 E2 B2 B1 B0 C2 C1 C0

1Gb
×8

0 E0 E1 E2 R13 R8 R7 R6 R5 R4 R3 R2 R1 R0 R12R11R10 R9 C9 C3 C8 C7 C6 C5 C4 B2 B1 B0 C2 C1 C0
1 E0 E1 R13 R9 R8 R7 R6 R5 R4 R3 R2 R1 R0 R12R11R10 C9 C4 C3 C8 C7 C6 C5 E2 B2 B1 B0 C2 C1 C0
2 E0 R13R10 R9 R8 R7 R6 R5 R4 R3 R2 R1 R0 R12R11 C9 C5 C4 C3 C8 C7 C6 E1 E2 B2 B1 B0 C2 C1 C0
3 R13R11R10 R9 R8 R7 R6 R5 R4 R3 R2 R1 R0 R12 C9 C6 C5 C4 C3 C8 C7 E0 E1 E2 B2 B1 B0 C2 C1 C0

1Gb
×4

0 E0 E1 E2 R13 R9 R8 R7 R6 R5 R4 R3 R2 R1 R0 R12R11R10C11 C9 C3 C8 C7 C6 C5 C4 B2 B1 B0 C2 C1 C0
1 E0 E1 R13R10 R9 R8 R7 R6 R5 R4 R3 R2 R1 R0 R12R11C11 C9 C4 C3 C8 C7 C6 C5 E2 B2 B1 B0 C2 C1 C0
2 E0 R13R11R10 R9 R8 R7 R6 R5 R4 R3 R2 R1 R0 R12C11 C9 C5 C4 C3 C8 C7 C6 E1 E2 B2 B1 B0 C2 C1 C0
3 R13R12R11R10 R9 R8 R7 R6 R5 R4 R3 R2 R1 R0 C11 C9 C6 C5 C4 C3 C8 C7 E0 E1 E2 B2 B1 B0 C2 C1 C0

2Gb
×16

0 E0 E1 E2 R13 R8 R7 R6 R5 R4 R3 R2 R1 R0 R12R11R10 R9 C9 C3 C8 C7 C6 C5 C4 B2 B1 B0 C2 C1 C0
1 E0 E1 R13 R9 R8 R7 R6 R5 R4 R3 R2 R1 R0 R12R11R10 C9 C4 C3 C8 C7 C6 C5 E2 B2 B1 B0 C2 C1 C0
2 E0 R13R10 R9 R8 R7 R6 R5 R4 R3 R2 R1 R0 R12R11 C9 C5 C4 C3 C8 C7 C6 E1 E2 B2 B1 B0 C2 C1 C0
3 R13R11R10 R9 R8 R7 R6 R5 R4 R3 R2 R1 R0 R12 C9 C6 C5 C4 C3 C8 C7 E0 E1 E2 B2 B1 B0 C2 C1 C0

2Gb
×8

0 E0 E1 E2 R14R13 R8 R7 R6 R5 R4 R3 R2 R1 R0 R12R11R10 R9 C9 C3 C8 C7 C6 C5 C4 B2 B1 B0 C2 C1 C0
1 E0 E1 R14R13 R9 R8 R7 R6 R5 R4 R3 R2 R1 R0 R12R11R10 C9 C4 C3 C8 C7 C6 C5 E2 B2 B1 B0 C2 C1 C0
2 E0 R14R13R10 R9 R8 R7 R6 R5 R4 R3 R2 R1 R0 R12R11 C9 C5 C4 C3 C8 C7 C6 E1 E2 B2 B1 B0 C2 C1 C0
3 R14R13R11R10 R9 R8 R7 R6 R5 R4 R3 R2 R1 R0 R12 C9 C6 C5 C4 C3 C8 C7 E0 E1 E2 B2 B1 B0 C2 C1 C0

2Gb
×4

0 E0 E1 E2 R14R13 R9 R8 R7 R6 R5 R4 R3 R2 R1 R0 R12R11R10C11 C9 C3 C8 C7 C6 C5 C4 B2 B1 B0 C2 C1 C0
1 E0 E1 R14R13R10 R9 R8 R7 R6 R5 R4 R3 R2 R1 R0 R12R11C11 C9 C4 C3 C8 C7 C6 C5 E2 B2 B1 B0 C2 C1 C0
2 E0 R14R13R11R10 R9 R8 R7 R6 R5 R4 R3 R2 R1 R0 R12C11 C9 C5 C4 C3 C8 C7 C6 E1 E2 B2 B1 B0 C2 C1 C0
3 R14R13R12R11R10 R9 R8 R7 R6 R5 R4 R3 R2 R1 R0 C11 C9 C6 C5 C4 C3 C8 C7 E0 E1 E2 B2 B1 B0 C2 C1 C0

Sys Addr 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
DDR2 Memory Controller

Page 173 of 655

Table 7-25. Memory Mapping for Bank Interleaving at SDRAM Page Boundary (64-bit Configuration).
Sys Addr 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59

256Mb
×16

0 E0 E1 E2 R6 R5 R4 R2 R2 R1 R0 R12R11R10 R9 R8 R7 B1 B0 C8 C7 C6 C5 C4 C3 C2 C1
1 E0 E1 R7 R6 R5 R4 R3 R2 R1 R0 R12R11R10 R9 R8 E2 B1 B0 C8 C7 C6 C5 C4 C3 C2 C1
2 E0 R8 R7 R6 R5 R4 R3 R2 R1 R0 R12R11R10 R9 E1 E2 B1 B0 C8 C7 C6 C5 C4 C3 C2 C1
3 R9 R8 R7 R6 R5 R4 R3 R2 R1 R0 R12R11R10 E0 E1 E2 B1 B0 C8 C7 C6 C5 C4 C3 C2 C1

256Mb
×8

0 E0 E1 E2 R7 R6 R5 R4 R3 R2 R1 R0 R12R11R10 R9 R8 B1 B0 C9 C8 C7 C6 C5 C4 C3 C2 C1
1 E0 E1 R8 R7 R6 R5 R4 R3 R2 R1 R0 R12R11R10 R9 E2 B1 B0 C9 C8 C7 C6 C5 C4 C3 C2 C1
2 E0 R9 R8 R7 R6 R5 R4 R3 R2 R1 R0 R12R11R10 E1 E2 B1 B0 C9 C8 C7 C6 C5 C4 C3 C2 C1
3 R10 R9 R8 R7 R6 R5 R4 R3 R2 R1 R0 R12R11 E0 E1 E2 B1 B0 C9 C8 C7 C6 C5 C4 C3 C2 C1

256Mb
×4

0 E0 E1 E2 R8 R7 R6 R5 R4 R3 R2 R1 R0 R12R11R10 R9 B1 B0 C11 C9 C8 C7 C6 C5 C4 C3 C2 C1
1 E0 E1 R9 R8 R7 R6 R5 R4 R3 R2 R1 R0 R12R11R10 E2 B1 B0 C11 C9 C8 C7 C6 C5 C4 C3 C2 C1
2 E0 R10 R9 R8 R7 R6 R5 R4 R3 R2 R1 R0 R12R11 E1 E2 B1 B0 C11 C9 C8 C7 C6 C5 C4 C3 C2 C1
3 R11R10 R9 R8 R7 R6 R5 R4 R3 R2 R1 R0 R12 E0 E1 E2 B1 B0 C11 C9 C8 C7 C6 C5 C4 C3 C2 C1

512Mb
×16

0 E0 E1 E2 R7 R6 R5 R4 R3 R2 R1 R0 R12R11R10 R9 R8 B1 B0 C9 C8 C7 C6 C5 C4 C3 C2 C1
1 E0 E1 R8 R7 R6 R5 R4 R3 R2 R1 R0 R12R11R10 R9 E2 B1 B0 C9 C8 C7 C6 C5 C4 C3 C2 C1
2 E0 R9 R8 R7 R6 R5 R4 R3 R2 R1 R0 R12R11R10 E1 E2 B1 B0 C9 C8 C7 C6 C5 C4 C3 C2 C1
3 R10 R9 R8 R7 R6 R5 R4 R3 R2 R1 R0 R12R11 E0 E1 E2 B1 B0 C9 C8 C7 C6 C5 C4 C3 C2 C1

512Mb
×8

0 E0 E1 E2 R13 R7 R6 R5 R4 R3 R2 R1 R0 R12R11R10 R9 R8 B1 B0 C9 C8 C7 C6 C5 C4 C3 C2 C1
1 E0 E1 R13 R8 R7 R6 R5 R4 R3 R2 R1 R0 R12R11R10 R9 E2 B1 B0 C9 C8 C7 C6 C5 C4 C3 C2 C1
2 E0 R13 R9 R8 R7 R6 R5 R4 R3 R2 R1 R0 R12R11R10 E1 E2 B1 B0 C9 C8 C7 C6 C5 C4 C3 C2 C1
3 R13R10 R9 R8 R7 R6 R5 R4 R3 R2 R1 R0 R12R11 E0 E1 E2 B1 B0 C9 C8 C7 C6 C5 C4 C3 C2 C1

512Mb
×4

0 E0 E1 E2 R13 R8 R7 R6 R5 R4 R3 R2 R1 R0 R12R11R10 R9 B1 B0 C11 C9 C8 C7 C6 C5 C4 C3 C2 C1
1 E0 E1 R13 R9 R8 R7 R6 R5 R4 R3 R2 R1 R0 R12R11R10 E2 B1 B0 C11 C9 C8 C7 C6 C5 C4 C3 C2 C1
2 E0 R13R10 R9 R8 R7 R6 R5 R4 R3 R2 R1 R0 R12R11 E1 E2 B1 B0 C11 C9 C8 C7 C6 C5 C4 C3 C2 C1
3 R13R11R10 R9 R8 R7 R6 R5 R4 R3 R2 R1 R0 R12 E0 E1 E2 B1 B0 C11 C9 C8 C7 C6 C5 C4 C3 C2 C1

1Gb
×16

0 E0 E1 E2 R8 R7 R6 R5 R4 R3 R2 R1 R0 R12R11R10 R9 B2 B1 B0 C9 C8 C7 C6 C5 C4 C3 C2 C1
1 E0 E1 R9 R8 R7 R6 R5 R4 R3 R2 R1 R0 R12R11R10 E2 B2 B1 B0 C9 C8 C7 C6 C5 C4 C3 C2 C1
2 E0 R10 R9 R8 R7 R6 R5 R4 R3 R2 R1 R0 R12R11 E1 E2 B2 B1 B0 C9 C8 C7 C6 C5 C4 C3 C2 C1
3 R11R10 R9 R8 R7 R6 R5 R4 R3 R2 R1 R0 R12 E0 E1 E2 B2 B1 B0 C9 C8 C7 C6 C5 C4 C3 C2 C1

1Gb
×8

0 E0 E1 E2 R13 R8 R7 R6 R5 R4 R3 R2 R1 R0 R12R11R10 R9 B2 B1 B0 C9 C8 C7 C6 C5 C4 C3 C2 C1
1 E0 E1 R13 R9 R8 R7 R6 R5 R4 R3 R2 R1 R0 R12R11R10 E2 B2 B1 B0 C9 C8 C7 C6 C5 C4 C3 C2 C1
2 E0 R13R10 R9 R8 R7 R6 R5 R4 R3 R2 R1 R0 R12R11 E1 E2 B2 B1 B0 C9 C8 C7 C6 C5 C4 C3 C2 C1
3 R13R11R10 R9 R8 R7 R6 R5 R4 R3 R2 R1 R0 R12 E0 E1 E2 B2 B1 B0 C9 C8 C7 C6 C5 C4 C3 C2 C1

1Gb
×4

0 E0 E1 E2 R13 R9 R8 R7 R6 R5 R4 R3 R2 R1 R0 R12R11R10 B2 B1 B0 C11 C9 C8 C7 C6 C5 C4 C3 C2 C1
1 E0 E1 R13R10 R9 R8 R7 R6 R5 R4 R3 R2 R1 R0 R12R11 E2 B2 B1 B0 C11 C9 C8 C7 C6 C5 C4 C3 C2 C1
2 E0 R13R11R10 R9 R8 R7 R6 R5 R4 R3 R2 R1 R0 R12 E1 E2 B2 B1 B0 C11 C9 C8 C7 C6 C5 C4 C3 C2 C1
3 R13R12R11R10 R9 R8 R7 R6 R5 R4 R3 R2 R1 R0 E0 E1 E2 B2 B1 B0 C11 C9 C8 C7 C6 C5 C4 C3 C2 C1

2Gb
×16

0 E0 E1 E2 R13 R8 R7 R6 R5 R4 R3 R2 R1 R0 R12R11R10 R9 B2 B1 B0 C9 C8 C7 C6 C5 C4 C3 C2 C1
1 E0 E1 R13 R9 R8 R7 R6 R5 R4 R3 R2 R1 R0 R12R11R10 E2 B2 B1 B0 C9 C8 C7 C6 C5 C4 C3 C2 C1
2 E0 R13R10 R9 R8 R7 R6 R5 R4 R3 R2 R1 R0 R12R11 E1 E2 B2 B1 B0 C9 C8 C7 C6 C5 C4 C3 C2 C1
3 R13R11R10 R9 R8 R7 R6 R5 R4 R3 R2 R1 R0 R12 E0 E1 E2 B2 B1 B0 C9 C8 C7 C6 C5 C4 C3 C2 C1

2Gb
×8

0 E0 E1 E2 R14R13 R8 R7 R6 R5 R4 R3 R2 R1 R0 R12R11R10 R9 B2 B1 B0 C9 C8 C7 C6 C5 C4 C3 C2 C1
1 E0 E1 R14R13 R9 R8 R7 R6 R5 R4 R3 R2 R1 R0 R12R11R10 E2 B2 B1 B0 C9 C8 C7 C6 C5 C4 C3 C2 C1
2 E0 R14R13R10 R9 R8 R7 R6 R5 R4 R3 R2 R1 R0 R12R11 E1 E2 B2 B1 B0 C9 C8 C7 C6 C5 C4 C3 C2 C1
3 R14R13R11R10 R9 R8 R7 R6 R5 R4 R3 R2 R1 R0 R12 E0 E1 E2 B2 B1 B0 C9 C8 C7 C6 C5 C4 C3 C2 C1

2Gb
×4

0 E0 E1 E2 R14R13 R9 R8 R7 R6 R5 R4 R3 R2 R1 R0 R12R11R10 B2 B1 B0 C11 C9 C8 C7 C6 C5 C4 C3 C2 C1
1 E0 E1 R14R13R10 R9 R8 R7 R6 R5 R4 R3 R2 R1 R0 R12R11 E2 B2 B1 B0 C11 C9 C8 C7 C6 C5 C4 C3 C2 C1
2 E0 R14R13R11R10 R9 R8 R7 R6 R5 R4 R3 R2 R1 R0 R12 E1 E2 B2 B1 B0 C11 C9 C8 C7 C6 C5 C4 C3 C2 C1
3 R14R13R12R11R10 R9 R8 R7 R6 R5 R4 R3 R2 R1 R0 E0 E1 E2 B2 B1 B0 C11 C9 C8 C7 C6 C5 C4 C3 C2 C1

Sys Addr 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59

User Manual

CPC945 Bridge and Memory Controller Preliminary

DDR2 Memory Controller
Page 174 of 655 February 1, 2008

Table 7-26. Memory Mapping for Bank Interleaving at Cache Line Boundary (64-bit Configuration).
Sys Addr 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59

256Mb
×16

0 E0 E1 E2 R6 R5 R4 R2 R2 R1 R0 R12R11R10 R9 R8 R7 C8 C7 C6 C5 C4 C3 B1 B0 C2 C1
1 E0 E1 R7 R6 R5 R4 R3 R2 R1 R0 R12R11R10 R9 R8 C3 C8 C7 C6 C5 C4 E2 B1 B0 C2 C1
2 E0 R8 R7 R6 R5 R4 R3 R2 R1 R0 R12R11R10 R9 C4 C3 C8 C7 C6 C5 E1 E2 B1 B0 C2 C1
3 R9 R8 R7 R6 R5 R4 R3 R2 R1 R0 R12R11R10 C5 C4 C3 C8 C7 C6 E0 E1 E2 B1 B0 C2 C1

256Mb
×8

0 E0 E1 E2 R7 R6 R5 R4 R3 R2 R1 R0 R12R11R10 R9 R8 C9 C8 C7 C6 C5 C4 C3 B1 B0 C2 C1
1 E0 E1 R8 R7 R6 R5 R4 R3 R2 R1 R0 R12R11R10 R9 C9 C3 C8 C7 C6 C5 C4 E2 B1 B0 C2 C1
2 E0 R9 R8 R7 R6 R5 R4 R3 R2 R1 R0 R12R11R10 C9 C4 C3 C8 C7 C6 C5 E1 E2 B1 B0 C2 C1
3 R10 R9 R8 R7 R6 R5 R4 R3 R2 R1 R0 R12R11 C9 C5 C4 C3 C8 C7 C6 E0 E1 E2 B1 B0 C2 C1

256Mb
×4

0 E0 E1 E2 R8 R7 R6 R5 R4 R3 R2 R1 R0 R12R11R10 R9 C11 C9 C8 C7 C6 C5 C4 C3 B1 B0 C2 C1
1 E0 E1 R9 R8 R7 R6 R5 R4 R3 R2 R1 R0 R12R11R10C11 C9 C3 C8 C7 C6 C5 C4 E2 B1 B0 C2 C1
2 E0 R10 R9 R8 R7 R6 R5 R4 R3 R2 R1 R0 R12R11C11 C9 C4 C3 C8 C7 C6 C5 E1 E2 B1 B0 C2 C1
3 R11R10 R9 R8 R7 R6 R5 R4 R3 R2 R1 R0 R12C11 C9 C5 C4 C3 C8 C7 C6 E0 E1 E2 B1 B0 C2 C1

512Mb
×16

0 E0 E1 E2 R7 R6 R5 R4 R3 R2 R1 R0 R12R11R10 R9 R8 C9 C8 C7 C6 C5 C4 C3 B1 B0 C2 C1
1 E0 E1 R8 R7 R6 R5 R4 R3 R2 R1 R0 R12R11R10 R9 C9 C3 C8 C7 C6 C5 C4 E2 B1 B0 C2 C1
2 E0 R9 R8 R7 R6 R5 R4 R3 R2 R1 R0 R12R11R10 C9 C4 C3 C8 C7 C6 C5 E1 E2 B1 B0 C2 C1
3 R10 R9 R8 R7 R6 R5 R4 R3 R2 R1 R0 R12R11 C9 C5 C4 C3 C8 C7 C6 E0 E1 E2 B1 B0 C2 C1

512Mb
×8

0 E0 E1 E2 R13 R7 R6 R5 R4 R3 R2 R1 R0 R12R11R10 R9 R8 C9 C8 C7 C6 C5 C4 C3 B1 B0 C2 C1
1 E0 E1 R13 R8 R7 R6 R5 R4 R3 R2 R1 R0 R12R11R10 R9 C9 C3 C8 C7 C6 C5 C4 E2 B1 B0 C2 C1
2 E0 R13 R9 R8 R7 R6 R5 R4 R3 R2 R1 R0 R12R11R10 C9 C4 C3 C8 C7 C6 C5 E1 E2 B1 B0 C2 C1
3 R13R10 R9 R8 R7 R6 R5 R4 R3 R2 R1 R0 R12R11 C9 C5 C4 C3 C8 C7 C6 E0 E1 E2 B1 B0 C2 C1

512Mb
×4

0 E0 E1 E2 R13 R8 R7 R6 R5 R4 R3 R2 R1 R0 R12R11R10 R9 C11 C9 C8 C7 C6 C5 C4 C3 B1 B0 C2 C1
1 E0 E1 R13 R9 R8 R7 R6 R5 R4 R3 R2 R1 R0 R12R11R10C11 C9 C3 C8 C7 C6 C5 C4 E2 B1 B0 C2 C1
2 E0 R13R10 R9 R8 R7 R6 R5 R4 R3 R2 R1 R0 R12R11C11 C9 C4 C3 C8 C7 C6 C5 E1 E2 B1 B0 C2 C1
3 R13R11R10 R9 R8 R7 R6 R5 R4 R3 R2 R1 R0 R12C11 C9 C5 C4 C3 C8 C7 C6 E0 E1 E2 B1 B0 C2 C1

1Gb
×16

0 E0 E1 E2 R8 R7 R6 R5 R4 R3 R2 R1 R0 R12R11R10 R9 C9 C3 C8 C7 C6 C5 C4 B2 B1 B0 C2 C1
1 E0 E1 R9 R8 R7 R6 R5 R4 R3 R2 R1 R0 R12R11R10 C9 C4 C3 C8 C7 C6 C5 E2 B2 B1 B0 C2 C1
2 E0 R10 R9 R8 R7 R6 R5 R4 R3 R2 R1 R0 R12R11 C9 C5 C4 C3 C8 C7 C6 E1 E2 B2 B1 B0 C2 C1
3 R11R10 R9 R8 R7 R6 R5 R4 R3 R2 R1 R0 R12 C9 C6 C5 C4 C3 C8 C7 E0 E1 E2 B2 B1 B0 C2 C1

1Gb
×8

0 E0 E1 E2 R13 R8 R7 R6 R5 R4 R3 R2 R1 R0 R12R11R10 R9 C9 C3 C8 C7 C6 C5 C4 B2 B1 B0 C2 C1
1 E0 E1 R13 R9 R8 R7 R6 R5 R4 R3 R2 R1 R0 R12R11R10 C9 C4 C3 C8 C7 C6 C5 E2 B2 B1 B0 C2 C1
2 E0 R13R10 R9 R8 R7 R6 R5 R4 R3 R2 R1 R0 R12R11 C9 C5 C4 C3 C8 C7 C6 E1 E2 B2 B1 B0 C2 C1
3 R13R11R10 R9 R8 R7 R6 R5 R4 R3 R2 R1 R0 R12 C9 C6 C5 C4 C3 C8 C7 E0 E1 E2 B2 B1 B0 C2 C1

1Gb
×4

0 E0 E1 E2 R13 R9 R8 R7 R6 R5 R4 R3 R2 R1 R0 R12R11R10C11 C9 C3 C8 C7 C6 C5 C4 B2 B1 B0 C2 C1
1 E0 E1 R13R10 R9 R8 R7 R6 R5 R4 R3 R2 R1 R0 R12R11C11 C9 C4 C3 C8 C7 C6 C5 E2 B2 B1 B0 C2 C1
2 E0 R13R11R10 R9 R8 R7 R6 R5 R4 R3 R2 R1 R0 R12C11 C9 C5 C4 C3 C8 C7 C6 E1 E2 B2 B1 B0 C2 C1
3 R13R12R11R10 R9 R8 R7 R6 R5 R4 R3 R2 R1 R0 C11 C9 C6 C5 C4 C3 C8 C7 E0 E1 E2 B2 B1 B0 C2 C1

2Gb
×16

0 E0 E1 E2 R13 R8 R7 R6 R5 R4 R3 R2 R1 R0 R12R11R10 R9 C9 C3 C8 C7 C6 C5 C4 B2 B1 B0 C2 C1
1 E0 E1 R13 R9 R8 R7 R6 R5 R4 R3 R2 R1 R0 R12R11R10 C9 C4 C3 C8 C7 C6 C5 E2 B2 B1 B0 C2 C1
2 E0 R13R10 R9 R8 R7 R6 R5 R4 R3 R2 R1 R0 R12R11 C9 C5 C4 C3 C8 C7 C6 E1 E2 B2 B1 B0 C2 C1
3 R13R11R10 R9 R8 R7 R6 R5 R4 R3 R2 R1 R0 R12 C9 C6 C5 C4 C3 C8 C7 E0 E1 E2 B2 B1 B0 C2 C1

2Gb
×8

0 E0 E1 E2 R14R13 R8 R7 R6 R5 R4 R3 R2 R1 R0 R12R11R10 R9 C9 C3 C8 C7 C6 C5 C4 B2 B1 B0 C2 C1
1 E0 E1 R14R13 R9 R8 R7 R6 R5 R4 R3 R2 R1 R0 R12R11R10 C9 C4 C3 C8 C7 C6 C5 E2 B2 B1 B0 C2 C1
2 E0 R14R13R10 R9 R8 R7 R6 R5 R4 R3 R2 R1 R0 R12R11 C9 C5 C4 C3 C8 C7 C6 E1 E2 B2 B1 B0 C2 C1
3 R14R13R11R10 R9 R8 R7 R6 R5 R4 R3 R2 R1 R0 R12 C9 C6 C5 C4 C3 C8 C7 E0 E1 E2 B2 B1 B0 C2 C1

2Gb
×4

0 E0 E1 E2 R14R13 R9 R8 R7 R6 R5 R4 R3 R2 R1 R0 R12R11R10C11 C9 C3 C8 C7 C6 C5 C4 B2 B1 B0 C2 C1
1 E0 E1 R14R13R10 R9 R8 R7 R6 R5 R4 R3 R2 R1 R0 R12R11C11 C9 C4 C3 C8 C7 C6 C5 E2 B2 B1 B0 C2 C1
2 E0 R14R13R11R10 R9 R8 R7 R6 R5 R4 R3 R2 R1 R0 R12C11 C9 C5 C4 C3 C8 C7 C6 E1 E2 B2 B1 B0 C2 C1
3 R14R13R12R11R10 R9 R8 R7 R6 R5 R4 R3 R2 R1 R0 C11 C9 C6 C5 C4 C3 C8 C7 E0 E1 E2 B2 B1 B0 C2 C1

Sys Addr 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
DDR2 Memory Controller

Page 175 of 655

7.15 Timing Parameters

Memory timings are programmed using the RAS Timer0, RAS Timer1, CAS Timer 0, and CAS Timer 1 regis-
ters (0xF8002030, 0xF8002040, 0xF8002050 and 0xF8002060). In general the RAS Timers are concerned
with Activate (RAS) and Precharge timings and are largely governed by the JEDEC Standard, while the CAS
timers are concerned with Read/Write (CAS) commands and are governed by the JEDEC Standard and the
times required to turn around the external data bus.

The descriptions of the Timer registers in Section 12.10.1 Memory Timing Parameter Registers on page 449
give the calculations for each parameter. tRAS, tRTP, tWR, tRP, tRTP, tWR, tRRD, tRC, tRCD, tWTR are
JEDEC specified values. AL is required to be 0. WL = RL - 1. RL = AL + CL, where CL (CAS Latency) is spec-
ified by the memory device manufacturer (generally = 3, 4 or 5) and must match the value programmed in the
MRS (Section 7.10.1 MRS Settings). Since AL = 0 for the CPC945, WL = CL -1. BL (Burst Length) = 4 for the
128-bit bus configuration and 8 for the two 64-bit bus configurations. RRMux, WRMux, WWMux and RWmux
are the times to allow the external data multiplexer (if used) to switch when switching access among different
DIMMs. It might be required to program nonzero values for these parameters, even if external data multi-
plexers are not used, to allow enough time for the data bus to settle.

In general, for best performance, the minimum values that are legal should be programmed in the RAS and
CAS Timer registers. However, if the installed DIMMs have mixed performance values, then the most conser-
vative values among the DIMMs must be programmed. For example, if 400 MHz and 533 MHz DIMMs are
mixed, the values for the 400 MHz DIMMs must be used. If DIMMs of mixed CAS Latency are used, CL must
be programmed with the largest CAS Latency among the DIMMs.

7.15.1 Data Bus Delay Greater than tCK

As noted above some values in the CAS Timer registers are a function of the time required to turn around the
external data bus. The most demanding requirement is for issuing a Read followed by a Write. After the
memory controller issues the Read command, it must wait for the read data to come back and for the
SDRAMs to tri-state the data bus, before sending the write data for the Write command. In the best case the
Write command can be issued while the read data is on the bus. By the time the SDRAMs need the write
data, the read data has cleared the bus and the memory controller has started writing the write data to the
bus.

The design of the memory controller, the programming of the Timer registers, and the discussion above all
assume that the delay of the DQ and DQS signals is less than one mem_clk (tCK). If the delay is greater than
tCK, then the memory controller will not execute the read-followed-by-read sequence properly, because it will
not allow enough time for the data bus to turn around.

To avoid this problem, it is required to add time to all programming values which control Read To Write
timings. These are CAS Timer 1, TiRtWRk, TiRtWDm and TiRtWSy, to push the write out. For each additional
tCK of data bus delay greater than tCK, “2” must be added to these values. (One mem_clk to account for the
read data coming back delayed, one mem_clk to account for the write data getting to the SDRAMs delayed.)

Other values affected by excessive data bus delay are the TiRtWRMW field in the MemRWArb register (see
Section 12.10.13 on page 471), the RdMacDel, ResMuxDel, RdExtMuxDly, WrExtMuxDly, WdbRqDly,
RdOEOffDly fields in the MemBusConfig register (see Section 12.10.14 on page 472) and the PIRdTgDly
and RdPipeDly fields in the MemBusConfig2 register (see Section 12.10.15 on page 474).

Performance is degraded when these timings are increased.

User Manual

CPC945 Bridge and Memory Controller Preliminary

DDR2 Memory Controller
Page 176 of 655 February 1, 2008

7.15.2 Restrictions

The following restrictions must be observed. Usually it is no problem meeting these restrictions, using values
that match or are close to JEDEC minimum timings.

• TiAtP (tRAS) must be > TiAtRW (tRCD). If this condition is violated the memory controller can lock up
issuing an infinite series of Activate/Precharge/Activate/Precharge/...

• TiAtABk (tRC) must be >= TiAtARk (tRRD). If this condition is violated the memory controller can lock up
issuing an infinite series of Activate/Precharge/Activate/Precharge/...

• TiAtRW + TiWAPtA must be >= TiAtP + TiPtA. If this condition is violated, sometimes a write to a given
address can execute before a previous write to that same address.

7.15.3 Timing Parameter Examples

The RASTimer0, RASTimer1, CASTimer0 and CASTimer1 registers are a set of delay values specified as
equations in units of mem_clk (CK). Minimum values are used for best performance. Higher values can be
used if relaxed timings are needed for some reason. Notes:

• For DIMMs with a mixture of speeds, the slowest speed (largest tCK) must be used.

• All of these examples use a bus configuration width of 128, so BL (Burst Length) always = 4. For systems
with a bus configuration of 64, set BL = 8.

• CL (CAS Latency) can be 3, 4 or 5, depending on the chips in the DIMMs (JESD79-2A. The 533MHz,
CL=5 option was removed with JESD79-2B). For DIMMs with a mixture of CL, the largest CL must be
used.

• For the CPC945, AL (Additive Latency) always = 0.

• JEDEC specifies WL (Write Latency) as RL (Read Latency) - 1. RL = AL + CL.
Therefore WL = AL+CL - 1 = CL - 1 for CPC945.

• tRCD, tRP, tRC and tRAS are minimum JEDEC specifications (JESD79-2C, Table 40 on page 72) speci-
fied in nanoseconds. These must be converted to mem_clks by dividing by tCK and rounding up to the
nearest integer, as shown in Table 7-27. These values depend on the speed bin (frequency and CL).

Note that tRP is used for both precharge of a single bank and precharge of all banks (4 or 8), and that for
precharge of all banks 1 additional clock must be added for 8 bank devices (MemMode 1xxx). This is
taken care of in the calculation for RASTimer0, TiPAtA.

Table 7-27. tRCD, tRP and tRC.

Speed DDR2-533B
tCK = 3.75 ns

DDR2-533C
tCK = 3.75 ns

DDR2-400B
tCK = 5 ns

DDR2-400C
tCK = 5 ns

Bin 3 - 3 - 3 4 - 4 - 4 3 - 3 - 3 4 - 4 - 4

Parameter ns mem_clks ns mem_clks ns mem_clks ns mem_clks

tRCD 11.25 3 15 4 15 3 20 4

tRP 11.25 3 15 4 15 3 20 4

tRC 56.25 15 60 16 60 12 65 13

tRAS 45 12 45 12 11 40 45 12

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
DDR2 Memory Controller

Page 177 of 655

• tRTP, tWR, tRRD and tWTR are minimum JEDEC specifications (JESD79-2C, Tables 41 and 42 on
pages 73 through 76) specified in ns. These must be converted to mem_clks by dividing by tCK and
rounding up to the nearest integer, as shown in Table 7-28. Note that tRRD is larger for devices with 2K
pages (MemMode = 0010, 0110, 1010, and 1110), therefor if any DIMM uses one of these chip types the
larger tRRD must be used.

JEDEC has a “Note 3” for tRAS and tRTP, indicating that these values are a minimum requirement, and
that the minimum read to precharge timing is AL + BL/2 providing that tRPT and tRAS (minimum) have
been satisfied. The memory controller takes care of that if RASTimer0 TiRtP is programmed correctly.

JEDEC also has a “Note 4” for tRRD indicating that a minimum of 2 mem_clks (2 * tCK) are required
regardless of mem_clk frequency. This is satisfied using Table 7-28 for tCK = 5 ns and faster, but the
user should note this requirement if using clocks slower than 5 ns.

• As shown above for tRRD, arithmetic should be performed on the times in ns before being converted to
mem_clks, as shown for two more calculations in Table 7-29.

• For the CASTimer0 and CASTimer1 register descriptions, CAS accesses to different DIMMs use the
terms RRMux, WRMux, WRMux, and RWMux. These terms add time to allow the data bus to switch
between DIMMs. If no external data multiplexers are used, a value of ‘1’ cycle must be used for these
terms. If external data multiplexers are used, an additional cycle might be needed to account for the
switching time of the multiplexers.

These examples use a value of 1 cycle for RRMux, WRMux, WRMux and RWMux.

Table 7-28. tRTP, tWR and tRRD.

Speed DDR2-533, tCK = 3.75 ns DDR2-400, tCK = 5 ns

Parameter ns mem_clks ns mem_clks

tRTP 7.5 2 7.5 2

tWR 15 4 15 3

tRRD, 1K Page 7.5 2 7.5 2

tRRD, 2K Page 10 3 10 2

4 × tRRD, 1K Page 30 8 30 6

4 × tRRD, 2K Page 40 11 40 8

tWTR 7.5 2 10 2

Table 7-29. tRTP+tRP, tWR + tRP.

Speed DDR2-533B
tCK = 3.75 ns

DDR2-533C
tCK = 3.75 ns

DDR2-400B
tCK = 5 ns

DDR2-400C
tCK = 5 ns

Bin 3 - 3 - 3 4 - 4 - 4 3 - 3 - 3 4 - 4 - 4

Parameter ns mem_clks ns mem_clks ns mem_clks ns mem_clks

tRTP + tRP 18.75 5 22.5 6 22.5 5 27.5 6

tWR + tRP 26.25 7 30 8 30 6 35 7

User Manual

CPC945 Bridge and Memory Controller Preliminary

DDR2 Memory Controller
Page 178 of 655 February 1, 2008

:

Table 7-30. Example Timing Parameters.

Speed DDR2-533B
tCK = 3.75 ns

DDR2-533C
tCK = 3.75 ns

DDR2-400B
tCK = 5 ns

DDR2-400C
tCK = 5 ns

Bin 3 - 3 - 3 4 - 4 - 4 3 - 3 - 3 4 - 4 - 4

Parameter Calculation

TiAtP tRAS - 2 10 10 7 7

TiRtP (BL/2 - 2) + tRTP - 2 0 0 0 0

TiWtP WL + BL/2 +tWR - 2 6 7 5 6

TiPtA tRP - 2 1 2 1 2

TiPAtA, 4 bank tRP - 2 1 2 1 2

TiPAtA, 8 bank tRP - 1 2 3 2 3

TiRAPtA (BL/2) - 2 + RND(tRTP + tRP) - 2 3 4 3 4

TiWAPtA CL +(BL/2) - 1 + RND(tWR + tRP) - 2 9 11 8 10

TiAtARk 1K page tRRD1K page - 2 0 0 0 0

TiAtARk 2K page tRRD2K page - 2 1 1 0 0

TiAtABk tRC - 2 13 14 10 11

TiAtRW tRCD - 2 1 2 1 2

TiAtARkWin
1K page 4 * tRRD1K page 8 8 6 6

TiAtARkWin
2K page 4 * tRRD2K page 11 11 8 8

TiRtRRk BL/2 - 2 0 0 0 0

TiRtRDm BL/2 - 1 1 1 1 1

TiRtRSy* BL/2 + RRMux - 2 1 1 1 1

TiWtRRk (CL - 1) + BL/2 + tWTR - 2 4 5 4 5

TiWtRDm BL/2 - 1 1 1 1 1

TiWtRSy* BL/2 + WRMux - 2 1 1 1 1

TiWtWRk BL/2 - 2 0 0 0 0

TiWtWDm BL/2 - 1 1 1 1 1

TiWtWSy* BL/2 + WWMux - 2 1 1 1 1

TiRtWRk BL/2 2 2 2 2

TiRtWDm BL/2 2 2 2 2

TiRtWSy* BL/2 + RWMux - 1 2 2 2 2

(*) Use RRMux = WRMux = WWMux = RWMux = 1.

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
DDR2 Memory Controller

Page 179 of 655

Using the values in Table 7-30, the following register values are produced (Table 7-31 and Table 7-32):

Note: The register values given above are based on JESD79-2C. Strictly speaking, these values should be
considered for illustration purposes. The DIMM SPD data contains the actual timing specifications determined
by the manufacturers of the DIMMs. These data should be obtained using I2C and plugged into the calcula-
tions.

Table 7-31. RASTimer0/1 Register Values.

RASTimer0 (0xF8002030) RASTimer1 (0xF8002040)

Only 4 bank 1 or more 8 bank No 2K page 1 or more 2K page

533 MHz 3 - 3 - 3 0x500C1080 0x500C1100 0x1A40D0A0 0x1A42D0AC

533 MHz 4 - 4 - 4 0x500E2100 0x500E2180 0x22C0E120 0x22C2E12C

400 MHz 3 - 3 - 3 0x380A1080 0x380A1100 0x1A00A098 0x1A00A0A0

400 MHz 4 - 4 - 4 0x380C2100 0x380C2180 0x2280B118 0x2280B120

Table 7-32. CASTimer0/1 Register Values.

CASTimer0 (0xF8002050) CASTimer1 (0xF8002060)

533 MHz 3 - 3 - 3 0x00424084

0x00422108
533 MHz 4 - 4 - 4 0x00425084

400 MHz 3 - 3 - 3 0x00424084

400 MHz 4 - 4 - 4 0x00425084

User Manual

CPC945 Bridge and Memory Controller Preliminary

DDR2 Memory Controller
Page 180 of 655 February 1, 2008

7.16 Page Table/Timers

The page table contains entries for all SDRAM banks that might be installed. With 8 ranks maximum, and 8
banks per rank maximum (using 1 Gb or 2 Gb chips) there are 8 × 8 = 64 entries.

Each entry contains various status:

• If a row is open in the bank.

• If a row is open, the number of that row (the row address).

• Various timing conditions: for an open row, how long until a CAS command or Precharge can be issued,
for a closed row, how long until an Activate can be issued, and so on.

The Page Table updates its entries using the feedback from the Command Arbiter which indicates which
SDRAM commands are being issued. It loads its timers using values from the RAS Timer 0, RAS Timer 1,
CAS Timer 0 and CAS Timer 1 registers.

In previous designs (such as the CPC925), the Page Table logic was simply a lookup table that returned the
page open/close status for a given access. For the CPC945 the logic is more complex, being dominated by
the timers which are tracking the RAS and CAS activities for the 64 memory banks. Lookup operations return
the first SDRAM command that should be executed (for example, Precharge, Activate, Read or Write), and a
set of timer values which enable the reorder queues to properly time the requests of subsequent SDRAM
commands. Given the nature of this logic, the Page Table unit is also referred to as the “Timers” unit.

7.17 Reorder Queues

Incoming reads that do not take the fast path are entered in the Read Reorder Queue. Incoming writes and
scrubs are entered in the Write Reorder Queue.

7.17.1 Queue Sizes

The physical size of the Read Reorder Queue is 8 entries. The utilized size can be programmed using the
SzRdQ field of the MemRdQCnfg register (Section 12.10.10 Memory Read Request Queue Configuration
Register (MemRdQCnfg) on page 467), from 1 to 8 entries. The default is 8 entries. If SzRdQ > 8, the
programmed size is 8. If SzRdQ = 0, it is the same as SzRdQ = 1.

The physical size of the Write Reorder Queue is 16 entries. The utilized size can be programmed using the
SzWrQ field of the MemWrQCnfg register (Section 12.10.11 Memory Write Request Queue Configuration
Register (MemWrtQCnfg) on page 468), from 1 to 16 entries. The default is 16 entries. If SzRdQ > 16, the
programmed size is 16. If SzWrQ = 0, it is the same as SzWrQ = 1.

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
DDR2 Memory Controller

Page 181 of 655

7.17.2 Queue Filling

The two queues are filled from bottom to top: requests enter a queue at the lowest unoccupied slot. Entries
can be removed from any occupied slot. The queues operate in “pizza box” fashion: when an entry is
removed, all the entries above that slot move down one slot.

If the Read Reorder Queue becomes full (number of occupied slots = size programmed by SzRdQ) the
Memory Request Arbiter will stop taking read requests until one or more slots become available in the Read
Reorder Queue. If the Write Reorder Queue becomes full (number of occupied slots = size programmed by
SzWrQ) the Memory Request Arbiter will stop taking write and scrub requests until one or more slots become
available in the Write Reorder Queue.

7.17.3 Queue Entries

Each queue entry consists of the rank, bank, row and column addresses of a requested access to memory,
timers, and a state machine. (This is a simplified representation of the actual entry. For example, the source
of the request, PI, PCIe, HT, and a RMW indicator, among other things, are also stored in each entry.)

The output of the state machine is a set of two indicators to the Command Arbiter, RV and CV, and associ-
ated information. (Again, simplified.)

• RV (RAS Valid) is a request to issue a “RAS” command. Along with the RV signal is an indicator of the
command to be issued (Activate or Precharge) and the rank and bank address (and row address, for Acti-
vate).

• CV (CAS Valid) is a request to issue a “CAS” command. Along with the CV signal is the rank, bank and
column address. (The Command Arbiter will infer the command, read or write, based on which queue is
issuing the CV.)

When an entry is put into a queue it is initialized with the rank, bank, row and column information from the
Address Decoder, and first SDRAM command and timer values from the Page Table. The state machine
sequences to different states when the timers expire, and from feedback information from the Command
Arbiter.

Simplified example: suppose a read request to a closed row was accepted by the Memory Request Arbiter.

• It will be entered in the Read Reorder Queue with the rank, bank, row and column address from the
Address Decoder. The SDRAM command “Precharge” will be entered, from the Page Table. A timer in
the queue entry will be loaded with a value from the Page Table. This loaded value is from a timer in the
Page Table that has been counting off the time when it will be valid to issue a Precharge command to
close the open row in that bank.

• The timer counts down. When it reaches 0, the state machine will activate RV and indicate that the valid
command is Precharge. It sends the RV, Precharge command, rank and bank to the Command Arbiter.

Note: The timer value from the Page Table could be 0, in which case RV will be activated immediately.

• If the Command Arbiter selects this entry, it will use the Command Arbiter to issue the Precharge com-
mand. This issued command is fed back to the Page Table, which updates it status to indicate that there
are no open rows in that bank. The issued command is also fed back to the queue entry, which moves the
state machine to a state which drops the RV.

• A timer in the queue entry is loaded with a value for the time that it will be valid to issue Activate (TiPtA
from RAS Timer 0). When this timer counts down to 0, the state machine will issue RV, this time indicating

User Manual

CPC945 Bridge and Memory Controller Preliminary

DDR2 Memory Controller
Page 182 of 655 February 1, 2008

that the command is Activate. It sends the RV, Activate command, rank, bank and row to the Command
Arbiter.

• If the Command Arbiter selects this entry, it will use the Command Arbiter to issue the Activate command.
This issued command is fed back to the Page Table, which updates it status to indicate that this new row
is now open. The issued command is also fed back to the queue entry, which moves the state machine to
a state which drops the RV.

• A timer in the queue entry is loaded with a value for the time that it will be valid to issue read (TiAtRW
from RAS Timer 1). When this timer counts down to 0, the state machine will issue CV. It sends the CV,
rank, bank and column to the Command Arbiter.

• If the Command Arbiter selects this entry, it will use the Command Arbiter to issue the read command.
The issued command is fed back to the queue entry, which moves the state machine to a state which
drops the CV.

• The state machine will “retire” the entry. That is, the entry will remove itself from the queue, and entries
above that slot, if any, will all drop down by one slot.

From the number of fields in the RAS and CAS Timer registers, it should be evident that the above example is
highly idealized. There are many timing relationships that must be observed, which requires multiple timers in
the queue entries, and a state machine that factors in multiple timing relationships. As one example among
many, in the example above the state machine cannot simply issue CV some measured time after Activate if
a previous read or write is still using the data bus. Therefore a second timer can be counting off a time that
was initialized by TiRtRDm, if a read had just been performed to a different rank of the same DIMM, or
TiWtRSy if a write had just been performed to a different DIMM, and so on.

Also, the state machine does not necessarily proceed linearly. In the example above, an RV is issued with a
Precharge command and accepted by the Command Arbiter. But the Command Arbiter can follow that with
an acceptance, from some other entry, of an Activate command to a different row. Now the example entry will
have to start over again, counting down when it will be legal to request a precharge command again.

For the Write Reorder Queue and additional constraint on issuing both RV and CV is the availability of the
data to be written. As discussed in Section 7.8.2 on page 145 write data is supplied by the WDBs (Write Data
Buffers) in the PI. The PI also signals to the memory controller if the Write data in the buffers is valid. In some
cases (for example, intervention) it is possible that the write data is not in the WDB when the memory
controller is ready to do the write. The memory controller will not issue either RV or CV until the PI signals that
the write data is valid.

7.17.4 Queue Page Policy

For a given entry, when a queue indicates a CAS operation is valid with CV, it has the option of setting
column bit 10 for that entry to 0 or 1. When the Command Arbiter selects that entry and sends it to the
SDRAM, the SDRAM will keep its row open if C10=0, or it will close the row at the end of operation (auto pre
charge) if C10=1.

If an operation is issued with C10=0 the queue will update the page table and timers to indicate that the row is
still open; access to that same row is most likely to be governed by tCCD (CAS to CAS delay). If issued with
C10=1, the queue will update the page table and timers to indicate that the row is closed; access to that same
row will likely be dominated by tRP (Precharge to Activate).

The PgPolicy bits in the UsrCnfg register are a common control for the setting of C10 in the two queues:

• PgPolicy = 11 = Leave closed. C10 will always be set to 1; the page will always be closed.

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
DDR2 Memory Controller

Page 183 of 655

• PgPolicy = 01 = Usually closed. The queue will look at all of its enabled entries and if any requests are
still pending to that page then C10 will be set to 0 to leave the page open. If no entries in that queue are
directed to that page, then C10 will be set to 1 to close the page.

• PgPolicy = 10 = Leave open. C10 will always be set to 0; the page will always be left open.

• PgPolicy = 00 = Usually open. The queue will look at all of its enabled entries and if no requests are still
pending to that page and there are no other requests in that queue to a different page of the same rank
and bank, then C10 will be set to 1 to close the page. Otherwise C10 will be set to 0 to leave the page
open.

7.17.5 Queue Entry Aging

The “pizza box” operation of the queues, in which new entries always enter the top and move down as entries
below them are removed, implies that the entries in each queue are sorted by age, with the oldest at the
bottom and the newest at the top.

The Command Arbiter favors read and write commands to open pages over other commands. This implies
that some entries in a queue can stay there for a very long time. For example, if an occasional request to a
closed page is sprinkled within large streams of requests to open pages, the “closed page” requests will just
drift down to the bottom of the queue and stay there while newer entries above them are serviced.

To place an upper bound on the amount of time an entry stays in the queue, the two queues each have an
“Aging” counter monitoring the length of time an entry stays in the bottom-most slot. When the aging counter
hits a programmed limit it signals the Command Arbiter. The Command Arbiter will then switch its priority,
when servicing that queue, to servicing the bottom-most slot.

The aging limit can vary by the source of the request: PCI Express, Hypertransport, or PI. (For PCIe there is
no distinction between coherent and non-coherent requests. For PI there is no distinction among the 4 CPUs
and the I2C access.)

For the Read Reorder Queue the aging limits are programmed with the PcieAgCnt, PcieAgMd, HtAgCnt,
HtAgMd, ApiAgCnt and ApiAgMd fields of the MemRdQCnfg register (Section 12.10.10 Memory Read
Request Queue Configuration Register (MemRdQCnfg) on page 467). For the Write Reorder Queue the
aging limits are programmed with the PcieWrAgCnt, PcieWrAgMd, HtWrAgCnt, HtWrAgMd, ApiWrAgCnt and
ApiWrAgMd fields of the MemWrQCnfg register (Section 12.10.11 Memory Write Request Queue Configura-
tion Register (MemWrtQCnfg) on page 468).

If the AgCnt for one of the queues for a particular request source = 0xF, aging for that type of source in that
queue is disabled. Otherwise, the aging count is = AgCnt * 1, 4, 16 or 64, depending on the value of the asso-
ciated AgMd.

The Aging Count for the Read Reorder Queue is time based: the aging counter is loaded when the bottom-
most slot receives a new entry and decrements towards 0 on every mem_clk.

The Aging Count for the Write Reorder Queue is event based: the aging counter is loaded when the bottom-
most slot receives a new entry and decrements towards 0 each time an entry higher up in the queue is
retired.

Note: There is only one timer per queue. Therefore, if a queue’s aging for a given request source is disabled,
and a request from that source enters the bottom-most slot of that queue, then aging for that queue is effec-
tively disabled until the entry from the bottom-most slot is eventually retired (if ever).

User Manual

CPC945 Bridge and Memory Controller Preliminary

DDR2 Memory Controller
Page 184 of 655 February 1, 2008

In general the longest time that an entry with disabled aging can stay in the bottom-most slot of the Read
Reorder Queue is the time between 2 refreshes, plus the time to do a refresh sequence. This is because a
refresh closes all open pages, and the Command Arbiter prioritizes requests of the same type from oldest to
newest. Following a refresh sequence, all entries will be request an Activate, and the Command Arbiter will
select the bottom-most (oldest) entry.

The same cannot be said of the Write Reorder Queue, because the Command Arbiter favors reads over
writes. In the “worst” case, the Command Arbiter can continuously service the Read Reorder Queue and
refresh requests while entries remain in the Write Reorder Queue forever. (But as described below, write
conflicts and high water marks can switch priority to the Write Reorder Queue.)

7.17.6 Queue Write Conflicts

Because of the Read and Write Reorder Queues and the Command Arbiter policies, read and write requests
presented to the memory controller can be executed out-of-order (hence the name, “Reorder Queue”).
However, when read requests are presented with the same address as a preceding write request, the write
will be guaranteed to be performed first (“reads push writes”).

Incoming read requests have their address compared with the addresses of all entries in the Write Reorder
Queue. If there are one or more matches:

• The read request is put in the Read Reorder Queue and flagged as having a “Write Conflict.”

• The Read Reorder Queue entry also has a pointer set to latest write in the Write Reorder Queue having
the conflict. (The pointer is updated as the write request drops down in the Write Reorder Queue.)

• All entries in the Write Reorder Queue having the matching address are flagged as having a Write Con-
flict.

Entries in the Read Reorder Queue that are flagged as having a Write Conflict are ignored by the Command
Arbiter with regard to their CV requests. Hence, these entries cannot have their Read Command requests
honored.

For entries flagged as having write conflicts, when the entry in the Write Reorder Queue pointed to by an
entry in the Read Reorder Queue is retired, the write conflict flag is reset in the Read Reorder Queue entry.
Now, that entry in the Read Reorder Queue can have its Read Command request honored and executed.

Reads normally have priority over writes, but entries in the Write Reorder Queue flagged as having write
conflicts will cause the Command Arbiter to switch to servicing those entries, to prevent deadlock. See
Section 7.18.1 Queue to Queue Arbitration on page 188 for more details.

7.17.7 Queue Write High Watermarks

As mentioned previously the Command Arbiter favors reads over writes. This can cause write requests to
remain in the Write Reorder Queue much longer than read requests; this is the reason that the physical size
of the Write Reorder Queue is twice the physical size of the Read Reorder Queue.

However, it would be bad to let the Write Reorder Queue fill up and stay that way for a long period of time,
therefore the Write Reorder Queue has programmable high watermarks. There are three types of high water-
mark conditions:

• The number of all entries in the Write Reorder Queue has reached its specified limit.

• The number of all entries from HT requests in the Write Reorder Queue has reached its specified limit.

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
DDR2 Memory Controller

Page 185 of 655

• The number of all entries from PCIe requests in the Write Reorder Queue has reached its specified limit.

These limits are specified by the WrQMk, HtWDBMk and PcWDBMk fields, in the MemRWArb Register
(Section 12.10.13 Memory R/W Arbitration Register (MemRWArb) on page 471).

When a high watermark condition is met the Command Arbiter will switch its priority to the Write Reorder
Queue. See Section 7.18.1 Queue to Queue Arbitration for more details.

The reason for having separate high watermarks for HT and PCIe, and the reason they are called “WDB”
watermarks, is because of the fact that when these units request writes they put their write data into a Write
Data Buffer (WDB) in the PI unit. There could be potential “lockup” scenarios in which a bus stalls because its
WDB is filled, but no requests are made to the memory controller which would switch the Command Arbiter to
servicing the write requests associated with this data. The HT and PCIe watermarks prevent these lockouts
because the watermarks cannot be disabled. Their maximum size of 8 is equal to the maximum number of
entries in the HT and PCIe WDBs, therefore if their WDB is filled up it is guaranteed that the associated
watermark will be hit, the Command Arbiter will switch to the Write Reorder Queue, and eventually the write
requests will be serviced.

Although the WrQMk was originally intended to be a generic high watermark, its value is constrained by how
the PI WDB is programmed. The APIWdbCfg register (Section 12.9.7 API Write Data Buffer (WDB) Configu-
ration Register (APIWdbCfg) on page 417) has fields that guarantee the number of processor write and inter-
vention write entries, on a per-CPU basis. The WrQMk must be set less than or equal to the total number
of “non-guaranteed” entries in the PI WDB, or a lockup condition can occur.

If a write high watermark is programmed to a larger value than the programmed size of the Write Reorder
Queue, its actual value is the same as the programmed size of the queue.

If the WrQMk is programmed as 0, the actual watermark value is = 1.

7.17.8 Queue Grant Mode

The QGrntMd bit in the MemRdQCnfg register, when set, prevents the Memory Request Arbiter from
accepting requests when either queue is full (except for Reads that can be immediately executed using the
Fast Path).

This bit is provided for diagnostic purposes (see Section 7.18.7 Enforced Ordering) and is normally set to 0.

User Manual

CPC945 Bridge and Memory Controller Preliminary

DDR2 Memory Controller
Page 186 of 655 February 1, 2008

7.18 Command Arbiter

The Command Arbiter services requests whenever the Memory Programming Control is not active (see
Section 7.9 Memory Programming Control). The Command Arbiter services two basic requests, in the
following order:

1. Refresh requests.

2. Queue requests.

Figure 7-5 shows the basic flow of the Command Arbiter. The CMDARB state machine arbitrates among the
two queues and the Fast Path (Section 7.18.1, Section 7.18.2 and Section 7.18.4). Each queue has selection
among its entries (Section 7.18.3). A multiplexer is used to select SDRAM commands generated by the
Refresh unit (or the Memory Programming Control unit) or the arbitrated SDRAM command from the
CMDARB state machine. The output of the multiplexer is sent to the Code Output unit which sends the
signals to the SDRAMs. The Code Output unit also generates Chip Selects, CKEs and ODTs.

Information about the SDRAM command selected by the multiplexer is fed to the datapath controls so that
Write data is sent at the proper time, Read data is captured at the proper time, and the data bus is enabled/tri-
stated at the proper times.

As discussed in Section 7.16 and Section 7.17, command information is fed back to the Page Table / Timers,
and the two reorder queues, so they can modify their states and timing values based on the actual commands
that are sent to the memories.

The outputs of the multiplexer can also feed back to the inputs to support two cycle addressing
(Section 7.18.5) and “Multiple Commands” (RMWs and 128 byte transfers, Section 7.18.6).

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
DDR2 Memory Controller

Page 187 of 655

When the Memory Programming Control unit is active the Command Arbiter does no arbitration: it simply
passes the commands from the Memory Programming Control unit through the multiplexer. (Using the
Refresh port; the Memory Programming Control unit and the Refresh control unit share a common port into
the Command Arbiter.)

Refresh requests are straight-forward: the Command Arbiter accepts the request, passes the commands
through the multiplexer, and returns to arbitration.

The Queue request arbitration is more complex, taking into account the RV and CV signals from the fast path
and the two queues, the aging indications, write conflict flags, write high watermarks, and controls in the
MemRdQCnfg, MemQArb and MemRWArb registers.

Figure 7-5. Command Arbiter Flow

Multiplexer

CV
RV
CVEn
RVEn
Aged

Select
Oldest
Valid
RDQ
Cmd

CV
RV
CVEn
RVEn
Aged

Select
Oldest
Valid
WRQ
Cmd

CMDARB
STATE

Conflicts

Fastpath

(from queues)

(from timers)

Refresh and
Mem Prog Cntl

Hold
For
2CyAd

Mult
Cmd

from

Code
Outputs

to PHY

RAS
CAS
WE
CS
CKE
ODT
BA
MA

wrRequest
rdRequest

to datapath

High Watermark Hits

Feedback (to timers and queues)

User Manual

CPC945 Bridge and Memory Controller Preliminary

DDR2 Memory Controller
Page 188 of 655 February 1, 2008

7.18.1 Queue to Queue Arbitration

If one queue is empty and the other queue is not empty, the Command Arbiter will service the non-empty
queue.

If neither queue is empty, reads have priority over writes, and in the general case the Command Arbiter will
service the Read Reorder Queue.

When the Command Arbiter switches priority to a new queue, it resets a burst counter for the new queue, As
entries in the new queue are serviced the burst counter counts the number of entries which are retired. When
the burst count hits a programmed limit, it can cause the Command Arbiter to switch to the opposite queue.

The programmed burst limits are the WrBurst and RdBurst fields in the MemRWArb register
(Section 12.10.13 Memory R/W Arbitration Register (MemRWArb) on page 471). If the programmed burst
size is greater than the programmed size of a queue, it is the same as setting the burst size equal to the
programmed size of that queue.

When a high water mark is hit, the Command Arbiter will switch priority to the Write Reorder Queue after the
read burst count is met. Once the Write Reorder Queue receives priority, it retains it until the write burst count
is met.

A write conflict flagged in the oldest (bottom-most) entry of the Read Reorder Queue will cause the Command
Arbiter to switch priority to the Write Reorder Queue, regardless of the read burst count. As soon as the
write(s) with the conflicts are retired (which resets the write conflict flag for that entry in the Read Reorder
Queue), the Command Arbiter can switch back to the Read Reorder Queue, regardless of the write burst
count.

If the Command Arbiter is servicing the Write Reorder Queue because the Read Reorder Queue was empty,
and the Read Reorder Queue becomes not empty, the priority will switch back to the Read Reorder Queue,
regardless of the write burst count.

7.18.2 Fast Path

If both queues are empty, a new request is a read, and the Fast Path is enabled, the first SDRAM command
associated with that read (for example, Precharge, Activate or Read) will be accepted immediately by the
Command Arbiter, bypassing the Read Reorder Queue. (This first command is determined by the results of
the Page Table lookup.)

If the first SDRAM command was not a Read command, the request is entered in the Read Reorder queue
with timing values and status appropriate for its next SDRAM command (for example, Activate, Read). The
entry will be processed by the Command Arbiter as usual with the RV and CV signals.

If the first SDRAM command was itself a Read command, the Read Reorder Queue is bypassed entirely.

If Dynamic CKE is enabled (Section 7.25.6 Dynamic CKE) then the Fast Path is disabled. The Fast Path can
also be disabled with the FastPathDis bit of the MemRWArb register.

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
DDR2 Memory Controller

Page 189 of 655

7.18.3 Intra Queue Arbitration

Each queue presents a vector of RVs (RAS Command Valid) and a vector of CVs (CAS Command Valid).
The Command Arbiter prioritizes the vectors by age of the queue that has priority. In general it selects the
oldest enabled request.

The RdQCVEn, RdQRVEn, WrQCVEn and WrQRVEn bits in the MemQArb register (“Memory Reorder
Queue Arbitration Register (MemQArb)” on page 470) specify the number of CVs and RVs that are examined
by the Command Arbiter (counting from the bottom of the queue). Thus, the CV Enables can limit how deep
the Command Arbiter examines a queue for data commands, and the RV Enables can limit how deep the
Command Arbiter examines a queue for non-data commands. The deeper the examination, the more out of
order the requests can be processed.

The default values of 0 enable examination of all entries in the queue. If an Enable for a queue is set to a
higher value than the programmed size of that queue, it is the same as enabling examination of all entries in
that queue.

As described above in “Queue Entry Aging” on page 183, if an aging counter hits its limit for a queue that has
priority, the priority within that queue will be forced to the bottom-most entry, regardless of the CV and RV
status of any of the entries. Within that queue, priority stays with the bottom-most entry until the bottom-most
entry is retired.

7.18.4 RW Arbitration Mode

As described above in Section 7.18.1 Queue to Queue Arbitration, a given queue will have priority and only
commands from that queue will be accepted by the Command Arbiter, until priority switches to the opposite
queue. Using the RWArbMd bits in the MemRWArb register, it is possible to modify this restriction.

• When enabled with RWArbMd[1], if the Write Reorder Queue has priority but no CAS commands (CVs) in
that queue are valid, and if the Read Reorder Queue has a valid CAS command, then the Command
Arbiter will accept that request and perform the CAS (Read) Command.

• When enabled with RWArbMd[0], if the Read Reorder Queue has priority but no CAS commands in that
queue are valid, and if the Write Reorder Queue has a valid CAS command, then the Command Arbiter
will accept that request and perform the CAS (Write) Command.

When RWArbMd[0] = 1 (enabled), it is required that all aging counts in the Read Reorder Queue be
set to a non-zero value. Otherwise reads can be locked out from execution if many writes are
streamed to open pages.

Priority stays with the first queue, until the usual reason for switching priority to the opposite queue is hit
(burst count, write conflict, high watermark).

User Manual

CPC945 Bridge and Memory Controller Preliminary

DDR2 Memory Controller
Page 190 of 655 February 1, 2008

7.18.5 Two Cycle Addressing

Normally when the memory controller issues a command it asserts the appropriate Chip Select on the same
CK cycle. But if two cycle address is set (Section 12.10.14 Memory Bus Configuration Register (MemBus-
Config) on page 472, Ad2Cy bit), the command (and its address) is held an additional CK, and the Chip
Select is asserted on the second clock. Figure 7-5 shows that the Command Arbiter feeds back and reuses
its issued commands to implement two cycle addressing.

The purpose of two cycle addressing is to allow enough time for the commands and addresses to propagate
on the board if those signals are heavily loaded.

When two cycle addressing is not enabled, the Command Arbiter can achieve command and address bus
optimizations by inserting opportunistic precharges and activates during otherwise dead cycles. But when two
cycle addressing is enabled, this generally precludes these opportunistic cycles, and therefore performance
is degraded.

7.18.6 Multiple Commands

There are two cases in which the Command Arbiter must execute multiple commands based on accepting a
single command request from a queue:

• When the Write Reorder Queue indicates that a write requires a RMW (Read-Modify-Write).

• When the transfer size is 128 bytes.

Figure 7-5 shows that the Command Arbiter feeds back its command status to synthesize these multiple
commands.

7.18.6.1 RMW

For RMWs, the Command Arbiter does not permit any other commands to execute between the Read and
the Write.

RMWs are an “expensive” operation. Streams of back-to-back writes or back-to-back reads can keep the
external data bus always transferring data. But a RMW requires that, after the Read is performed, that the
memory controller wait for the memory devices to tri-state the data bus, then the memory controller enables
its data bus drivers, and finally the write data can be written out.

The Command Arbiter uses the TiRtWRMW field in the MemRWArb register to determine how long to wait
after issuing the Read command before issuing the Write command. The setting of this value is dependant on
the external memory configuration (registered/unbuffered DIMMs, board delays, and so on). It is important to
set this value to a high enough value to allow the data bus to turn around: if the value of TiRtWRMW is too
small data corruption will occur. On the other hand, it is important to not make this value too large, because it
will lengthen an already expensive operation.

See Section 7.8.2.1 Read-Modify-Writes on page 145 for more details on RMW.

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
DDR2 Memory Controller

Page 191 of 655

7.18.6.2 128 Byte Transfers

With a burst size of 4 for the 128-bit bus configurations and a burst size of 8 for the 64-bit bus configurations,
the CPC945 always transfers up to 4 * 16 or 8 * 8 = 64 bytes for a given Read or Write. In addition to requests
of 64 bytes or less, the memory controller must also handle requests to transfer 128 bytes.

For 128 byte transfer sizes, when the Command Arbiter accepts a CAS command (Read or Write) it will feed
that command back and re-issue it, thus generating two back-to-back Read commands or Write commands.
The Command Arbiter can accept and issue nondata commands between the two back-to-back data
commands.

7.18.7 Enforced Ordering

Ordering can be enforced (reads and writes are executed exactly in the order they are received by the
memory controller), by setting the queue sizes to 1 (SzRdQ = 1 and SzWrQ = 1 in the MemRdQCnfg and
MemWrQCnfg Registers), disabling the Fast Path (FastPathDis = 1 in the MemRWArb register) and not
allowing requests to enter one queue when the other queue already has an entry (QGrntMd = 1 in the
MemRdQCnfg register).

This is for diagnostic purposes. Enforced ordering will significantly degrade performance.

7.19 ECC

7.19.1 ECC Introduction

The CPC945 DDR2 memory controller implements an ECC (error checking and correction) code. When ECC
is enabled:

• On writes, in addition to writing 128 bits of data, 16 additional check bits are written for a total of 144 bits.

• On reads, the memory controller is able to use the check bits to determine if an error has occurred (error
checking). For some errors, the memory controller can replace the bad data from memory with good data
before returning the data to the requestor (error correction).

Technically, the CPC945 implements a (144,128) SSC/DSD (single symbol correction/double symbol detec-
tion) ECC code, in which there are 4-bits per symbol. This is also referred to as a S4EC/D4ED code.

The 144 bits are divided into 4-bit nibbles (symbols) which lie on 4-bit boundaries:

• The ECC code will detect and correct up to 4 bits in error, if all 4 bits are from the same nibble.

• The ECC code can detect errors of more than 4 bits:

• Up to 8 bits in error will be detected if the errors are confined to 2 nibbles.

• Errors that span more than 2 nibbles might or might not be detected.

Note: When 4-bit wide memory chips are used, an entire memory chip can fail and the ECC code can still
correct the 4 bits of data for that chip. This is known as “chip kill” support. Chip kill support does not have to
be explicitly enabled; it is inherent for the CPC945 ECC code when 4-bit wide memory chips are used.

In addition to checking/correction of data, the ECC code also incorporates an address parity bit (AP) and a
Special Uncorrectable Error bit (SPUE), which are discussed below.

User Manual

CPC945 Bridge and Memory Controller Preliminary

DDR2 Memory Controller
Page 192 of 655 February 1, 2008

ECC uses the MCCR (Memory Check Control Register at 0xF8002440), which contains the ECC_EN (ECC
Enable) bit and other control bits, the MESR (Memory Error Syndrome Register at 0xF8002480) which
contains status information when an error is detected, and MEAR0 and MEAR1 (Memory Error Address
Register 0 and 1 at 0xF8002460 and 0xF8002470) which contains the address of the data which caused an
error detection and error counts.

The CPC945 DDR2 memory bus bits are labeled [0:143]. Bus bits 0:127 are used for data bits 0:127 and bus
bits 128:143 are used for check bits 0:15. DQS[16:17] are the strobes for the check bytes. (DQS [32:35] in
single-ended mode.)

Because the code operates over 128 bits, only the 128-bit memory configuration is supported with ECC. ECC
must not be enabled when using one of the 64-bit configurations.

By default ECC is disabled. In this condition, DQ[128:143] and DQS[16:17] (DQS [32:35] in single-ended
mode) are always tri-stated. ECC errors are never generated. The DDR2 PHY Registers which control the
timings of the check bits and the check bit DQS signals can be left at their default values.

When enabled with the ECC_EN bit in the MCCR, the check bit DQS signals operate the same as the rest of
the DQS signals, check bits are generated on writes and checked on reads, and ECC errors can be gener-
ated. The check bits and their DQS signals must be adjusted using the DDR2 PHY Registers for correct
timing, the same as for the data bits.

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
DDR2 Memory Controller

Page 193 of 655

Table 7-33. Hamming Matrix.

E0 E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 E12 E13 E14 E15 E16 E17
0
0

0
1

0
2

0
3

0
4

0
5

0
6

0
7

0
8

0
9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
4

3
5

3
6

3
7

3
8

3
9

4
0

4
1

4
2

4
3

4
4

4
5

4
6

4
6

4
8

4
9

5
0

5
1

5
2

5
3

5
4

5
5

5
6

5
7

5
8

5
9

6
0

5
1

6
2

6
3

6
4

6
5

6
6

6
7

6
8

6
9

7
0

7
1

0 0 0 0 0 1 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0
1 0 0 0 0 0 0 1 0 1 0 0 1 0 1 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 1 0 0 0 0 0 1 0 0
2 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 1 0 0 0 0 0 0 1 0
3 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1
4 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 1 1 1 0 0 0 0 0
5 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 1 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0
6 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 1 0 0 1 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 0 0
7 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 0 0 0 0 0 0
8 0 0 0 1 1 0 0 0 0 0 0 0 1 1 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 1 1 1 0
9 1 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 1 1 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 1

10 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 1 0 1 0 0 1 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0
11 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 1 0 0
12 1 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1
13 0 0 1 0 1 0 0 1 0 1 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 1 0 0 0 0 0 1 0 0 1 0 0 1
14 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 1 0 0 0 0 0 0 1 0 0 1 0 0
15 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 0

Table 7-34. Hamming Matrix Continued.

E18 E19 E20 E21 E22 E23 E24 E25 E26 E27 E28 E29 E30 E31 E32 E33 E34 E35

7
2

7
3

7
4

7
5

7
6

7
7

7
8

7
9

8
0

8
1

8
2

8
3

8
4

8
5

8
6

8
7

8
8

8
9

9
0

9
1

9
2

9
3

9
4

9
5

9
6

9
7

9
8

9
9

1
0
0

1
0
1

1
0
2

1
0
3

1
0
4

1
0
5

1
0
6

1
0
7

1
0
8

1
0
9

1
1
0

1
1
1

1
1
2

1
1
3

1
1
4

1
1
5

1
1
6

1
1
7

1
1
8

1
1
9

1
2
0

1
2
1

1
2
2

1
2
3

1
2
4

1
2
5

1
2
6

1
2
7

A
P

S
P
U

1
2
8

1
2
9

1
3
0

1
3
1

1
3
2

1
3
3

1
3
4

1
3
5

1
3
6

1
3
7

1
3
8

1
3
9

1
4
0

1
4
1

1
4
2

1
4
3

0 0 0 0 1 1 1 1 0 0 0 0 0 1 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 1 1 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 1 0 0 1 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 1 0 1 1 0 1 0 0 1 0 0 0 1 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
4 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 1 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
5 0 1 0 0 1 0 0 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
6 0 0 1 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 1 1 0 1 0 0 1 0 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
7 0 0 0 1 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
8 0 0 0 0 1 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
9 0 0 0 0 0 1 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 1 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

10 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 1 0 1 1 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
11 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
12 1 1 1 0 0 0 0 0 1 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
13 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 1 0 0 1 0 1 0 0 1 0 0 0 0 0 0 1 0 0 1 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
14 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 1 0 1 1 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
15 1 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

User Manual

CPC945 Bridge and Memory Controller Preliminary

DDR2 Memory Controller
Page 194 of 655 February 1, 2008

7.19.2 Writes

ECC codes are implemented using a modified Hamming Matrix (H-Matrix). The CPC945 H-Matrix is given in
Table 7-33 and Table 7-34.

Bits 0 through 127 and AP are inputs to the check bit generator, and bits 128 through 143 are the generated
check bits.

AP is Address Parity. When enabled, address parity is calculated on a cache line size basis (odd parity is
calculated for address bits 28:56), and injected into the check bit calculations. Address Parity is enabled
by default; it can be disabled using bit 1, ECC_AP_DIS in the MCCR register. (When disabled, a “0” is
injected into the check bit calculation.)

SPUE is Special Uncorrectable Error. The H-Matrix has a column labeled SPUE but this is not a bit that is
fed into the check bit calculations. SPUE is a condition that can be set for partial write requests that trig-
ger read-modify-writes. SPUE is set if the read contains an uncorrectable error for the data to be written
back on the write. The ECC unit forces the data bits to all 0’s on the write, and it forces the check bits to a
special value. A subsequent read of that data will produce an uncorrectable error, and the syndrome will
indicate that the error was from a previous SPUE (in the absence of other additional errors).

Check bits are parity bits: each check bit is generated by bit-wise Exclusive ORing (XORing) a specified set of
data bits. Each row of the H-Matrix is an “equation” for generating a separate check bit.

For the inputs (data bits 0 through 127 and AP), the “1”s in the row indicate which bits are XORed. For the
generated check bits (128 thorough 143), a “1” indicates which check bit is generated. For example, bits 4, 5,
11, 12, 23, 24, 25, 28, 37, 40, 44, 52, 56, 62, 68, 75, 76, 77, 78, 84, 88, 89, 93, 100, 106, 107, 108, 112, 119,
120, and “AP” are bit-wise XORed to form a check bit, and the “1” in the bit 128 indicates that bit 128 (check
bit 0) is that check bit.

To avoid the case of having all 144 bits = 0, the generated check bits are inverted before they are sent off-
chip. Therefore a write of all 0’s will generate all 1 check bits = 0xFFFF. (AP = 0.)

Check bits 2, 6, 10 and 14 cover an even number of bits, while the remaining check bits cover an odd number
of bits. Writing all 1’s generates an internal check bit value of 0xDDDD, which because of the inversion
becomes 0x2222 when written to memory. (AP = 0.)

When address parity is disabled, the AP bit = 0. When address parity is enabled, the AP bit is the inverted
result of the bit-wise XOR of address bits 28:56, that is, AP = INV (A28 XOR A29 XOR ... A56). An address of
0x0_0000_0000 will generate AP = 1. An address of 0x0_0000_0080 will generate AP = 0.

The condition AP = 1 is XORed into check bits 0, 4, 10, 12 and 15 = 0x8829. A write of all 0’s with AP = 1 will
write check bits = 0x77D6 to memory (0xFFFF XORed with 0x8829). A write of all 1’s with AP = 1 will write
check bits = 0xAA0B to memory (0x2222 XORed with 0x8829).

For SPUE (Section 7.19.4 Partial Writes) the check bits generator is bypassed and special values are written
to memory. These values are 0x4418 if Address Parity is disabled, 0x4418 if Address Parity is enabled and
AP = 0, and 0xCC31 if Address Parity is enabled and AP = 1.

Table 7-35 summarizes the check bits that will be written to memory for the “interesting” cases of writing all
zeros, writing all ones, and the write back of a quadword in a read-modify-write in which a UE was detected
(SPUE).

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
DDR2 Memory Controller

Page 195 of 655

7.19.3 Reads

On a read operation, the memory controller takes bits 0 through 127 and calculates check bits in the same
manner as for writes. If there are no errors the check bits read in (bits 128 through 143) should be identical to
the calculated check bits. The two sets of check bits, read value and calculated, are bit-wise XORed to
compare the two vectors. The resultant 16-bit vector is called the Syndrome.

A syndrome of all 0’s indicates that the two vectors are indeed identical and that no error occurred. If any bit
in the syndrome is a 1, then there is an error. The syndrome is further decoded to determine if the error is
correctable or uncorrectable.

7.19.4 Partial Writes

Write requests of size 64 bytes will trigger a burst write operation of four 16-byte quadwords. New checkbits
will be generated for each quadword. Write requests of 128 bytes will trigger 2 back-to-back write bursts of 4
quadwords each. Again, entirely new checkbits are written for each quadword.

Write requests of less than 64 bytes will trigger a read-modify-write operation in which a burst read of four
quadwords is performed followed by a burst write of four quadwords. Error checking and correction will be
performed on each of the four quadwords that are read. New checkbits will be generated for each of the four
quadwords that are written.

• If a given quadword that is read in is entirely replaced with new write data, any error detected during the
read of that quadword will be logged (if enabled), but otherwise the read data and check bits are dis-
carded. Entirely new data and check bits for that quadword are written back.

• If a given quadword that is read is not to be modified with any new write data:

– If no errors are detected, new checkbits are generated and written back. These checkbits will be
identical to those read in.

– If a correctable error is detected, the bad bits in the quadword are corrected. New checkbits are gen-
erated based on the corrected quadword, and the corrected quadword is written back with those
checkbits.

– If an uncorrectable error is detected, the 128 data bits that were read are replaced with all 0’s. New
check bits are generated with the value 0x4418 or 0xCC31, depending on Address Parity. These
check bits along with the 128 zeros are written back.

• If a given quadword that is read is to be partially modified with new write data:

– If no errors are detected, new checkbits are generated and written back.

– If a correctable error is detected, the bad bits in the quadword are corrected. New write bytes are
merged with the corrected quadword. (This will cause corrected bits to be discarded if they are in

Table 7-35. Check Bit Summary.

Data AP = 0 AP = 1

All 0’s 0xFFFF 0x77D6

All 1’s 0x2222 0xAA0B

SPUE - data will be all 0’s 0x4418 0xCC31

AP = 0 when Address Parity is disabled or when Address[28:56] has an odd number of 1’s.
AP = 1 when Address parity is enabled and when Address[28:56] has an even number of 1’s.

User Manual

CPC945 Bridge and Memory Controller Preliminary

DDR2 Memory Controller
Page 196 of 655 February 1, 2008

bytes that are replaced with new write data.) New checkbits are generated based on the corrected
and merged quadword, and the corrected/merged quadword is written back with those checkbits.

– If an uncorrectable error is detected, the new write data is discarded. All 0’s are written back for data,
and 0x4418 or 0xCC31, depending on Address Parity, is written back for check bits.

7.19.5 Syndrome Decode

On a read, if the calculated check bits are bit-wise identical to the received check bits, the syndrome will be all
0’s, indicating that no error was detected. If one or more bits is 1, then an error has been detected.

For non-zero syndromes, the syndrome is further decoded to determine the nature of the error. This is a two-
step process, in which first the nibble in error is determined, and second the bit(s) in error are determined for
that nibble.

7.19.5.1 Nibble in Error

The following boolean equations determine if there is a nibble in error. Conventions:

• S[0], S[1],... S[15] are the 16 syndrome bits calculated by the bitwise-XOR of the received 16 check bits
with the generated 16 check bits.

• E[0], E[1], ... E[35] are the 36 possible nibbles in error.
• If there is no error all nibbles in error will equal 0.
• If there is an error confined to a nibble, one of the equations will be satisfied, indicating the nibble in

error.
• If there is more than one nibble in error, all nibbles in error should equal 0. This will be true if the bits

in error are confined to 2 nibbles. If more than 2 nibbles have bits in error it is possible for a nibble in
error equation to solve “true,” falsely indicating a correctable error when in fact the error is uncorrect-
able. The probability of this happening increases with increasing number of bits in error.

• ! = logical NOT, & = logical AND, ^ = logical XOR, “==” indicates 2 bits are identical.

Note that check bits can be in error as well as data bits. That is, there are 32 nibble in error indicators for data
and 4 nibble in error indicators for check bits.

In the H-Matrix shown in Table 7-33 and Table 7-34 the columns are grouped into nibbles and labeled E0,
E1, ...E35. These labels are the 36 symbols used by the ECC code, and for error decoding the labels corre-
spond with the E[0], E[1], ... E[35] nibble in error equations listed below.

The rows of the H-Matrix labeled 0, 1, ... 15 correspond to the 16 syndrome bits that are generated. It can be
seen that the equations implement the Hamming Matrix. For example, in the H-Matrix nibble in error E[0] can
only be generated if S[0], S[1], S[2] and S[3] are all 0’s, AND S[7] is equal to S[8], AND S[4] XORed with S[7]
is equal to S[9], AND... AND S[4] is equal to S[15].

 E[0] = !S[0] & !S[1] & !S[2] & !S[3] &
 (S[8] == S[7]) &
 (S[9] == (S[4] ^ S[7])) &
 (S[10] == S[5]) &
 (S[11] == S[6]) &
 (S[12] == (S[4] ^ S[5])) &
 (S[13] == S[6]) &
 (S[14] == S[7]) &

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
DDR2 Memory Controller

Page 197 of 655

 (S[15] == S[4]) ;

 E[1] = !S[4] & !S[5] & !S[6] & !S[7] &
 (S[0] == (S[8] ^ S[9])) &
 (S[1] == S[10]) &
 (S[2] == S[11]) &
 (S[3] == S[8]) &
 (S[12] == S[11]) &
 (S[13] == (S[8] ^ S[11])) &
 (S[14] == S[9]) &
 (S[15] == S[10]) ;

 E[2] = !S[8] & !S[9] & !S[10] & !S[11] &
 (S[0] == S[15]) &
 (S[1] == (S[12] ^ S[15])) &
 (S[2] == S[13]) &
 (S[3] == S[14]) &
 (S[4] == (S[12] ^ S[13])) &
 (S[5] == S[14]) &
 (S[6] == S[15]) &
 (S[7] == S[12]) ;

 E[3] = !S[12] & !S[13] & !S[14] & !S[15] &
 (S[4] == S[3]) &
 (S[5] == (S[0] ^ S[3])) &
 (S[6] == S[1]) &
 (S[7] == S[2]) &
 (S[8] == (S[0] ^ S[1])) &
 (S[9] == S[2]) &
 (S[10] == S[3]) &
 (S[11] == S[0]) ;

 E[4] = !S[0] & !S[1] & !S[2] & !S[3] &
 (S[8] == (S[4] ^ S[5])) &
 (S[9] == S[6]) &
 (S[10] == S[7]) &
 (S[11] == S[4]) &
 (S[12] == S[7]) &
 (S[13] == (S[4] ^ S[7])) &
 (S[14] == S[5]) &
 (S[15] == S[6]) ;

 E[5] = !S[4] & !S[5] & !S[6] & !S[7] &
 (S[0] == S[11]) &
 (S[1] == (S[8] ^ S[11])) &
 (S[2] == S[9]) &
 (S[3] == S[10]) &
 (S[12] == (S[8] ^ S[9])) &
 (S[13] == S[10]) &
 (S[14] == S[11]) &

User Manual

CPC945 Bridge and Memory Controller Preliminary

DDR2 Memory Controller
Page 198 of 655 February 1, 2008

 (S[15] == S[8]) ;

 E[6] = !S[8] & !S[9] & !S[10] & !S[11] &
 (S[0] == (S[12] ^ S[13])) &
 (S[1] == S[14]) &
 (S[2] == S[15]) &
 (S[3] == S[12]) &
 (S[4] == S[15]) &
 (S[5] == (S[12] ^ S[15])) &
 (S[6] == S[13]) &
 (S[7] == S[14]) ;

 E[7] = !S[12] & !S[13] & !S[14] & !S[15] &
 (S[4] == (S[0] ^ S[1])) &
 (S[5] == S[2]) &
 (S[6] == S[3]) &
 (S[7] == S[0]) &
 (S[8] == S[3]) &
 (S[9] == (S[0] ^ S[3])) &
 (S[10] == S[1]) &
 (S[11] == S[2]) ;

 E[8] = !S[0] & !S[1] & !S[2] & !S[3] &
 (S[8] == S[4]) &
 (S[9] == S[5]) &
 (S[10] == S[6]) &
 (S[11] == S[7]) &
 (S[12] == S[5]) &
 (S[13] == (S[5] ^ S[6])) &
 (S[14] == (S[6] ^ S[7])) &
 (S[15] == (S[4] ^ S[7])) ;

 E[9] = !S[4] & !S[5] & !S[6] & !S[7] &
 (S[0] == S[9]) &
 (S[1] == (S[9] ^ S[10])) &
 (S[2] == (S[10] ^ S[11])) &
 (S[3] == (S[8] ^ S[11])) &
 (S[12] == S[8]) &
 (S[13] == S[9]) &
 (S[14] == S[10]) &
 (S[15] == S[11]) ;

 E[10] = !S[8] & !S[9] & !S[10] & !S[11] &
 (S[4] == S[1]) &
 (S[5] == (S[1] ^ S[2])) &
 (S[6] == (S[2] ^ S[3])) &
 (S[7] == (S[0] ^ S[3])) &
 (S[12] == S[0]) &
 (S[13] == S[1]) &
 (S[14] == S[2]) &

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
DDR2 Memory Controller

Page 199 of 655

 (S[15] == S[3]) ;

 E[11] = !S[12] & !S[13] & !S[14] & !S[15] &
 (S[4] == S[0]) &
 (S[5] == S[1]) &
 (S[6] == S[2]) &
 (S[7] == S[3]) &
 (S[8] == S[1]) &
 (S[9] == (S[1] ^ S[2])) &
 (S[10] == (S[2] ^ S[3])) &
 (S[11] == (S[0] ^ S[3])) ;

 E[12] = !S[0] & !S[1] & !S[2] & !S[3] &
 (S[4] == S[10]) &
 (S[5] == (S[10] ^ S[11])) &
 (S[6] == (S[8] ^ S[11])) &
 (S[7] == S[9]) &
 (S[12] == S[8]) &
 (S[13] == S[9]) &
 (S[14] == S[10]) &
 (S[15] == S[11]) ;

 E[13] = !S[4] & !S[5] & !S[6] & !S[7] &
 (S[8] == S[2]) &
 (S[9] == (S[2] ^ S[3])) &
 (S[10] == (S[0] ^ S[3])) &
 (S[11] == S[1]) &
 (S[12] == S[0]) &
 (S[13] == S[1]) &
 (S[14] == S[2]) &
 (S[15] == S[3]) ;

 E[14] = !S[8] & !S[9] & !S[10] & !S[11] &
 (S[4] == S[0]) &
 (S[5] == S[1]) &
 (S[6] == S[2]) &
 (S[7] == S[3]) &
 (S[12] == S[2]) &
 (S[13] == (S[2] ^ S[3])) &
 (S[14] == (S[0] ^ S[3])) &
 (S[15] == S[1]) ;

 E[15] = !S[12] & !S[13] & !S[14] & !S[15] &
 (S[0] == S[6]) &
 (S[1] == (S[6] ^ S[7])) &
 (S[2] == (S[4] ^ S[7])) &
 (S[3] == S[5]) &
 (S[8] == S[4]) &
 (S[9] == S[5]) &
 (S[10] == S[6]) &

User Manual

CPC945 Bridge and Memory Controller Preliminary

DDR2 Memory Controller
Page 200 of 655 February 1, 2008

 (S[11] == S[7]) ;

 E[16] = !S[0] & !S[1] & !S[2] & !S[3] &
 (S[4] == (S[12] ^ S[13] ^ S[14])) &
 (S[5] == S[15]) &
 (S[6] == S[12]) &
 (S[7] == (S[12] ^ S[13])) &
 (S[8] == S[15]) &
 (S[9] == (S[12] ^ S[15])) &
 (S[10] == S[13]) &
 (S[11] == S[14]) ;

 E[17] = !S[4] & !S[5] & !S[6] & !S[7] &
 (S[8] == (S[0] ^ S[1] ^ S[2])) &
 (S[9] == S[3]) &
 (S[10] == S[0]) &
 (S[11] == (S[0] ^ S[1])) &
 (S[12] == S[3]) &
 (S[13] == (S[0] ^ S[3])) &
 (S[14] == S[1]) &
 (S[15] == S[2]) ;

 E[18] = !S[8] & !S[9] & !S[10] & !S[11] &
 (S[0] == S[7]) &
 (S[1] == (S[4] ^ S[7])) &
 (S[2] == S[5]) &
 (S[3] == S[6]) &
 (S[12] == (S[4] ^ S[5] ^ S[6])) &
 (S[13] == S[7]) &
 (S[14] == S[4]) &
 (S[15] == (S[4] ^ S[5])) ;

 E[19] = !S[12] & !S[13] & !S[14] & !S[15] &
 (S[0] == (S[8] ^ S[9] ^ S[10])) &
 (S[1] == S[11]) &
 (S[2] == S[8]) &
 (S[3] == (S[8] ^ S[9])) &
 (S[4] == S[11]) &
 (S[5] == (S[8] ^ S[11])) &
 (S[6] == S[9]) &
 (S[7] == S[10]) ;

 E[20] = !S[0] & !S[1] & !S[2] & !S[3] &
 (S[4] == S[13]) &
 (S[5] == (S[13] ^ S[14])) &
 (S[6] == (S[14] ^ S[15])) &
 (S[7] == (S[12] ^ S[15])) &
 (S[8] == (S[12] ^ S[13])) &
 (S[9] == S[14]) &
 (S[10] == S[15]) &

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
DDR2 Memory Controller

Page 201 of 655

 (S[11] == S[12]) ;

 E[21] = !S[4] & !S[5] & !S[6] & !S[7] &
 (S[8] == S[1]) &
 (S[9] == (S[1] ^ S[2])) &
 (S[10] == (S[2] ^ S[3])) &
 (S[11] == (S[0] ^ S[3])) &
 (S[12] == (S[0] ^ S[1])) &
 (S[13] == S[2]) &
 (S[14] == S[3]) &
 (S[15] == S[0]) ;

 E[22] = !S[8] & !S[9] & !S[10] & !S[11] &
 (S[0] == (S[4] ^ S[5])) &
 (S[1] == S[6]) &
 (S[2] == S[7]) &
 (S[3] == S[4]) &
 (S[12] == S[5]) &
 (S[13] == (S[5] ^ S[6])) &
 (S[14] == (S[6] ^ S[7])) &
 (S[15] == (S[4] ^ S[7])) ;

 E[23] = !S[12] & !S[13] & !S[14] & !S[15] &
 (S[0] == S[9]) &
 (S[1] == (S[9] ^ S[10])) &
 (S[2] == (S[10] ^ S[11])) &
 (S[3] == (S[8] ^ S[11])) &
 (S[4] == (S[8] ^ S[9])) &
 (S[5] == S[10]) &
 (S[6] == S[11]) &
 (S[7] == S[8]) ;

 E[24] = !S[0] & !S[1] & !S[2] & !S[3] &
 (S[8] == (S[6] ^ S[7])) &
 (S[9] == (S[4] ^ S[6])) &
 (S[10] == (S[4] ^ S[5] ^ S[7])) &
 (S[11] == (S[5] ^ S[6])) &
 (S[12] == S[4]) &
 (S[13] == S[5]) &
 (S[14] == S[6]) &
 (S[15] == S[7]) ;

 E[25] = !S[4] & !S[5] & !S[6] & !S[7] &
 (S[8] == S[0]) &
 (S[9] == S[1]) &
 (S[10] == S[2]) &
 (S[11] == S[3]) &
 (S[12] == (S[2] ^ S[3])) &
 (S[13] == (S[0] ^ S[2])) &
 (S[14] == (S[0] ^ S[1] ^ S[3])) &

User Manual

CPC945 Bridge and Memory Controller Preliminary

DDR2 Memory Controller
Page 202 of 655 February 1, 2008

 (S[15] == (S[1] ^ S[2])) ;

 E[26] = !S[8] & !S[9] & !S[10] & !S[11] &
 (S[0] == (S[6] ^ S[7])) &
 (S[1] == (S[4] ^ S[6])) &
 (S[2] == (S[4] ^ S[5] ^ S[7])) &
 (S[3] == (S[5] ^ S[6])) &
 (S[12] == S[4]) &
 (S[13] == S[5]) &
 (S[14] == S[6]) &
 (S[15] == S[7]) ;

 E[27] = !S[12] & !S[13] & !S[14] & !S[15] &
 (S[4] == (S[2] ^ S[3])) &
 (S[5] == (S[0] ^ S[2])) &
 (S[6] == (S[0] ^ S[1] ^ S[3])) &
 (S[7] == (S[1] ^ S[2])) &
 (S[8] == S[0]) &
 (S[9] == S[1]) &
 (S[10] == S[2]) &
 (S[11] == S[3]) ;

 E[28] = (S[4] == S[0]) &
 (S[5] == S[1]) &
 (S[6] == S[2]) &
 (S[7] == S[3]) &
 (S[8] == S[0]) &
 (S[9] == S[1]) &
 (S[10] == S[2]) &
 (S[11] == S[3]) &
 (S[12] == S[3]) &
 (S[13] == (S[0] ^ S[3])) &
 (S[14] == S[1]) &
 (S[15] == S[2]) ;

 E[29] = (S[0] == S[7]) &
 (S[1] == (S[4] ^ S[7])) &
 (S[2] == S[5]) &
 (S[3] == S[6]) &
 (S[8] == S[4]) &
 (S[9] == S[5]) &
 (S[10] == S[6]) &
 (S[11] == S[7]) &
 (S[12] == S[4]) &
 (S[13] == S[5]) &
 (S[14] == S[6]) &
 (S[15] == S[7]) ;

 E[30] = (S[4] == S[3]) &
 (S[5] == (S[0] ^ S[3])) &

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
DDR2 Memory Controller

Page 203 of 655

 (S[6] == S[1]) &
 (S[7] == S[2]) &
 (S[8] == S[0]) &
 (S[9] == S[1]) &
 (S[10] == S[2]) &
 (S[11] == S[3]) &
 (S[12] == S[0]) &
 (S[13] == S[1]) &
 (S[14] == S[2]) &
 (S[15] == S[3]) ;

 E[31] = (S[4] == S[0]) &
 (S[5] == S[1]) &
 (S[6] == S[2]) &
 (S[7] == S[3]) &
 (S[8] == S[3]) &
 (S[9] == (S[0] ^ S[3])) &
 (S[10] == S[1]) &
 (S[11] == S[2]) &
 (S[12] == S[0]) &
 (S[13] == S[1]) &
 (S[14] == S[2]) &
 (S[15] == S[3]) ;

 E[32] = !S[4] & !S[5] & !S[6] & !S[7] &
 !S[8] & !S[9] & !S[10] & !S[11] &
 !S[12] & !S[13] & !S[14] & !S[15] ;

 E[33] = !S[0] & !S[1] & !S[2] & !S[3] &
 !S[8] & !S[9] & !S[10] & !S[11] &
 !S[12] & !S[13] & !S[14] & !S[15] ;

 E[34] = !S[0] & !S[1] & !S[2] & !S[3] &
 !S[4] & !S[5] & !S[6] & !S[7] &
 !S[12] & !S[13] & !S[14] & !S[15] ;

 E[35] = !S[0] & !S[1] & !S[2] & !S[3] &
 !S[4] & !S[5] & !S[6] & !S[7] &
 !S[8] & !S[9] & !S[10] & !S[11] ;

7.19.5.2 Bits in Error

For each nibble in error, a group of 4 syndrome bits indicates which bit(s) are in error for that nibble. These
groups are shaded in the H-Matrix. For example, if E[3] == 1 (nibble 3 is in error),

• if S[0] == 1 then bit 12 is in error
• if S[1] == 1 then bit 13 is in error
• if S[2] == 1 then bit 14 is in error
• if S[3] == 1 then bit 15 is in error

User Manual

CPC945 Bridge and Memory Controller Preliminary

DDR2 Memory Controller
Page 204 of 655 February 1, 2008

Since a bit can have only 2 values, 0 and 1, a bit in error is corrected by “flipping” its value (changing a 0 to a
1 or changing a 1 to a 0).

For diagnostics (software decode of the syndrome) the full 144 bit field is decoded to determine which bits are
in error. For reads performed by the hardware, only data bits 0:127 are corrected. If check bits are in error
there is no correction.

• For E[0]: S[4], S[5], S[6], S[7] indicate bits [0], [1], [2], [3] are in error
• For E[1]: S[8], S[9], S[10], S[11] indicate bits [4], [5], [6], [7] are in error
• For E[2]: S[12], S[13], S[14], S[15] indicate bits [8], [9], [10], [11] are in error
• For E[3]: S[0], S[1], S[2], S[3] indicate bits [12], [13], [14], [15] are in error
• For E[4]: S[4], S[5], S[6], S[7] indicate bits [16], [17], [18], [19] are in error
• For E[5]: S[8], S[9], S[10], S[11] indicate bits [20], [21], [22], [23] are in error
• For E[6]: S[12], S[13], S[14], S[15] indicate bits [24], [25], [26], [27] are in error
• For E[7]: S[0], S[1], S[2], S[3] indicate bits [28], [29], [30], [31] are in error
• For E[8]: S[4], S[5], S[6], S[7] indicate bits [32], [33], [34], [35] are in error
• For E[9]: S[8], S[9], S[10], S[11] indicate bits [36], [37], [38], [39] are in error
• For E[10]: S[12], S[13], S[14], S[15] indicate bits [40], [41], [42], [43] are in error
• For E[11]: S[4], S[5], S[6], S[7] indicate bits [44], [45], [46], [47] are in error
• For E[12]: S[8], S[9], S[10], S[11] indicate bits [48], [49], [50], [51] are in error
• For E[13]: S[12], S[13], S[14], S[15] indicate bits [52], [53], [54], [55] are in error
• For E[14]: S[4], S[5], S[6], S[7] indicate bits [56], [57], [58], [59] are in error
• For E[15]: S[8], S[9], S[10], S[11] indicate bits [60], [61], [62], [63] are in error
• For E[16]: S[12], S[13], S[14], S[15] indicate bits [64], [65], [66], [67] are in error
• For E[17]: S[0], S[1], S[2], S[3] indicate bits [68], [69], [70], [71] are in error
• For E[18]: S[4], S[5], S[6], S[7] indicate bits [72], [73], [74], [75] are in error
• For E[19]: S[8], S[9], S[10], S[11] indicate bits [76], [77], [78], [79] are in error
• For E[20]: S[12], S[13], S[14], S[15] indicate bits [80], [81], [82], [83] are in error
• For E[21]: S[0], S[1], S[2], S[3] indicate bits [84], [85], [86], [87] are in error
• For E[22]: S[4], S[5], S[6], S[7] indicate bits [88], [89], [90], [91] are in error
• For E[23]: S[8], S[9], S[10], S[11] indicate bits [92], [93], [94], [95] are in error
• For E[24]: S[12], S[13], S[14], S[15] indicate bits [96], [97], [98], [99] are in error
• For E[25]: S[0], S[1], S[2], S[3] indicate bits [100], [101], [102], [103] are in error
• For E[26]: S[4], S[5], S[6], S[7] indicate bits [104], [105], [106], [107] are in error
• For E[27]: S[8], S[9], S[10], S[11] indicate bits [108], [109], [110], [11] are in error
• For E[28]: S[0], S[1], S[2], S[3] indicate bits [112], [113], [114], [115] are in error
• For E[29]: S[4], S[5], S[6], S[7] indicate bits [116], [117], [118], [119] are in error
• For E[30]: S[8], S[9], S[10], S[11] indicate bits [120], [121], [122], [123] are in error
• For E[31]: S[12], S[13], S[14], S[15] indicate bits [124], [125], [126], [127] are in error
• For E[32]: S[0], S[1], S[2], S[3] indicate bits [128], [129], [130], [131] are in error
• For E[33]: S[4], S[5], S[6], S[7] indicate bits [132], [133], [134], [135] are in error
• For E[34]: S[8], S[9], S[10], S[11] indicate bits [136], [137], [138], [139] are in error
• For E[35]: S[12], S[13], S[14], S[15] indicate bits [140], [141], [142], [143] are in error

7.19.5.3 Single Bit Errors

A classic SEC/DED (Single Error Correct/Double Error Detect) Hamming Matrix has the property that for
single bit errors, each column of the matrix gives the syndrome for that column being in error. The SSC/DSD
H-Matrix used by the CPC945 also has that attribute. For example, if there is a single bit error and the bit in
error is 00, then the syndrome will be 0b0000100001001001 = 0x0849.

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
DDR2 Memory Controller

Page 205 of 655

7.19.5.4 Address Parity and Special Uncorrectable Errors

The Address Parity and Special Uncorrectable Errors are both uncorrectable.

The syndrome for an Address Parity error matches the AP column in the H-Matrix similar to that of single bit
errors, as described above in Section 7.19.5.3 . If there is an Address Parity Error, and no other error, the
syndrome will be 0b1000100000101001 = 0x8829. An Address Parity Error can occur if, for example, a write
intended to address A is instead written to address B, followed by a read intended for address B that is indeed
read from address B.

If there is a Special Uncorrectable Error, and no other error, the syndrome will be 0xBBE7. This is the result of
reading in all 0’s for data, calculating inverted check bits = 0xFFFF, and XORing that with the 0x4418 check
bit value read in (AP = 0). A Special Uncorrectable Error will occur for a read of an address that had a
previous uncorrectable error detected during a Read-Modify-Write cycle to that address.

If Address Parity is enabled, and AP =1, the internally (inverted) check bits calculated for all 0 data will be
0x77D6. The check bits read in 0xCC31. The syndrome will be 0x77D6 XOR 0xCC31 = 0xBBE7. Again, this
is in the absence of other errors, that is, on the previous RMW the controller was able to write all 0’s back as
data and 0x4418 or 0xCC31 as check bits, depending on AP, and that these same values are present when
read back.

Summary: A syndrome of 0x8829 indicates an addressing error occurred. A syndrome of 0xBBE7 indicates a
previous read had an uncorrectable error. These errors will create other syndromes whose values cannot be
predicted, if there are additional errors.

7.19.5.5 Syndrome Decode Summary

For the purposes of determining and latching error status, the CPC945 hardware uses the following algo-
rithm:

• If the generated syndrome = 0x00, then there is no error and no correction.

• Else if any of the nibble-in-error decodes = 1 (Section 7.19.5.1 Nibble in Error), then there is a Correct-
able Error (CE), and the appropriate bits are corrected using the bit-in-error decode (Section 7.19.5.2 Bits
in Error).

• Else there is an uncorrectable error (UE) and there is no correction.

7.19.6 Error Logging

Errors are detected and logged on memory reads. These reads can be triggered by system read requests,
the read portion of a read-modify-write cycle triggered by system partial write requests, or reads generated by
scrub requests.

Errors are either uncorrectable or correctable.

Counts of each type of error are maintained in the MEAR1 as the UECnt and CECnt fields. Any read that has
a detected error will increment the appropriate counter up to a value of 255 = 0xFF. Once a counter reaches
a value of 255 it stays at that value. A read of the MEAR1 resets both counter values to 0.

In addition to counting the errors, additional information is latched and “frozen” upon the first detection of an
error. This information is latched in MEAR0, MEAR1 and MESR simultaneously (as a logical set):

• The syndrome is latched in bits 16:31 of MESR.

User Manual

CPC945 Bridge and Memory Controller Preliminary

DDR2 Memory Controller
Page 206 of 655 February 1, 2008

• The address is latched in MEAR0. The address that is latched is the internally decoded rank, bank, row
and column. (Software is required to reverse decode these values to a system address based on the set-
tings of the DmCnfg[0:3] and UsrCnfg registers, and the address mappings given in Table 7-23,
Table 7-24, Table 7-25 and Table 7-26.)

• The burst count is latched in MEAR1. This value indicates which quadword contained the error (in a burst
of 4 for 128-bit configuration and a burst of 8 for the 64-bit configurations).

• The type of error is recorded in the MESR. If the error was correctable the ECC_CE bit is set. If the error
was uncorrectable the ECC_UE bit is set. In addition, if the error was uncorrectable and it was detected in
the read portion of a read-modify-write cycle, the ECC_UEWT bit is set.

The ECC_UE, ECC_CE and ECC_UEWT bits are reset to 0 when the MESR is read.

Following a read of the MESR register (or a chip reset), the syndrome, address and burst count associated
with an error are enabled to be captured. In the general case:

• Following a capture enable, if an error is detected the syndrome, address and burst count fields are
updated and will not change until

– The capture mechanism is re-enabled by reading the MESR (or there is a chip reset).
– Following the re-enable, another error is detected.

However, uncorrectable error status has a higher priority than correctable error status. This means that, if the
error information for a correctable error is captured, and some time later before the MESR is read an uncor-
rectable error is detected, then the information associated with the correctable error is discarded and
replaced with the error information for the uncorrectable error.

The ECC_UE, ECC_CE and ECC_UEWT bits are independent of this capture mechanism. Once set, these
bits stay set until the MESR are read. It is possible that both the ECC_UE and ECC_CE bits are “1” when the
MESR is read. This means that since the last time the MESR was read, at least one UE and at least one CE
error was detected. Because of the priority mechanism the syndrome, address and burst count will be associ-
ated with the first UE that was detected.

7.19.7 Error Reporting

Masked copies of the MESR ECC_UE and ECC_CE bits are forwarded to the PI Exception Register
(0xF80300A0) in the Processor Interface Unit to become bits 9 and 10, EccUEExcp and EccCEExcp.

The ECC_UE and ECC_CE bits are forwarded to the PI Exception Register by default. They can be masked
off using the ECC_UE_MASK and ECC_CE_MASK bits in the Memory Check Control Register (MCCR).

As described in “API Exception Register (APIExcp)” on page 423, the exception generated by the UE or CE
can be used to activate the PI_CSTP pin (under control of APIMASK0 register or the CHP_FAULT_N pin
(under control of the APIMASK1 register).

Bits in the PI Exception register are cleared when read. However, if the ECC_UE or ECC_CE bits in the
MESR are still ‘1’ when the PI Exception register is read, the corresponding EccUEExcp and EccCEExcp bits
will immediately be set to ‘1’ again, causing a new exception. When an exception in the PI unit is generated
as the result of the ECC_UE or ECC_CE bits in the memory controller MESR, those signals should first be
cleared (by reading the MESR or masking off the signals using ECC_UE_MASK and ECC_CE_MASK in the
MCCR) before attempting to clear the exception caused by the PI Exception register.

Note that the ECC_UE and ECC_CE bits are writable, so diagnostic software can mimic the detection of an
ECC error by setting either of these bits with a write to the MESR.

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
DDR2 Memory Controller

Page 207 of 655

7.19.8 Error Injection

If the EI_EN bit in the MCCR is set, then the 16 EI_PAT (Error Injection Pattern) bits in the MESR will be used
for check bits on write operations (and the write portion of a read-modify-write), instead of the normally calcu-
lated check bits.

This can be useful for diagnostic software. For example, software could calculate check bits for a given data
quadword and use that value as the EI_PAT bits. The given data pattern, with selected bit(s) inverted, could
be written to memory with EI_EN set. When read back, the ECC logic should detect an error, and when soft-
ware decodes the captured syndrome it should calculate the same bits in error as were inverted in the write.

Note that the memory controller does writes in bursts of 4 or 8 quadwords. The same EI_PAT will be used for
each quadword in the burst.This is the reason that Address Parity, when enabled, is only calculated on a
cache line address basis. That is, the AP bit injected into the check bit calculation will be the same value for
all quadwords of a burst of 8. This simplifies the diagnostic routine for when AP is enabled.

7.19.9 Byte Lane Substitution

If the ByteLaneECCSub bit in the MCCR is set, a special “calibration” ECC mode is enabled. In this mode:

• For writes, the least significant bit (LSB) of each of the 16 data bytes is replaced with the 16 check bits.

• For reads, the LSBs of each of the 16 data bytes is steered onto the 16 check bits internal to the DDR2
PHY.

The purpose of this calibration mode is to allow the DDR2 PHY Calibration logic to be used for tuning the
check bit paths of systems that can use ECC, but that have nonECC DIMMs installed at the time calibration is
run.

User Manual

CPC945 Bridge and Memory Controller Preliminary

DDR2 Memory Controller
Page 208 of 655 February 1, 2008

7.20 Scrub

7.20.1 General

DRAMs have the characteristic that their memory cells generally hold random values following power on. It is
often desirable to write valid data patterns to all memory locations before using the memory. This is particu-
larly true for systems with ECC. Following power on, the check bits will have garbage values, and reading
uninitialized memory with ECC enabled will generate ECC errors. For the CPC945 ECC errors can be gener-
ated even if the first operations to memory are writes. These will occur if the write requests are for size less
than 64 bytes, since this will trigger read-modify-write operations and the reads will have ECC errors.

DRAMs typically also have the characteristic that when operated for long periods of times, cells at random
can be flipped or have other problems. Many of these failures are “soft,” that is, a bit might be flipped, but it
continues to be writable as usual and if rewritten it will tend to retain its new value as usual. (There are a
variety of causes, such as cosmic radiation, electrical noise, and so on.) Systems with ECC can “scrub out”
these types of failures using an operation in which all memory locations are randomly read and written back
with correctable errors corrected.

Although software can be used for both DRAM initialization and error scrubbing, the CPC945 memory
controller has logic to perform both mechanisms automatically in hardware. This logic uses the Memory
Scrub Control Register (MSCR), Memory Scrub Range Start Register (MSRSR), Memory Scrub Range End
Register (MSRER), and the Memory Scrub Pattern Register (MSPR).

The SCRUB MOD (Scrub Mode) bits in the MSCR enable one of 3 modes of operation: Immediate With Fill,
Background, and Immediate. When enabled, the Immediate With Fill mode generates Write requests. The
Background and Immediate modes generate Read-Modify-Write requests.

7.20.2 Scrub Arbitration

As shown in Figure 7-3 on page 142, requests from the Scrub logic are arbitrated with the usual write and
read requests from the CPU and I/Os. The scrub arbitration weight is set in the Memory Arbiter Weight
Register (0xF8002280). Arbitration for scrubs is slightly different than the other two requestors: if the scrub
arbitration weight is set to 0 it will not participate at all in the round-robin arbitration. For this case a scrub can
only be accepted by the arbiter if neither of the other two requestors has an active request. If the scrub arbi-
tration weight is not 0 then it participates in the round arbitration the same as the other two requestors.

As described below, the scrub logic will make a series of scrub requests with incrementing addresses. If a
given scrub request is not serviced by the arbiter before the next request is issued, the first request will be
discarded.

7.20.3 Scrub Addresses

Requests accepted by the arbiter trigger the usual four quadword burst, that is, scrubs work on 64 bytes at a
time.

A scrub sequence is triggered by setting the SCUB MOD bits to a non-zero value. A series of scrub requests
will be issued, with incrementing addresses. The first address comes from the Memory Scrub Range Start
Register, subsequent requests have incrementing addresses on 64 byte boundaries, and the final address is
determined from the Memory Scrub Range End Register.

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
DDR2 Memory Controller

Page 209 of 655

Since scrubs operate on 64-byte boundaries only 30 bits of the 36-bit system address are used to specify
scrub addresses in the MSRSR and MSRER. The 30 bits are offset by 2 bits from the right, therefore an addi-
tional shift of 4 bits is required to convert the register value to the actual value used. For example, a register
value of 0x000000EC in the MSRSR specifies that the actual scrub start address is 0x0000EC0.

The value of the MSRER specifies the first address of the last 64-byte scrub. For example, if
MSRER = 0x000000EC then the four quadword addresses of the scrub will be 0x0000EC0, 0x0000ED0,
0x0000EE0 and 0x0000EF0. The last byte address is 0x0000EFF.

If the MSRER is equal to the MSRSR, the scrub range is a single 64-byte operation. If the MSRER is less
than the MSRSR, no scrub will be requested.

A scrub address range that partially or fully overlaps the 2 GB “I/O Hole” will produce scrub requests with
addresses within that 2 GB I/O space. For these requests, as soon as the request is accepted by the arbiter
the memory controller will generate an internal signal indicating that the scrub operation has been performed,
but no memory operation takes place. For background scrubs, the first scrub request to I/O space will
generate an internal sequence in which the scrub address is incremented every mem_clk until the 4 GB
boundary (MSRER > 4 GB) is reached. The MSRER must not be set to an address within the I/O 2 GB
space. The memory controller can hang for this condition.

If the scrub goes beyond the end of installed memory, an address map exception will be taken
(Section 7.14.13 Address Mapping Exceptions on page 170). As with other out-of-range addresses, scrub
writes will be suppressed. For the immediate and background modes with do Read-Modify-Writes, the reads
will be performed, but the addresses of these reads cannot be predicted.

7.20.4 Immediate with Fill Mode

When the SCRUB_MOD bits are set to “11” a scrub sequence is initiated, using the scrub start and end
addresses as described above. Each sequential scrub request is issued immediately following the completion
of the prior scrub request. Each request is for a Write of 64-bytes. The write data will be the 4-byte contents of
the Memory Scrub Pattern Register, replicated modulo-4 bytes for a total of 64 bytes.

Immediate with Fill Mode can be useful for both ECC and nonECC systems. For ECC systems, it is a useful
way to rapidly fill memory with valid check bits in addition to the data bits. Because the data size is 64 bytes,
there are no read-modify-writes; just writes.

After the last scrub operation of a single pass through memory has been performed the SCRUB_MOD bits
are reset to ‘00’ and no more scrubs are requested.

For a scrub address range that spans the I/O hole, a burst of writes will be seen for the first 2 GB of memory,
then a pause in which the scrub logic increments through 2 GB of I/O addresses, then a final burst of writes
will be seen starting at 4 GB and ending at the scrub end address.

Due to the long burst of back-to-back requests generated by this scrub mode, it is recommended that no
other accesses to DDR2 memory be attempted while Immediate with Fill Mode (or Immediate Mode) is in
progress.

User Manual

CPC945 Bridge and Memory Controller Preliminary

DDR2 Memory Controller
Page 210 of 655 February 1, 2008

7.20.5 Background Mode

Background mode is intended for ECC systems; it performs the periodic scan of all memory locations,
correcting soft errors as it goes.

When the SCRUB_MOD bits are set to “01” a scrub sequence is started. Requests start with the scrub start
address and continue indefinitely, until the SCRUB_MOD bits are changed to something other than “01.” The
scrub address increments, and each time the scrub end address is reached the scrub requests start over
using the scrub start address.

Scrub requests occur at integral multiples of the refresh time. Intervals range from one request every refresh
to one request every 256 refreshes. The interval multiple is taken from the SI (Scrub Interval) bits in the
MSCR.

The scrub requests are Read-Modify-Writes (implemented internally as partial write requests with 0 bytes of
write data). If ECC is enabled, as described in Section 7.19.4 if there is a correctable error on the read, the
write data written back will have the error fixed, and if there is an uncorrectable error the data is written back
as is, but with new check bits that incorporate the SPUE bit.

Note that from an ECC viewpoint there is no difference between a scrub-initiated memory operation versus a
CPU or I/O initiated operation; if exceptions are enabled for ECC errors, for example, then an ECC error
detected during a scrub operation will cause an exception.

In the absence of other operations, when background scrub is enabled then periodic Read-Modify-Write oper-
ations will be seen. If the address range spans the I/O hole then pauses in this sequence will be seen as
scrub logic increments scrub requests through the I/O address range.

Although this hardware-initiated scrubbing does not use much bandwidth on the average, for systems with
heavy bursts of memory accesses disruptions from scrub requests happening at “the wrong time” might be
undesirable. This is the reason that the arbiter does not include scrub requests in the round-robin arbitration
for a scrub weight of 0. When the scrub weight is set to 0, very heavy usage of the memory controller by the
CPUs or I/O can force scrub requests to be ignored for a very long time. There is a trade-off: as described
above in Section 7.20.2 Scrub Arbitration if a given request is ignored long enough for a new scrub request to
be generated the long-delayed request is discarded. Thus, the system has maximum access to memory, but
scrubs of random addresses might be skipped from time to time. If this is not desired, the scrub arbiter weight
can be set to non-zero. Now scrub requests should be honored such that none are discarded, at the potential
expense of full access to memory (lowest latency) for the CPUs and I/O.

(This behavior of the arbiter for a scrub weight of 0 is another reason for recommending that no memory
access be attempted while the Immediate Modes are executing.)

7.20.6 Immediate Mode

Immediate mode is a kind of hybrid of Immediate With Fill mode and Background mode. A single pass of
memory is executed like Immediate with Fill mode, but the requests are Read-Modify-Writes instead of
Writes. Thus, the entire range of memory from scrub start through scrub end is scrubbed of soft errors, but
just once.

An Immediate mode scrub is initiated when the SCRUB_MOD bits are set to “10.” Like Immediate with Fill
mode, the SCRUB_MOD bits are reset to “00” following the last operation of the sequence.

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
DDR2 Memory Controller

Page 211 of 655

7.21 External Connections Overview

The memory controller interfaces to the external memories with the following types of signals:

• The memory clock CK. The clock is differential (CK_P, CK_N). This clock operates at mem_clk speed (for
example, 200 MHz, 266 MHz).

• The clocked uni-directional control signals (Chip Select, Clock Enable, On Die Termination (optional)),
command signals (RAS, CAS, WE), and address signal (Bank Address, Memory Address). The CK sig-
nal clocks this interface using the positive edge of CK (CK_P).

• The bi-directional data bus (DQ).

• The bi-directional data strobes (DQS). The DQS signals clock the data on the DQ bus. These strobes
operate at mem_clk speed (for example, 200 MHz, 266 MHz) but data is clocked by both edges of DQS.
Therefore the DQ interface operates at Double Data Rate speeds (400 MHz, 533 MHz).

JEDEC specifies both differential and single-ended operation of the DQS. The CPC945 requires that sys-
tems using ×8 and ×16 chips use differential mode, and systems using ×4 chips use single-ended mode.

• Multiplexer controls for optional external FET-switch multiplexers on the DQ and DQS buses.

The I/O operate to the JEDEC specifications for a 1.8V Stub Series Terminated DDR2 interface (SSTL_18).
Both the external memories and the CPC945 I/O circuits have “VREF” voltage reference inputs that are nomi-
nally set to 0.9V.

The electrical characteristics of the CPC945 DDR2 I/O are controlled by the IOPadCntl register
(0xF80029A0). The bits in this register control the drive strength of the uni-directional drivers, the drive
strength of the driver portion of the bi-directional driver/receivers, the termination values of the receiver
portions of the bi-directional driver/receivers, and the operational mode of the receiver terminations (for
example, termination enabled on reads only, or both writes and reads). A bit in this register also controls if the
DQS driver/receivers are configured for differential or single-ended operation.

The DDR2 PHY is an intermediate layer of logic between the memory controller internal logic and the DDR2
external I/O.

The PHY has a control signal unit which in general passes the clocked control signal interface (CS, CKE,
ODT, RAS, CAS, WE, BA, MAD) to the external I/O with no timing adjustment other than delays which
operate on clock boundaries (for example, CS can be delayed by 0 to 3 clocks, CKE can be delayed by 0 to 3
clocks, and so on). The controls for these delays are in the MemPHYModeCntl register (0xF8002880).

Other registers which affect the operation of these signals are MemModeCntl (0xF8002500), ODTCntl
(0xF80023A0), and the Ad2Cyc bit in MemBusConfig (0xF80022D0).

The PHY generates two copies of the differential CK: CK_AP/CK_AN, CK_BP/CK_BN. Each of the 2 clocks
has its own vernier adjustment, controlled by the CK Control Registers (0xF8002890, 0xF80028A0). The
clocks are enabled with the CK_on bit in MemModeCntl (0xF8002500).

The PHY has a data unit which drives DQ and DQS on writes and receives DQ and DQS on reads.

The internal control logic sends signals to the PHY data unit indicating that a write or read operation is to be
performed. The MemBusConfig and MemBusConfig2 registers (0xF80022D0 and 0xF80022E0) provide
coarse timing control (in terms of ddr_clk cycles) of when these signals are sent to the PHY data unit.

User Manual

CPC945 Bridge and Memory Controller Preliminary

DDR2 Memory Controller
Page 212 of 655 February 1, 2008

Fine control is provided by verniers controlled by the Write Strobe Control registers, Read Data Strobe
Control registers, ResetLdEn Offset Delay registers, and, if optional external data multiplexers are used, the
External Data Multiplexer Delay Registers.

The DQS signals must be delayed 1/2 bit time relative to DQ both for writes and reads. The PHY data unit
has a “1/2 bit time averager” unit which generates the control value for this delay. The output of this unit is fed
into the verniers produce the 1/2 bit time delay, and which further fine tune the DQS outgoing and incoming
delays.

Finally, the PHY data unit has a “calibration” unit attached to the read data path. This unit essentially
measures the timings of internal signals used to clock the read data. It can be used to assist in determining
the nominal settings of the various timing controls involved in the capture of read data.

7.21.1 Bus Configurations

The CPC945 supports 1 through 8 ranks of memory, labeled ranks 0 through 7. Installed memory starts at
rank 0 and grows upward through rank 7.

As discussed in Section 7.3 Memory Configurations, three basic configurations are supported with regard to
data bus width and data transfer size. The system designer must wire up the DDR2 memories on the board to
implement one of these 3 configurations, and the 64BitBus and 64BitCfg bits (bits 31 and 30) in the MemBus-
Config register (0xF80022D0) must be set to match the implemented configuration. These configurations are
summarized in Table 7-36.

7.21.2 External Data Multiplexers

The CPC945 memory controller has provisions for controlling external multiplexers on the DQ and DQS
signals. These switches connect the DQ and DQS signals on the CPC945 with one-of-four sets of DQ and
DQS signals on the DIMM side. The switches are made of FET pass gate devices, such that the CPC945
only sees one DIMM load at a time. A 2-bit encoded value selects one of the four sets of signals to be passed
through.

To distribute loading among a set of multiplexers, the CPC945 produces 4 identical sets of 2-bit multiplexer
controls. DDR_MUXEN[0:1] = DDR_MUXEN[2:3] = DDR_MUXEN[4:5] = DDR_MUXEN[6:7].

Note: The CPC945 uses big-endian notation, whereas the multiplexer vendor notation is typically little-
endian. For example, DDR_MUXEN[0:1] should be wired to vendor multiplexer pins [1:0].

The use of these external multiplexers depends on loading, board design, and timing tolerances. For
example, a system with a maximum of 4 ranks running at 400 MHz might not need the data multiplexers,
whereas a system with all 8 ranks populated running at 533 MHz might require the multiplexers.

Table 7-36. MemBusConfig Width Settings.

Bit 31 = 64BitBus Bit 30 = 64BitCfg Configuration ECC

0 0 128/144-bit bus
128/144-bit transfers Optional

1 1 64-bit bus
64-bit transfers Not supported

0 1 128-bit bus
64-bit transfers Not supported

1 0 Illegal

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
DDR2 Memory Controller

Page 213 of 655

7.21.3 Unused I/O

The DDR_ARB_ADDR and DDR_STOP signals are outputs which have no function. They must be left
unconnected.

Systems which do not implement ECC should leave DQ[128:143] and DQS[16:17] unconnected.

As noted in Section 7.19.1 ECC Introduction, when ECC is disabled DQ[128:143] and DQS[16:17] are tri-
stated (DQS[32:35] in single-ended mode).

7.22 DDR2 PHY

7.22.1 Byte Lanes

The CPC945 uses a common block called a “byte lane” which contains the data path registers and timing
verniers for one byte of data (8 bits) and the DQS signal(s) associated with that byte. This unit is replicated 18
times to support 18 bytes of data.

When using ×8 or ×16 memory chips there is one DQS per byte lane. When using ×4 memory chips there are
2 DQS per byte lane. See Section 7.23.1 I/O Pad Bit Settings, Figure 7-13 Byte Lane Write Verniers and
Figure 7-16 Byte Lane Read Control for more information.

The physical placement and wiring of the byte lanes within the chip is such as to minimize the skew among
the 8 data bits and the DQS strobe(s). Since DQS, which is the data clock, has timing verniers to center the
DQS edges within the bit-time window, this allows for reliable clocking of a given byte. Since the byte lanes
each have their own DQS this permits some skew to be present on a byte to byte basis. (Or a nibble to nibble
basis, for ×4 chips.)

Figure 7-6. External Multiplexers

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3

4 5 6 7

RANK

DIMM

RANK

DIMM

0:63,
128:135

64:127,
136:143

2-bit control

User Manual

CPC945 Bridge and Memory Controller Preliminary

DDR2 Memory Controller
Page 214 of 655 February 1, 2008

7.22.2 Clusters

For chip placement reasons the byte lanes are organized at a higher level into four “clusters.” Cluster 0 has
bytes lanes 0, 1, 2 and 3. Cluster 1 has byte lanes 4, 5, 6, 7 and 16. Cluster 2 has byte lanes 8, 9, 10 and 11.
Cluster 3 has byte lanes 12, 13, 14, 15 and 17.

Cluster 0 also has the logic and verniers for the 2 clocks to memory (CK_A, CK_B), the logic for the command
signals to memory (RAS, CAS, WE, BA, MAD), the logic and verniers for the external data multiplexer
controls (MUXEN), and bit time calibration unit (1/2 Bit Time Averager).

Each cluster has its own set of registers for controlling its verniers. This explains why the register addressing
for the verniers is clustered (for example, the Write Strobe Control Registers use 0xF80028xx for bytes 0, 1,
2, and 3; 0xF80029xx for bytes 4, 5, 6, 7, and 16; 0xF8002Axx for bytes 8, 9, 10, and 11; and 0xF8002Bxx for
bytes 12, 13, 14, 15, and 17).

The byte-to-byte skew is more tightly controlled for bytes within a cluster than for bytes in different clusters.

7.22.3 Relationship to Board Wiring

It is common at the board level for some bit or byte swapping to be used to facilitate wiring and maintain small
differences in wiring lengths (to maintain low skew).

The association of a DQS with its 8-bits of data (or 4 bits of data for ×4 chips) must be maintained by the
board wiring to a given memory chip. For example, DQSP/N[0] and DQ[0:7] must be wired to the same
memory chip, while DQSP/.N[1] and DQ[8:15] must be wired in common to a different memory chip, and so
on.

It is permissible to swap chip to chip.

For example, a DIMM will have bits [0:7], [8:15], [16:23], [24:31], [32:39], [40:47], [48:55], and [56:63] wired to
memory chips 0, 1, 2, 3, 4, 5, 6, and 7, respectively. A straight-forward wiring would have CPC945 bits [0:7]
wired to DIMM bits [0:7] = chip 0, CPC945 bits [8:15] wired to DIMM bits [8:15] = chip 1, and so on. For this
situation CPC945 DQSP/N[0] must be wired to DIMM DQSP/N[0] = chip 0 and CPC945 DQSP/N[1] must be
wired to DIMM DQSP/N[1] = chip 1.

For this DIMM it is permissible to swap on a byte basis, for example, CPC945 bits [0:7] could go to DIMM bits
[8:15] = chip 1, while CPC945 bits [8:15] could go to DIMM bits [0:7] = chip 0. The DQS must follow the data:
CPC945 DQSP/N[0] must be wired to DIMM DQSP/N[1] = chip 1and CPC945 DQSP/N[1] must be wired to
DIMM DQSP/N[0] = chip 0. (Note that for ×8 and ×16 chips the DQS is actually a differential pair.)

The same type of swapping on a chip basis applies to ×4 chips: 4 bits of data plus 1 DQS going to one chip
can instead go to another chip. (For ×4 chips the CPC945 does not support differential operation, so there is
only one wire per DQS. See Table 7-37 DQS Bit Numbering on page 220.)

For systems with ×16 chips, with regard to DQ/DQS swapping the ×16 memory chip should be treated as 2
×8 chips.

As noted above in Section 7.22.2 the tracking among bytes is best for those bytes whose byte lanes are in
the same cluster. Therefore, while it is acceptable to swap, say, bytes 2 and 3 (because they belong to the
same cluster), it is slightly less desirable to swap bytes 3 and 4 (because they belong to different clusters).

For systems with the 128-bit bus width, DQ and DQS for the DIMM with bits 0:63 should not be swapped with
the DIMM for bits 64:127.

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
DDR2 Memory Controller

Page 215 of 655

For the connections to a given memory chip, the bits to that chip can be swapped with each other. For
example, CPC945 data bits can be wired to a ×8 chip as bits 0:7, respectively, or to bits 0, 1, 3, 2, 7, 6, 4, 5
respectively, or to bits 7, 6, 5, 4, 3, 2, 1, 0 respectively, and so on.

As described in Section 7.31.1 Calibration Logic Overview, the DDR2 PHY has logic which can be used to
assist in discovering timing control values for read operations. This logic operates on a per byte basis. For
systems with ×4 chips, the calibration logic only operates on even-numbered nibbles. Therefore it is recom-
mended that for systems with ×4 chips, nibble pairs should have identical wiring lengths, so that when the
calibration logic is used to find good timings for the even nibble these timings will be identically appropriate for
the odd nibble.

7.22.4 Bus Driving

Following reset, the default is for the PHY to enable the DQ and DQS drivers. These drivers are always
enabled except for read operations, in which the drivers are tri-stated at the beginning of a read, before the
SDRAM I/Os come out of tri-state. The CPC945 drivers are re-enabled at the end of a read operation, after
the SDRAMs have tri-stated their drivers.

When the CPC945 does not have DQ and DQS tri-stated for a read, and when it is not doing a write opera-
tion, it drives all DQ and DQS low. The intention is to have a quiet bus with any reflections being absorbed by
the drivers/receivers being held low. In addition, switching to a power saving state should not drive any
glitches onto the bus.

This behavior can be changed with the Idle_BusEn bit in the MemModeCntl register (0xF8002500). When
Idle_BusEn is set, when the bus is idle there are no requests in the queues, then the DQ and DQS drivers are
tri-stated. Also, the terminations on the receivers are disabled (if enabled - see Section 7.23 I/O Pad Control).
The Idle_BusEn bit provides extra power savings for systems in which the DDR2 bus is often idle, by not
drawing current through the receiver terminators and drivers.

7.22.5 Verniers

The PHY delay verniers used to control the timings of the external interface are based on chains of delay
elements. The delay element circuit has a control which selects as the circuit output either the delayed input
or the input with no delay. The delay values programmed into the vernier control registers are decoded and
applied to successive control inputs in the chain such that the value in the register becomes the number of
circuits in the chain with delay chosen, while the remaining elements in the chain have no delay chosen. For
example, if “36” is programmed into the control register, then a serial daisy chain of 36 delay elements is
created, with the remaining circuits in the chain short-circuited between their inputs and outputs. A total delay
of 36 “units” is created, plus some small delay inherent in the delay selection logic, plus some constant fixed
delay that is present in the surrounding support logic.

The unit of delay can vary considerably with PVT (process, voltage and temperature variations) and is there-
fore not specified. It varies, perhaps, from approximately 10 ps to 35 ps, with a nominal time of perhaps 20 ps.
The fixed delay from the support logic has a nominal delay of perhaps 150ps.

The verniers use an 8-bit value to control a chain of 255 elements. These verniers are referred to as “one bit
time” delays because the generated delay can span approximately one bit time when the delay elements are
running at their fastest (10ps, say, * 255 = 2.55ns), for the slowest ddr_clk (400 MHz <=> 2.5 ns bit time).

Typically, as shown in Figure 7-7, a ddr_clk is fed into the input of the delay chain, and the output of the delay
chain is used as a clock that latches the signal(s) to be delayed.

User Manual

CPC945 Bridge and Memory Controller Preliminary

DDR2 Memory Controller
Page 216 of 655 February 1, 2008

A variation of the full bit time vernier is to use two half bit time verniers back to back. The half bit time vernier
uses 7 control bits. For the 8-bit control value from the register, the upper 7 bits go to each half bit time delay
chain. In addition, one delay chain has the lowest control bit added to the upper 7 control bits. Thus, incre-
menting control values cause the two delay chains to increment their delays ping-ponging between the two
delay chains. This tends to average out variations between the two delay chains to create a more linear func-
tion of delay versus control value.

7.22.6 1/2 Bit Time Averager

As noted above the delay verniers, for a fixed control value, will produce an amount of delay that can vary
with process, voltage and temperature variations. This is unacceptable for producing the DQ to DQS offset of
1/2 bit time. The DQS edges must be tightly centered within the bit time window for reliable clocking of the DQ
data.

Therefore, instead of providing a fixed control value to the 1/2 bit time verniers, an auto-adjusted value is fed
to these verniers. This value is produced by the 1/2 Bit Time Averager, shown in Figure 7-8.

The 1/2 Bit Time Averager essentially works as follows. A bit is launched from a latch clocked by ddr_clk. The
bit is propagated down a delay chain similar to those in the delay verniers. The output of the delay chain is
captured by another latch clocked by ddr_clk. A state machine cycles different control values to the delay
chain, and stops when it finds a value that just barely latches the bit at the end of the chain. This value, then,
represents the control value needed to produce one ddr_clk delay = 1 bit time.

The process is repeated, this time measuring the time from one ddr_clk to two ddr_clk cycles later (2 bit
times). The “1 bit time” result is subtracted from the “2 bit time” result to produce a “full bit time” value that is
independent of clock-to-data delays and setup times of the latches used to launch and capture the timing
signals.

The above measurement is triggered each time a refresh is executed.

This “raw” full bit time value produced can be read in bits 16:23 of the MeasStatusC0 register at 0xF80028F0.
Three status bits from the measuring unit are available as bits 29:31 of CalC0 register at 0xF80028E0. Bit 29
indicates that a measurement is done; bit 30 indicates that an overflow occurred during the measurement (the
clock is too slow to be measured by the delay chains); bit 31 indicates that an underflow occurred (the clock is
too fast).

The full bit time value is fed into a running total. Every 64 updates (every 64 refreshes) the result is divided by
64 to provide an averaged full bit time. This is done to smooth out excessive differences that can occur due to
PLL2 clock jitter, the source of ddr_clk, and other sources, particularly when the reference clock to PLL2 has
Spread Spectrum variations applied.

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
DDR2 Memory Controller

Page 217 of 655

The averaged full bit time is divided by 2 to produce an averaged half bit time. This averaged half bit time
value can be read in bits 24:31 of the MeasStatusC0 register at 0xF80028F0.

The value produced by the 1/2 Bit Time Averager should represent the control value required by the DQS
verniers to produce 1/2 bit time delay of DQS relative to DQ. Therefore by default the averaged half bit time is
sent to the DQS verniers. Note that this value is only updated during refresh. DQ and DQS are idle during
refresh, so no jitter is seen on the bus due to the 1/2 bit time control values being updated.

If desired, the user can send any desired value to the DQS verniers by setting bit 16, the Half Bit Delay Over-
ride Enable, in the MemPHYModeCntl registers (0xF8002880), and setting the desired delay control value in
bits 24:31 of MemPHYModeCntl. (Note that if the override is applied during a data transfer the DQS signals
could jitter when the register update is applied.)

Figure 7-7. Example Timing Verniers

1/2 Bit
Delay

1/2 Bit
Delay

Full Bit
Delay

Delay
Value

Delay Control
0xF800xxxx

8

ddr_clk

X X Delayed

Delay
Value

Delay Control
0xF800xxxx

8

ddr_clk

X [0:7] X [0:7] Delayed
8 8 8 8

7 7

[7][0:6][0:6]
+

User Manual

CPC945 Bridge and Memory Controller Preliminary

DDR2 Memory Controller
Page 218 of 655 February 1, 2008

7.22.7 DQS 1/2 Bit Time Offset

The averaged half bit time value will be a function of the chip itself (it could be a “fast” or “slow” chip
depending on process variations when the chip was manufactured), the chip voltage, and the chip junction
temperature. Regardless, since the delay values used by the 1/2 Bit Time Averager and the delay lines used
by the DQS verniers should track, the value produced by the 1/2 Bit Time Averager should cause a constant
1/2 bit time delay by the DQS verniers.

To compensate for any inaccuracy, and to allow somewhat for byte-to-byte (or nibble-to-nibble) variations,
each DQS vernier has an offset circuit. This circuit, shown in Figure 7-9, adds a signed value to output of the
1/2 Bit Time Averager unit. The signed value, in Sign + Magnitude format (1-bit sign, 7-bit magnitude) comes
from the Strobe Control registers. The output of the adder is clamped by a saturation circuit. If the signed
control value is positive the output of the adder will be clamped at 0xFF; If the signed control value is negative
the output of the adder will be clamped at 0x00.

The circuit shown in Figure 7-9 is replicated twice in each byte lane for the write DQS. With 18 byte lanes
there are a total of 36 DQS delays, each with its own offset circuit and its own Offset Delta value in a Strobe
Control register. For systems with ×4 chips, all 36 circuits are used to control the 36 single-ended DQS.
(Assuming 4 DQS are used for ECC check bits.)

Figure 7-8. 1/2 Bit Time Averager

Done

CalRsltC0
0xF80028E0

Under
Flow

Over
Flow

Full Bit Time Measurement

Refresh

CalCntlDlyMeasC0
0xF80028F0

Half
Time

MemPHYModeCntl
0xF8002880

Override
Value

Ovr

Average 64 values,
divide by 2

En

Half Bit Time To
DQS Verniers

8 8

8

8

Full
Time

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
DDR2 Memory Controller

Page 219 of 655

For systems with ×8 or ×16 chips, on writes half of these circuits are used for the 18 differential write DQS,
and half are not used.

The circuit is replicated four times in each byte lane for the read DQS, for a total of 72 DQS delays, each with
its own offset circuit and its own Offset Delta value in a Strobe Control register. Each DQS uses two circuits:
one for the rising edge and one for the falling edge. For systems with ×4 chips, all 72 circuits are used to indi-
vidually delay the rising and falling edges of the incoming 36 single-ended DQS.

For systems with ×8 or ×16 chips, on reads all circuits are used for the 18 differential read DQS. A single DQS
is used to clock two 4-bit nibbles, each with its own rising edge and falling edge delays. Both rising edge
offsets must be programmed (with equal values), and both falling edge offsets must be programmed (with
equal values).

Figure 7-9. DQS Offset Delta

Full Bit
Delay

Offset
Delta

Strobe Control
0xF800xxxx

8

delayed clk

DQS DQS Delayed

from previous
stage

1/2 Bit Time
+/- Offset Delta

Saturate at
0x00, 0xFF

+

Half Bit Time From
1/2 Bit Time Averager

1S + 7M

If offset sign = 0, add magnitude
to Half Bit Time; saturate at 0xFF

If offset sign = 1, subtract magnitude
from Half Bit Time; saturate at 0x00

User Manual

CPC945 Bridge and Memory Controller Preliminary

DDR2 Memory Controller
Page 220 of 655 February 1, 2008

7.23 I/O Pad Control

7.23.1 I/O Pad Bit Settings

The I/O Pad Control register (0xF80029A0) controls the electrical characteristics of the CPC945 drivers and
receivers for the DDR2 memory interface. This register must be programmed before any operations are
attempted with the external memory.

Bit 11, the MCSE_dqs bit, controls the operating mode of the DQS driver/receivers. There are 18 I/O circuits
for DQS. If MCSE_dqs = 0 each circuit operates as a single differential driver/receiver, providing 18 differen-
tial DQS connections. If MCSE_dqs = 1, these I/O operate as 2 separate single-ended driver/receivers,
providing 36 single-ended DQS connections.

When using ×8 or ×16 memory chips MCSE_dqs must be set = 0, and when using ×4 memory chips
MCSE_dqs must be set = 1.

The CPC945 memory controller and the external SDRAMs must match their DQS single-ended/differential
mode. That is, the MCSE_dqs bit must match that of the A[10] bit programmed in the EMRS (see
Section 7.10.2 EMRS Settings on page 153).

Table 7-37 gives the DQS pad numbering of differential mode vs. single-ended mode.

Table 7-37. DQS Bit Numbering.

Differential Mode
MCSE_dqs = 0

Differential Mode
Associated DQ

Single-Ended Mode
MCSE_dqs = 1

Single-Ended Mode
Associated DQ

DQS 0P
DQ[0:7]

DQS 0 DQ[0:3]

DQS 0N DQS 1 DQ[4:7]

DQS 1P
DQ[8:15]

DQS 2 DQ[8:11]

DQS 1N DQS 3 DQ[12:15]

DQS 2P
DQ[16:23]

DQS 4 DQ[16:19]

DQS 2N DQS 5 DQ[20:23]

DQS 3P
DQ[24:31]

DQS 6 DQ[24:27]

DQS 3N DQS 7 DQ[28:31]

DQS 4P
DQ[32:39]

DQS 8 DQ[32:35]

DQS 4N DQS 9 DQ[36:39]

DQS 5P
DQ[40:47]

DQS 10 DQ[40:43]

DQS 5N DQS 11 DQ[44:47]

DQS 6P
DQ[48:55]

DQS 12 DQ[48:51]

DQS 6N DQS 13 DQ[52:55]

DQS 7P
DQ[56:63]

DQS 14 DQ[56:59]

DQS 7N DQS 15 DQ[60:63]

DQS 8P
DQ[64:71]

DQS 16 DQ[64:67]

DQS 8N DQS 17 DQ[68:71]

DQS 9P
DQ[72:79]

DQS 18 DQ[72:75]

DQS 9N DQS 19 DQ[76:79]

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
DDR2 Memory Controller

Page 221 of 655

The remaining bits in the I/O Pad Control register affect the drive strength of the drivers (output impedance)
and the termination values (input impedance) of the receivers. In general, the settings of these bits are deter-
mined by an electrical analysis (for example, Spice) of the board wiring and loads attached to the
CPC945 I/O.

The output impedance of the drivers can be set to full SSTL_18 levels or half strength. Bit 0 controls the clock
pads (CK_A/CK_AN, CK_B, CK_BN); bits 1, 5 and 7 control the control signal pads (CS, CKE, ODT); bit 2
controls the command/address pads (RAS, CAS, WE, BA, MAD); bits 3 controls the DQ pads, and bit 4
control the DQS pads, for driving during write operations.

All of the CPC945 DDR2 interface receivers are contained in bi-directional driver/receiver circuits.

The TT0 (termination type 0) bits control if and when the receivers are terminated. These are 2-bit values
which have the following settings: 0x = termination always off (no termination), 10 = termination on for reads
(when the driver is tri-stated), 11 = termination is always on.

Bits 17 and 18 specify the TT0 value for the DQ receivers.

As described above the DQS I/O have two pads (P and N) which are programmed by MCSE_dqs to be either
the 2 pads of a differential pair, or 2 single-ended I/O. The TT0 values for the two pads are individually
controlled, using bits 12 and 13 for the P pad and bits 14 and 15 for the N pad.

DQS 10P
DQ[80:87]

DQS 20 DQ[80:83]

DQS 10N DQS 21 DQ[84:87]

DQS 11P
DQ[88:95]

DQS 22 DQ[88:91]

DQS 11N DQS 23 DQ[92:95]

DQS 12P
DQ[96:103]

DQS 24 DQ[96:99]

DQS 12N DQS 25 DQ[100:103]

DQS 13P
DQ[104:111]

DQS 26 DQ[104:107]

DQS 13N DQS 27 DQ[108:111]

DQS 14P
DQ[112:119]

DQS 28 DQ[112:115]

DQS 14N DQS 29 DQ[116:119]

DQS 15P
DQ[120:127]

DQS 30 DQ[120:123]

DQS 15N DQS 31 DQ[124:127]

DQS 16P
DQ[128:135]

ECC - goes to same DIMMs as
DQ[0:63]

DQS 32
DQ[128:131]

ECC - goes to same DIMMs as
DQ[0:63]

DQS 16N DQS 33
DQ[132:135]

ECC - goes to same DIMMs as
DQ[0:63]

DQS 17P
DQ[136:143]

ECC - goes to same DIMMs as
DQ[64:127]

DQS 34
DQ[136:139]

ECC - goes to same DIMMs as
DQ[64:127]

DQS 17N DQS 35
DQ[140:143]

ECC - goes to same DIMMs as
DQ[64:127]

Table 7-37. DQS Bit Numbering.

Differential Mode
MCSE_dqs = 0

Differential Mode
Associated DQ

Single-Ended Mode
MCSE_dqs = 1

Single-Ended Mode
Associated DQ

User Manual

CPC945 Bridge and Memory Controller Preliminary

DDR2 Memory Controller
Page 222 of 655 February 1, 2008

If and when the receiver terminations are enabled, the TT1 (termination type 1) bits set the termination value.
0 = 75 ohm and 1 = 150 ohm. Bit 19 specifies the TT1 value for the DQ receivers; bit 16 specifies TT1 value
for the DQS receivers.

7.23.2 Relationship to Memory Chip Settings

As noted above it is important the both the CPC945 and the memory chips match with regard to the program-
ming of the DQS I/O (differential vs. single-ended). It should also be noted that the memory chips have other
settings that in general are determined in conjunction with the CPC945 I/O Pad Control Settings.

The SDRAM EMRS(1) register uses bit A1 to set the outputs to full or 1/2 drive strength.

The SDRAM EMRS(1) register uses bits A6 and A2 to specify ODT (On Die Termination - the SDRAM
receiver termination) operation and termination values. The CPC945 generates control signals to tell the
SDRAMs when to apply the receiver termination. This is discussed in Section 7.25.7 ODT - On Die Termina-
tion.

In summary, when considering the electrical operation of the CPC945 external connections to DDR2
memory, the I/O Pad Control register has to be programmed correctly, the DDR2 EMRS has to be
programmed correctly, and the CPC945 ODT control has to be programmed correctly, based upon an anal-
ysis (for example, Spice) of the board wiring and the loads presented by the DDR2 memories.

7.24 Memory Clocks

The CPC945 has an internal clock, ddr_clk, which is driven by PLL2 in the power manager. PLL2 is
programmed at the desired data transfer frequency, for example, 400 MHz or 533 MHz. A 1/2 frequency
version of this clock, mem_clk, is used to clock the memory controller control logic, for example, 200 MHz or
266 MHz. This internal mem_clk is also driven off-chip to be used as the memory clock CK by the DDR2
memories, and by support components such as the latches on registered DIMMs or discrete registers on the
board.

As required by the DDR2 memories the output clock is differential. There are two copies of the clock, A and B,
for a total of 4 output pins: DDR_CK_A/DDR_CK_AN, DDR_CK_B/DDR_CK_BN.

The two copies are identical except that each copy has a unique vernier, so that the two copies can be indi-
vidually offset in time relative to the internal mem_clk (and relative to the control signal outputs DDR_RAS,
DDR_CAS, DDR_WE, DDR_BA[2:0], DDR_MAD[15:0], DDR_CS[0:15], DDR_CKE[0:7] and
DDR_ODT[0:7]).

The vernier for a given clock output made up of 2 full bit time verniers in series. (Technically the first vernier is
two 1/2 bit time verniers in series, in which the 1/2 of the control value is applied to the 2 verniers.)

The verniers for CK_A are programmed using the CKDelayL register (0xF8002890). The verniers for CK_B
are programmed using the CKDelayU register (0xF80028A0). Each register is identical and has to 8-bit fields,
CKDelayOffset and CKDelta, to program the 2 full bit time verniers. Note that following reset, the 2nd vernier
in the series will have a forced control value of 0x20 (decimal 32) instead of the CKDelta value from the
register. The first write to the register will replace this forced control value with the user programmed value of
CKDelta. (The intent of this mechanism is to have a memory interface that will be clocked with some sufficient
setup and hold even if the user has not programmed the CKDelayL/U registers.)

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
DDR2 Memory Controller

Page 223 of 655

At least one of these two clocks must be used to clock the DDR2 memories. Whether it is A or B, or both
clocks that is distributed to the memories and support components is up to the system designer.

By default the external CK is disabled following reset. It must be explicitly enabled using bit 0, CK_On, in the
MemModeCntl register (0xF8002500). Once enabled, the external CK cannot be disabled except by a chip
reset, or when the SDRAMs enter Self Refresh. (See the sections on Self Refresh in Section 7.7 Operational
States.)

Figure 7-10 gives a simplified diagram of the CK_A/CK_B vernier mechanism.

7.25 Memory Control Signals

The outputs DDR_RAS, DDR_CAS, DDR_WE, DDR_BA[2:0], DDR_MAD[15:0], DDR_CS[0:15],
DDR_CKE[0:7] and DDR_ODT[0:7] are signals which are driven off-chip to the memories. These signals are
the only DDR2 I/O which are not controlled by verniers.

7.25.1 Adjustable Cycle Delay

Controls in the Mem PHY Mode Control Register (0xF8002880) enable the address and control outputs to the
DIMMs to be delayed by an integer number of ddr_clks. Although these signals switch on mem_clk bound-
aries (for example, 200 MHz or 266 MHz), the delay control is in increments of ddr_clks (400 MHz or 533
MHz).

Figure 7-10. CK Timing Adjustment

CK_A

CK_AN

CK_On
Reset
OR
Sleep

S
R

1/2 Bit
Delay

1/2 Bit
Delay

Full Bit
Delay

CKDelay
Offset

CK
Delta

CKDelayL
0xF8002880

CK_B

CK_BN

1/2 Bit
Delay

1/2 Bit
Delay

Full Bit
Delay

CKDelay
Offset

CK
Delta

CKDelayU
0xF80028A0

mem_clk

Full Bit Delay

Full Bit Delay

0x20 (at reset)

32 (at reset)

User Manual

CPC945 Bridge and Memory Controller Preliminary

DDR2 Memory Controller
Page 224 of 655 February 1, 2008

Control signals other than ODT can be delayed 0, 1, 2, or 3 ddr_clks:

• DDR_RAS, DDR_CAS, DDR_WE, DDR_BA[2:0] and DDR_MAD[15:0] are delayed as a group, con-
trolled by MemPHYModeCntl bits 0:1.

• DDR_CKE[0:3] are delayed as a group, controlled by MemPHYModeCntl bits 4:5.

• DDR_CKE[4:7] are delayed as a group, controlled by MemPHYModeCntl bits 6:7.

• DDR_CS[0:15] are delayed as a group, controlled by MemPHYModeCntl bits 8:9.

ODT can be delayed 0 through 7 ddr_clks:

• DDR_ODT[0:7] are delayed as a group, controlled by MemPHYModeCntl bits 10:12.

7.25.2 Command

The DDR_RAS, DDR_CAS and DDR_WE are negative active signals. They are connected to the inputs
RAS, CAS and WE, respectively, of all memory chips.

7.25.3 Address

The DDR_BA[2:0] and DDR_MAD[15:0] outputs are connected to the BA[2:0] and A[15:0] inputs of all
memory chips. Little-endian numbering must be preserved, for example, DDR_MAD[0] must be connected to
A[0], DDR_MA[1] must be connected to A[1], and so on. Unused high order bits can be left unconnected.

7.25.4 Chip Select

DDR_CS[0:7] are negative active outputs that are wired to the CS inputs of ranks 0 through 7, respectively.
Outputs to unused ranks can be left unconnected.

DDR_CS[8:15] are identical copies of DDR_CS[0:7], respectively.

Traditionally for systems using the 128-bit bus with 128-bit transfers (DIMM pairs), CS[0:7] are wired to the
DIMMs providing data bits 0:63, and CS[8:15] are wired to the DIMMs providing data bits 64:127, but this is
just a convention.

7.25.5 CKE - Clock Enables

CKE[0:7] are positive active outputs that are wired to the CKE inputs of ranks 0 through 7, respectively.
Outputs to unused ranks can be left unconnected.

For systems using the 128-bit bus with 128-bit transfers (DIMM pairs), a given CKE must be wired to both
DIMMs of the pair (for example, CKE[0] must be wired to the CKE inputs for rank 0 for both DIMMs in the
pair).

As noted in Section 7.7.4 Self Refresh on page 139, it is possible to put the DDR2 memories in self refresh,
remove the power to the CPC945 (while leaving the DDR2 memories powered on), restore the CPC945
power, take the DDR2 memories out of self refresh, and continue to use the DDR2 memories with the data
contents preserved. But if the power to the CPC945 is removed there must be some way to guarantee that
the CKEs stay low, e.g, by using pull-down resistors on the CKE signals.

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
DDR2 Memory Controller

Page 225 of 655

By default the CKEs stay low during self refresh. Bit 12, CkeTsEn in the MemModeCntl register
(0xF8002500), when set causes the CKEs to be tri-stated during self refresh. When this option is chosen,
external pull-down resistors should be used.

7.25.6 Dynamic CKE

Following the DRAM initialization sequence (Section 7.10 Memory Device Initialization), by default the CKE
signals to the memories will be active, enabling the fastest access at the expense of power. As discussed in
Section 7.7.3.2 Power Management During Normal Operation the CPC945 has a Dynamic CKE option, in
which the CKEs are made inactive to memories that have not been accessed for 20 cycles. This reduces
DRAM power to ranks with CKE made inactive, at the expense of additional latency to access a rank that has
had CKE at the inactive level.

Dynamic CKE operation is enabled with bit 6 of the Memory Mode Control Register (0xF8002500). If dynamic
CKE is enabled, the internal fast path around the queues is disabled (Section 7.18.2 Fast Path on page 188).

By default dynamic CKE operation, when enabled, operates in “DIMM Mode,” that is, the pair CKEs which
control the two ranks of a DIMM are disabled/enabled together. For finer-grained control, if bit 5 of the
MemModeCntl register is set then dynamic CKE operates in “Rank Mode,” in which CKE to each rank is indi-
vidually disabled/enabled.

There are two restrictions when both ODT and Dynamic CKE are enabled:
• For this case it is required that dynamic CKE operation be set to DIMM mode (MemModeCntl bit 5 = 0).
• Also as noted in Section 7.10.1 MRS Settings on page 152, MRS bit A[12] must be set to 1 = tXARDS

(Slow Exit).

7.25.7 ODT - On Die Termination

ODT[0:7] are positive outputs that are connected to ODT inputs on the memories.

ODT usage is optional. For systems that do not wire up ODT from the CPC945, the ODT inputs to the memo-
ries must be grounded.

7.25.7.1 ODT Operation

ODT (On Die Termination) operation is controlled with the ODT Control Register (0xF80023A0). When ODT
is enabled the CPC945 memory controller activates the ODT signals to the memories to dynamically
enable/disable the memory chip on-die termination of the DQ and DQS signals.

By default ODT operation is enabled. ODT Control Register bit 0 must be set to 1 to disable ODT signaling.

When ODT operation is enabled, bit 1 (ODT Resolution) must be set to 1. Note the quirk in default values:
following reset the value of bit 1 = 0 is illegal, because bit 0 = 0 which specifies ODT is enabled.

The CPC945 memory controller operates ODT on a per-DIMM basis. For DIMMs which have 2 ranks, an
ODT output is wired to the DIMM ODT input for one rank (for example, rank 0). The other DIMM ODT input
must be disabled (for example, rank 1 ODT input is wired to ground).

The CPC945 DDR_ODT[0:3] outputs are wired to DIMMs 0 though 3 (ranks 0, 2, 4 and 6). DDR_ODT[4:7]
are identical to DDR_ODT[0:3], respectively, and are wired to DIMMs 4 through 7 for the 128-bit bus configu-
ration (ranks 0, 2, 4 and 6).

User Manual

CPC945 Bridge and Memory Controller Preliminary

DDR2 Memory Controller
Page 226 of 655 February 1, 2008

By default the CPC945 drives the ODT signals only on memory writes. If ODT Control Register bit 3, ODT
RdEn is set then the ODT signals will be driven on both writes and reads.

By default the CPC945 drives the ODT signal of the DIMM being accessed. This is called Direct Mode. If ODT
Control Register bit 2, ODT Assign is set, then ODT operates in Indirect Mode, in which ODT is driven to the
DIMM adjacent to the accessed DIMM. (That is, if DIMM 0 is accessed then ODT[1] is driven, if DIMM 1 is
accessed then ODT[0] is driven, if DIMM 2 is accessed than ODT[3] is driven, and if DIMM 3 is accessed then
ODT[2] is driven.)

If general for systems with DQS and DQ connections that essentially have one drop (systems in which a
multiplexer steers the DQS and DQ signals to one and only one DIMM) then Direct Mode must be used. For
systems with multi-drops Indirect Mode might be preferable, although an electrical analysis should be
performed to determine which Mode is best.

7.25.7.2 ODT Timing

The CPC945 generates ODT timing that is valid only for a CAS latency of 4. ODT for reads is generated one
cycle later than for writes, to match the times when data is on the bus.

• If ODT operation is enabled, and if CAS latency is greater than 4, then the ODT signals must be delayed
using the adjustable cycle delay described in Section 7.25.1. That is, MemPHYModeCntl bits 10:12 must
be programmed to add delay to the ODT signals. For each increment in CAS latency, the ODT signals
must be delayed by 2 ddr_clks. For example, if CAS latency = 5, then MemPHYModeCntl[10:12] should
be increased by 2, if CAS latency = 6, then MemPHYModeCntl[10:12] should be increased by 4, and so
on.

• For systems with ODT enabled, it does not make sense to use memories with a CAS latency of 3. Since
ODT timings cannot be adjusted with negative values, the remaining signal timings must be delayed to
match that of the ODT timings. This increases the CAS latency, using one of two methods:

– The easiest way is to program the memory chips (MRS) and the memory controller (for example,
RAS and CAS Timer registers) to use CL = 4.

– A less elegant way is to leave the memory chips at CL = 3, and to delay all signals except ODT (for
example, MemPHYModeCntl reg bits 0:1, 4:5, 6:7, and 8:9 to delay RAS, CAS, WE, BA, MAD, CKE
and CS). A value of “2” should be used to delay these signals by one mem_clk.

7.25.7.3 Other ODT Considerations

As described in Section 7.10 Memory Device Initialization the memory chips have their MRS registers loaded
in an initialization sequence. The MRS has 2 bits which specify if ODT is enabled, and if enabled, what
impedance value should be used (for example, 75 ohm or 150 ohm).

As described in Section 7.23 I/O Pad Control, there are control bits in the I/O Pad Control Register which
might be used in conjunction with ODT. Similar to how ODT controls the pad termination attributes of the
memory chip DQS and DQ I/O, these bits control the pad termination attributes of the CPC945 DDR_DQS
and DDR_DQ I/O. They are MCTT0_dqs and MCTT0N_dqs, which determine when the DQS I/O have their
terminations applied, MCTT1_dqs, which determines the value of the DQS termination, MCTT0_dq, which
determine when the DQ I/O have their terminations applied, and MCTT1_dq, which determines the value of
the DQ termination.

If ODT is disabled in the memory chips MRS, then ODT should be disabled in the CPC945. If ODT is enabled
in the memory chips, then ODT should be enabled in the CPC945.

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
DDR2 Memory Controller

Page 227 of 655

A board level signal analysis (for example, Spice) should be performed to determine when the CPC945
DDR_DQS and DDR_DQ signals should have termination applied and what the termination value should be,
if ODT should be enabled, what the memory chip termination value should be, if memory chip termination
should be just for writes or for both reads and writes, and if the ODT mode should be Direct or Indirect.

When Dynamic CKE is enabled, note the restrictions discussed in Section 7.25.6 Dynamic CKE that CKE
DIMM mode must be set if ODT is enabled, and MRS A[12] must be set to 1 = tXARDS (Slow Exit).

7.25.8 Control Signal Summary

Figure 7-11 summarizes the wiring of the CS, CKE, and ODT controls to the DIMMs for the 3 system memory
configurations. Also shown are the ranks that are selected by the MUXEN[0:1] bits.

User Manual

CPC945 Bridge and Memory Controller Preliminary

DDR2 Memory Controller
Page 228 of 655 February 1, 2008

Figure 7-11. Control Signal Wiring Summary

DIMM0 CS0 CKE0 ODT0
CS1 CKE1 GND

DIMM1 CS2 CKE2 ODT1
CS3 CKE3 GND

DIMM2 CS4 CKE4 ODT2
CS5 CKE5 GND

DIMM3 CS6 CKE6 ODT3
CS7 CKE7 GND

DIMM4 CS8 CKE0 ODT4
CS9 CKE1 GND

DIMM5 CS10 CKE2 ODT5
CS11 CKE3 GND

DIMM6 CS12 CKE4 ODT6
CS13 CKE5 GND

DIMM7 CS14 CKE6 ODT7
CS15 CKE7 GND

Rank0
Rank1

Rank2
Rank3

Rank4
Rank5

Rank6
Rank7

Mx = 00

Mx = 01

Mx = 10

Mx = 11

DIMM0 CS0 CKE0 ODT0
CS1 CKE1 GND

DIMM1 CS2 CKE2 ODT1
CS3 CKE3 GND

DIMM2 CS4 CKE4 ODT2
CS5 CKE5 GND

DIMM3 CS6 CKE6 ODT3
CS7 CKE7 GND

Rank0
Rank1

Rank2
Rank3

Rank4
Rank5

Rank6
Rank7

Mx = 00

Mx = 01

Mx = 10

Mx = 11

DIMM0 CS0 CKE0 ODT0
CS1 CKE1 GND

DIMM1 CS2 CKE2 ODT1
CS3 CKE3 GND

DIMM2 CS4 CKE4 ODT2
CS5 CKE5 GND

DIMM3 CS6 CKE6 ODT3
CS7 CKE7 GND

Rank0
Rank1

Rank2
Rank3

Mx = x0

Mx = x1

Rank4
Rank5

Rank6
Rank7

a) 128-bit: 64BitBus = 0, 64BitCfg = 0

b) 64-bit: 64BitBus = 1, 64BitCfg = 1

c) Hybrid: 64BitBus = 0, 64BitCfg = 1

DQ[0:63], [128:135] DQ[64:127], [136:143]

DQ[0:63]

DQ[0:63] DQ[64:127]

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
DDR2 Memory Controller

Page 229 of 655

7.26 Data Timing Coarse Controls

This section gives an overview of the timing relationship between the control signals (RAS, CAS, WE) and the
data bus (write data timing, read data timing, data bus tri-state timing, external multiplexer timing).

As shown in Figure 7-3 Memory Controller Internals on page 142 and Figure 7-5 Command Arbiter Flow on
page 187, the Command Arbiter selects a memory operation to perform. It generates 2 internal signals,
wrRequest and rdRequest, which are sent to the datapath, and it generates the RAS, CAS, WE, BA, MAD,
CS, CKE and ODT signals which are sent to the memories.

The internal wrRequest and rdRequest signals are sent through internal 16-deep pipelines. Taps in the pipe-
line are used to control when write data is sent on the data bus, when read data is captured from the data
bus, when the external data multiplexers are switched, and when the data bus is tristated. The taps are
selected using values in the Memory Bus Configuration register (0xF80022D0). These values work in units of
ddr_clks (for example, 533 MHz).

For systems with very large delays on the data bus, the MemBusConfig values affecting read operations can
be extended using the RdPipeDly field in the MemBusConfig2 Register (0xF80022E0).

As the signals are pulled off taps from the pipeline, they are sent to verniers in the DDR2 PHY to provide
extra delay that can be adjusted in delay line increments of approximately 20 ps. In general, with zero values
in the verniers, the coarse controls are adjusted to the point that one more ddr_clk cycle would delay the
desired signal too late, then the vernier is used to provide additional sub-cycle delay.

7.27 Write Data Timing

7.27.1 Write Coarse Timing

Figure 7-12 shows the internal wrRequest signal generated by the Command Arbiter for a write. One
mem_clk (2 ddr_clks) later, the CS, CAS, WE, etc., control signals are driven off the chip (assuming no delay
specified in the MemPHYModeCntl Register).

Also one mem_clk (2 ddr_clks) later, the internal signal ddr_DdrWdbRdV is sent to the WDB (Write Data
Buffer) to request write data. The write data from the buffer is available one mem_clk (2 ddr_clks), then it
takes an additional 4 ddr_clks to cross the chip, select the correct source (for example merge RMW data),
and generate ECC check bits. The cycle to select the correct source is always taken, regardless if the opera-
tion is a RMW or not. The cycle to generate ECC check bits is always taken, regardless if ECC is enabled or
not.

In summary, from the time that the control signals such as CAS and WE are driven out, until the time that the
data (DQ) is driven out, there is a minimum of 3 mem_clks (6 ddr_clks).

The internal signal ddr_DdrWdbRdV is moved to the right in ddr_clk increments using the WdbRqDly field
(bits 0:3) in the MemBusConfig register. This in turn moves all write data pipeline stages to the right, with the
result that the time from CAS, WE going valid to DQ going valid = WdbRqDly + 6 (in ddr_clks).

The DQS signals are timed using the same pipeline as the data. As discussed below and elsewhere, an extra
1/2 bit time of delay is added (using a vernier) to center the edges of DQS within the data.

The correct value for WdbRqDly is a function of several factors, including:

• Board wiring delays on the control signals.

User Manual

CPC945 Bridge and Memory Controller Preliminary

DDR2 Memory Controller
Page 230 of 655 February 1, 2008

• Additional delays on the control signals from the MemPHYModeCntl register.

• Delays in increments of mem_clk, from registers on the DIMMs or on the board.

• The CAS latency of the memories.

• Wiring delays on the DQ and DQS signals.

• Additional delays on the DQ and DQS signals from external multiplexers.

7.27.2 Write Vernier Timing

Figure 7-13 gives a simplified diagram of the write verniers for a byte lane.

For each byte lane, 8 internal DQ, 1 internal OE, and 1 internal DQS are latched by ddr_clk, on the left side of
the figure. The outputs of these latches corresponds to the last line in Figure 7-12 with the comment “Outputs
at pad with no ByteWrClk delay.”

As can be seen in Figure 7-17, each byte lane has a Write Strobe Control Register, also known as the Byte-
WrClkDelay register. For example, byte lane 0 in cluster 0 has the ByteWrClkDelayC0B00 register.

Bits 0:7 of the ByteWrClkDelay register contain the 8-bit WrClkOffset field. As shown in Figure 7-17 this field
controls a full bit time vernier that delays equally the 8 DQ which are sent to the DQ pads, the OE which is
connected to the DQ pad driver enables, and the DQS signal. (The full bit time vernier uses two half bit time
verniers, as discussed in Section 7.22.5 and shown in more detail in Figure 7-7.)

The DQS and OE are additionally delayed by a full bit time vernier which is controlled by a 1/2 Bit Time Offset
circuit as discussed in Section 7.22.7 and shown in more detail in Figure 7-9. The 1/2 Bit Time Offset circuit is
fed by the output of the 1/2 Bit Time Averager to nominally add 1/2 bit time of delay to DQS and its OE, and

Figure 7-12. Write Data Timing Example

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

DDR Clks

wrRequest

CS, CAS, WE, etc. Outputs at pad with no MemPHYModeCntl delay

ddr_DdrWdbRdV

WDB read data

ddr_wrdatapath P1

ddr_wrdatapath P2

ddr_wrdatapath P3

ddr_phy outputs

WdbRqDly = 0000

Wdb access

cross chip wiring

data source selection

ECC generation

cross chip wiring

Outputs at pad with no ByteWrClk delay

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
DDR2 Memory Controller

Page 231 of 655

register bits 16:23, WrClkOffsetDeltaL to adjust this delay +/-. For systems with ×8 or ×16 chips this DQS and
OE are used by an I/O circuit configured as a single differential driver. For systems with ×4 chips the I/O
circuit is configured to drive the “P” pad in single-ended mode.

The DQS delayed by WrClkOffset goes to a 2nd full bit time vernier controlled by a 2nd 1/2 Bit Time Offset
circuit which is fed by register bits 24:31, WrClkOffsetDeltaU. For systems with ×8 or ×16 chips this 2nd
vernier is not used. For ×4 systems it is used by the I/O circuit configured to drive the “N” pad in single-ended
mode.

The OE delayed by WrClkOffsetDeltaL is used to tri-state the differential driver in differential mode, and both
single-ended drivers in single-ended mode.

Summary: All DQ and DQS are adjusted together using WdbRqDly in the MemBusConfig register as a
coarse control. (OE is discussed in Section 7.29.) DQ, OE and DQS are adjusted together, on a byte basis,
using the WrClkOffset fields of the Write Strobe Control registers. DQS and its OE are additionally delayed by
1/2 bit time using the 1/2 Bit Time Averager output as a control value, which can be adjusted +/- using the 1
Sign +7 Magnitude value of WrClkOffsetDelta in the Write Strobe Control register. For ×8 and ×16 chips the
WrClkOffsetDeltaL supplies this delay to a single differential DQS driver. For ×4 chips the WrClkOffsetDeltaL
and WrClkOffsetDeltaU supply 2 separate delays to an I/O with 2 separate single-ended drivers.

User Manual

CPC945 Bridge and Memory Controller Preliminary

DDR2 Memory Controller
Page 232 of 655 February 1, 2008

Figure 7-13. Byte Lane Write Verniers

1/2 Bit
Delay

1/2 Bit
Delay

ByteWrClkDelay Reg

ddr_clk

DQ[0:7] DQ[0:7]
8 8 8 8

OE
DQS OE

Full Bit
Delay

+/-
Delta

Full Bit
Delay

+/-
Delta

DQS P

DQS N

DQS 0

DQS 1

OE

OE

DQS

DQS L

DQS U

WrClk
Offset

DeltaUDeltaL

From 1/2 Bit Time Averager

DeltaU not used with
differential DQS
(×8 and ×16 SDRAMs)

×8/×16: DQS L drives
differential P/N
×4: DQS L drives DQS 0
DQS U drives DQS 1

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
DDR2 Memory Controller

Page 233 of 655

7.28 Read Data Timing

7.28.1 Read Timing Overview

For read operations the memory chips drive read data (DQ) and the read clocks (DQS) into the CPC945, with
the DQ and DQS being clocked at the same time using the CK input to the memory chips. There are four
beats of data and four DQS edges to clock that data: 2 rising edges and 2 falling edges.

Each bit of DQ is clocked successively into a set of 4 data capture latches, that is, a 1-bit wide, 4-deep FIFO.
With the 4 latches labeled FF0, FF1, FF2, FF3, the rising edge of DQS is used to clock FF0 and FF2, and the
falling edge of DQS is used to clock FF1 and FF3. Figure 7-14 shows the FIFO for one bit of DQ. This circuit
is replicated 8 times in each byte lane. With 18 byte lanes, there are 144 instances of this circuit.

The clocks to each FF are gated with the signals ldEn_FF0, ldEn_FF1, ldEn_FF2, ldEn_FF3. A 2-bit counter
driven off the rising and falling edges of DQS is used to successively generate these four load enable FF
signals. At the beginning of a read an internal signal, resetLdEn, is used to reset this counter (Figure 7-15)
and enable it for counting. The timing of this signal is critical: it is set with both a coarse control and a vernier.

Figure 7-14. Read Data Capture FIFO

FF3

2

unLoadPtr

ddr_clk

ldClk_R

ldClk_F

ld_en_FF0
ld_en_FF1
ld_en_FF2
ld_en_FF3

FF2

FF1

FF0
DQ in

DQ
to
data
path

User Manual

CPC945 Bridge and Memory Controller Preliminary

DDR2 Memory Controller
Page 234 of 655 February 1, 2008

To center the incoming DQS within the data window, the DQS signal is delayed by 1/2 bit time before being
used as a clock to the FIFO bits. (The undelayed DQS is used to clock the 2-bit load enable counter.) The 1/2
bit time delay is generated using the same mechanism used to generate 1/2 bit time for the write DQS: the
output of the 1/2 Bit Time Averager value is added to a Delta time that adjusts the 1/2 bit time + or -, and the
result is used to control a full bit time delay unit.

A positive version of the incoming DQS is delayed with a 1/2 bit time unit and sent to FF0 and FF2 for
clocking on the rising edges. A negative version of the incoming DQS is delayed with a 1/2 bit time unit and
sent to FF1 and FF3 for clocking on the negative edges. The two 1/2 bit time units are independent; the Read
Data Strobe registers have 2 fields, RdStrOffset_DeltaR and RdStrOffset_DeltaF to provide independent
offsets to the two 1/2 bit time delay units. See Figure 7-15.

Figure 7-15. Read DQS

ReadStrobeDelay Reg

Full Bit
Delay

+/-
Delta

Full Bit
Delay

+/-
Delta

DeltaFDeltaR

From 1/2 Bit Time Averager

ldEn_FF0
ldEn_FF1
ldEn_FF2
ldEn_FF3

ldClk_R

ldClk_F

Counter

DQS

resetLdEn

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
DDR2 Memory Controller

Page 235 of 655

When a memory chip performs a read operation, initially DQS is in tri-state. The SDRAM drives DQS low: this
is the preamble. For the burst length of 4 used by the CPC945, the SDRAM then drives DQS high, low, high,
low. This last low level is the postamble. Finally, DQS is put back in tri-state.

The transitions from and to tri-state can have undershoot and overshoot such that, internal to the CPC945, it
looks like the DQS has extra transitions. It is important that the CPC945 only latch data on the 4 valid edges.
As mentioned previously, an internal “resetLdEn” signal is used to reset the load enable circuits and prepare
them for use of the following DQS edges. After 4 edges are detected, a “glitch filter” prevents the transition
from the low level postamble to tri-state from accidently being used to clock the data capture latches. This
glitch filter can be disabled with bit 20, StartLdEn, in the MemBusConfig Register. However, it is recom-
mended that the glitch filter always be enabled by setting StartLdEn to 0.

Once the data are latched in the FIFO, they must be transferred to the internal ddr_clk to be pipelined through
the data path and sent to the requesting unit. A multiplexer (Figure 7-14) is used to select one of the four
latches outputs to be clocked by ddr_clk. A counter drives a 2-bit unLoadPtr signal to successively transfer
the four latch outputs to the ddr_clk domain. An internal signal resets this pointer during a read, roughly at the
time the first beat of data has become stable in its FF. A coarse control sets the timing of this signal.

Each byte lane has a DQS driver/receiver. When ×8 or ×16 memory chips are used the receiver receives a
single differential DQS. When ×4 memory chips are used the receiver receives two independent single-ended
DQS.

Figure 7-16 shows the read clocking control for a byte lane. To accommodate the ×4 mode of operation for
reads, a byte lane operates on two nibbles. The 8 FIFOs are clustered into 2 nibbles of 4 bits each. The two
received DQS (using the ZPD and ZPN outputs of the receiver) are labeled internally DQS_L and DQS_U.
DQS_L has positive and negative copies (Figure 7-15, Figure 7-16) that feed a load enable counter which in
turn feeds 4 FIFOs. The positive and negative versions of DQS_L are each fed through a 1/2 bit time delay
each (Figure 7-15, Figure 7-16); the two delayed strobe versions are used to feed/clock the 4 FIFOs. In a
similar fashion, DQS_U drives a load enable counter and two 1/2 bit time delays to clock the 2nd nibble of 4
FIFOs. So altogether a byte lane has four 1/2 bit time delay units, and four offset controls. The four controls in
the Read Data Strobe Register are RdStrOffset_DeltaLR and RdStrOffset_DeltaLF, for tweaking indepen-
dently the rising edge and falling edge delays to one nibble, and RdStrOffset_DeltaUR and
RdStrOffset_DeltaUF, for tweaking independently the rising edge and falling edge delays to the other nibble.

When a single differential DQS is received for ×8 or ×16 chips, the received DQS (using the ZDF output of the
receiver) is steered through multiplexes to feed the 2 sets of clock and control for the 2 nibbles. Therefore all
4 values of RdStrOffset must be programmed. (Usually the 2 nibbles are given the same delays.)

For the resetLdEn fine tuning, there are 8 verniers; 2 per cluster. A vernier controls resetLdEn for either 2
byte lanes or 3 byte lanes. (The vernier for data bytes 4 and 5 also controls check byte 16; the vernier for data
bytes 12 and 13 also controls check byte 17; the remaining verniers control 2 bytes each.)

The verniers and the ResetLdEnVernier Registers are not shown. They are full bit time delay verniers made
up of 2 half bit time delays, similar to dual-stack full time delay vernier controlled by WrClkDelay in the write
controls.

The unLoadPtr control operates in common to all bits of all byte lanes.

User Manual

CPC945 Bridge and Memory Controller Preliminary

DDR2 Memory Controller
Page 236 of 655 February 1, 2008

7.28.2 Read ResetLdEn Timing

Figure 7-17 shows the relationship of the internal resetLdEn signal to the internal DQS signal. The internal
signal ldClk_LR, is the positive version of one of the incoming DQS signals after it has been delayed 1/2 bit
time and fine tuned with the Read Data Strobe Control registers. In this example the CAS latency = 4.

The timing of the internal resetLdEn is critical: the trailing edge of resetLdEn must fall within the (internal,
delayed) DQS Read Preamble driven by the memory chips at the start of the read data transfer. Too late, and
the first beats of the data transfer will not be clocked into the FIFO. Too early, the last beats of a previous
read (back-to-back) will not be clocked into the FIFO.

Due to pipeline delays the internal resetLdEn signal arrives 3 cycles after the control signals are sent off-chip,
plus the value of ResMuxDel in the MemBusConfig register. That is, CAS, WE going valid to internal
resetLdEn going valid = ResMuxDel + 3 (in ddr_clks).

The example timings in Figure 7-17 shows the internal resetLdEn using a ResMuxDel value of 4.

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
DDR2 Memory Controller

Page 237 of 655

Figure 7-16. Byte Lane Read Control

1 Bit
4 Deep
FIFO

1 Bit
4 Deep
FIFO

1 Bit
4 Deep
FIFO

1 Bit
4 Deep
FIFO

1 Bit
4 Deep
FIFO

1 Bit
4 Deep
FIFO

1 Bit
4 Deep
FIFO

1 Bit
4 Deep
FIFO

4

4

8 Bits
to
Data
Path

DQS P

DQS N

DQS 0

DQS 1

ZDF
ZPD

ZPN

Receiver

Differential/
Single-ended

1/2 Bit Time
Delay
+/- DeltaLR

1/2 Bit Time
Delay
+/- DeltaLF

Counter

ldClk_LR

ldClk_LF

ldEn
L_FF0:3

1/2 Bit Time
Delay
+/- DeltaUR

1/2 Bit Time
Delay
+/- DeltaUF

Counter

ldClk_UR

ldClk_UF

ldEn
U_FF0:3

DQS_L

DQS_U

DQ[0:7]

4

4

4

4

ddr_clk

2

2

CounterunLoad controlled by

unLoadPtr

RdMacDel in
MemBusConfig Reg

resetLdEn controlled by
ResMuxDel in
MemBusConfig Reg
and a vernier set by
ResetLdEnOffset in
RstLdEnVerniersCx Reg Common to

all byte lanes

2 Verniers per cluster.
Each vernier controls 2 or 3
byte lanes

×8/×16: ZDF received from
differential P/N
×4: ZPD receives DQS 0
ZPN receives DQS 1

8 [0:3]

[4:7]

User Manual

CPC945 Bridge and Memory Controller Preliminary

DDR2 Memory Controller
Page 238 of 655 February 1, 2008

7.28.3 Read Unload Timing

Once data is loaded into the FIFO, it must be transferred to the internal data path that is clocked using the
internal ddr_clk. An internal “unload pointer” is incremented to successively pull read data out of the FIFO.
The timing of this unload operation is controlled by the RdMacDel (Read Macro Delay) field in the MemBus-
Config register.

Figure 7-18 shows the unloading of the FIFO. Because of pipeline delays it takes 4 ddr_clks to start the
unload operation, plus the value of RdMacDel. That is, CAS, WE going valid to internal the unload pointer
being updated = RdMacDel + 4 (in ddr_clks).

The example timings in Figure 7-18 shows the internal unloadPtr using CL = 4 and a RdMacDel value of 5.

In theory if all bytes of data are simultaneously loaded into the FIFO (internally all DQ and DQS are perfectly
aligned), then read data will be valid in each FIFO location for approximately 3 ddr_clk cycles, which would
allow for 3 values of RdMacDel which could be used to start the unload operation. In practice often only 1 or
2 values are seen to work. If multiple values are found to work, the smaller value should be used to minimize
the read latency.

Since the timing of RdMacDel is closely related to the setting of ResMuxDel, the value of RdMacDel is often
in the range of ResMuxDel+1 to ResMuxDel+4.

Summary: Read data from the memory chips arrives at an internal FIFO which is clocked on a byte or nibble
basis by DQS from the memory chips. Internally, the individual DQS signals are delayed nominally by 1/2 bit
time to center the DQS edges within the data. Due to board wiring variations and on-chip variations the
various bytes or nibbles can arrive at the FIFO latches at slightly varying times. The rising and falling edges of
the delayed DQS arriving at the FIFO clocking logic can be fine tuned +/- using the RdStrOffset_Delta fields
of the Read Data Strobe registers.

Figure 7-17. Read Reset Ld En Timing Example

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

DDR Clks

rdRequest

CS, CAS, WE, etc. Outputs at pad with no MemPHYModeCntl delay

sendRMS

dp_phy_resetLdEn_C0-3

resetLdEn

ldClk_LR (delayed DQS)

ResMuxDly = 0100 (4)

cross chip wiring

DQS Read Preamble
Example: CL = 4

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
DDR2 Memory Controller

Page 239 of 655

The FIFO has a load pointer and an unload pointer. The load pointer must be reset during the DQS read
preamble time; the coarse timing is set using the ResMuxDel field in the MemBusConfig register and byte
pairs timings are set using the Reset LdEn Offset fields of the Reset Ld En Offset Delay registers. The unload
timing is set using the RdMacDel field in the MemBusConfig register.

Although the DQS edges across the bytes or nibbles are adjusted to center the DQS edges within the DQ
beats at the input to the internal FIFO, there cannot be too great a range from the fastest arriving data to the
slowest arriving data. If this range is too great, it might be impossible to find a value of ResMuxDel that reli-
ably resets the load pointer for all bytes or nibbles. To a lesser degree this might also make it impossible to
find a value of RdMacDel that reliably unloads all bytes or nibbles. For this reason, at the board level the skew
of the data bytes must be tightly controlled.

Figure 7-18. Read UnloadPtr Timing Example

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

DDR Clks

rdRequest

CS, CAS, WE, etc. Outputs at pad with no MemPHYModeCntl delay

pStartSendTA

dp_phy_unLoadPtr_C0-3

unLoadPtr

ldClk_UR (delayed DQS)

RdMacDly = 0101 (5)

Valid starting window

Example: CL = 4

00 01 10 11

00 01 10 11

User Manual

CPC945 Bridge and Memory Controller Preliminary

DDR2 Memory Controller
Page 240 of 655 February 1, 2008

7.29 Output Enable Timing

Normally the CPC945 enables the DQ and DQS I/O for driving to the memories, in anticipation of write oper-
ations occurring. When a read operation is performed these I/Os are tri-stated at the beginning of the read,
and re-enabled for driving at the end of the read.

7.29.1 OE Coarse Timing

In the MemBusConfig register the RdOEOffDly field controls when the I/O are tri-stated, and the RdOEOnDly
field controls when the I/O are re-enabled.

For read operations the time from CAS, WE going valid to DQ being tri-stated = RdOEOffDly + 2 (in ddr_clks).
DQS is tri-stated approximately 1/2 bit time later. An example showing RdOEOffDly = 4 is shown in
Figure 7-19.

Once tri-stated, the DQ and DQS I/O will be held tri-stated for a minimum of 3 + n × ddr_clks, where “n” = the
number of data beats:

• n = 4 for 64 bytes or less with a 128-bit bus configuration
• n = 8 for 128 bytes with a 128-bit bus configuration, or 64 bytes or less with a 64-bit bus configuration
• n = 16 for 128 bytes with a 64-bit bus configuration

This minimum tri-state time can be extended using the RdOEOnDly value. Thus the time that the DQ and
DQS I/O are held in tri-state = 3 + n + RdOEOnDly.

Note that the OE Off window can be widened on both ends by decrementing the RdOEOffDly value and incre-
menting the RdOEOnDly value. For example, the window can be widened by one ddr_clk at each end by
decrementing RdOEOnDly by 1, and incrementing RdOEOffDly by 2.

Figure 7-20s shows an example for a 128-bit bus, 4-beat transfer, CL = 3 system in which RdOEOffDly is set
to 3. RdOEOnDly is set to 1, to widen the window to 8 ddr_clks.

Figure 7-19. RdOEOffDly Timing Example

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

DDR Clks

rdRequest

CS, CAS, WE, etc. Outputs at pad with no MemPHYModeCntl delay

DQ
RdOEOffDly = 0100 (4)

DQS

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
DDR2 Memory Controller

Page 241 of 655

7.29.2 OE Vernier Timing

The coarse timing provided by the RdOEOffDelay and RdOEOnDelay values generates an internal Output
Enable (OE) signal. This internal signal is further delayed using the same Write Data vernier control,
WrClkOffset, discussed in Section 7.27.2.

In Figure 7-20 the signal labeled “OE to drivers” is sent to all byte lanes. It is shown as the input “OE” in
Figure 7-13. The same delay applied to DQ using WrClkOffset is also applied to the Output Enable for the DQ
drivers. For the DQS drivers, the Output Enable to the drivers has the same 1/2 bit time delay as is applied to
DQS.

Figure 7-20. DQ and DQS Tri-state Timing Example

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

DDR Clks

rdRequest

CS, CAS, WE, etc. Outputs at pad with no MemPHYModeCntl delay

DQ

RdOEOnDly = 1

DQS

D0 D1 D2 D3
CL = 3

RdOEOffDly Setting => 0 1 2 3 4 5 6 7 8 9 10

7 cycles

OE to drivers

User Manual

CPC945 Bridge and Memory Controller Preliminary

DDR2 Memory Controller
Page 242 of 655 February 1, 2008

7.30 External Multiplexer Timing

7.30.1 ExtMux Coarse Timing

The DDR_MUXEN[0:7] chip outputs control the optional external data multiplexers.

For write operations the multiplexer value switches once, at a time controlled by the WrExtMuxDly field in the
MemBusConfig register.

For read operations the multiplexer value switches once, at a time controlled by the RdExtMuxDly field in the
MemBusConfig register.

In essence there is one 2-bit control to select 1-of-4 multiplexer paths. There are 4 copies of these 2 bits:
DDR_MUXEN[0:1], DDR_MUXEN[2:3], DDR_MUXEN[4:5] and DDR_MUXEN[6:7].

For write operations the time from CAS, WE going valid to MUXEN switching = WrExtMuxDly + 2 (in
ddr_clks).

For read operations the time from CAS, WE going valid to MUXEN switching = RdExtMuxDly + 2 (in
ddr_clks).

Figure 7-21 shows an example in which RdExtMuxDly = 3.

The critical timing of the external data multiplexer switching usually occurs when the memory controller
accesses two different DIMMs in quick succession. In general, when the CPC945 changes the
DDR_MUXEN[0:7] outputs there must be one dead cycle (one mem_clk = 2 ddr_clks) to allow time for the
multiplexers to switch.

There are 4 scenarios that must be analyzed: a read followed by a read, a write followed by a read, a write
followed by a write, and a read followed by a write. The TiRtRSy, TiWtRSy, TiWtWSy and TiRtWSy fields, in
the CASTimer0 and CASTimer1 Registers (0xF8002050 and 0xF8002060) must be programmed to allow
enough time between the two operations to meet DDR2 chip specifications, plus an extra cycle for the
external multiplexer switching.

The WrExtMuxDly/RdExtMuxDly fields in the MemBusConfig register and the ExtDataMuxSel-
WrOffset/ExtDataMuxSelRdOffset fields in the ExtMuxVernier registers are then used to dial in a switching
time between the two operations such that the data transfer of both the first and the second operation are not
clipped by the multiplexer switching.

Figure 7-21. External multiplexer Basic Timing

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

DDR Clks

rdRequest

CS, CAS, WE, etc. Outputs at pad with no MemPHYModeCntl delay

MUXEN[0:7] RdExtMuxDly = 0011 (3)

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
DDR2 Memory Controller

Page 243 of 655

An initial setting of WrExtMuxDly and RdExtMuxDly values would place the multiplexer switching time and its
dead cycle just before the activation of DQS. This cycle is a function of when CAS arrives at the memory
chips. An example equation for RdExtMuxDly (assuming no significant board wiring delay) would be RdExt-
MuxDly = 2 * (CL + RegDIMM -2), where CL = CAS latency, RegDIMM = 1 if registered DIMMs are used,
otherwise 0, and the “-2” represents backing off one cycle for the DQS preamble and one dead cycle for the
multiplexer switching. The number of cycles is multiplied by 2 because RdExtMuxDly is programmed in
ddr_clks.

For writes, DQS is activated one mem_clk cycle earlier than for reads, so WrExtMuxDly = RdExtMuxDly - 2 =
2 * (CL + RegDIMM -3).

(Properly speaking the above equations should have AL = Additive Latency as an additional term inside the
parentheses, but the CPC945 requires that AL = 0 so this term has been left out.)

Figure 7-22 shows an example read operation in which CL = 3, registered DIMMs are used, and RdExt-
MuxDly = 4 based on the above equations.

Figure 7-22. External multiplexer Read Timing Example

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

DDR Clks

rdRequest

CS, CAS, WE, etc. Outputs at pad with no MemPHYModeCntl delay

CS. CAS. WE at SDRAM

DQ

RdExtMuxDly Setting =>

Dead Cycle for Multiplexer Switch

D0 D1 D2 D3

DQS

DDR_MUXEN (previous value) (new value)

0 1 2 3 4 5 6 7 8 9 10

User Manual

CPC945 Bridge and Memory Controller Preliminary

DDR2 Memory Controller
Page 244 of 655 February 1, 2008

7.30.2 ExtMux Vernier Timing

The coarse timing provided by the WrExtMuxDly and RdExtMuxDly values generates an internal 2-bit
MUXEN signal. This 2-bit signal is sent to each of the four clusters. Each cluster has a vernier for adding
additional delay for reads and another vernier for adding delay for writes.

The 2 delayed values of the multiplexer enabled signal are selected by an internal multiplexer, read versus
write, and driven off chip. Cluster 0 generates DDR_MUXEN[0:1], Cluster 1 generates DDR_MUXEN[2:3],
Cluster 2 generates DDR_MUXEN[4:5], Cluster 3 generates DDR_MUXEN[6:7].

Figure 7-23 gives a simplified diagram of the external multiplexer enable verniers for a cluster.

The ExtMuxVernier0 register at 0xF80028B0 provides 4 RdOffset fields, one per cluster.

The ExtMuxVernier1 register at 0xF80028C0 provides 4 WrOffset fields, one per cluster.

Figure 7-23. Cluster MuxEn Verniers

Full Bit
Delay

ddr_clk

MuxEn

Rd
Offset

ExtMuxVernier0
0xF80028B0

Full Bit
Delay

Wr
Offset

ExtMuxVernier1
0xF80028C0

Rd/Wr

22

2
MUXEN

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
DDR2 Memory Controller

Page 245 of 655

7.31 DDR2 PHY Calibration Logic

7.31.1 Calibration Logic Overview

The DDR2 PHY has calibration logic that can be used to discover good timing control values for DDR2 read
operations. The use of this logic is optional. It can be used as an aid to finding timing control values, but it
is not a requirement. It is not used for normal functional operation of the DDR2 memory controller.

Timings for the clock and control signals to memory, and data and strobe signals on write operations, can be
observed at the board or DIMM level using equipment such as an oscilloscope or logic analyzer. Read opera-
tions are different. Although the data and strobes coming out of the DIMMs can be observed, the desired
point of observation is at the data capture latches in the CPC945.

The DDR2 PHY calibration logic adds some visibility into the internal control and clocking of the data capture
latches.

For DDR2 reads the DDR2 DRAMs drive DQ and DQS into the CPC945. Internally the arriving DQS are
delayed by 1/2-bit time and used to clock the DQ into the capture latches. Properly timed control signals
enable the load of the capture latches and the unload to the internal ddr_clk.

Figure 7-24. Simplified Byte lane with Calibration Bit

Unload Monitor

Load Monitor

DQ

DQS

1/2 Bit Delay

ldEnable Ctr

ldClkR/F

ldEnables

8 x 4-stage data capture FIFOs

to all
9
FIFOs

Read Data to
Requestor

8 bits x 4 transfers 8 bits x 4 transfers

4 outputs sampled
to Register

to Register

Reset Reset Sample

Calibration Controls

RdStrOffset_Deltas

resetLdEnable RdMacDel / unLoadPtr

4 outputs

Calibration DQS

Calibration Bit

Capture Latches

UnLd Clk Offset

1 x 4-stage FIFO
1 unload compare sampled

User Manual

CPC945 Bridge and Memory Controller Preliminary

DDR2 Memory Controller
Page 246 of 655 February 1, 2008

Each bytelane has 8 sets of data capture latches. The calibration logic adds a ninth calibration bit. The cali-
bration bit contains a set of DQS capture latches, a load monitor, and an unload monitor.

• The DQS capture latches are similar to the DQ capture latches except that the incoming, undelayed DQS
are latched instead of the DQ. That is, the delayed strobe is used to clock in the undelayed strobe.

Depending on values used to control the 1/2-bit time on the rising edge and falling edge copies of the
delayed strobe, and the values used to control the reset of the load enable circuitry, the capture of the
undelayed strobe by the delayed strobe will be either successful (pass) or unsuccessful (fail).

• The load monitor reports the value of the capture latches.

The calibration logic has the concept of streaming a set of reads into the capture latches, and accumulat-
ing the result in the load monitor using “sticky” latches. At the beginning of the first read, the load monitor
is reset to a “pass” result. The load monitor then stays at the “pass” state only if all reads in the stream
generate a “pass” result. If any of the reads generates a “fail” result, the load monitor goes to the “fail”
level and stays there.

• The unload monitor indicates the arrival timing of a delayed strobe edge at a capture latch relative to the
internal ddr_clk. A pass/fail bit is generated which indicates if the latching of a capture latch by the
ddr_clk matches the latching by a delayed version of ddr_clk. This delay is varied by the user.

Similar to that of the load monitor, the unload monitor has a sticky latch to accumulate the result over a
stream of reads.

The use of read streams and sticky result latches is to accommodate jitter. This is discussed more fully in
Section 7.31.6 Jitter Considerations.

The calibration logic makes use of the MemInitRegs and the Memory Programming Control mechanism
described in Section 7.9 Memory Programming Control on page 147. This mechanism allows the user to set
up and issue and arbitrary set of memory commands, with user defined delays between commands, and
looping controls to generate very long sequences of commands if desired. When using the DDR2 PHY cali-
bration logic, the user is required to set up one or more read commands in the MemInitRegs.

For a stream of reads, the calibration logic is set up to run in pulsed or continuous mode.

• In pulsed mode the sticky latches in the load and unload monitors are opened once, for a short sampling
time (one ddr_clk), per read. In pulsed mode the user is required to space the reads apart. (By using the
Delay fields in the MemInitRegs.)

• In continuous mode, the sticky latches are opened for sampling in the first read and held open. Typically
the user will program no delay between reads.

The discovery of good timing control values usually consists of executing a series of calibration operations. A
calibration operation, or step, involves resetting the calibration capture latches and monitors, kicking off a
stream of reads, observing that the reads have ended, and reading the monitor results. A given timing control
is varied between calibration steps. The series of steps is terminated when the monitor results change from
pass to fail.

The timing control that is varied is usually one of the following verniers: reset load enable, rising read strobe
offset delta, falling read strobe offset delta, unload monitor clock offset. Also, for reset load enable timing, the
ResMuxDelay field in the Memory Bus Configuration can be varied.

The calibration logic supports single step mode and auto calibration mode.

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
DDR2 Memory Controller

Page 247 of 655

• Single step mode is manual. The programmer writes registers to reset the calibration logic, writes the
Memory Programming Control Register to kick off the reads, polls the Memory Programming Control
Register to determine when the reads are done, and reads the monitor results. Between steps, the pro-
grammer writes a new value to the timing control of interest.

For a given step the monitor results for all byte lanes are available.

• Auto calibration makes use of a Finite State Machine (FSM) to automatically sequence through a number
of calibration steps. The programmer writes a register to kick off the sequence and polls a status bit to
determine when the sequence has terminated. The FSM performs a series of calibration steps, incre-
menting a timing control value between each step. For a given step, the FSM resets the capture latches
and monitors, kicks off the reads, polls for the end of reads, reads the monitor results, and compares the
monitor results against a programmed value. Based on the compared results, either another step is exe-
cuted or the series is terminated.

Prior to the auto calibration, the programmer identifies which timing control value is to be incremented
between steps. Following the auto calibration, the programmer reads a register to find the incremented
value which caused a calibration step to terminate the series. Only the verniers listed above (reset load
enable, rising/falling read strobe delta offset, unload monitor clock offset) can be varied by the auto cali-
bration FSM.

There are actually 4 FSM machines, one per cluster. It is intended that all 4 FSMs are operated in paral-
lel. Of the 4 or 5 bytes in a cluster a FSM can only work with a single byte at a time. Since there are 4
FSMs a given auto calibration sequence will find the results for 4 bytes at a time, one per cluster.

For the 2 ECC bytes only 2 FSMs are run in parallel.

The calibration logic is configured with 2 registers which are common to all byte lanes.

• CalConfig0 (0xF80029B0) has some controls which must be set for any type of calibration. Some fields
are only applicable for the unload monitor. Some fields are only for auto calibration.

• CalConfig1 (0xF80029C0) is only used with the unload monitor. It contains the control value for the ver-
nier which delays the internal ddr_clk (unload clock offset).

There are 4 Control and Delay Measurement registers, one per cluster, located at 0xF80028F0, 0xF80029F0,
0xF8002AF0 and 0xF8002BF0.

In single step mode this Control register contains a bit used to reset the monitors and control logic.

In autocal mode this Control register contains a bit used to kick off an autocal sequence, the bit that is polled
to determine when the sequence has completed, and the timing control value (that had been auto-incre-
mented between steps) used for the final step (the “Delay Measurement”).

(The register at 0xF80028F0 also contains the measurement delay produced by the 1/2-bit time averager,
which is not part of the calibration logic.)

There are 4 Results registers, one per cluster, located at 0xF80028E0, 0xF80028F0, 0xF8002AE0 and
0xF8002BE0. These registers contain the outputs of the load and unload monitors.

Clusters 0 and 2 contain 4 bytes. There are 4 load monitor result bits per byte, for a total of 16 bits: 0 through
15. Bit 0:3 contain the 4 result bits of the first byte, bits 4:7 contain the 4 result bits of the next byte, and so on.

When ECC is used clusters 1 and 3 contain 1 additional byte each for the check bits. The additional 4 load
monitor result bits are contained in bits 16:19.

User Manual

CPC945 Bridge and Memory Controller Preliminary

DDR2 Memory Controller
Page 248 of 655 February 1, 2008

The unload monitor has a single result bit. For clusters 0 and 2 with 4 bytes each, the 4 unload monitor result
bits are bits 24:27 in the Results register. For clusters 1 and 3 with 5 bytes each the 5 unload monitor result
bits are bits 24:28.

(The register at 0xF80028E0 bits 29:31 contain the 3 status bits of the 1/2-bit time averager, which is not part
of the calibration logic.)

The DDR2 PHY calibration logic has the following characteristics:

1. The calibration logic does not produce optimum timing values. Rather, the calibration logic finds the mar-
gins of good versus bad operation. Once these margins are discovered, the optimum timing is calculated
or inferred.

2. There is a hierarchy of the direct relevance of what the calibration logic is measuring versus the timing
controls of interest.

a. The Reset Load Enable (resetLdEn) timing observed by the calibration logic is exactly the timing
applied to the data capture latches. The resetLdEn timings affect the operation of the load enables
controlling all of the capture latches in a byte lane: the 8 sets of DQ capture latches and the 9th set of
capture latches for the calibration bit.

b. The rising and falling Read Strobe Delta Offset timing observed by the calibration logic is not exactly
the timing of interest at the data capture latches. The calibration logic is observing the latching of the
undelayed strobe by the delayed strobe, whereas the timing of interest is the latching of the data
(DQ) by the delayed strobe.

For a given bytelane, there is an assumption that the timing of DQ and DQS is so closely matched
that the results observed by latching the undelayed DQS will also apply to the latching of DQ. This is
another reason that the lengths of the board wiring should closely match the DQ versus DQS.

c. The unload monitor might have the least utility for the user, for 2 reasons.

First, note that for the load operation the controls that are varied when making observations with the
calibration logic (ResMuxDel, ResetLdEn Offset verniers, rising and falling Read Strobe Delta Offset
verniers) are identically the controls affecting the load operation of the data. But for the unload opera-
tion the control of interest (RdMacDel) is not observed by the calibration logic. Instead, the unload
monitor has a vernier which is only used by the unload monitor, but does not affect the unload opera-
tion of the data sent to the requestor.

Second, while the unload monitor can give the user a relative feel for the relationship of the DQS
edges versus the internal ddr_clk, the precise relationship can only be determined with detailed cal-
culations involving the exact implementation of the calibration logic and knowledge of the logic delays
(for example, clock splitter delays, overhead delays in the vernier delay chain, and so on.).

Since this knowledge is not available to the user, it is difficult or impossible to determine the timing
value of interest (RdMacDel) from the observations obtained with the calibration logic unload monitor.
Indeed this User Manual does not provide such a calculation.

The unload monitor operation is described for completeness. Also, it might be possible to develop an
“ad hoc” use of the unload monitor based on laboratory correlation of the unload monitor results ver-
sus the general read results produced as RdMacDel is varied. Also, in addition to relating the strobes
to the internal ddr_clk, the unload monitor can be used to observe the amount of jitter on DQS.

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
DDR2 Memory Controller

Page 249 of 655

7.31.2 Calibration Bit DQS Capture Latches

Figure 7-25 shows the 4 capture latches in the calibration bit. This is essentially the same 4-stage FIFO as
the normal read data capture FIFO (Figure 7-14 on page 233), with the following differences:

• As already described the strobe (DQS), rather than a data bit (DQ) is the data that is clocked into the 4
flops.

• The FIFO does not have an output multiplexer/unload pointer. (The unload monitor, discussed later, has a
multiplexer but the output is statically selected and is not controlled with RdMacDel.)

• The 4 flops have a “reset” input which forces their values to be 0b0101.

As shown in Figure 7-25, if a read operation is performed in which DQS goes high-low-high-low, the delayed
strobe should clock in the values 0b1010 = 0xA. If the ldClk or ld_enable timings are not correct it is possible
that one or more of the flops is not clocked at all. To guarantee that a successful clocking is detected (not
data left over from a previous read), the 4 flops are first reset to the opposite values of a successful load, that
is, 0b0101 = 0x5.

By default the reset of the flops is timed to occur at the same time as the ResetLdEnable. The timing can be
adjusted by ddr_clks using the Measurement Reset Latency field (bits 16:19) in the CalConf0 register at
0xF80029B0. This is a sign/magnitude value so the reset can be adjusted to occur earlier (-) or later (+).

Figure 7-25. Calibration Bit DQS Capture FIFO

FF3

ldClk_LR

ldClk_LF

ld_en_L_FF0
ld_en_L_FF1
ld_en_L_FF2
ld_en_L_FF3

FF2

FF1

FF0DQS_L

reset

reset
reset

reset

reset

FF0

FF1
FF2

FF3

DQS_L

ldClk_LR
ldClk_LF

If load timings are good,
FF0_FF1_FF2_FF3 = 0b1010 = 0xA
after a 4-beat read burst

r

r

s

s

User Manual

CPC945 Bridge and Memory Controller Preliminary

DDR2 Memory Controller
Page 250 of 655 February 1, 2008

As noted in Section 7.31.1 Calibration Logic Overview there are two read streaming modes: pulsed and
continuous. The control for this is bit 8, Read Stream Mode, of the CalConf0 Register at 0xF80029B0.
(0 = pulsed; 1 = continuous.)

In pulsed mode the DQS capture latches are reset to 0x5 before every read. In continuous mode the latches
are only reset before the first read.

The general principle for using the DQS capture latches is as follows:

• If reads are performed and the DQS sampled by the calibration bit yields a value of 0b1010 = 0xA, then it
can be assumed that the DQS is being generated properly by the DRAM, DQS is being received properly,
resetLdEnable is timed well enough that the 4 ldEnables are generated properly and enable sampling at
the correct times, and that the separate delays for producing the delayed copies of DQS, ldClk_R and
ldClk_F, produce rising edges and falling edges that are timed well enough to sample the four levels of
DQS with sufficient setup and hold times. However, nothing is known about the “quality” of the timings. (If
the timings are optimum, on the edge of failure, or somewhere in between.)

• If reads are performed and the DQS sampled by the calibration bit does not yield a value of 0b1010 =
0xA, then something is wrong. If the DRAM is sending DQS (which can be observed with an oscilloscope)
and if the CPC945 is otherwise programmed correctly (for example, the I/Os are properly set to differen-
tial versus single-ended operation, as appropriate), then the bad result is probably produced by bad tim-
ing values for either resetLdEnable, the strobe 1/2-bit time delays, or both.

– The resetLdEnable timing is controlled by the ResMuxDly value in the Memory Bus Configuration
register, and the ResetLdEn values in the Reset Ld En Offset Delay registers.

– The strobes are delayed nominally by 1/2 bit time and the delay of the rising and falling edges are
individually adjusted plus or minus using RdStrOffset values in the Read Data Strobe registers.

• The user is required to somehow find a set of timing values that produce the 0xA pattern indicating good
capture of DQS. Once this “seed” is found, a timing control is varied until the 0xA pattern changes to
something else, indicating that the capture is no longer valid. The value(s) at which this occurs indicates
the margin(s) of good timing values. From these margins, optimum timing control values can be calcu-
lated or inferred.

– The 3 sets of load controls (resetLdEn, rising clock, and falling clock), are individually adjusted.

– If the byte timings (board wiring lengths) from byte to byte are well matched, then a seed can proba-
bly be found in which all byte lanes produce 0xA values. If byte timings are not well matched, then it
might happen that a seed is found in which a majority of byte lanes produce 0xA values, and that fur-
ther experimentation (for example, adjusting the RdStrOffsets on a byte basis) might be required to
find a seed that produces all 0xA values. Naturally the margins for these values will be tighter than for
a system with well matched byte lanes.

As noted in Section 7.31.1 for a byte lane the DQ capture latches and the calibration DQS capture latches
share the same timing verniers and controls, so the tuning of the timings based on DQS sampling as
described above should produce identically optimized timings and margins for the capture of the DQ data
bits. Also in Section 7.31.1 is the observation that this will only be true if the DQS and DQ board wiring
lengths are closed matched for a given byte.

It should be noted that Figure 7-24 is simplified to illustrate that 8 bits of data + 1 calibration bit are associated
with the same DQS strobe. In actuality, as shown in Figure 7-16 Byte Lane Read Control on page 237, each
byte lane has 2 strobes, one “lower” and one “upper,” and 2 sets of verniers for controlling the delta offsets of
the 1/2 bit-time delay. For systems with ×8 and ×16 DRAMs this is of no consequence (from a calibration logic
viewpoint) because the lower and upper strobes are simply 2 copies of the external DQS and the lower and
upper verniers are required to have the same programming values.

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
DDR2 Memory Controller

Page 251 of 655

For systems with ×4 DRAMs, however, the “lower” and “upper” strobes correspond to 2 distinct external
strobes which might have different times. The calibration bit is connected to the “lower” (even-numbered)
strobe. The “upper” strobe does not have a calibration bit. This is a limitation of the DDR2 PHY Calibration
Logic for systems with ×4 DRAMs: only the even-numbered strobes can be calibrated with this logic.

For this reason, as noted in Section 7.22.3 Relationship to Board Wiring, it is recommended that nibble pairs
have identical even/odd wiring lengths.

7.31.3 Calibration Load Monitor

The load monitor consists of 4 sticky latches which sample the outputs of the 4 DQS capture latches.

The sticky latches have the characteristic that first they are reset to a given level; then afterward whenever
the sample control is active the latch will only change state if the input is the opposite of the reset value, and
only for the first occurrence of this event. In other words, the two sticky latches reset to “1” will stay at a “1”
only if the input is a “1” for every sample. If the input is a “0” during a sample time, the latch output will change
to a “0”. It will stay at a “0” independent of the input value for subsequent samples, and will only change back
to a “1” when reset.

Similarly, the two sticky latches reset to “0” will stay at “0” only if the sampled inputs are always “0”. If a “1” is
sampled the output will change to a “1” and will not change back to a “0” until reset.

In single step mode the user is required to reset the sticky latches at the beginning of each calibration step.
This is done by writing bit 0, Reset Calibration Registers, in the four calibration Control and Delay Measure-
ment Registers at 0xF80028F0, 0xF80029F0, 0xF8002AF0, and 0xF8002BF0.

Figure 7-26. Calibration Load Monitor

Sticky
Latch

Reset
To 1

Sticky
Latch

Reset
To 0

Sticky
Latch

Reset
To 1

Sticky
Latch

Reset
To 0

ResetSample

FF0

FF1

FF2

FF3

Accumulated FF0 Result

Accumulated FF1 Result

Accumulated FF2 Result

Accumulated FF3 Result

User Manual

CPC945 Bridge and Memory Controller Preliminary

DDR2 Memory Controller
Page 252 of 655 February 1, 2008

In auto calibration mode the FSM takes care of this reset.

The sample time of the load monitor sticky latches is relative to reset time of the DQS capture latches. It is
adjusted in ddr_clk units using the Measurement Result Latency field (bits 20:23) in the CalConf0 register at
0xF80029B0. This is an unsigned value.

The user often sets the sample time relative to ResetLdEnable, for example 8 clocks later. Since the reset
time of the DQS capture latches changes relative to ResetLdEnable based on the value of Measurement
Reset Latency, this must be taken into account. For example, if it is desired to have the sample time 8
ddr_clks later than ResetLdEnable, and Measurement Reset Latency = 0xA = -2 (sign/magnitude), then the
Measurement Result Latency value must be set = 0xA = 10 (unsigned).

In pulsed mode the sample control to the sticky latches is active for one ddr_clk during each read in a stream.
As just explained, the pulse occurs after ResetLdEnable with the delay specified by Measurement Result
Latency.

In continuous mode the sample control goes active on the first read, using this same delay, but then it stays
active for the remaining reads in a stream. It goes inactive when the calibration is subsequently reset, either
by the programmer setting the Reset Calibration bit (bit 0) in the calibration Control and Delay Measurement
registers (single step mode) or automatically by the FSM (autocalibration mode).

7.31.3.1 Summary of Load Calibration in Pulsed Mode

• A stream of reads is performed.

• Before the start of this stream, the load monitor is reset to the “pass” condition of 0b1010 = 0xA. (In single
step mode, bit 0 Reset Calibration Registers in the Calibration Control and Delay Measurement Registers
at 0xF80028F0, 0xF80029F0, 0xF8002AF0, and 0xF8002BF0.)

• On every read, the DQS capture latches are first reset to the “fail” condition of 0b0101 = 0x5. If the incom-
ing strobe is successfully captured for all four beats the capture latches will change to 0xA. If the capture
is not successful for all four beats then the result will be something other than 0xA.

• After every read, the load monitor sticky latches sample the outputs of the DQS capture latches for one
ddr_clk. If any one of the bits is the opposite of its reset value, it changes to the new value and stays at
that level (it “sticks”).

• After the stream of reads has completed, the outputs of the load monitor sticky latches are read to deter-
mine the overall pass/fail results. (In single step mode, bits 0:15 of the Calibration Read Margin Results
registers at 0xF80028E0, 0xF80029E0, 0xF8002AE0 and 0xF8002BE0 will read 0xAAAAxxxx if all bytes
had passing results. If ECC is used 0xF80029E0 and 0xF8002BE0 will read 0xAAAAAAxx if all bytes had
passing results.)

7.31.3.2 Summary of Load Calibration in Continuous Mode

• A stream of reads is performed.

• Before the start of this stream, the load monitor is reset to the “pass” condition of 0b1010 = 0xA.(In single
step mode, bit 0 Reset Calibration Registers in the Calibration Control and Delay Measurement Registers
at 0xF80028F0, 0xF80029F0, 0xF8002AF0, and 0xF8002BF0.)

• On the first read, the DQS capture latches are reset to the “fail” condition of 0b0101 = 0x5. If the incoming
strobe is successfully captured for all four beats of all reads the capture latches will change to 0xA and
stay at that state. If the capture is not successful for all four beats of any read then the result will be some-
thing other than 0xA for that read.

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
DDR2 Memory Controller

Page 253 of 655

• After the first read, the load monitor sticky latches open up to sample the outputs of the DQS capture
latches. At the end of the first read and continuously afterward if any one of the bits is the opposite of its
reset value, it changes to the new value and stays at that level (it “sticks”).

• After the stream of reads has completed, the outputs of the load monitor sticky latches are read to deter-
mine the overall pass/fail results. (In single step mode, bits 0:15 of the Calibration Read Margin Results
registers at 0xF80028E0, 0xF80029E0, 0xF8002AE0 and 0xF8002BE0 will read 0xAAAAxxxx if all bytes
had passing results. If ECC is used 0xF80029E0 and 0xF8002BE0 will read 0xAAAAAAxx if all bytes had
passing results.)

7.31.4 ResetLdEnable

The Calibration unit is perhaps most useful for determining an optimum setting for ResetLdEnable: a setting
can be determined that does not require knowledge of the internal delays of the chip.

ResetLdEnable has a coarse timing set by the ResMuxDly field in the MemBusConfig register, and a fine
timing set by the ResetLdEn Offset value in the ResetLdEn Offset Delay registers.

Consider the case where a coarse setting produces a “pass” condition, and the ResetLdEn Offset has been
used to find the point where “pass” becomes “fail.” An “optimum” setting can be had by reducing the coarse
setting, ResMuxDly, by 1, and leaving the fine setting, ResetLdEn Offset as is.

JEDEC specifies a read preamble of 1 mem_clk = 2 ddr_clks. Therefore backing off ResMuxDly by 1
(ddr_clk) moves the internal resetLdEn signal from a just failing position to exactly in the middle of the read
preamble - the position with the most margin on either side.

Because the read preamble is 2 ddr_clks long, often 2 different settings of ResMuxDly will be found to work
(with 0 ResetLdEn Offset). For this condition, the larger (later) of ResMuxDly should be used when incre-
menting ResetLdEn Offset to find the fail position.

User Manual

CPC945 Bridge and Memory Controller Preliminary

DDR2 Memory Controller
Page 254 of 655 February 1, 2008

7.31.5 Calibration Unload Monitor

Use of the calibration unload monitor requires that the DQS capture latches are working properly (load results
= 0xA). With this condition it is known that output of a given DQS will change sometime within a bit-time
window (because it is forced to a fail level at the beginning of a read and it successfully changes to the pass
level). The unload monitor finds when this transition happens relative to the internal ddr_clk.

The unload monitor works with a single bit of the DQS capture latch FIFO; bits 29:30, UnLd calibration
select[0:1] in the CalConf0 register at 0xF80029B0 are used to select the capture latch of interest.

The output of the selected latch is sampled by two flops each using a different clock. One latch uses the
internal ddr_clk. The other latch uses ddr_clk delayed by some programmable amount. The delay is gener-
ated with a full bit delay vernier (the same kind of vernier used elsewhere in the PHY) using the 8-bit control
value CalUnLdClkOffset[0:7] in the CalConf1 register at 0xF80029C0.

The outputs of these 2 flops are labeled “undelayed” and “delayed.” Each output is fed to a chain of 2 flops, A
and B, which are clocked by the internal ddr_clk.

The outputs of the A and B flops are connected to an AND circuit. Depending on the amount of delay for the
delayed ddr_clk and the relationship of the DQS capture latch output changing relative to ddr_clk, the output
of the AND either stays low or it pulses high for 1 ddr_clk. (A more detailed explanation is given below.)

Figure 7-27. Calibration Unload Monitor

ddr_clk

FF0
FF1
FF2
FF3

Full Bit
Delay

ddr_clk

ddr_clk

2
= UnLdCalSel

1

ddr_clk

Sticky
Latch

Sample Reset = UnLd Calibration Sense Mode

Accumulated Result

reset

A B

BA
delayed

undelayed

CalConf0[29:30]

CalConf0[31]

UnLd Status

CalConf1[0:7]
= CalUnLdCkOffset

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
DDR2 Memory Controller

Page 255 of 655

There are actually 2 AND circuits: one to detect a capture latch going low-to-high (FF0 and FF2), the other to
detect high-to-low (FF1 and FF3). A multiplexer selects the appropriate AND output based on UnLd calibra-
tion select[1].

Since the output of the selected AND is only 1 ddr_clk wide, it is latched by a flop that is wired to hold its value
if it clocks in a “1”. This flop is reset at the beginning of every read in pulsed mode, and it is reset at the begin-
ning of the first read in continuous mode.

Finally, the output of the hold flop is fed to a sticky latch which accumulates the unload monitor result. The
sticky latch is reset once at the beginning of a calibration step, the same as the sticky latches in the load
monitor. However, the “sense” operation of this sticky latch is programmable, under control of bit 31, UnLd
Calibration Sense Mode in the CalConf0 register at 0xF80029B0. If Sense Mode = 0 then the latch is reset to
a “1” at the beginning of a calibration step and if it samples a “0” value it changes to “0” and sticks at the level.
If Sense Mode = 1 then the latch is reset to a “0” at the beginning of a calibration step and if it samples a “1”
value it changes to “1” and sticks at the level.

See Section 7.31.6 Jitter Considerations for a description of how the Sense Mode can be used to measure
jitter on the incoming DQS.

The Sample control to the sticky latch works the same as for the load monitor: the sample time is controlled
by the Measurement Result Latency field (bits 20:23) in the CalConf0 register at 0xF80029B0. It samples for
one ddr_clk in pulsed mode; in continuous mode after waiting for the Measurement Result Latency time
during the first read it opens up the latch and stays open.

User Manual

CPC945 Bridge and Memory Controller Preliminary

DDR2 Memory Controller
Page 256 of 655 February 1, 2008

Figure 7-28 shows an example timing in which the AND condition is not satisfied. The output of DQS capture
latch FF0 has been selected for examination. For the incoming DQS the first rising edge causes the output of
FF0 (after some propagation delay) to go from “0” to “1”. In this example this occurs with a relatively short
setup time to ddr_clk, perhaps 1/4-bit time.

After this approximately 1/4-bit time, there is a rising edge of the internal ddr_clk which causes the “1” level to
be captured in the FF with the output labeled “undelayed.” One ddr_clk later the undelayed “A” FF goes high,
followed a cycle later by the undelayed “B” FF going high.

Figure 7-28 shows the “delayed” FF output going high a little later than the “undelayed” FF: there is a rela-
tively small delay programmed in the CalConf1 register. Although it doesn’t have as much setup time to the
next ddr_clk, never-the-less the same clock edge which captured the undelayed FF in FF “A” also captures
the delayed FF. That is, delayed A has the same timing as undelayed A and delayed B has the same timing
as undelayed B.

The AND condition is not satisfied. When undelayed A is high and undelayed B is low, indicating a rising edge
has been detected, undelayed B is still low. The UnLd Status signal stays low, the hold FF in Figure 7-27
stays low, and the monitor result bit (the sticky latch) goes low and sticks low (assuming the UnLd Calibration
Sense Mode bit = 0, which resets the sticky latch at the beginning of the calibration step to be high).

Figure 7-28. Unload Monitor Small Offset Timing

CalUnLdClkOffset from CalConf1 register

Strobe to ddr_clk setup

ddr_clk

ddr_clk delayed

FF0

undelayed

undelayed A

undelayed B

delayed A

delayed B

UnLd Status

delayed

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
DDR2 Memory Controller

Page 257 of 655

Figure 7-29 shows an example timing in which the AND condition is satisfied. It has identically the approxi-
mate 1/4-bit time setup from the FF0 capture latch output changing to the rising edge of the internal ddr_clk.
What is different is that a much larger CalUnLdClkOffset value has been used to delay ddr_clk to the
“delayed” flop. So much delay has been added that a rising edge of this delayed clock is now clocking the
FF0 output into the “delayed” flop earlier than the normal ddr_clk is clocking the FF0 output into the “unde-
layed” flop.

In this scenario the “delayed” flop changes just before ddr_clk, so “delayed A” changes one cycle earlier than
“undelayed A” and “delayed B” changes one cycle earlier than “undelayed A.” Now, for one cycle, the AND
condition is satisfied. The hold latch will go high and stay high. The monitor result bit (the sticky latch) stays
high (assuming the UnLd Calibration Sense Mode bit = 0, which resets the sticky latch at the beginning of the
calibration step to be high).

Note the confusing nomenclature: the “delayed” flop which is running off an internally delayed clock, actually
changes earlier than the “undelayed” flop which is running off the undelayed clock, when there is a large
amount of delay.

Figure 7-29. Unload Monitor Large Offset Timing

CalUnLdClkOffset from CalConf1 register

Strobe to ddr_clk setup

ddr_clk

ddr_clk delayed

FF0

undelayed

undelayed A

undelayed B

delayed A

delayed B

UnLd Status

delayed

User Manual

CPC945 Bridge and Memory Controller Preliminary

DDR2 Memory Controller
Page 258 of 655 February 1, 2008

Also note that if FF1 or FF3 is selected, the signal levels of the capture latch FF, the undelayed and delayed
flops, and the four A and B flops will all be inverted compared to selecting FF0 or FF2. However, the bottom
AND, with its inverted inputs, will be selected. The results will be the same: the UnLd Status output will either
be low, or it will pulse high for one cycle.

Roughly speaking, the amount of delay programmed into the UnLdClk vernier delay is equal to the delay from
the output of a capture latch to the next rising edge of the internal ddr_clk. There is an inverse relationship: if
there is a small setup time between the capture latch FF output and ddr_clk then a large delay will have to be
programmed into the delayed clock to detect this condition. If there is a large setup time then the programmed
delay will be small.

The definition of “pass” or “fail” is up to the user. If we note that a changing capture latch output is the same
as the rising or falling edge of DQS (ignoring the propagation time of the capture latch and other delays in the
unload monitor) and if we consider that the “measuring point” is the amount of delay dialed into the UnLd-
Offset Clock, a “0” indicates that the measuring point is to the left (earlier) than the DQS edge and a “1” indi-
cates that the measuring point is to the right (later) than the DQS edge.

For use with autocalibration, as described in Section 7.31.9 the FSM will increment the delay for every step
that passes, and stop when it finds the passing to failing point. Therefore for autocalibration using the unload
monitor “0” means “pass” and “1” means “fail.”

7.31.6 Jitter Considerations

The purpose of the sticky latches in the load and unload monitors, and the reason for providing for a stream of
reads, is to deal with jitter.

If the load monitor is being used and there is jitter on the DQS, the sticky latches in the load monitor will
detect the earliest DQS that causes a pass condition to become a fail. For example, suppose ResetLdEnable
is set to some passing condition and gradually adjusted to the right until the load monitor records a fail. If a
series of reads is performed, and if the initial rising edge of DQS jitters among the reads, the read with the
earliest DQS rising edge is the one that will create the fail, the sticky latch will change to a fail state, and it will
continue to stick at that fail. The user will then know the latest that ResetLdEnable can arrive and still operate
with jittering arrival times on DQS, and from that infer an optimum amount of time that ResetLdEnable should
be backed off to put it in the middle of the read preamble.

Similar considerations apply to adjusting the Read Strobe Offset Deltas to affect the arrival times of the
delayed DQS rising and falling edges. In all cases the load monitor measurements indicate the earliest edges
of a jittering DQS, without discovering any information regarding the amount of jitter.

The unload monitor has a programmable sticky latch using the UnLd Calibration Sense Mode bit in the
CalConf0 register. This allows both the earliest and latest edges to be detected, and hence, the amount of
jitter.

The unload monitor detects the output of a capture latch FF going from one level to its opposite, that is, the
leading edge of when the capture latch FF is clocked, that is, when there is a rising or falling edge of DQS. As
described above in Section 7.31.5 the unload monitor has a signal UnLd Status which stays low when the
“measuring point” (the delay programmed into the UnLdClkOffset) is to the left of the this DQS edge. UnLd
Status pulses high when the “measuring point” is the right of the DQS edge.

Suppose there is jitter on DQS. If the UnLd Calibration Sense Mode equals ‘1’ which equals Early Mode, the
sticky latch will be programmed to reset to a ‘0’ and stick at ‘1’ if a ‘1’ is sampled. Suppose the measuring
point is well to the left and moved to the right. At first the UnLd Status will always be ‘0’, and the sticky latch

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
DDR2 Memory Controller

Page 259 of 655

will always sample ‘0’ and have an output of ‘0’. When the measuring point is moved enough to the right that
it is in the vicinity of the jittering DQS, as soon the measuring point moves past the left most (earliest) rising
edge the UnLd Status signal will pulse and the sticky latch will go to a ‘1’ and stick there, even if subsequent
samples are to the left of DQS. Thus, for UnLd Calibration Sense Mode equals ‘1’ which equals Early Mode,
the unload monitor acts the same as the load monitor to find the earliest DQS edge.

If the UnLd Calibration Sense Mode equals ‘0’ which equals Late Mode, the sticky latch will be programmed
to reset to a ‘1’ and stick at ‘0’ if a ‘0’ is sampled. If the measuring point is to the left of the jittering DQS the
UnLd Status signal will be ‘0’, and the sticky latch output will go from ‘1’ to ‘0’ on the first sample and stick
there. If the measuring point is in the middle of the jittering DQS, at least one edge of DQS will be to the left of
the measuring point, and the sticky latch will go to 0 and stick there. It is only when the measuring point
moves to the right of the right most (latest) DQS edge that UnLd Status pulses high on every read, and the
sticky latch remains at its reset value of ‘1’. Thus for UnLd Calibration Sense Mode equals ‘0’ which equals
Late Mode, the unload monitor finds the latest DQS edge.

Therefore, by making two measurements, early and late, the amount of jitter (or conversely the size of the
“eye”) of DQS can be determined.

The user is interested in characterizing the DDR2 interface (how much variance is there from byte to byte;
how much jitter is on the bus), and determining optimized values for the timing controls that yield reliable read
operation for that user’s board design, and over a variety of conditions.

• The ResetLdEnable timing is determined using the load monitor. This timing must be valid before using
the unload monitor.

Figure 7-30. UnLd Calibration Sense Mode

Sense Mode = 0
Reset to 1
Stick at 0
Finds latest edge 0 0 0 0 0 0 0 1 1 1

Any of these
samples sticks
at 0

Only these
samples stay
at 1

Sense Mode = 1
Reset to 0
Stick at 1
Finds earliest edge 0 0 0 1 1 1 1 1 1 1

Any of these
samples sticks
at 1

Only these
samples stay
at 0

Each vertical dashed line indicates multiple samples of a jittering signal.

User Manual

CPC945 Bridge and Memory Controller Preliminary

DDR2 Memory Controller
Page 260 of 655 February 1, 2008

• The unload operation (the time when the data is captured versus the timing of the internal ddr_clk) is
determined using the unload monitor.

• For timing the ring and falling edges of the internally delayed strobes, the user has the choice of using the
load monitor or the unload monitor, or both. The load monitor yields information about the absolute limits
of operation (how far the edges can go before the load fails); the unload monitor yields information about
the quality (jitter) of the interface.

7.31.7 Calibration Setup

Before using the DDR2 PHY calibration logic, the external DDR2 memories must be capable of doing reads.
The bulk of the control registers such as RAS/CAS Timing, DIMM Configuration, IO Pad Control and so on,
must be properly programmed. The usual initialization sequence (Memory Device Initialization on page 151)
must be applied. At the board level, the clocks (CK) must be adjusted such that the commands issued to
memories will be reliably clocked into the memory chips. (The initialization sequence must be properly
received by the memory chips, as well as the subsequent read commands used by the calibration steps.)

Since the calibration logic only does reads, but does not use the read data, the write timings do not need to
be correct. (However the user might wish to tune these settings first. If for some reason the CK clocks have to
be adjusted as part of the write tuning, this would invalidate any read tunings done previously.)

Once the external memories have been properly brought up, the following conditions must be set up or
followed prior to any calibration operation:

• Since the calibration bit has a 4-stage FIFO, the read operation must be 4-beats. Systems using the 128-
bit bus configuration always use a burst length of 4. Systems using a 64-bit bus configuration must tem-
porarily re-program the burst length to 4 when using the DDR2 PHY calibration logic, and re-program the
length to 8 for normal operation.

• Dynamic CKE must be disabled when using the DDR2 PHY Calibration logic. (Set MemModeCntl Regis-
ter 0xF8002500 bit 6 = 0.)

• To avoid erratic behavior, do not override the DQS glitch filter. (Set MemBusConfig 0xF80022D0
bit 20 = 0.)

• The MemInit registers must be reprogrammed with a sequence that contains reads for the calibrating
operation. Typically the user will set up a Row Activate command to open a row to a bank in some rank
(for example, bank 0 and rank 0), followed by several Read commands to that rank/bank, and ending with
a Precharge command to close the row.

This sequence of commands can then be executed as many times as desired. The contents of memory,
and the bank, row and column addresses do not matter since the calibration logic is only dealing with
DQS. The rank usually matters, however, since the delays on DQS are a function of board wiring length,
which usually varies with rank.

If calibration is intended to be performed using pulse mode, delays must be coded between reads. These
delays are not needed for continuous mode.

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
DDR2 Memory Controller

Page 261 of 655

7.31.8 Single Step Mode

7.31.8.1 Single Step Use Summary

Program CalConf0 0xF80029B0.

• Set Read Stream Mode bit 8 to pulsed mode or continuous mode. If pulsed mode, the read operations in
the MemInit registers must have delays coded.

• Set Measurement Reset Latency bits 16:19. For continuous mode, a value of 0 is okay. For pulsed mode,
a value of -1 (0x9) or -2 (0xA) is preferable.

• Set Measurement Result Latency bits 20:23. For continuous mode, a value of 6 or 7 is okay. For pulsed
mode, a value of 8 is desirable. These times are relative to ResetLdEnable; they must be adjusted if Mea-
surement Reset Latency is not 0. For example, if the desired value Result Latency is 8 (0x8) and the
Reset Latency is -1, then Reset Latency must be 8 + 1 = 9 (0x9).

• If the Unload Monitor is being used set UnLd Calibration Select bits 29:30 to select which of the 4 capture
latches to be observed. Set UnLd Calibration Sense Mode bit 31 to select Early mode sensing or late
mode sensing. If the Unload Monitor is not being used these bits are don’t care.

• The remaining bits in CalConf0 are don’t care for Single Step mode.

After configuring for Single Step mode, perform a series of calibration steps. For each step:

• Write bit 0, Reset Calibration Registers, in each of the 4 Calibration Control and Delay Measurement
Registers 0xF80028F0, 0xF80029F0, 0xF8002AF0, 0xF8002BF0.

• Write MemProgCntl register 0xF80020B0 bit 0, Init Start, to kick off the reads.

• Poll MemProgCntl register bit 1, InitComplt until the reads are complete.

• Read the Calibration Read Margin Result Registers 0xF80028E0, 0xF80029E0, 0xF8002AE0,
0xF8002BE0.

If you are interested in the Load Monitor results the output values will be in bits 0:15. If using ECC the
results will be in bits 0:23 for registers CalC1 and CalC3.

If you are interested in the Unload Monitor results the output values will be in bits 24:27. If using ECC the
results will be in bits 24:28 for registers CalC1 and CalC3.

Between each step, vary the timing control of interest.

User Manual

CPC945 Bridge and Memory Controller Preliminary

DDR2 Memory Controller
Page 262 of 655 February 1, 2008

7.31.9 Autocalibration Mode

7.31.9.1 Autocal Overview

As described previously each cluster has a FSM machine and associated logic that independently performs a
series of calibration steps. The FSM automatically kicks off a set of read operations (previously programmed
in the MemInit registers). When the reads have completed, the FSM examines the pass/fail results for a
single bytelane within the cluster. Depending on the result, the FSM changes the value of one vernier control
(out of four) and kicks off another calibration step, or it stops. In general all 4 clusters are operated in parallel,
yielding calibration results for 4 byteslanes at a time (2 byteslanes for ECC).

Typically four autocalibration sequences are run with all 4 clusters operated in parallel, to get results for:

1. Bytelanes 0, 4, 8, 12

2. Bytelanes 1, 5, 9, 13

3. Bytelanes 2, 6, 10, 14

4. Bytelanes 3, 7, 11, 15

For systems with ECC, an additional autocalibration sequence is run with just clusters 1 and 3 to get results
for:

5. Bytelanes 16 and 17 (check bytes 0 and 1)

Compared to single step mode, additional setup is required to select the bytelane to be calibrated, select the
control vernier to be manipulated, specify the maximum control value to be used, and define the condition
that is a “pass.” These values are programmed into fields in the CalConf0 register at 0xF80029B0 that are
don’t care in single step mode.

7.31.9.2 Bytelane Selection

The bytelane is specified using bits 24:26, Bytelane Select, in the CalConf0 Register.

7.31.9.3 Calibration Mode Selection

The FSM manipulates the control value for 1 of 4 verniers, using internal multiplexers to temporarily replace
the programmed control value for a vernier with a control value generated by the FSM. The substituted values
are one of:

• A RdStrOffset_DelaLR value located in the Read Data Strobe Control registers (Read Strobe Rising).

• A RdStrOffset_DelaLF value located in the Read Data Strobe Control registers (Read Strobe Falling).

• A ResetLdEn Offset value ResetLdEn Offset Delay registers.

• The CalUnLdClkOffset value in the CalConf1 register.

The vernier is selected using bits 27:28, Calibration Mode Select, in the CalConf0 Register, with values 00,
01, 10, 11 selecting Read Strobe Rising, Read Strobe Falling, ResetLdEn Offset, and CalUnLdClkOffset,
respectively.

When Read Strobe Rising, Read Strobe Falling or ResetLdEn Offset is selected (00, 01, or 10), the output of
the load monitor is selected for determining pass/fail status.

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
DDR2 Memory Controller

Page 263 of 655

When CalUnLdClk Offset is selected (11), the output of the unload monitor is selected for determining
pass/fail status.

7.31.9.4 Generated Vernier Control Values

The FSM maintains an 8-bit control value which, as described above, is applied to one of four verniers. This
control value is manipulated as 2, 4-bit nibbles. The FSM initializes the control value to 0x10 and increments
the upper nibble between calibration steps as long as the results of the steps produce a “pass” result. Once a
“fail” is seen, the FSM switches to manipulating the lower nibble, using a binary search algorithm. For
example, if the largest value that produces a “pass” value is 0x40, the FSM will generate the sequence: 0x10
(pass), 0x20 (pass), 0x30 (pass), 0x40 (pass), 0x50 (fail), 0x48 (fail), 0x44 (fail), 0x42 (fail), 0x41 (fail). At this
point the FSM stops, and sets the value of 0x40 into bits 8:15, CalFSMSetting Result, in the Control and
Delay Measurement Register.

Following an autocalibration sequence, the value read in bits 8:15, CalFSMSetting Result, in the Control and
Delay Measurement Register will be the largest value that produces a “pass” result. Adding 1 to this value
should produce a “fail” result.

It might happen that the first calibration step produces a “fail” with a vernier value of 0x10. For this case the
FSM will immediately switch manipulating the lower nibble. If each step produces a fail, the FSM sequences
through 0x08, 0x04, 0x02 and stops at 0x00. It is a quirk of the autocalibration logic that if it returns a value of
0x00, that might indicate that the FSM never found a “pass” value (the calibration fails with a vernier value of
0x00), or it might indicate that the FSM found that 0x00 passes while 0x01 fails. There is no way to tell.

There are 2 values which indicate an error:

• 0xFE indicates a timeout condition. At the start of a calibration step the FSM enables a 32-bit counter to
start counting from 0, incrementing by 1 every ddr_clk. If a value of 0xFFFF is reached, indicating
(232) -1 ddr_clks have passed, the autocalibration sequence is terminated and a value of 0xFE is placed
in the Result field.

This condition could arise, for example, if the MemInit registers had no read commands specified, or the
commands looped beyond a very long time.

• 0xFF indicates the FSM exceeded a maximum value when incrementing the 8-bit control value.

By default the FSM tries to restrict its “sweep range” to a full bit time. It does this by monitoring the 1/2-bit time
delay that is fed to the DQS Verniers (Figure 7-8 1/2 Bit Time Averager on page 218). The FSM multiples this
value by 2 (shifts left by 1) to obtain the full bit time. This value is used as a maximum: if it is exceeded then
the autocalibration sequence is terminated and 0xFF is returned in the Result field.

The FSM can temporarily exceed this value in applying its search algorithm. For example suppose the 1/2-bit
time is 0x32, so the limit = the full bit time = 0x64.

• Suppose the largest “pass” value = 0x63. The FSM will generate 0x10 (pass), 0x20 (pass), 0x30 (pass),
0x40 (pass), 0x50 (pass), 0x60 (pass), 0x70 (fail, and exceed maximum), 0x68 (fail, and exceed maxi-
mum), 0x64 (fail), 0x62 (pass). Returned value = 0x63.

• On the other hand, suppose the largest “pass” value = 0x65. The FSM generates 0x10, 0x20, 0x30, 0x40,
0x50, 0x60, 0x70 (fail, exceed maximum), 0x68 (fail, exceed maximum), 0x64 (pass. at maximum).
Returned value = 0xFF.

User Manual

CPC945 Bridge and Memory Controller Preliminary

DDR2 Memory Controller
Page 264 of 655 February 1, 2008

The maximum value can be changed using bits 9:15, Delay Offset Limit, in CalConf0. This is a 1-bit sign, 6-bit
magnitude value, which is added to the 1/2-bit time value. That is, the range of the maximum value used by
the FSM is the 1/2-bit time value -0x3F through +0x3F.

The user should read the 1/2-bit time value, bits 24:31 in the CntlDlyMeasC0 Register 0xF80028F0 and
multiply the value by 2 to learn the maximum value that will be used by the FSM. If this maximum is not
desired use the Delay Offset Limit in CalConf0 to raise or lower the maximum.

As explained above CalConf0 bits 27:28, Calibration Mode Select, select 1 of 4 verniers to be controlled by
the autocalibration FSM. For values 10 and 11, the ResetLdEn Offset and CalUnLdClk Offset verniers, the
control values generated by the FSM are applied directly to the verniers. The verniers will see a sweep of
0x10, 0x20, 0x30, ... up to some fail or maximum value, or 0x10 down to 0x00 if the pass value is small.

For Calibration Mode Select value 00 and 01, the Read Strobe Rising and Falling edges, the control value is
calculated in a different manner, but the results are the same.

Figure 7-15 Read DQS on page 234 shows the DeltaR and DeltaF sign/magnitude values being fed to an
adder that adds or subtracts the register value to the 1/2-bit time value to form the value controlling the delay
vernier.

The autocalibration logic inserts multiplexers between the DeltaR/DeltaF register values and the +/- Delta
adder circuit. If the FSM generated a sequence of 0x10, 0x20, 0x30...0x80, 0x90, ... the Delta adder would
produce an undesired sweep sequence to the delay vernier that would start with 1/2-bit delay, increment,
then suddenly switch back to 1/2-bit delay and decrement when the high-order bit became high.

Therefore the FSM generates a modified sequence that, when added by the hardware to the 1/2-bit time
value, produces a value at the vernier that is the desired sweep of 0x10, 0x20, 0x30...and so on.

The reported result is the value as it would appear at the delay vernier. The user must take this into account
to determine the value that would be programmed in the Read Data Strobe Control Register. For example, if
the 1/2-bit delay value = 0x32, and an autocalibration sequence returned the result of 0x4D, the user could
produce the same delay for Read Strobe rising edge by setting the value 0x4D - 0x32 = 0x1B in the
RdStrOffset_DelaLR and RdStrOffset_DelaUR fields of the Read Data Strobe Control Register. As noted
above the 1/2-bit delay value is available in bits 24:31 in the CntlDlyMeasC0 Register 0xF80028F0.

7.31.9.5 FSM Pass/Fail Determination

As described above the FSM will use either the load monitor or unload monitor for pass/fail determination, as
appropriate: the unload monitor is used when the UnLdClk Offset vernier is selected, otherwise the load
monitor is used.

CalConf0 bits 0:3, Calibration Pass Result, and bits 4:7, Calibration Pass Mask are used to interpret the
outputs of the selected monitor. The output of the monitor is compared, bit by bit, to bits 0:3. If all 4 bits of the
monitor output are identical to the to 4 Calibration Pass Result bits, the result is a “pass.” If any of the bits
miscompare, the result is a “fail.” The Calibration Pass Mask bits can be used to remove one or more bits
from the compare operation. For example, if the user specifies that a Pass Result is 0xA but the load monitor
output is 0x2, the result will still be considered a “pass” if the Pass Mask is coded to 0x7 to mask out bit 0, the
bit that miscompares.

For the load monitor the usual Pass Result is 0xA and the usual Pass Mask is 0xF. One example of when the
Pass Mask might be used to exclude bits in the comparison is when the Read Strobe Rising or Falling edge is
being adjusted. The problem here is that the autocalibration FSM is only adjusting one of the edges. A fail
might be produced by the fact that 2 edges are widely separated, not because the edge being adjusted is too

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
DDR2 Memory Controller

Page 265 of 655

far in a given direction. A user might find, for example the rising edge adjustment, might not yield any results
for a Pass Mask of 0x8 (the first rising edge), but might give a usable result for a Pass Mask of 0x2 (the
second rising edge).

For the unload monitor the usual Pass Result is 0x0 and the usual Pass Mask is 0x8.

7.31.9.6 Control and Delay Measurement

After setup, an autocalibration sequence is kicked off by writing to bit 1, Start Auto Calibration State Machine,
in the Control and Delay Measurement registers (0xF80028F0, 0xF80029F0, 0xF8002AF0, 0xF8002BF0).
Bit 3, Auto Calibration Done, changes from 0 to 1 when the FSM has completed the autocalibration
sequence. The results (the final control value = the delay measurement) will be in bits 8:15.

7.31.9.7 Autocalibration Use Summary

Program CalConf0 0xF80029B0.

• Set Read Stream Mode bit 8 to pulsed mode. The read operations in the MemInit registers must have
delays coded.

• Same as for Single Step mode, set the Measurement Reset and Result Latencies.

• Same as for Single Step mode, if using the Unload Monitor set the UnLd Calibration Select bits and the
UnLd Calibration Sense Mode bit.

• Set the byte lane to be adjusted, using bits 24:26 Bytelane Select.

• Set the adjustment to be varied, using bits 27:28 Calibration Mode Select.

• If the UnLdClk Offset is the adjustment selected, set the capture latch to be monitored using bits 29:30
UnLd Calibration Select[0:1] and bit 31 UnLd Calibration Sense Mode (same as Single Step mode). Noth-
ing has to be programmed into CalConf1, since the FSM will generate the CalUnLdClkOffset register.

• Set the desired Calibration Pass Result, bits 0:3 and Calibration Pass Mask, bits 4:7. As discussed
above, this can vary depending on which measurement is selected, and might have to be determined by
trial and error.

• If desired, change the maximum control value generated, plus or minus, using the Delay Offset Limit bits
9:15. This might have to be determined by trial and error.

After setting up the configuration in CalConf0, kick off the autocalibration sequence by writing to bit 1, Start
Auto Calibration State Machine, in the Control and Delay Measurement registers 0xF80028F0, 0xF80029F0,
0xF8002AF0, 0xF8002BF0. Poll bit 3, Auto Calibration Done. When the bit changes to 1 in all four registers
the FSM in each cluster has completed the autocalibration sequence. The results for the 4 selected bytes will
be in bits 8:15.

As discussed above this sequence is usually repeated 4 times, each time changing the bytelane. If ECC is
used the sequence is repeated one more time, using just clusters 1 and 3, with the ECC check byte selected.

User Manual

CPC945 Bridge and Memory Controller Preliminary

DDR2 Memory Controller
Page 266 of 655 February 1, 2008

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
I2C Interfaces

Page 267 of 655

8. I2C Interfaces

8.1 Overview

The CPC945 has two independent I2C interfaces, a single port I2C Slave interface and a dual port I2C Master
interface. These two interfaces are completely independent should not be confused.

The I2C Slave Interface is used to read and write the CPC945 internal control registers or, indirectly, read or
write any address in the 36 bit memory space. The master for the CPC945 I2C slave port is typically the
external System Management Processor (SMP).

The two port CPC945 I2C master interface is intended to be connected to the I2C slave ports on the DRAM
DIMMs so that the CPC945 can read or write to the configuration registers on each DIMM. The master inter-
face control logic can be switched between the two ports under control of the I2C Controller MODE Register.
Only one port can be controlled at a time.

8.2 I2C Slave Interface

The CPC945 provides a standard two wire I2C slave interface for the serial exchange of data between the
external master and the CPC945. For the CPC945 the two signals are PI_ISCL for the clock line and PI_ISCA
for the data line. Programming of the CPC945 is accomplished using standard I2C read and write transac-
tions on this slave interface.

8.2.1 I2C Slave Interface Transactions

There are two different types of I2C transaction types depending on the intent of the request. The first trans-
action type is used for reading and writing the CPC945 control registers. This transaction uses a direct path
into the register space and is used for system initialization, debug and diagnostics.

A second indirect method is used for reading or writing any address within the 36 bit physical address space
of the CPC945 including the control registers.

Note: This transaction actually uses the same internal path as a similar request from the main processor so
the request will be snooped. This makes this type of transaction reliant on a fully operational system. If the
processor bus or processors are not operational, this type of transaction will hang the CPC945 because the
snoop cannot be completed.

8.2.1.1 Control Register transaction types

All I2C transactions are initiated by a start, followed by a 4-byte I2C write. The rest of the I2C transaction
depends upon whether a write or read transaction is being performed.

The I2C slave expects 4 bytes of command/address followed by the data bytes. A write always has 8 bytes of
data. A read is unlimited in the number of bytes being transferred, and is terminated only by the master
issuing a stop or abort condition. In this way an entire sequence of control registers can be dumped with a
single command.

User Manual

CPC945 Bridge and Memory Controller Preliminary

I2C Interfaces
Page 268 of 655 February 1, 2008

The first byte of a transaction is the address. The CPC945 has a hardcoded 7 bit I2C address: 7 b1100000.
When the address is combined with the eighth bit, the READ/WRITE bit, the result is two different 8 bit words
used for addressing the slave interface:

WRITE: 0xC8

READ: 0xC9

If the first byte after the start of an I2C operation is not a 0xC8 or a 0xC9, the CPC945 will ignore the opera-
tion.

The second byte of a transaction is always a sub-address indicating that it is a command byte, the type of
command - R/W, and for WRITEs it contains the Write Byte Enables (WBE). While this byte must always be
present, the WBE are only needed for writing to certain HyperTransport and PCI Express registers.

This results in the general format of this second byte as:

WRITE: 0x2F <-- 0x2 || Write Byte Enables[0:3]

READ: 0x30

For a limited number of HT and PCIe express registers the write byte enables can be different from 0xF (or
0b1111). Each bit is associated with its respective byte in a 32 bit word.

The third and fourth bytes of the I2C transaction are two bytes containing the control register address. The
control registers in the CPC945 are located in the 16 Mbit address space 0x0F8xx xxxx. Within that space
only 16 bits are required to address any control register. Therefore, a register in the system control register
address space is addressed with a 16 bit field called the target address (Target Address[0:15]). The target
address to system address translation is accomplished within the CPC945 by the following relationship.

System Address [0:35] <-- 0x0F80 || Target Address[0:15] || 0x0.

The remaining bytes of the transaction are specific to the type of transaction: READ or WRITE.

Control Register WRITE Transaction Detail

The I2C interface transaction is built up from a set of smaller byte by byte data exchanges. Each byte data
exchange is completed with a byte acknowledge (ACK). The I2C cycle by cycle write transaction description
is shown in Table 8-2 I2C Write Transaction.

Note that all writes have eight bytes (64 bits) of data but not all registers are 64 bits wide. The eight bytes of
data sent into the slave I2C are formed into a 64 bit group. For a 32 bit write, bits 0:31 of the incoming data
are loaded into bits 0:31 of the 32 bit register. Since 64 bits must still be written, bits 32:63 should be a dupli-
cate of the lower 32 bits. For a 16 bit write, bits 16:31 are loaded.

For a 32 bit read, 32 bits of data are duplicated to form 64 bits of returning data. In case of 16 bit reads,
bits 0:15 and bits 32:47 are forced to zero and the 16 bits of data are duplicated in the remaining bits. This is
shown below:

Table 8-1. Twenty-two Bit I2C System Command Request Definition.

[0] Reserved [1] Reserved [2] Command [3] R/W [4:7]

Read Request Command 1b0 1b0 1b1 1b1 4b0000

Write Request Command 1b0 1b0 1b1 1b0 WBE [0:3]

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
I2C Interfaces

Page 269 of 655

16-bit register:16’h0000 || RdDt[0:15] || 16’h0000 || RdDt[0:15]

32-bit register: RdDt[0:31] || RdDt[0:31]

64-bit register: RdDt[0:63]

The sequence of bits on the I2C bus looks like the following for a control register WRITE. For these transac-
tions, the 8 databytes contain the actual control register contents on a write.

Table 8-2. I2C Write Transaction (Includes Number of Bits Transmitted for Each Action).

8 bits 1 8 1 8 1 8 1 8 1 8 1 45 8 1 1

Slave
Address,

WrBit
Ack Addr 1 Ack Addr 2 Ack Addr 3 Ack Data 1 Ack Addr 2 Ack - Data B Ack Stop

Table 8-3. Bit Sequence on the I2C Bus for a Control Register Write Transaction.

ISCL Clock
Cycle Action Direction Comments

0 START Master -> Slave

1 ~ 7 7'b110010 Master -> Slave I2C Write Request: I2C Slave Address concatenated with
the R/W bit = 0xC8

8 R/W = 1b0 Master -> Slave

9 ACK Slave -> Master

10 ~ 17 0x2F Master -> Slave Write command with all WBE enabled

18 ACK Slave -> Master

19 ~ 26 Target Address [0:7] Master -> Slave High order byte of the 16bit register address

27 ACK Slave -> Master

28 ~ 35 Target Address [8:15] Master -> Slave Low order byte of the 16bit register address

36 ACK Slave -> Master

37 ~ 44 Data Byte 0 Master -> Slave

45 ACK Slave -> Master

46 ~ 53 Data Byte 1 Master -> Slave

54 ACK Slave -> Master

55 ~ 62 Data Byte 2 Master -> Slave

63 ACK Slave -> Master

64 ~ 71 Data Byte 3 Master -> Slave

72 ACK Slave -> Master

73 ~ 80 Data Byte 4 Master -> Slave

81 ACK Slave -> Master

82 ~ 89 Data Byte 5 Master -> Slave

90 ACK Slave -> Master

91 ~ 98 Data Byte 6 Master -> Slave

99 ACK Slave -> Master

User Manual

CPC945 Bridge and Memory Controller Preliminary

I2C Interfaces
Page 270 of 655 February 1, 2008

Control Register READ Transaction Detail

The READ transactions are a variant of a WRITE transaction. A read request consists of a the first 4 bytes of
a write transaction (as described above), followed by a (re)start, followed by a read command consisting of
the CPC945 I2C address, with the read/write_bit = “1”. The Slave interface logic sends serially the first byte
from the register on the PI_ISCA pin. An ACK from the master indicates the data has been accepted. Unlim-
ited read bursts are allowed to help reading an entire set of registers with one request. The master can
continue to read (by sending an ACK to the Slave interface after every byte), and sending the STOP signal
after the last byte to terminate the transaction. The sequence of bytes on the I2C bus looks like the following
for a control register READ. For these transactions, the 8 databytes are the actual control register contents
from the read.

100 ~ 107 Data Byte 7 Master -> Slave

108 NACK Slave -> Master

109 STOP Master -> Slave

Table 8-4. Bit Sequence on the I2C Bus for a Control Register Read Transaction.

ISCL Clock
Cycle Action Direction Comments

0 START Master -> Slave

1 ~ 7 7'b110010 Master -> Slave I2C Write Request: I2C Slave Address concatenated with
the R/W bit = 0xC8

8 R/W = 1b0 Master -> Slave

9 ACK Slave -> Master

10 ~ 17 0x30 Master -> Slave Read command, WBE are not used

18 ACK Slave -> Master

19 ~ 26 Target Address [0:7] Master -> Slave High order byte of the 16bit register address

27 ACK Slave -> Master

28 ~ 35 Target Address [8:15] Master -> Slave Low order byte of the 16bit register address

36 ACK Slave -> Master

37 START Master -> Slave

38 ~ 44 7'b110010 Master -> Slave I2C Read Request: I2C Slave Address concatenated with
the R/W bit = 0xC9

45 R/W = 1b1 Master -> Slave

46 ACK Slave -> Master

47 ~ 54 Data Byte 0 [0:7] Slave -> Master

55 ACK Master -> Slave

56 ~ 63 Data Byte 1 [8:15] Slave -> Master

64 ACK Master -> Slave

65 ~ 72 Data Byte 2 [16:23] Slave -> Master

Table 8-3. Bit Sequence on the I2C Bus for a Control Register Write Transaction.

ISCL Clock
Cycle Action Direction Comments

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
I2C Interfaces

Page 271 of 655

Examples of Control Register Addressing for I2C Slave Requests

Example 1:
The default value in the Clock Control Register at system address

 0x0F8000800 is 0x000803BC00000000
To change the DDR2 frequency from 400 MHz to 533 MHz in the Clock Control Register.
This is the desired result:

 0x0F8000800 to 0x001003BC00000000,
To do this a WRITE is issued to the Target Address bits 16:31 of the full 36 bit address or 0x0080.
The sequence of command bytes transmitted on I2C is (in hex):

C8 2F 00 80 00 10 03 BC 00 00 00 00

Example 2:
The sequence of bytes on I2C for reading the new result in the same register is (in hex)

C8 30 00 80 C9 00 10 03 BC 00 00 00 00
Although the Clock Control Register is defined as a 64-bit register, bits 32:63 are reserved and read as all
zero. The READ transaction could be terminated by the master after the first 4 bytes of data.

8.2.1.2 I2C Transactions to any Physical Memory Location

The slave I2C port can be used to write or read any memory location within the physical address space. This
is done by a series of writes and reads to specific command registers using the operations described above.
The details on how this is done is described in the following sections.

73 ACK Master -> Slave

74 ~ 81 Data Byte 3 [24:31] Slave -> Master

82 ACK Master -> Slave

83 ~ 90 Data Byte 4 [32:39] Slave -> Master

91 ACK Master -> Slave

92 ~ 99 Data Byte 5 [40:47] Slave -> Master

100 ACK Master -> Slave

101 ~108 Data Byte 6 [48:55] Slave -> Master

109 ACK Master -> Slave

110 ~ 117 Data Byte 7 [56:63] Slave -> Master

118 NACK Master -> Slave

119 STOP Master -> Slave

Table 8-4. Bit Sequence on the I2C Bus for a Control Register Read Transaction.

ISCL Clock
Cycle Action Direction Comments

User Manual

CPC945 Bridge and Memory Controller Preliminary

I2C Interfaces
Page 272 of 655 February 1, 2008

WRITE Transaction to Memory Detail

It takes multiple command sequences to execute a WRITE to an arbitrary memory location. First are WRITEs
to the four System Command Data Registers (SysCmdDt[0:3]: 0xF8030240-0xF803270) to hold the data to
be written. Next are control register WRITEs to the two PI System Command Registers (SysCmdCntl0:
0xF8030200 and SysCmdCntl1: 0xF8030210) with the data bytes being the address of the actual memory
location where the data is to be written.

Essentially the two 32 bit System Command Registers registers form a 64 bit register. The first control
register to be written to is SysCmdCntl1: 0xF8030210 which will hold the 32 low order bits (32:63)of the
system address to be written to. The second register to be written is SysCmdCntl0: 0xF8030200 which will
contain the four high order bits (28:31) of the system address to be written to. Immediately after the second
register is written, the CPC945 executes the requested WRITE operation at the specified address. This order
must be followed for the command to work correctly.

The sequence of bytes on the I2C bus for writing the SysCmdCntl Registers are shown in Table 8-5 and
Table 8-6 on page 273.

Table 8-5. Byte Sequence on the I2C Bus for Writing the SysCmdCntl1 Register .

ISCL Clock
Cycle Action Direction Comments

0 START Master -> Slave

1 ~ 7 7b110010 Master -> Slave I2C Write Request: I2C Slave Address concatenated with the
R/W bit = 0xC8

8 R/W = 1b0 Master -> Slave

9 ACK Slave -> Master

10 ~ 17 0x2F Master -> Slave Write command with all WBE enabled

18 ACK Slave -> Master

19 ~ 26 0x30 Master -> Slave The target address for SysCmdCntl1 is 3021

27 ACK Slave -> Master

28 ~ 35 0x21 Master -> Slave

36 ACK Slave -> Master

37 ~ 44 0x00 Master -> Slave Writes must be 8 bytes but register is 4 bytes

45 ACK Slave -> Master

46 ~ 53 0x00 Master -> Slave

54 ACK Slave -> Master

55 ~ 62 0x00 Master -> Slave

63 ACK Slave -> Master

64 ~ 71 0x0 || [Addr bits 28:31] Master -> Slave High 4 bits of 36 bit address to be written

72 ACK Slave -> Master

73 ~ 80 0x00 Master -> Slave

81 ACK Slave -> Master

82 ~ 89 0x00 Master -> Slave

90 ACK Slave -> Master

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
I2C Interfaces

Page 273 of 655

91 ~ 98 0x00 Master -> Slave

99 ACK Slave -> Master

100 ~ 107 0x0 || [Addr bits 28:31] Master -> Slave Repeated for 32 bit register write

108 NACK Slave -> Master

109 STOP Master -> Slave

Table 8-6. Byte Sequence on the I2C Bus for Writing the SysCmdCntl0 Register .

ISCL Clock
Cycle Action Direction Comments

0 START Master -> Slave

1 ~ 7 7b110010 Master -> Slave I2C Write Request: I2C Slave Address concatenated with the
R/W bit = 0xC8

8 R/W = 1b0 Master -> Slave

9 ACK Slave -> Master

10 ~ 17 0x2F Master -> Slave Write command with all WBE enabled

18 ACK Slave -> Master

19 ~ 26 0x30 Master -> Slave The target address for SysCmdCntl0 is 3020

27 ACK Slave -> Master

28 ~ 35 0x20 Master -> Slave

36 ACK Slave -> Master

37 ~ 44 [Addr bits 32:39] Master -> Slave This is the low 32 bits of the register to be written.

45 ACK Slave -> Master

46 ~ 53 [Addr bits 40:47] Master -> Slave

54 ACK Slave -> Master

55 ~ 62 [Addr bits 48:55] Master -> Slave

63 ACK Slave -> Master

64 ~ 71 [Addr bits 56:63] Master -> Slave

72 ACK Slave -> Master

73 ~ 80 [Addr bits 32:39] Master -> Slave Repeated for 32 bit register write.

81 ACK Slave -> Master

82 ~ 89 [Addr bits 40:47] Master -> Slave

90 ACK Slave -> Master

91 ~ 98 [Addr bits 48:55] Master -> Slave

99 ACK Slave -> Master

100 ~ 107 [Addr bits 56:63] Master -> Slave

108 NACK Slave -> Master

109 STOP Master -> Slave

Table 8-5. Byte Sequence on the I2C Bus for Writing the SysCmdCntl1 Register (Continued).

ISCL Clock
Cycle Action Direction Comments

User Manual

CPC945 Bridge and Memory Controller Preliminary

I2C Interfaces
Page 274 of 655 February 1, 2008

As noted earlier, this type of request participates in the Snoop reflection protocol on the PI bus and returns an
Accumulated Snoop Status in the SysCmdStat register. If the status indicates a retry, the request will be reis-
sued the number of times specified in the NumRetry field in that register. The number of times the request
was retried is indicated in the RetryCnt field. If the request comes back with a non-retry status or the RetryCnt
exceeds the NumRetry value then the StatDone bit is set. A NumRetry value of zero indicates that the
request should be reissued until non-retry status is received (RetryCnt is ignored). The RetryCnt will stay at
its maximum value if it is reached.

On a write operation the data that is placed in the SysCmdData registers is written to the requested destina-
tion when the status indicated is non-retry. When the non-retry status is seen, StatDone is set and the write
request is sent. When the data operation has completed the DataDone bit is set. If the RetryCnt exceeds the
NumRetry value, the StatDone is set and DataAbort is set indicating that the operation has completed without
the data being written.

On a read operation the StatDone bit is set if the RetryCnt exceeds the NumRetry value, the status returned
is Intervention, or a valid (Null or Shared) response is received. Only with a Null or Shared response does the
read request continue to its destination. When the data is returned from the Read request, it is placed in
SysData registers and the DataDone bit is set completing the operation. If the Read request is not sent, and a
StatDone condition occurs, the DataAbort bit is set indicating the operation has completed.

Read Transaction from Memory Details

Similar to WRITE transactions, it takes multiple command sequences to execute a READ to an arbitrary
memory location. The format is actually a sequence of two control register WRITEs to the two PI System
Command Registers (SysCmdCntl0: 0xF8030200 and SysCmdCntl1: 0xF8030210) with the data bytes being
the address of the actual memory location and an operation field indicating a READ.

The two SysCmdCntl registers are written using the same method as described for a WRITE operation. First
control register SysCmdCntl1: 0xF8030210 is written with the 32 low order bits 32:63 of the system address
to be read from. Then control register SysCmdCntl0: 0xF8030200 is written with the four high order bits 28:31
of the system address to be read from. Immediately after the second register is written, the CPC945 executes
the requested operation.

The CPC945 then retrieves the data from the requested location and puts the data into the System Command
Data Registers (SysCmdDt[0:3]: 0xF8030240-0xF803270). A subsequent standard I2C READ operation is
used to read the data from these registers. Because these registers are sequential, this can be a continuous
read that is terminated by the Master when all bytes have been read.

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
I2C Interfaces

Page 275 of 655

8.3 I2C Master Interface

8.3.1 Overview

The I2C Master Controller is designed to drive two Master I2C ports, one at a time, as determined by a bit in
the I2C Mode Register (0xF8001000). These ports are standard bi-directional I/O pads that interface the
system DRAM I2C interfaces to the CPC945. Each of the two I2C Master Interfaces consists of two wires,
serial data (SYS_ISCAx) and serial clock (SYS_ISCLx), to transfer information between the devices
connected to the I2C bus. The protocol on the interface is the standard I2C protocol. Be careful not to confuse
the I2C Master ports operation with the I2C Slave Interface. They are two independent functions.

The I2C is used to obtain configuration information from the DIMMs to determine which memory mode to
operate in.

The I2C master interface has the following features:

• Master only operation

• 7-bit addressing

• Slave clock stretching support

• 100 kHz, 50 kHz, and 25 kHz bit timing modes

• Registers for 7-bit address and 8-bit subaddress

• Support for Automatic Address Phase Generation in standard, standard with subaddress, and combined
modes

• Bus status indicator (busy bit)

• Maskableinterrupts for: start condition, address, and stop conditions transmitted

• Maskable interrupt on data byte and Ack transmitted or received

The following features are not supported:

• Slave support

• Arbitration

• Fast mode

• 11-bit or general call addressing

• Clock synchronization/multimaster support

8.3.2 I2C Master Control Registers

There are eleven CPC945 DRAM I2C Master Controller Registers. They include: MODE, CNTRL, STATUS,
ISR, IER, ADDR, SUBADDR, DATA, REV, RISETIMECNT, and BITTIMECNT Registers. Usage information
follows with additional information on the registers provided in the programmer’s interface (See Section 12.8
DRAM I2C Master Controller Registers on page 398). These registers are used to set the various modes and
controls for the I2C master interface and also to hold status and data on the transfers. Reading and writing
these registers is actually done using the main processor or using the I2C Slave interface.

User Manual

CPC945 Bridge and Memory Controller Preliminary

I2C Interfaces
Page 276 of 655 February 1, 2008

8.3.2.1 MODE Register Usage

The MODE register (0xF8001000) is used to control the bit rate of the I2C interface, to select the address
phase mode, and to select one of the two I2C ports. The bit rate of the interface can be set to 25, 50, and
100 kb/s. This feature is provided so that the bit timing can be derated from the standard 100 kb/s, because
some slaves can not keep up with the standard rate. The I2C cell provides four options for the address phase
generation. The first option is manual mode in which the START condition, address bits / R/W_ bit, each data
byte, and the STOP condition are sent on the I2C interface by the separate commands of START, DATA, and
STOP. The remaining three options are variations of an automatic address phase sequence. The automatic
modes provide for transfers with Standard 7-bit addresses, Standard 7-bit address with 8-bit sub-address,
and a Combined mode packet that first uses a 7-bit address to write an 8-bit sub-address followed by a
repeated START condition and a Standard 7-bit address packet to the same slave to read or write that slave
device.

The I2C cell drives two electrically independent I2C interfaces, however it can only drive one of the interfaces
at a given time. A bit in the MODE register is used to select which interface the cell will use for transmission.
The MODE register should only be programmed when the I2C cell is IDLE. The cell is IDLE when the BUSY
bit in the STATUS register is cleared.

8.3.2.2 CNTRL Register Usage

The CNTRL register (0xF8001010) is used to initiate and terminate actions on the I2C interface. In manual
mode, the START control bit is used to initiate a transfer, and the STOP control bit is used to end a write
transfer. The AAK control bit is used to send a Not Acknowledge bit following the last byte of a read transfer,
and a STOP condition will automatically be sent after the Not Acknowledge bit. Following the transmission of
a START condition, the interface will pause in the BUSY state until a data byte is loaded (address, or write
data) and the ISTART interrupt is cleared. The interface will then pause in the BUSY state, following the
transfer of each data byte, until the IDATA interrupt is cleared. The STOP control bit is used to send a STOP
condition on the bus and terminate a write transfer. In automatic address phase mode, the XADDR control bit
is used to initiate a transfer on the I2C interface. When the XADDR bit is set, all portions of an address phase
will be sent in sequence on the I2C interface, and the interface will then pause in the BUSY state until a data
byte is loaded (on a write) and the IADDR interrupt is cleared. From this point forward the transmission
continues as in a manual mode transfer. The interface will then pause in the BUSY state, following the
transfer of each data byte, until the IDATA interrupt is cleared. The STOP control bit is used to send a STOP
condition on the bus and terminate a write transfer.

8.3.2.3 STATUS Register Usage

The STATUS register (0xF8001020) allows the software to determine the current status of the selected I2C
interface. It shows whether the interface is busy or idle, the state of the last AAK bit that was transmitted or
received, the state of the last R/W_ bit that was transmitted, and the current levels present on the SCL and
SCA lines.

8.3.2.4 ISR & IER Register Usage

The ISR and IER registers (0xF8001030, 0xF8001040) are used to convey interrupt conditions to the control
software. These interrupt conditions are used to orchestrate a transfer on the I2C interface. The ISTART
status bit is set when a START condition has been sent on the interface in manual mode. The IADDR status
bit is set when an address phase has been completed in one of the automatic address phase modes. The
ISTOP status bit is set when a STOP condition has been sent on the interface, either due to the STOP control

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
I2C Interfaces

Page 277 of 655

bit being set in the CNTRL register, or the automatic termination of a transfer because a Not Acknowledge
was received. The IDATA status bit is set whenever the I2C cell is waiting for the latest read data byte to be
unloaded from the DATA register or the next write data byte to be loaded into the DATA register. These four
interrupt status bits will cause the Int_ output from the I2C cell to be asserted if the corresponding enable bit in
the IER is also set. The control software is therefore able to decide which conditions it wants to detect by
interrupt or by polling of the various registers.

8.3.2.5 ADDR, SUBADDR, & DATA Register Usage

The ADDR register (0xF8001050) is used to store the 7-bit address and the R/W_ bit for the automatic
address modes of operation. The SUBADDR register (0xF8001060) is used to store the 8-bit sub-address
that is used in the Standard w/Sub-Address and Combined address phase modes. The DATA register
(0xF8001070) is actually the I/O shift register that is used to hold data that is transmitted or received directly
from the I2C interface on the SCA line. The ADDR and SUBADDR registers should only be loaded when the
I2C interface is idle or transferring data bytes. The DATA register should be read or written when the I2C inter-
face is paused between byte transfers. The DATA register is used during address phases, so it cannot be
preloaded before the automatic address phase is completed.

8.3.2.6 REV Register

The REV Register (0xF8001080) contains the 8-bit I2C Cell Revision Number for the CPC945: 0xA2.

8.3.2.7 RISETIMECNT Register

The RISETIMECNT Register (0xF8001090) contains the 10-bit ISCL rise time count value. This register
determines the time period that the I2C cell waits after tristating the ISCL output before it stalls its bit time
counter because of slave clock stretching. The value programmed into this register is the number of periods,
minus one, of the I2C CLK input that corresponds to the desired rise time period. The desired rise time period
is the worst possible case, which is 110 ns for this design. The I2C CLK input is the DDR2 clock input. For
example if the DDR2 clock was running at 100 MHz, the register is initialized to 0x00A, representing 11 clock
periods, or 110 ns. The initial values for a 333 MHz DDR2 clock (167 MHz Memory Controller Clock). These
values should be changed by software if a higher DDR2 clock is used.

8.3.2.8 BITTIMECNT Register

The BITTIMECNT Register (0xF80010A0) contains the 10-bit I2C bit time count value. The value
programmed into this register is the number of periods, minus one, of the I2C Clk input that corresponds to
one fourth of the desired bit time period or 2.5 µs. The I2C CLK input is the DDR2 clock input. For example if
the DDR2 clock was running at 100 MHz, the register is initialized to 0x0F9, representing 250 clock periods,
or 2.5 µs. The initial values are for a 333 MHz DDR2 clock (167 MHz Memory Controller Clock). These values
should be changed by software if a higher DDR2 clock is used.

User Manual

CPC945 Bridge and Memory Controller Preliminary

I2C Interfaces
Page 278 of 655 February 1, 2008

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
MPIC

Page 279 of 655

9. MPIC

9.1 Feature Summary

Features of the MPIC (Multiprocessor Programmable Interrupt Controller) are:

• A total of 124 I/O interrupt sources:

- Eight internal interrupts

- A total of 116 external I/O interrupts consisting of a mixture of HT posted write interrupts and PCIe
message signaled interrupts

• Four IPI (interprocessor interrupts)

• Generates one external interrupt per CPU for a total of four

• The 124 I/O interrupts can each be programmed as distributed (sent to one of multiple CPUs using a fair
distribution algorithm) or directed mode to a single specified processor.

• The interprocessor interrupts use directed mode, in which a given IPI can be directed to a single, speci-
fied CPU, or to multiple CPUs at the same time (multicast).

• I/O interrupt inputs are programmable as level sensitive or edge triggered. All level sensitive interrupts
are active low. All edge triggered interrupts are positive edge triggered.

• Programmable interrupt source vector.

• Programmable interrupt source priority and processor current task priority.

• Fully nested interrupt support.

• Programmed using registers from 0xF8040000 through 0xF806FFFF. There are per CPU registers and
global registers.

- Reset and I/O Enable controlled by Toggle Register at 0xF80000E0.

- HT posted write interrupts presented using register addresses 0xF8004xx0.

- PCIe message signaled interrupts presented using register address 0xF8005000.

• Based on OpenPIC. The Open Programmable Interrupt Controller (PIC) Register Interface Specification
Revision 1.2, Issue Date: October 1995, issued jointly by Advanced Micro Devices and Cyrix Corpora-
tion.

User Manual

CPC945 Bridge and Memory Controller Preliminary

MPIC
Page 280 of 655 February 1, 2008

9.2 MPIC Organization

Figure 9-1 is a diagram of the MPIC which consists of the following:

• Interrupt input logic

• IRQ output drivers

• Programmable interrupt controller, an implementation of the OpenPIC specification

Figure 9-1. MPIC

Interrupt
Controller

[0:3]

[4:7]

I2C Master, PCIe Link, HT Link, PCIe Slot

PM_Sleep[0:3]

Inputs

[8]

[9]

[123]

. . .

Pulse
Generators

Pulse
Generators

Decoded
Writes to
F8004080
through
F80047B0

Decoded
Write to
F8005000

Decoded
Data[25:31]
0x08
through
0xB0

IRQ3

IRQ2

IRQ1

IRQ0

Toggle Reg Bit 30
MPIC Reset

Toggle Reg Bit 29
MPIC Enable Outputs

Internal Register Bus

8

9

123

8

9

123

Note: Hypertransport Interrupt Packets to address FD_00xx0000 are converted to register writes to address F8004xx0

HT Interrupt Packets

PCIe MSI F8040000 through
F806FFFF

Toggle Reg Address: F80000E0

Reset

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
MPIC

Page 281 of 655

9.3 Interrupt Inputs

• Interrupts 0:3 are level, active low interrupts generated by miscellaneous units in the .

• Interrupts 4:7 are low-to-high edge trigger interrupts generated by the power manager.

• Interrupts 8:123 are low-to-high edge trigger interrupts generated by writes to specific register addresses
(in support of HT posted write interrupts and PCIe message signaled interrupts).

Interrupts 0:3 must be programmed as level sensitive. Interrupts 4:127 must be programmed as edge trig-
gered.

9.3.1 Interrupt 0, I2C Master

As discussed in Section 8.3 I2C Master Interface on page 275, the I2C Master can be enabled to generate an
interrupt for several conditions using the I2C Controller Interrupt Enable Register (IER) at 0xF8001040. When
an interrupt is generated, it is presented as an active low level to on interrupt input number 0. The interrupt
must be cleared by writing to the appropriate bit in the I2C Controller Interrupt Status Register (ISR) at
0xF8001030. This will cause the signal presented to MPIC interrupt 0 to become high again.

9.3.2 Interrupt 1, PCIe Link Error

As discussed in Section 5.1.2 Addressing on page 97, the PCIe unit can signal an interrupt upon the detec-
tion of several error conditions. This interrupt is presented as an active low level interrupt on interrupt input
number 1. The interrupt must be cleared by writing to the appropriate PCIe configuration register. See
Section 12.11 PCI Express Registers on page 505 for more details on the PCIe link error interrupt.

9.3.3 Interrupt 2, HT Link

The Hypertransport unit can signal an interrupt for a variety of detected conditions. This interrupt is presented
as an active low level interrupt on interrupt input number 2. The interrupt must be cleared by writing to the
appropriate HT configuration register. See Section 12.12.11 Error Handling/Enumeration Scratchpad
Register (ErrCtrl/Enum) on page 630 for more details on the HT link interrupt.

9.3.4 Interrupt 3, PCIe Slot

The original PCI bus supports four “slot” interrupts, INT A, B, C and D. PCIe supports these interrupts in the
form of an upstream “message interrupt requester” transaction. The TAG HDW field denotes the interrupt
source (A,B,C,D) and whether the interrupt is asserted or deasserted. When the PCIe logic receives a
message interrupt request it drives interrupt input number 3. If the PCIe transaction is tagged as an asserted
interrupt the interrupt input to MPIC is driven low (to present the interrupt), and if a deasserted interrupt is
denoted the interrupt input to MPIC is driven high (to remove the interrupt). See Section 12.11 PCI Express
Registers on page 505, for more details on the PCIe slot interrupt.

User Manual

CPC945 Bridge and Memory Controller Preliminary

MPIC
Page 282 of 655 February 1, 2008

9.3.5 Interrupts 4:7, PM_Sleep[0:3]

The power manager contains a CPU Power Management Register at 0xF8000820. Bits 20:23 are the
PM_Sleep bits [3:0]. These bits are set to 1 when it is safe to power off a given processor.

These 4 bits are also wired to interrupt inputs 4:7.
(Note the bit reversal: 0xF8000820 bits [20:23] = PM_Sleep[3:0] = interrupts 7:4)

It is intended that the interrupt be generated (if enabled) when the PM_Sleep bit changes from 0 to 1, there-
fore interrupts 4:7 should be programmed as edge triggered.

9.3.6 Interrupts 8:123, HT Posted Write Interrupts, and PCIe Message Signaled Interrupts

9.3.6.1 HT Posted Write Interrupts

Downstream hypertransport devices that generate interrupts signal these interrupts by sending an “interrupt
request” packet upstream.

An interrupt request packet is a posted write sent to the address range 0xFD_0000_0000 through
0xFD_F8FF_FFFF. Interrupts 8 through 123 can be generated with these interrupt request packets.

The HT unit in the converts posted writes to the address range 0xFD_0000_0000 through 0xFD_F8FF_FFFF
into writes to the address 0xF8004xx0. (Little-endian) Hypertransport address bits 23:16 become (big-endian)
address bits 20:27. For example, HT posted writes to addresses 0xFD_00xx_0000 become writes to
addresses 0xF8004xx0.

Addresses starting with 0xF8xxxxxx are reserved for the CPC945 internal control registers, so the CPC945
puts the converted writes on its internal register bus. MPIC has logic that responds to accesses on the
internal register bus for addresses 0xF8004xxx. If the access is a write to addresses 0xF8004080 through
0xF800407B0, then a “one hot” decode is performed on address bits 20:27. The generated one hot signal
drives a pulse generator which drives an interrupt input. Since address bits 20:27 are one hot decoded for the
range 0x08 through 0x7B, an interrupt input from number 8 through number 123 is pulsed.

Writes in which address bits 20:27 are not in the range 0x08 through 0x7B are discarded.

The Hypertransport specification requires that interrupt packets have a count field of 0, meaning a data
packet of 4 bytes follows. The 4 bytes of data indicate interrupt information. Additional interrupt information is
contained in the interrupt request packet. The CPC945 discards all of this interrupt information, except for the
fact that the address starts with 0xFD.

The Hypertransport specification describes an EOI packet that can be sent downstream to an interrupting
device. The CPC945 does not have provisions for generating this EOI packet.

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
MPIC

Page 283 of 655

9.3.6.2 PCIe Message Signaled Interrupts

In addition to the “slot” interrupt described above (interrupt number 3), the PCIe specification has provision for
“message signaled interrupts” (MSI). The CPC945 supports MSI by having PCIe devices write a DWORD
(x86 4 bytes) to address 0xF8005000. Interrupts 8 through 123 can be generated with this write.

Addresses starting with 0xF8xxxxxx are reserved for the CPC945 internal control registers, so the CPC945
puts the write from PCIe on its internal register bus. MPIC has logic that responds to accesses on the internal
register bus for address 0xF8005000. If the access is a write to addresses 0xF8005000, then a “one hot”
decode is performed on (big-endian) data bits 25:31. The generated one hot signal for values 0x08 through
0x7B drives a pulse generator which drives an interrupt input. Therefore an interrupt input from number 8
through number 123 is pulsed.

Writes in which (big-endian) data bits 25:31 are not in the range 0x08 through 0x7B are discarded. Data
bits 0:24 are discarded.

PCIe is little-endian and the CPC945 byte swaps internally to match the big-endian registers and memory.
Therefore the PCIe DWORD write to (little-endian) bits 31:0 should use bits 30:24 to specify the generated
interrupt.

9.3.6.3 Merging of HT and PCIe Interrupts

The interrupts 8 though 123 produced by HT posted writes are merged with the interrupts 8 through 123
produced by PCIe MSIs by bit-wise ORing to produce a single group of input interrupts 8 through 123 to the
interrupt controller. Software is responsible for assigning HT and PCIe interrupts such that both devices do
not share a given interrupt.

9.3.6.4 Generating Interrupts with Register Writes

Interrupts 8 through 123 are produced by performing writes to specified addresses in the CPC945 control
register space. For HT the writes are done to 0xFD_00xx_0000 through 0xFD_F8xx_FFFF, which the
CPC945 internally converts to address 0xF8004xx0. For PCIe this is simply a matter of writing directly to the
specified address of 0xF8005000.

These HT and PCIe interrupts can be emulated in software by having any source with access to the CPC945
register space (such as the CPUs and I2C slave) perform a 4-byte write to the addresses used by the inter-
rupt controller for HT and PCIe interrupts.

HT interrupts 8 through 123 can be emulated by a 4-byte write to addresses 0xF8004xx0, where xx is in the
range 0x08 through 0x7B. The write data is “don’t care.”

PCIe interrupts 8 through 123 can be emulated by a 4-byte write to address 0xF8005000, with write data
values of 0x00000008 through 0x0000007B.

A read from address 0xF8004xx0 returns all 0s. A read from address 0xF8005000 returns the last value
written.

Note: For register address decoding, the interrupt controller hardware actually has only 2 fundamental
decodes: 0xF8004xxx and 0xF8005xxx. (As described above the HT interrupt source logic further decodes
address bits 20:27 [actually 21:27] as the decoded interrupt number.)

User Manual

CPC945 Bridge and Memory Controller Preliminary

MPIC
Page 284 of 655 February 1, 2008

So, for example, accesses to 0xF8004000 are the same as accesses to 0xF8004004, and accesses to
0xF8005000 are the same as accesses to 0xF8005FFC. However, users should restrict access to
0xF8004xx0 and 0xF8005000 to guard against future changes.

9.3.7 Interrupt Input Summary

The CPC945 I2C master is assigned to interrupt number 0. The PCIe link error interrupt is assigned to inter-
rupt number 1. The HT link status interrupt is assigned to interrupt number 2. These interrupts are level sensi-
tive.

The CPC945 power manager generates 4 interrupts using the PM_Sleep bits from the CPU Power Manage-
ment Register at 0xF8000820. These are interrupts number 4 through 7, and they are edge triggered.

Hypertransport devices can generate interrupt numbers 8 through 123. Software must set up the HT devices
to generate interrupt request packets directed to addresses 0xFD_0000_xx00, where xx = 0x08 through 0x7B
(8 through 123). The generated interrupts are edge triggered.

PCIe devices can generate interrupts in 2 ways:

• Legacy interrupts (INT A, B, C, D) are supported. These are sent on PCIe using Message Transaction
Packets. The CPC945 converts Messages of type “Interrupt” to a level sensitive, active low interrupt
assigned as interrupt number 2.

• Message Signaled Interrupts are supported simply by having the PCIe device perform a posted x86 DW
write to address 0xF8005000. Interrupts 8 through 123 are generated by setting the high order byte to
values of 0x08 through 0x7B. The generated interrupts are edge triggered, low-to-high.

The 116 possible interrupts generated by HT interrupt packets are bit-wise ORed with the 116 possible inter-
rupts generated by PCIe MSIs. Software is responsible for assigning these 116 interrupts (8 through 123)
such any given interrupt is not assigned to both HT and PCIe.

Table 9-1. Interrupt Input Summary

Interrupt Number Level or Edge Source

0 Level I2C Master

1 Level PCIe Link Error

2 Level HT Link Status

3 Level PCIe “Slot” INT

4 Edge PM_Sleep0 = CPU Pwr Mngt Reg[23]

5 Edge PM_Sleep1 = CPU Pwr Mngt Reg[22]

6 Edge PM_Sleep2 = CPU Pwr Mngt Reg[21]

7 Edge PM_Sleep3 = CPU Pwr Mngt Reg[20]

8:123 Edge
Mixture of HT Interrupt Packet[8:123] and PCIe MSI[8:123].
Bit-wise ORed [8:123].
Software must manage.

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
MPIC

Page 285 of 655

9.4 Interrupt Outputs

The 4 interrupts driven off-chip to the CPUs use the same I/O circuits as used for the Processor Interfaces.
The interrupts are high when not asserted, and low when asserted. The default output state is the tri-state
condition; therefore external pull-up resistors must be provided so that the CPUs do not receive interrupts
when the CPC945 interrupt drivers are disabled.

The tri-state enable is controlled by bit 29, MPICEnableOutputs of the Toggle Register at address
0xF80000E0. The default state of this bit is 0 (outputs disabled = tri-stated), therefore this bit must be set so
that the MPIC can present interrupts to the CPUs.

The MPICEnableOutputs bit is intended to be used when putting the processors to sleep. Before the proces-
sors are put in sleep, interrupts from the CPC945 are blocked by setting the MPICEnableOutput bits to 0.
While the processors are asleep, interrupts can continue to arrive and be processed by the MPIC. After the
processors are woken up, the MPICEnableOutputs is set back to 1 to allow the interrupts to propagate to the
CPC945 IOs and out to the CPUs.

If the MPIC has no interrupt to send to a given CPU it will drive the IRQ signal high. It drives the IRQ low when
it receives an enabled interrupt. The IRQ stays low until software resets the interrupt by writing the appro-
priate register in MPIC. If no other interrupt is pending, the IRQ goes back to a high level. The IRQ stays low
if some other interrupt is pending (or the original interrupt is not cleared).

9.5 Interrupt Controller

9.5.1 Global Reset/Enable

9.5.1.1 Toggle Register, MPICReset Bit

The interrupt controller has a reset input which is controlled by bit 30, MPICReset, of the Toggle Register at
0xF80000E0. When MPICReset is 0, the interrupt controller is held in a reset state. No interrupts are
processed. MPICReset = 0 is the default state, so this bit must be set = 1 following chip reset so that the
MPIC is enabled.

If the interrupt controller has been enabled and MPICReset is subsequently set = 0, all interrupt processing in
progress is lost and all MPIC registers are set to their reset state. While MPICReset is set = 0, the MPIC
registers cannot be accessed.

9.5.1.2 MPIC Global Configuration Register, Reset Controller Bit

Bit 31 (little-endian OpenPic = big-endian bit 0) of the MPIC Global Configuration Register at 0xF8041020 is
the Reset Controller bit. Normally this bit is 0. If the bit is set to 1, MPIC is reset, and bit 0 is reset back to 0.

When the Reset Controller bit is set, all interrupts in process are lost and all MPIC registers are set to their
reset state. Following the reset, the registers are available to be written and read.

User Manual

CPC945 Bridge and Memory Controller Preliminary

MPIC
Page 286 of 655 February 1, 2008

9.5.1.3 MPIC Global Configuration Register, 8259 Pass Through Enable bit

Bit 29 (little-endian OpenPic = big-endian bit 2) of the MPIC Global Configuration Register at 0xF8041020 is
the 8259 Pass Through Enable bit. OpenPIC specifies this bit = 0 to Enable 8259 Pass Through and = 1 to
Disable 8259 Pass Through. The CPC945 does not support 8259 Pass Through so this bit must be set = 1 to
disable the pass through feature and allow MPIC to process its 124 interrupts sources.

The reset value of this bit = 0, so following a CPC945 reset this bit must be set = 1 to enable interrupts.

9.5.2 Global Enable Summary

Following a CPC945 reset, external interrupts from the CPC945 to the PowerPC processors are disabled. In
addition to enabling individual inputs (both in MPIC and in the interrupting devices), the following bits must be
set to globally enable interrupts:

• MPICReset bit in the Toggle Register at 0xF80000E0.

• MPICEnableOutputs bit in the Toggle Register at 0xF80000E0.

• 8259 Pass Through Enable bit MPIC Global Configuration Register at 0xF8041020 (= disable pass
through).

9.5.3 Registers

Only a general description on the MPIC registers is provided here. For MPIC register details, see
Section 12.6 MPIC Registers on page 359.

Note: OpenPIC uses little-endian notation for register bits 31:0, whereas PowerPC uses big-endian notation
[0:31]. The bit notation for the register descriptions in Section 12.6 MPIC Registers on page 359 is little-
endian, to match that of OpenPIC.

9.5.3.1 OpenPIC

The OpenPIC Register Interface Specification lists requirements for two groups of registers: Per CPU regis-
ters and Global registers. The Per CPU registers have the quality that a given register has multiple instances,
one per CPU, but only one address. When a CPU accesses a Per CPU at its specified address the instance
unique to that processor is written or read.

The Per CPU registers are: IPI Dispatch Command Ports, Current Task Priority, Who Am I (a single register
which returns different results depending on which processor reads the register; optional for PowerPC), Inter-
rupt Acknowledge (optional for x86, required for PowerPC), and End Of Interrupt (EOI).

The Global registers are: Feature Reporting (register 0 defined, register 1 reserved), Global Configuration
(register 0 defined, register 1 reserved), Vendor Specific (optional), Vendor Identification, Processor Initializa-
tion, IPI Vector/Priority, Spurious Vector, Global Timer (Timer Frequency, Global Timer 0, 1, 2, 3 Current
Count, Global Timer 0, 1, 2, 3 Base Count, Global Timer 0, 1, 2, 3 Vector/Priority), and Interrupt Source
(Vector/Priority, and Destination).

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
MPIC

Page 287 of 655

9.5.3.2 OpenPIC Compliance

The CPC945 MPIC implements:

• The Per CPU registers: IPI Dispatch Command Ports, Current Task Priority, Interrupt Acknowledge, End
of Interrupt. (Note: With the exception of the IPI Dispatch Command Ports, these registers deviate from
the OpenPIC specification, because the multiple instances of a given register each have unique
addresses.)

The Who Am I register is also implemented, four instances at a single address, but the register is not in
MPIC. It is a general control register at 0xF8000050.

• The Global registers: Feature Reporting Register 0, Global Configuration Register 0, Vendor Identifica-
tion, Spurious Vector, Interrupt Source. Note that the Interrupt Source registers come in pairs (Vector/Pri-
ority, and Destination).

OpenPIC allows for a implementation specific number of interrupt inputs up to a total of 2048. The CPC945
MPIC implements 124 interrupt inputs.

OpenPIC allows for an implementation specific number of processor, up to a total of 32. The CPC945 MPIC
implements interrupts to 4 processors.

9.5.3.3 Deviations from the OpenPIC Specification

• The Global Timers are not implemented because the equivalent function can be found on the PowerPC
processors. Therefore there are no Timer Frequency, Global Timer 0, 1, 2, 3 Current Count, Global Timer
0, 1, 2, 3 Base Count, Global Timer 0, 1, 2, 3 Vector/Priority Registers.

• The Per CPU Processor Initialization register is implemented but has no useful function. This register is
intended to drive initialization lines to the processors, but the PowerPC 970xx does not implement these
signals. (OpenPIC also specifies that writing to the Processor Initialization register to restart a CPU will
reset the current task priority of that CPU to 15 to inhibit interrupts to that CPU. The CPC945 MPIC imple-
ments this function.)

• OpenPIC assigns register addresses in the form xFCaaaaa, where “x” is a base address. The value of x
is obtained from the Base Address Relocation bits in the Global Configuration Register 0, bits 19:0. The
default value of bits 19:0 = 000F. With this value the default register address value (for a 32-bit address
space) becomes FFCaaaaa.

The CPC945 MPIC uses register addresses that fall within the F8aaaaaa space assigned to all CPC945
control registers. The Base Address Relocation bits are not used. An attempt is made to preserve the
lower 12 or 16 address bits to match those of OpenPIC:

• The Global registers (except for Interrupt Source) with OpenPIC addresses xFC01aaa are assigned
to CPC945 addresses F8041aaa.

• The Interrupt Source registers with OpenPIC addresses xFC10000 through xFC100F70 are assigned
CPC945 addresses F8050000 through F8050F70. The Vector/Priority registers use addresses
0xF8050000, F8050020, F8050040, ... F8050F60, whereas the Destination registers use addresses
0xF8050020, F8050030, F8050050, ... F8050F70.

• The per CPU registers with OpenPIC addresses xFC00040 through xFC000B0 are assigned
CPC945 addresses F8060040 through F80600B0.

User Manual

CPC945 Bridge and Memory Controller Preliminary

MPIC
Page 288 of 655 February 1, 2008

• OpenPIC provides for backward compatibility with SLiC dual processor interrupt controller by providing
shadow copies of the IPI 0 registers. The IPI Dispatch Command register at xFC00040 is shadowed at
xFC00000. The IPI Vector 0 register at xFC010A0 is shadowed at xFC00008.

The CPC945 MPIC does not support shadows of the IPI 0 registers.

• For the Per CPU registers, there are multiple instances of a given register, one instance per CPU. Open-
PIC specifies 2 addresses per instance. One address is common to all CPUs, the other address is unique
to a CPU. Address bits 12:19 are used to distinguish among the address. For all CPUs to access a given
register using the same address, address bits [12:19] = 0x00. For the CPUs to use unique addresses,
address bits [12:19] = 0x20, 0x21, 0x22, ... 0x3F (for CPUs 0, 1, 2, ... 31).

As noted above the CPC945 only supports unique addresses for four instances of each register. The
CPC945 uses address bits 16:19 to address the separate registers.

• The four IPI Command Dispatch Registers at OpenPIC addresses xFC00040, 50, 60, 70 becomes
sixteen CPC945 registers at addresses F8060040, 50, 60, 70, F8061040, 50, 60, 70, F8062040, 50,
60, 70 and F8063040, 50, 60, 70. (But there are only 4 registers. See Section 9.5.12 Interprocessor
Interrupts on page 294.)

• The Current Task Priority Register at OpenPIC address xFC00080 becomes four CPC945 registers
at addresses F8060080, F8061080, F8062080 and F8063080.

• The Interrupt Acknowledge Register at OpenPIC address xFC000A0 becomes four CPC945 regis-
ters at addresses F80600A0, F80610A0, F80620A0 and F80630A0.

• The End of Interrupt (EOI) Register at OpenPIC address xFC000B0 becomes four CPC945 registers
at addresses F80600B0, F80610B0, F80620B0 and F80630B0.

The WhoAmI Register which is implemented on the CPC945 outside of MPIC, has just the single address
of F8000050 for all CPUs.

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
MPIC

Page 289 of 655

A comparison of OpenPIC registers to CPC945 registers is shown in Table 9-2.

Table 9-2. Register Summary

Register OpenPIC Address CPC945 Address Page

Feature 0 xFC01000 F8041000 360

Global Configuration 0 xFC01020 F8041020 361

Vendor Identification xFC01080 F8041080 362

Processor Initialization xFC01090 F8041090 362

IPI 0 Vector/Priority
IPI 1 Vector/Priority
IPI 2 Vector/Priority
IPI 3 Vector/Priority

xFC010A0
xFC010B0
xFC010C0
xFC010D0

F80410A0
F80410B0
F80410C0
F80410D0

363

Spurious Vector xFC010E0 F80410E0 363

Interrupt Source
xFC10000

-
xFC10F60

F8050000
-

F8050F70
364

IPI 0 Dispatch Command xFC00040 or

xFC20040 (CPU 0)
xFC21040 (CPU 1)
xFC22040 (CPU 2)
xFC23040 (CPU 3)

F8060040 (CPU 0)
F8061040 (CPU 1)
F8062040 (CPU 2)
F8063040 (CPU 3)

366

IPI 1 Dispatch Command xFC00050 or

xFC20050 (CPU 0)
xFC21050 (CPU 1)
xFC22050 (CPU 2)
xFC23050 (CPU 3)

F8060050 (CPU 0)
F8061050 (CPU 1)
F8062050 (CPU 2)
F8063050 (CPU 3)

366

IPI 2 Dispatch Command xFC00060 or

xFC20060 (CPU 0)
xFC21060 (CPU 1)
xFC22060 (CPU 2)
xFC23060 (CPU 3)

F8060060 (CPU 0)
F8061060 (CPU 1)
F8062060 (CPU 2)
F8063060 (CPU 3)

366

IPI 3 Dispatch Command xFC00070 or

xFC20070 (CPU 0)
xFC21070 (CPU 1)
xFC22070 (CPU 2)
xFC23070 (CPU 3)

F8060070 (CPU 0)
F8061070 (CPU 1)
F8062070 (CPU 2)
F8063070 (CPU 3)

366

Current Task Priority xFC00080 or

xFC20080 (CPU 0)
xFC21080 (CPU 1)
xFC22080 (CPU 2)
xFC23080 (CPU 3)

F8060080 (CPU 0)
F8061080 (CPU 1)
F8062080 (CPU 2)
F8063080 (CPU 3)

367

Who Am I xFC00090 or

xFC20090 (CPU 0)
xFC21090 (CPU 1)
xFC22090 (CPU 2)
xFC23090 (CPU 3)

F8000050 334

Interrupt Acknowledge xFC000A0 or

xFC200A0 (CPU 0)
xFC210A0 (CPU 1)
xFC220A0 (CPU 2)
xFC230A0 (CPU 3)

F80600A0 (CPU 0)
F80610A0 (CPU 1)
F80620A0 (CPU 2)
F80630A0 (CPU 3)

368

End Of Interrupt (EOI) xFC000B0 or

xFC200B0 (CPU 0)
xFC210B0 (CPU 1)
xFC220B0 (CPU 2)
xFC230B0 (CPU 3)

F80600B0 (CPU 0)
F80610B0 (CPU 1)
F80620B0 (CPU 2)
F80630B0 (CPU 3)

369

User Manual

CPC945 Bridge and Memory Controller Preliminary

MPIC
Page 290 of 655 February 1, 2008

9.5.4 Interrupt Setup

As discussed above, the MPIC must be globally enabled by setting the MPICReset and MPICEnableOutputs
bits in the Toggle Register at 0xF80000E0 and the MPIC Global Configuration Register at 0xF8041020. To
fully set up the MPIC:

• The mask, vector and priority fields of the interrupts must be set. The Vector/Priority registers of the Inter-
rupt Source Register pairs for the I/O interrupts; the IPI Vector/Priority registers for the Interprocessor
Interrupts, and the Spurious Vector Register. For I/O interrupts the sense bit must also be set.

• For each CPU, the priority level of the task running on that CPU must be set in the corresponding Current
Task Priority Register.

• For the I/O interrupts, the destination registers of the Interrupt Source Register pairs must be set.

9.5.4.1 Mask Bits

Each of the 124 I/O Interrupt Source Vector/Priority registers and each of the 4 IPI Vector/Priority registers
contains a Mask bit. If the Mask bit equals ‘1’ the interrupt is disabled; if the Mask bit equals ‘0’ the interrupt is
enabled. Following reset, all Mask bits that equal ‘1’ are disabled; therefore, the software must set the Mask
bits equal to ‘0’ for all interrupts that are to be enabled.

9.5.4.2 Sense Bits

Each of the 124 I/O Interrupt Source Vector/Priority registers contains a Sense bit. This bit must be set equal
to ‘0’ for edge triggered interrupts and equal to ‘1’ for level sensitive interrupts.

9.5.4.3 Vectors

Vector numbers are assigned by the programmer to the individual interrupt sources. When an interrupt is
taken the software must read the Interrupt Acknowledge Register. MPIC will copy the vector field from the
Vector/Priority register belonging to the interrupt source and return it as Interrupt Acknowledge Register read
data. Using the returned vector number the software knows which source caused the interrupt.

As discussed in Section 9.5.4.4 there might be interrupts pending from multiple sources. MPIC will return the
vector from the source that has the highest priority in its Vector/Priority Register.

The vector fields are 8 bits. With 124 I/O + 4 IPI + 1 spurious interrupt = 129 sources, and 28 (256) possible
vector values, there are enough vector values to uniquely identify each interrupt source.

9.5.4.4 Priorities

Priority fields are 4 bits, having values from 0 (lowest priority) to 15 (highest priority). Interrupt sources are
assigned priorities by software using the Interrupt Source Vector/Priority Registers and IPI Vector/Priority
Registers. Each CPU also has a task priority assigned by software using the Current Task Priority Registers.

The priority fields have two purposes:

• Interrupts can be blocked if they are “not more important” than the current task being executed.

• If multiple sources cause an interrupt, once the interrupt is taken software is given the vector of the
source that is the “most important.”

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
MPIC

Page 291 of 655

When an interrupt event occurs, the interrupt from that source becomes “pending.” A pending interrupt might
or might not be asserted on the IRQ signal, depending on the priority level of that source, The priority field of
the source (from the corresponding Vector/Priority Register) is compared to the priority field of the Current
Task Priority register. (One register for distributed mode or directed mode to a single processor; more than
one register for direct mode multicast) If the source priority is greater than the task priority then an interrupt
will be asserted; if the source priority is less than or equal to the task priority then the interrupt is not asserted.

Between the time that an interrupt is asserted on the IRQ signal until the software reads the Interrupt
Acknowledge Register, interrupts from multiple sources might have become pending. When the Interrupt
Acknowledge Register is read, the vector that is returned is the vector corresponding to the source with the
highest priority.

If there are multiple pending interrupts that have the same highest priority, one of them is selected using a “tie
breaker” algorithm.

If a CPU is assigned a task priority of 15 it can never be interrupted by MPIC because no source can have a
higher priority than 15.

If an interrupt source is assigned a priority of 0 it can never interrupt, because 0 can never be higher than the
lowest task priority of 0.

IPI Priority levels have restrictions. See Section 9.5.12.1 IPI Priority Level Restrictions on page 295.

9.5.5 Changing the Interrupt Setup

The contents of the Current Task Priority Registers can be changed at any time.

For the interrupt sources, it is not safe to change the contents of the Interrupt Source Registers or IPI Vector
Priority Registers while the interrupts are unmasked. In order to change the vector, priority, sense, or destina-
tion of an active (unmasked) interrupt source, the following sequence should be performed:

• Mask the source using the MASK bit in the vector/priority register
• Wait for the activity bit (ACT) for that source to be cleared
• Make the desired changes
• Unmask the source

9.5.6 Interrupt Sequence

As explained above, when an enabled interrupt event happens (an I/O source programmed as level sensitive
is low; an I/O source programmed as event triggered goes from low to high; an IPI Dispatch Command port is
written), the interrupt for the given source becomes “pending.”

If MPIC determines that the pending interrupt should be asserted on an IRQ (based on source priority, task
priority, and destination field (for I/O) or destination write data (for IPI)), the interrupt is said to be
“dispatched.”

As explained above, when a CPU responds to an IRQ assertion it is required to read the Interrupt Acknowl-
edge Register and obtain the interrupt vector. When a CPU reads the Interrupt Acknowledge Register, a
pending interrupt is said to be “delivered.” The interrupt event that had been pending is now “in-service.” The
IRQ signal is deasserted.

Also as explained above, interrupts from multiple sources might have been pending. It is the pending interrupt
with the highest priority that changes from pending to in-service; the lower priority interrupts remain pending.

User Manual

CPC945 Bridge and Memory Controller Preliminary

MPIC
Page 292 of 655 February 1, 2008

For an interrupt that is in-service, the software is required at some point (at the end of the interrupt routine) to
write the End Of Interrupt (EOI) Register. This resets the “in-service” status of the interrupt and allows
pending lower priority interrupts (if any) to assert IRQ for a new interrupt.

(As explained below in “Spurious Interrupts” the EOI Register must not be written if the returned vector is the
Spurious vector. This is because spurious interrupts do not become in-service.)

Notes:

1. It is not legal for a CPU to access a Per CPU register that does not “belong” to it. For example, CPU 1
must not read the Interrupt Acknowledge Register for CPU 0 (or 2 or 3), and it must not write the EIO
Register for CPU 0 (or 2 or 3).

2. Level sensitive interrupts will continue to appear to be “pending” as long as the are asserted (low).

3. OpenPIC (and MPIC) builds on concepts from the original 8259A interrupt controller. The 8259A allowed
for EOI commands to be “specific” (terminating a given in-service interrupt) or “non-specific” (terminating
the highest level in-service interrupt of a fully nested stack). Write data of all 0’s is non-specific; non-zero
data is specific. OpenPIC requires a fully nested stack, therefore the EOI command must be non-specific;
therefore the write data must be all zeros.

4. The x85 and x86 processors used with the 8259A generate an Interrupt Acknowledge bus cycle when an
interrupt is serviced. The 8259A responds to this type of bus cycle by automatically returning the interrupt
vector, and internally moving from the “dispatched” state to the “in-service” state. This is why OpenPIC
specifies that the Interrupt Acknowledge Register is optional for x86 interrupt controllers based on Open-
PIC.

The PowerPC 970xx has no Interrupt Acknowledge type of bus cycle; this is why OpenPIC requires (and
MPIC implements) the Interrupt Acknowledge Register and the need for the software to read this register
to get the interrupt vector and move the interrupt from the dispatched state to the in-service state.

9.5.7 Nesting of Interrupt Events

As required by OpenPIC, MPIC supports a fully nested interrupt mechanism.

Consider a pending interrupt which is dispatched. IRQ to a CPU is asserted. The CPU reads the Interrupt
Acknowledge Register. The interrupt has been delivered. IRQ to the CPU is deasserted.

Some time later the CPU writes the EOI. But before that happens, an interrupt of higher priority might become
pending. If this happens, MPIC will assert IRQ. Once again, the CPU is required to read the Interrupt
Acknowledge Register. The second, higher priority interrupt is delivered. IRQ is deasserted. From a CPU
viewpoint, a higher priority interrupt has preempted the lower priority interrupt.

There are now 2 interrupts that are in-service. If an even higher priority interrupt becomes pending then it will
preempt the second interrupt and 3 interrupts will be in-service. Thus, a fully nested stack of interrupts can be
in-service, from lowest priority to highest priority.

A CPU will never have an in-service interrupt preempted by an equal or lower priority source.

When the EOI Register is written it will reset the in-service status of the highest priority interrupt of the nested
stack. (This is why the EOI write data must be zero. The OpenPIC does not permit a “specific” in-service
interrupt in the stack to be terminated. Only the non-specific (highest priority) in-service interrupt can be termi-
nated.)

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
MPIC

Page 293 of 655

As usual, multiple EOI writes must be performed, one for each Acknowledged interrupt, to terminate all of the
in-service interrupts in the stack.

9.5.8 Spurious Interrupts

As discussed above, a pending interrupt becomes dispatched at some time; at a later time the software reads
the Interrupt Acknowledge register to learn the vector of this pending interrupt. But it is possible that by the
time the Interrupt Acknowledge register is read, there is no valid vector to return. In this circumstance, the
MPIC will return the contents of the Spurious Interrupt Register.

Following are the cases that will cause the spurious vector to be returned:

• Interrupt request is asserted in response to a level triggered interrupt source which is deasserted before
interrupt acknowledge.

• Interrupt request is asserted for an interrupt source which is masked by an increase in current task prior-
ity level for the interrupted processor before interrupt acknowledge.

• Interrupt request is asserted for an interrupt source which is masked using the mask bit in the source con-
figuration register before interrupt acknowledged.

For correct operation the EOI register should not be written in response to the spurious vector.

In all cases the spurious vector will not be returned if there is another pending interrupt that has sufficient
priority to interrupt that processor. If such an interrupt is available, the vector for that source will be returned.

9.5.9 Delivery Modes

The concept of delivery modes is a consequence of having interrupt request for multiple processors. There
are two interrupt delivery modes: distributed and directed.

9.5.9.1 Directed Mode

For directed mode, the interrupt is delivered to a specific processor (single destination) or to multiple proces-
sors (multicast) as specified by the destination field value.

9.5.9.2 Distributed Mode

For distributed mode, interrupt events from a particular source are distributed among a group of processors
specified by the destination field value, using a fair distribution algorithm.

9.5.9.3 Exactly Once Delivery

Distributed mode interrupts are delivered “exactly once.” This means that an interrupt event will never be
pending or active on more than one processor at a time and will be delivered only once to the selected desti-
nation processor. Also, once an interrupt is dispatched to a particular destination, further events from that
source will not be dispatched to any other processor until processing of the original event is terminated by an
EOI.

User Manual

CPC945 Bridge and Memory Controller Preliminary

MPIC
Page 294 of 655 February 1, 2008

9.5.10 Processor Identification

The WhoAmI register returns a value that is unique to the processor reading the register. This value must be
used by the processors when accessing MPIC to determine which of the multiple instances of the Per CPU
registers to use, for setting the destination bits in the Interrupt Source Destination registers, and for writing the
destination data for IPI Command Dispatch Port access.

9.5.11 I/O Interrupts

The 124 I/O interrupts have 124 interrupt source register pairs in which the second register of the pair is the
Destination Register. The destination register has 4 bits corresponding with the 4 processors.

For a given interrupt, if only a single bit is set in the destination register than that interrupt uses directed
mode.

If more than one bit is set, then distributed mode is used, with the interrupts distributed among the processors
whose corresponding bits are set in the destination register.

9.5.12 Interprocessor Interrupts

Interprocessor interrupts are available for one processor to interrupt another processor. They can also be
used for a processor to interrupt itself (self interrupt).

Four IPI “channels” are available (four IPI interrupts that can have different vectors and priorities). The four
channel vectors and priorities are set in the four IPI Vector/Priority registers.

Interprocessor interrupts events are created by writing to one of the four IPI Command Dispatch Command
ports (one Command Dispatch port per channel).

In the general case, the Per CPU registers have multiple instances of a given register, one per processor. As
specified by OpenPIC this is not true for the IPI Dispatch Command Registers. For the this means:

• Addresses F8060040, F8061040, F8062040 and F8063040 all map to the same register.

• Addresses F8060050, F8061050, F8062050 and F8063050 all map to the same register.

• Addresses F8060060, F8061060, F8062060 and F8063060 all map to the same register.

• Addresses F8060070, F8061070, F8062070 and F8063070 all map to the same register.

Multiple IPI events generated on a selected processor’s incoming channel will not be queued. The vector and
priority for each of the IPI channels will be the same for all processors (the values programmed in the IPI
Vector/Priority registers).

Interprocessor interrupts always use Directed Mode. The IPI Command Dispatch ports used to generate an
IPI also use the write data to serve as the destination field. Writing to an IPI Command Dispatch port creates
an interrupt event; four bits of write data specify to which processor(s) the event is directed. If only one bit is
written, then the interrupt is directed to a single destination - the processor corresponding to the bit that is
written. If more than one bit is written than the interrupt is multicast - directed to the multiple processors corre-
sponding to the bits written.

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
MPIC

Page 295 of 655

9.5.12.1 IPI Priority Level Restrictions

The priority value programmed for each active IPI channel must be a unique priority on a per CPU basis.

• For a given CPU, the priority levels for IPI channels targeted to that CPU must be distinct from the priority
levels used for all other interrupt sources.

• Multiple IPIs can be programmed to the same priority levels if they specify mutually exclusive CPU tar-
gets (when writing the destination data to the IPI Command Dispatch ports).

User Manual

CPC945 Bridge and Memory Controller Preliminary

MPIC
Page 296 of 655 February 1, 2008

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
System Initialization Sequence

Page 297 of 655

10. System Initialization Sequence

10.1 Introduction

This chapter gives an overview of power on considerations and the actions required to boot a system with a
CPC945 bridge and memory controller.

In general, the steps required to fully initialize the CPC945 are:

1. Enable power to the system.

2. Enable the clock generators and PLLs of the CPC945.

3. Release reset to the CPC945.

4. Initialize the CPC945.

5. Perform the processor interface alignment procedure.

6. Configure the HyperTransport bus and boot Flash and NVRAM.

10.2 Power Sequencing

While the CU-11 process used for CPC945 has no power sequencing requirements, experience has shown
that a module power sequencing requirement exists and should be followed before any attempt is made to
communicate with the CPC945 over the slave I2C interface. Correct I2C slave interface operation depends on
stable CPC945 core, processor I/O, and CPC945 I/O voltages.

The CPC945 has separate power rails for the core logic and I/O buffers. The core power rail should be raised
and stabilized prior to raising the I/O power rails. Additionally, the reset signal to the CPC945 chip should be
asserted the whole time that the power rails are being raised and stabilized. No voltage should be applied to
an I/O pad if the associated power supply is not on.

User Manual

CPC945 Bridge and Memory Controller Preliminary

System Initialization Sequence
Page 298 of 655 February 1, 2008

10.3 Power-On Reset

The CPC945 signals that are used in the power-on reset process are described in Table 10-1.

10.3.1 Hardware Reset Sequence

The following procedure outlines the steps required to bring a system through the initial power-on reset
(POR) sequence:

1. The SPU powers up all devices and subsystems, asserting all resets (assert SUSPENDREQ_L and
assert NORTH_BRIDGE_RESET_L).

2. In response to reset, the CPC945 resets and forces internal PLL clock generators to bypass, asserts
SUSPENDACK_L, holds all the buses in the sleep state, deasserts HT_PWROK, and asserts
HT_RESET_L. The CPC945 operates off of its bypass clocks during this phase of the bring up.

3. At this point in the reset sequence the SPU can start the PC board system clock generators, including the
66 MHz clocks to the HyperTransport.

4. Now the SPU waits an appropriate time for the power and clocks to stabilize.

5. Next the SPU deasserts NORTH_BRIDGE_RESET_L to the CPC945, and the resets to the HyperTrans-
port Tunnel, and the southbridge.

6. In response to the deassertion of NORTH_BRIDGE_RESET_L the CPC945 stops using its bypass
clocks, and starts using its phase-locked loops (PLL), and internal clocking structures.

7. Now the SPU can deassert SUSPENDREQ_L to the CPC945.

8. When all of its PLLs and clocks are running and SUSPENDREQ_L is deasserted the CPC945 starts wak-
ing its buses and the memory controller, and starts an internal reset state machine procedure.

9. After one millisecond, the reset state machines in the CPC945 asserts HT_PWROK, the reset state
machine then waits another millisecond, and deasserts HT_RESET_L.

10. When the CPC945 detects HT_PWROK asserted, and both HT_RESET_L and HT_LDTSTOP_L deas-
serted, the CPC945 starts the HyperTransport interface.

11. Next the CPC945 signals to the SPU the deassertion of SUSPENDACK_L.

Table 10-1. CPC945 System Support Signal Pins

Signal Name Signal Description Signal Type

NORTH_BRIDGE_RESET_L Hardware reset for the CPC945. This active-low signal is the system hardware
reset input to the CPC945. This is the hard-reset signal. Input

SUSPENDREQ_L
Suspend request. This active-low signal is sent from the power management
unit (under software control) to the CPC945 to request that the
device stop all activity and enter the suspend (sleep) state.

Input

SUSPENDACK_L
Suspend acknowledgement. The CPC945 asserts this active-low signal
back to the power management unit to indicate the suspension request is
complete.

Output

HT_PWROK HyperTransport power-OK signal. I/O

HT_RESET_L Active-low HyperTransport reset signal. I/O

HT_LDTSTOP_L Active-low HyperTransport power down request signal. I/O

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
System Initialization Sequence

Page 299 of 655

12. When all southbridge and HyperTransport tunnel PLLs and clocks and HyperTransport busses are run-
ning, the SPU can then deassert HT_RESET_L to the CPC945, the HyperTransport tunnel and the
southbridge.

13. With the deassertion of HT_RESET_L the HyperTransport tunnel and southbridge start coming out of
reset and the HyperTransport bus transmitters go active.

14. The SPU releases the processor resets and the processors start booting up.

10.3.2 CPC945 Initialization

After completion of the initial hardware reset sequence, the service processor begins initialization of the
CPC945 through the I2C slave interface. This I2C interface can be used by the SPU to generate read or write
cycles to any address in the system. The System Command Registers allow the I2C slave interface to provide
read and write access to any 36-bit CPC945 physical address.

The initialization consists of the following steps:

1. First write the Clock Control Register for the appropriate core speed and then the PLL1 Control Register
to reflect the proper configuration for the attached processors via the PI interface. Note that the CPC945
PLLs are preloaded at reset time to default values that are not necessarily optimized for a specific system
configuration. The service processor (SPU) can adjust the PLL settings by writing to the PLLn Control
Register. For more detail see Section 10.3.3 CPC945 Clocking Initialization on page 300.

2. Next through the SPU I2C slave interface disable all exceptions by programming the Processor Interface
Exception Mask Register. See Section 12.11.3.1 CORE_X: PI Core Interface Parameters Register on
page 586.

3. Also via the SPU I2C slave interface disable exceptions in the Chip Fault Mask Register. See
Section 12.11.3.1 CORE_X: PI Core Interface Parameters Register on page 586.

4. After disabling all exceptions, train the PI interface. This involves setting up the appropriate alignment of
data and clocks at the physical layer of the interface. See Section 4.1 Processor Interface Alignment Pro-
cedure on page 78.

5. Once the PI has been trained, set up the Processor Interface (PI) Bus timing parameters. An understand-
ing of the card delays is required to set up the appropriate bus delays. These parameters include
snoopacc, snooplat, snoopwin, paamwin, and statlat. See Section 4.1.1 Determining PI Bus Parameters
on page 79 on determining bus timing parameters.

6. After the PI Bus timing parameters are programmed set up the PI core interface parameters. The core
interface registers configure the size of the various queues for the cpu and I/O. See Section 4.1.4 API
Programming Procedure on page 84.

7. Next Initialize the HyperTransport Interface. See Section 6.2.1 Programming the HyperTransport core on
page 117.

8. After initializing the HyperTransport, initialize the PCI Express (optional).

9. Once the initialization of the PCI Express is complete initialize the DDR2 interface. See Section 7.7.2
Memory Controller Bring-up Summary on page 136.

10. Next enable all exceptions using the Processor Interface Exception Mask Register and the Chip Fault
Mask Register.

11. The CPC945 is now ready to function in the system.

User Manual

CPC945 Bridge and Memory Controller Preliminary

System Initialization Sequence
Page 300 of 655 February 1, 2008

10.3.3 CPC945 Clocking Initialization

The default power on reset values of the clocks are shown in Section 12.5.6 PLL1 Control Register,
Section 12.5.7 PLL2 Control Register, Section 12.5.8 PLL3 Control Register, and Section 12.5.9 PLL4
Control Register.

The PLL control registers can be accessed through the SPU I2C slave interface. Each control register allows
control of the PLL associated dividers, tune bits, as well as the R, F, L, and P control bits.

The Power Management Clock (PMR_Clk) comes directly into the chip through the I/O (300 MHz) with no
PLL clock multiplication. Consequently no PLL control is required for this clock tree.

PLL1 Control Register controls the behavior of the Processor Interface PLL clock generator. This register is
located at system address 0xF8000850. Setup values for this control register are dependent on the system
configuration. For more detail on the specific setup values given the system configuration, see Section 12.5.6
PLL1 Control Register on page 346.

PLL2 Control Register controls the behavior of the DDR2 SDRAM PLL clock generator. This register is
located at system address 0xF8000860. For typical usage it should not be necessary to change any of the
initial bit values in this register. However if it is necessary to change values in this register see a more detailed
specification of this control register, fields, and steps to alter their value in Section 12.5.7 PLL2 Control
Register on page 350.

PLL3 Control Register controls the behavior of the PCI Express PLL clock generator. This register is located
at system address 0xF8000870. For typical usage it should not be necessary to change any of the initial bit
values in this register. However if it is necessary to change values in this register see a more detailed specifi-
cation of this control register, fields, and steps to alter their value in Section 12.5.8 PLL3 Control Register on
page 352.

PLL4 Control Register controls the behavior of the HyperTransport PLL clock generator. This register is
located at system address 0xF8000880. Setup values for this control register are dependent on the system
configuration. For more detail on the specific setup values given the system configuration see Section 12.5.9
PLL4 Control Register on page 355.

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
System Initialization Sequence

Page 301 of 655

Figure 10-1. CPC945 Power On Reset Procedure

Power good

PLL lock

init POR

drop HRESET,BYPASS

raise HRESET

reset logic

full scan0

sample fuse

scan 0

run ABIST

start I/O clock

sync to CPC945 phase
drive CPC945 phase

drive PI IAP

drive PI IAP
sync PI to IAP

sync PI to IAP

chk CPU/CPC945 stat

send cont to CPU

 send cont to CPU

stop PI IAP

init STS/core

fetch @ 0x100

--- wait ---

--- wait ---

>1ms

>3ms
>3ms

>0ms

stop PI IAP

>1ms

>12ms

>1ms

CPU CPC945 SPU

>1ms

final init

reset logic
initialization

send cont to CPU

<5ms (timeout)

set PI params

wait / init mode

enable I/Os

send data

deassert API sw reset

 assert API sw reset

>20ms>20us

User Manual

CPC945 Bridge and Memory Controller Preliminary

System Initialization Sequence
Page 302 of 655 February 1, 2008

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
Power Management and Clocks

Page 303 of 655

11. Power Management and Clocks

11.1 Introduction

In order to optimize the electrical power consumption and thermal performance of computer systems built
with the CPC945, there is specific power management logic in the bridge that switches off clocks to various
parts of the chip when those parts are not needed. There is also logic to control the speeds at which different
interfaces operate, allowing additional power savings and configuration control. In addition to saving power in
the CPC945, these modes save significant system power by managing and optimizing the power used by the
PowerPC 970xx family processor.

11.2 System Power Management

The CPC945 Power Manager (PMR) logic can be used to control the idling of all buses and internal opera-
tions when the 970-based system goes in and out of the system sleep state. This is typically done in tandem
with another system unit such as a Power Management Unit (PMU) or Service Processor or System Manage-
ment Unit (SMU). The CPC945 can be programmed to implement a two-wire handshake interface consisting
of the external signals SUSPENDREQ_L and SUSPENDACK_L. Using these signals and the bits in the
PwrSystem Register, CPC945 safely suspends all internal operations, quiesces all external buses, and
places the memory subsystem in the self-refresh state.

11.2.1 CPC945 and Processor State Definitions

Table 11-1. CPC945 and Processor Power Management State Definitions.

Run Doze Nap DeepNap Power Off

Processor Core Active, Dynamic
Clock Stopping Logic

Clocks Partially
Stopped Clocks Stopped Clocks Stopped

Power Down Single
Core (on 970MP mul-

tiprocessor only)

Caches Active Snoop On, Caches
Preserved

Snoop Off, Caches
Preserved

Snoop Off, Caches
Preserved Powered Off

CPU Timers/Inter-
rupts/PLLs/IOs/Per-
vasive/
MachineCheck

Active Active Active Active Powered Off

CPC945 Active Active Active On, Retains State Off

DRAM Active Active for DMA Traf-
fic On, Self-Refresh Off Off

Frequency Scaling Full (F), Half (F/2),
Quarter (F/4)

Full (F), Half (F/2),
Quarter (F/4)

Full (F), Half (F/2),
Quarter (F/4) PowerSave (F/64) Powered Off

Coherency Logic Active Active Off, QAck transition
to Doze Off Powered Off

Snoop Penalty No No Yes No No

Note:
1. In values listed in the Frequency Scaling column, ’F’ is frequency.
2. In Frequency Scaling/DeepNap cell, F/64 applies only to the processor, not to the CPC945.

User Manual

CPC945 Bridge and Memory Controller Preliminary

Power Management and Clocks
Page 304 of 655 February 1, 2008

Figure 11-1 shows the basic logic flow used during the run to sleep transition.

Figure 11-1. Run to Sleep Transition

RUN

PCIe sleep
initiated by

software

Y

CPUs assert
QReq

Nap
loop

N

Y

All Buses
Idle?

PMR asserts
QAck,

No new commands

QReq
N

Y

N

Y

All
QAck

Suspend
Req?

N

API Interface
Quiesced and
CPUs into Nap

From here on
QReq is

ignored by
PMR

SMU powers
off CPC945

PMR asserts
SuspendAck

PMR stops
clocks

Y

N
ACK?

SleepReq to
DDR2

DDR2 flushes
queues and

puts DRAM into
self refresh

Y

N ACKs?

SleepReq to
API, HT

API and DDR2
completes

current activity
and returns

ACK

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
Power Management and Clocks

Page 305 of 655

Figure 11-2 show the matching logic flow used for the wake sequence.

Figure 11-2. Wake Sequence

Power off

SMU enables
Power &

asserts CPC945

reset
SuspendAck

asserted

SMU
deasserts
CPC945

reset

Clks
off?

PMR disables
all clocks

Y

N

Reset and
init all
PLLs

PMR enable
all clocks

Clks
on?

Y

N

PMR
deasserts

SuspendAck

Block resets
deasserted

Block resets
asserted

~100uS

Sleep

Wake from
sleep has no

reset

User Manual

CPC945 Bridge and Memory Controller Preliminary

Power Management and Clocks
Page 306 of 655 February 1, 2008

11.2.2 CPC945 Top Level Power Manager

The CPC945 top level power manager controls the logic used to coordinate activity that occurs between
CPC945 and the rest of the system when moving from one power management state to another.

11.2.3 PLLs

The clocks in CPC945 are generated by on-chip PLLs. These PLLs are used for two functions; to multiply the
input clock frequency to a higher frequency and to remove clock tree insertion delay on the interfaces where
insertion delay is important. The four PLLs in CPC945 generate all the clocks for the chip. Each PLL is
surrounded by a power management wrapper, which controls the PLL through reset, system sleep, and soft-
ware-enabled dynamic power management. All four PLL[n] Control registers (which are a part of this
wrapper) are accessible via memory-mapped accesses and I2C accesses. I2C access is required for the
cases where the SPU must modify a PLL’s configuration before releasing the processors from reset.

11.2.4 Clock Stoppers

In order to save power, the clocks to most parts of CPC945 can be stopped. The CPC945 PMR uses clock
stoppers to synchronously stop and control the various clocks at the base of the clock trees. Additionally, the
PMR uses clock stoppers to isolate the PMR logic from the PLL outputs during times when the PLL or input
reference clock is not stable. Figure 11-3 illustrates the logic typically used for clock stoppers.

The first two flops synchronize the enable to the clock the third flop generates a gating signal that changes
only during the clock low time, so that the clock gating does not create any clock glitches.

Since the stopping and starting of clocks causes significant changes in the current consumed by the CPC945,
there is a clock stopping sequencer which allows only one clock to start or stop within a given time interval.
Figure 11-3 shows the basic logic in the PMR clock stop sequencer.

Figure 11-3. Clock Stopper Logic

Clk

Enable

Gated Clk

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
Power Management and Clocks

Page 307 of 655

11.3 CPU Power Management

11.3.1 CPU Power Manager

Historically, PowerPC processors had three power management states: doze, nap, and sleep. The PowerPC
970xx processor implements doze and nap, but does not implement the sleep state. In sleep mode, the
processors caches have been flushed and it is not required to participate in data coherency operations.

The CPC945 simulates sleep for the PPC970xx processor. Sleep is the same as nap as far as the PowerPC
970xx is concerned, but when sleep is entered, software first flushes the caches, so that it is not necessary to
move a processor that is in the sleep state to doze to do snooping. The sleep state is exited by either using a
reset or an interrupt. The system power manager should be able to remove the power from a processor and
put the CPC945 into the sleep state, which will save the leakage power. If the power is removed, it will be
necessary to reinitialize the processor interconnect interface when power is restored.

Implementing the sleep state in the power manager of the CPC945 is straightforward. The per-processor
sleep bit is used to indicate that a particular processor should enter the Sleep state when all required opera-
tions for that processor have completed, and one QAck signal is provided for each processor. The Sleep
mode is the same as the Nap mode as far as the processor is concerned. The only difference is in Sleep
mode, the CPC945 does not de-assert QAck when snooping is required since the processor in the Sleep
state has empty caches. When a processor is in the Sleep state, it can be powered down. Each processor
has a PwrDnEnabled bit. A CPU’s PM_SLEEP bit should be asserted whenever the processor’s sleep state
machine is in the “sleeping” state and the PwrDnEnabled bit is set.

Since the CPC945 has multiple Processor Interconnect interfaces and supports multiple CPUs per interface,
generation of QAck is not as simple as it might seem. This is further compounded by the fact that the QReq
and QAck signals are asynchronous to the operation of the Processor Interconnect interface. Each CPU has
its own state machine for controlling the Quiesce state of that CPU. Each CPU is capable of independently
moving in and out of the Nap and Sleep states without explicit involvement by other CPUs. The CPC945
takes advantage of idle periods on the bus to signal QAck to a requesting processor. This requires holding
other bus traffic for the time it takes the CPU to move in and out of the low power state.

User Manual

CPC945 Bridge and Memory Controller Preliminary

Power Management and Clocks
Page 308 of 655 February 1, 2008

Figure 11-4. CPU Power Manager (1 of 2)

CPU
Reset
& Run

CPU
Nap

1

NoNewCmds[n] = 0
QAck[n]_L = 1

CPU[n]IsQuiesced = 0
All counters = Load

((
 !Q

R
eq

[n
]_

L
&

 C
P

U
S

le
ep

[n
])

||
A

llQ
R

eq
s

)
&

 A
llB

us
es

Id
le

&
 !Q

A
ck

D
el

ay
C

tr

NoNewCmds[n] = 0
QAck[n]_L = 1
CPU[n]IsQuiesced = 0
All counters = Load

((
Q

R
eq

[n
]_

L
||

!C
P

U
S

le
ep

[n
])

&
 !A

llQ
R

eq
s)

||
!A

llB
us

es
Id

le

Normal Run state

If going to Sleep, and QReq
asserted, or if all QReqs are
assserted, and all buses
are idle, then goto Nap 1

Wait to see if the bus stays
idle for the full QAckDelay

If QAckDelay expires without the
buses going active, then go to Nap 2

(Allow incoming
API commands)

PU_Reset_L = 0 (Power On)

NoNewCmds[n] = 0
QAck[n]_L = 1
CPU[n]IsQuiesced = 0
QAckDelay = Count
All other counters = Load

NoNewCmds[n] = 0
QAck[n]_L = 1

CPU[n]IsQuiesced = 0
QAckDelay = Count

All other counters = Load

((
Q

R
eq

[n
]_

L
||

!C
P

U
S

le
ep

[n
])

&
 !A

llQ
R

eq
s

)
||

!A
llB

us
es

Id
le

((
 !Q

R
eq

[n
]_

L
&

 C
P

U
S

le
ep

[n
])

O
R

 A
llQ

R
eq

s
)

&
 A

llB
us

es
Id

le

NoNewCmds[n] = 1
QAck[n]_L = 1

CPU[n]IsQuiesced = 0
WaitNoNewCmds = Count
All other counters = Load

Assert NoNewCmds
Wait long enough to make sure it has
effectively blocked incoming commands.

CPU
Nap

2

CPU
Nap

3

Assert QAck.
Wait long enough for the CPU to
guarantee it is in the low power state.

NoNewCmds[n] = 1
QAck[n]_L = 0

CPU[n]IsQuiesced = 0
QAckMinLowTime = Count

All other counters = Load

If WaitNoNewCmds expires
without the buses going
active, then go to Nap 3

((
 !Q

R
eq

[n
]_

L
&

 C
P

U
S

le
ep

[n
])

||
A

llQ
R

eq
s

)
&

 A
llB

us
es

Id
le

&
 !W

ai
tN

oN
ew

C
m

ds
C

tr

When QAckMinLowTime expires, go
to Nap 4 if QReq is still asserted.

CPU
Wake

2

When QAckMinLowTime expires, go
to Wake 2 if QReq is not still asserted.

QReq[n]_L & !QAckMinLowTimeCtr

Deassert QAck.
Wait long enough to guarantee
the CPU is back in Run mode.

NoNewCmds[n] = 1
QAck[n]_L = 1

CPU[n]IsQuiesced = 0
QAckIdleDelay = Count

All other counters = Load

!Q
A

ck
Id

le
D

el
ay

C
tr

&
 a

pi
F

re
qC

hg
R

eq

A
B

!QReq[n]_L & !QAckMinLowTimeCtr

CPU
Wake

3

CPU
Wake

4

!QAckIdleDelayCtr

& !apiFreqChgReq

apiFreqChgReq

ap
iF

re
qC

hg
R

ef
D

on
e

!FreqChgDlyCtr

NoNewCmds[n] = 1
QAck[n]_L = 1

CPU[n]IsQuiesced = 0
All counters = Load

NoNewCmds[n] = 1
QAck[n]_L = 1

CPU[n]IsQuiesced = 0
FreqChgDlyCtr = Count

All other counters = Load

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
Power Management and Clocks

Page 309 of 655

Figure 11-5. CPU Power Manager (2 of 2)

NoNewCmds[n] = 1
QAck[n]_L = 0

CPU[n]IsQuiesced = 1
All counters = Load

Assert CPU[n]IsQuiesced.
If going to sleep continue down. If
Napping, wait here for wakeup.

(Do not allow new ApplePI commands)
(Quiesce the CPU)
(CPU is quiesced)

(All counters loaded from register fields)

T
er

m
E

na
bl

eD
el

ay
C

tr
 =

 0

NoNewCmds[n] = 1
QAck[n]_L = 0

CPU[n]IsQuiesced = 0
TermEnableDelay = Count
All other counters = Load

(Do not allow ApplePI commands)
(Quiesce the CPU)

(CPU is waking)
(Count down TermEnableDelay)

Deassert CPU[n]IsQuiesced. Wait long
enough for power supplies to stabilize after re-
enabling termination before going to Wake 2.

If this CPU is waking from sleep,
or if napping and there is snoop
traffic, and clocks are not in the
process of stopping, go to Wake 1

When TermEnableDelay
expires, go to Wake 2

A
B

CPU
Nap

4

CPU
Wake

1

Q
R

eq
[n

]_
L

=
 0

&
 C

P
U

S
le

ep
[n

] =
 1

NoNewCmds[n] = 0
QAck[n]_L = 0

CPU[n]IsQuiesced = 1
All counters = Load

Deassert NoNewCmds to allow
snooping to proceed without this CPU.
Stay in sleep until QReq deasserted or
software clears CPUSleep[n].

If going to Sleep, and QReq
asserted, then goto Sleep 1

CPU
Sleep

1

(Allow new ApplePI commands)
(Quiesce the CPU)
(CPU is quiesced)

(All counters loaded from register fields)

Q
R

eq
[n

]_
L

=
 1

O
R

 C
P

U
S

le
ep

[n
] =

 0

CPU
Sleep

2

(Do not allow new ApplePI commands)
(Quiesce the CPU)
(CPU is quiesced)

(Count down WakeWaitNoNewCmds)

If QReq or CPUSleep
deasserts, then goto Sleep 2

Assert NoNewCmds to start forcing the bus to idle.
Wait the minimum WakeWaitNoNewCmds and
when buses are idle, go to Nap 4.

NoNewCmds[n] = 1
QAck[n]_L = 0

CPU[n]IsQuiesced = 1
WakeWaitNoNewCmdsDelay = Count

All other counters = Load

(Q
R

eq
[n

]_
L

=
 1

O
R

 C
P

U
S

le
ep

[n
] =

 0
)

&
 A

llQ
R

eq
s

=
 0

&
 S

to
pp

in
gA

P
IC

lo
ck

s
=

 0

WakeWaitNoNewCmdsDelay = 0
& AllBusesIdle = 1

If the minimum delay has expired
and all buses are idle, go to Nap 4

User Manual

CPC945 Bridge and Memory Controller Preliminary

Power Management and Clocks
Page 310 of 655 February 1, 2008

There is one CPU Power Manager for each of the four CPUs the CPC945 supports. Any CPU Power
Manager is capable of stalling all incoming transactions on all CPC945 Processor Interconnect interfaces.
The Processor Interconnect PHY block takes several actions when the bus is quiesced:

• The Processor Interconnect PHY must not issue any snoop transactions to its outgoing bus. Instead, an
encoded zero must be sent on the outbound bus. This must be a static state as clocks to the Processor
Interconnect PHY logic might be removed.

• The Processor Interconnect PHY must not accept or respond to any incoming traffic on its incoming bus.
This includes not generating any error conditions based on incoming bus signals as the incoming bus
might be tristated.

• The Processor Interconnect PHY must present a static snoop response of null to the internal snoop logic.
This must be a static state as clocks to the Processor Interconnect PHY logic might be removed.

In addition, the Processor Interconnect PHY has a signal that tells it to tristate the output drivers on the
outbound bus. This signal is asserted when all CPUs on the bus have the CPUPwrDnEnabled[n] bits set in
the PwrCPU Register, the TristateEnable bit is set in the PwrCPU Register, and all CPUs are in the sleep
state.

11.3.2 Processor Interconnect Power Manager

The power management logic for the Processor Interconnect busses works with the clock control logic to
support dynamic clock stopping as well as the safe stopping and starting of clocks as the system enters and
exits the sleep state. The Processor Interconnect Power Manager can reduce power consumption by
removing clocks from circuitry not in use. Specifically, it can dynamically remove clocks going to the
Processor Interconnect interface when it is quiesced. To do this, the power management logic must ensure
QAck is not removed while Processor Interconnect is stopping its clocks. Likewise, the power management
logic must restart clocks whenever any source wants to awaken from the Quiesced state.

11.3.2.1 PLL1

PLL1 generates the bus rate and DDR2 bit rate clocks used by the Processor Interconnect Interface. The bus
rate is a maximum of 625 MHz and the DDR2 bit rate clock is twice this frequency, or 1250 MHz. This PLL
accepts a reference clock (EI_PLL_CLK) that is at the bus rate (for CPUs with a 3:1 or 4:1 ratio between the
core clock and the DDR2 bit rate) or 1/2 the bus rate (for CPUs with a 2:1 ratio between the core clock and
the DDR2 bit rate). PLL1 multiplies this clock to generate the required frequencies.

PLL1 is required to support spread spectrum clocking. The reference clock for PLL1 is spread at rates
between 10 kHz and 40 KHz, ±1.25%.

After power-on-reset, the service processor unit (SPU) uses I2C to configure PLL1. This is required due to the
variance of bus speed with processor speed. PLL1 requires different settings to support different speed CPUs
and different reference clock to CPU ratios (the PowerPC 970xx core runs at either six or eight times the
reference clock input). To support this requirement, the PLL1 Control Register Values are available for
reading and writing via the I2C slave port and the memory-mapped register space.

In order to power manage the PowerPC 970xx processor it is necessary to dynamically change the
PPC970xx core frequency. The processor frequency ranges between full speed and half speed. Since the
core frequency is directly tied to the reference clock within the PPC970xx, the reference frequency changes
one octave under software control. The clock chip limits the rate of frequency slewing to be slower than the

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
Power Management and Clocks

Page 311 of 655

rate used by spread spectrum clocking. At its fastest, spread spectrum moves 2.5% in 16.67 microseconds,
so the fastest clock chip will move 50% (from full to half speed) in 333 microseconds. PLL1 is required to
track the reference frequency moving at this rate.

Because PLL1 has certain limits, it is necessary to change the settings of PLL1 in order to enable full octave
frequency shifts for a variety of processor speeds and CPU to Bus ratios. To support these changes, all PLL1
control settings are brought out to the PLL1 Control Register. This register is used by software to set PLL1
appropriately for the frequency it is being fed as a reference. Since changing the controls to the PLL breaks
the output clock’s lock, it is necessary to define a safe mechanism for these signals to be updated.

During system operation, the PLL settings cam be set dynamically. If the APILogicStopEnable and
EnablePLL1Shutdown bits are set in the Clock Control Register then the Processor Interconnect clocks are
stopped and the PLL is shut down when all four processors are quiesced. So, in order to load new values into
the PLL, first software loads the proper values into the PLL1 Control Register with the ForcePLLReset and
ForcePLLLoad bits set to zero. Then all the CPUs in the system are quiesced. When the system wakes from
sleep, the PLL is updated with the new value. Software verifies that the update has occurred by checking the
PLLLoaded bit in PLL1Control. If software clears the PLLLoaded bit when programming the PLL1Control
register, then software can tell the update occurred by checking the PLLLoaded bit later. PLLLoaded is set to
a one by the hardware when the PLL updates the configuration latch.

One effect of the update procedure for PLL1 is that the clocks to the Processor Interconnect interface are
completely stopped. This means that the outgoing source-synchronous clocks to the PPC970xx are stopped.
The PPC970xx uses these clocks to maintain certain clock relationship information which is critical to proper
operation of Processor Interconnect. In order not to break the interface, it is necessary that the number of
dropped clocks occupy an amount of time exactly equal to a multiple of twenty-four times the processor inter-

Figure 11-6. PLL1 Clock Stopper

SysClk
÷24

API Bus Clock

6
7

21

API Bit Rate

4
3

5

API Bus Clock

 API BitRate ClkAPIBitGated

ClkAPIBusGated

9

APIClkIsStopped

66MHz Bypass Clock

8

EnableAPIClk_Seq

Src_Clk

EnableClk_Seq

ClkIsStopped

66MHz Bypass Clock

Gated Clk

User Manual

CPC945 Bridge and Memory Controller Preliminary

Power Management and Clocks
Page 312 of 655 February 1, 2008

connect reference clock. The circuit in Figure 11-6 shows how this is accomplished. The logic to do this works
with inputs and outputs synchronized to the 66 MHz bypass clock while controlling clocks synchronous to the
processor interconnect bus clock.

The values set by software in the PLL1Control Register are translated to be intelligible. See Section 12.5.6
PLL1 Control Register on page 346.

11.3.3 DDR2 Power Management (PLL2)

PLL2 generates the CPC945 core clock. This clock is used to generate the clock that runs the DDR2 SDRAM
controller and all the inter-block connection paths.

The core clock is synchronous to the DDR2 SDRAM interface clock. Since different systems have different
SDRAM interface speeds, the core/SDRAM clock rate is controllable externally.

Software can reconfigure PLL2 in order to change the core speed to match the operating speed of the
memory system. However, this must be done at power-up time before the memory controller has been acti-
vated.

The initial state of the PLL2 operating point is set by interpreting the values of the CoreSpeed[2:0] pins which
are latched at Reset. The mappings are shown in Table 12-6 PLL2 DDR2 Core Speed on page 349.

11.3.4 PCI Express Power Management

In order to save power, it is possible to quiesce the PCI Express bus using the power management features
of the PCI Express architecture. The PCI Express bus architecture defines power management states which
include D0 through D3. D0 state is the normal operating mode for the bus and represents the highest power
consumption mode for PCI Express. D3 state is the quiesced state at which power can be removed from the
PCI Express logic. If the PCI Express bus is quiesced and reaches D3 state, then the CPC945 is capable of
both gating off clocks to the PCI Express logic and stopping PLL3.

Note that the PMR logic has no direct means to place the PCI Express logic into the D3 state to be ready for
the power down state. Software must write the appropriate control registers to place the PCI Express logic in
the power down state. This means that for sleep wake, the system software/firmware must bring down the
PCI Express interface prior to asserting the SUSPENDREQ_L signal to the CPC945.

11.3.4.1 PLL3

The PCI Express clock is actually generated by a cascade of two PLLs. The first PLL is the Intermediate
Frequency PLL which is in the PMR and referred to as PLL3. PLL3 has an input reference clock of 100 MHz
which is used to generate a 625 MHz output clock. The 625 MHz clock is used as a reference clock for the
second level PLL. The second PLL is in the PCI Express HSSL macros and generates a 250 MHz clock
which is used by the protocol stack. Figure 11-7 illustrates the two PLLs and associated control logic:

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
Power Management and Clocks

Page 313 of 655

PLL3 has the typical PMR control and config register arrangement which can be used to set the PLL3 control
bits. The control logic is managed by the PCI Express power manager state machine which can be used to
stop clocks to the PCI Express logic to support sleep/wake or power down modes.

Because PCI Express has two PLLs, the startup is a bit unlike the other PLLs. First PLL3 is initialized and
locked. Once PLL3 has achieved lock, the output from PLL3 is enabled and the clocks are allowed to run and
flow through the HSS and PCI Express stack. The PCI Express reset is then deasserted, causing the HSS
PLL to initialize and lock. Figure 11-8 illustrates the reset sequence for PLL3 and PCI Express.

Figure 11-7. PLL3

PLL3 - LCTank

HSSL
HSSL

VCO

A Divider
÷1

B Divider
÷1-8

FBK Divider
÷2

PCLK250

PCIE RefClk
100Mhz

 PCIELogicStopEnable

EnablePLL3Shutdown

SleepReq
SleepClocks3

OK_TO_PWRDN

pmr_STP_PCIE

pmr_clk

 PLL3SoftwareShutdown
PCIE

Power Mgr

PLL3Running

PLLSleep

E
n

ab
le

P
C

IE
C

lk

pmr_clk

PLL3LatchEnable

Write (I2C, MemMapped)

ForcePLLLoad3

PLL3Control Register

PLL3
Mgr

Configuration Latch

Clock Stop

P
C

IE
C

lk
Is

S
to

p
p

ed

PCIEClkEnable

PLL Clk
Stop

P
L

L
2

S
to

p
p

ed

P
L

L
2

S
to

p

HSSL

PLL3Reset

ForcePLLReset3

In PciE macro

625Mhz

User Manual

CPC945 Bridge and Memory Controller Preliminary

Power Management and Clocks
Page 314 of 655 February 1, 2008

11.3.5 HyperTransport Power Management

11.3.5.1 LDTReq and LDTStop Generation

In order to save power, it is possible to quiesce the HyperTransport bus using the LDTReq and LDTStop
protocol. LDTReq is a request to keep the bus active and powered. HT_LDTSTOP_L is a signal that tells all
devices on the bus to disconnect their links and go into a power saving state. HT_LDTSTOP_L can also be
used to reconfigure the interface when resizing the link width, changing the link speed, or both. In CPC945-
based systems, HT_LDTSTOP_L can either be driven externally to CPC945, or the CPC945 can generate it
whenever HTClockEnable is cleared in the PwrSystem Register. HT_LDTSTOP_L is generated by the
CPC945 whenever the HTClockEnable bit in the ClockControl Register is turned off. HT_LDTSTOP_L is also
generated in response to a system sleep request in order to quiesce the HyperTransport interface and tristate
all the transmitters on the link. The CPC945 generates an internal LDTReq signal which is driven externally
by the HT_LDTREQ_L pin. HT_LDTREQ_L is an open-collector signal which can be driven by multiple
sources. If any source is asserting HT_LDTREQ_L, this signals that there is traffic either needing or actually
using the HyperTransport bus.

The CPC945 uses the signal coming in from the HT_LDTREQ_L pin as an input to the LDTStop generation
logic. Before CPC945 generates an LDTStop condition, it pauses a programmed delay period from the de-
assertion of HT_LDTREQ_L. This delay works to filter the number of times the bus is stopped in an attempt to
prevent rapid stop/start cycling which saves no power and costs the system in terms of performance.

Figure 11-8. PLL3 Startup Sequence

Lock 625

Gate 625

Gate 250

PciE
Reset

Reset PLL3

Lock 250

IF-PLL &
PciE
Reset

Clocks
gated

IF-PLL
Init

IF-PLL
Lock

Clocks
released

PciE
Reset

Deassert

HSS
PLL
Lock

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
Power Management and Clocks

Page 315 of 655

It is important to note that both LDTStop and warm reset stop the PLL for some amount of time. It is even
more important to not release these signals until the PLL is up and running. This is necessary to guarantee
that the HyperTransport logic can come out of the stop and reset states within the time limits of the Hyper-
Transport specification. As such, if the CPC945 samples either HT_LDTSTOP_L or ldtLinkReset asserted, it
must hold these signals asserted until PLL4 is running again.

ForceLDTStop is a bit in the PwrHT Register which forces the generation of the HyperTransport LDTStop
sequence at any time, regardless of the state of the LDTReq signal. This can be used to guarantee that the
bus stops at a given time. Its expected use is as a debugging aid for thrashing the LDTStop protocol.
HT_StopEnable is a signal which simply stops the HT interface from stopping between reset and the point at
which the HT clocks are running.

The HyperTransport interface is responsible for acknowledging that an LDTStop sequence has disconnected
and tristated the HyperTransport interface.

The CPC945 can optionally force the HyperTransport interface into the cold reset state during system sleep.
This is required in systems which remove power from any HyperTransport device.

11.3.5.2 HyperTransport Power Manager

Independent of who generates LDTStop, if the bus is quiesced the CPC945 is capable of both gating off
clocks to the HyperTransport logic and stopping PLL4.

In Figure 11-9, there is a signal labeled DoWarmReset. This signal is asserted on the falling edge of
warmResetStop_N from HyperTransport. DoWarmReset is deasserted once the PLL has been reconfigured
and relocked as required whenever performing a HyperTransport warm reset sequence. This signal guaran-
tees that a PLL relock does not occur for any assertion of warm reset which happens as part of the process of
entering sleep. DoWarmReset signal also guarantees that a PLL relock occurs once and only once for any
other assertion of warm reset. The logic for DoWarmReset is shown in Figure 11-9.

11.3.5.3 PLL4

PLL4 generates the 600 MHz (or lower) clock used by the HyperTransport interface. This PLL accepts a
reference clock of 66.67 MHz (the same frequency is applied to all HyperTransport devices in the system).
The multiplication ratio depends on the desired operating frequency of the HyperTransport interface - it could
be as low as 400 MHz and as high as 600 MHz.

The actual speed of PLL4 is controlled by the Link Frequency Register in HyperTransport configuration
space. When the Link Frequency Register is modified, it automatically loads the PLL4Control Register with
the appropriate values. PLL4 is actually updated using the standard PLL update mechanism, which is tied

Figure 11-9. HT Warm Reset

warmResetStop_N
beginWarmReset

holdWarmReset

warmReset_p

SleepReq_H

DoWarmResetClearWarmReset_N

User Manual

CPC945 Bridge and Memory Controller Preliminary

Power Management and Clocks
Page 316 of 655 February 1, 2008

into the HyperTransport defined mechanisms for stopping clocks before changing frequencies. If the values
automatically loaded into PLL4 by writing to the Link Frequency Register need modification before being used
by the PLL, then software can modify them appropriately in the PLL4Control Register before starting the
HyperTransport link speed change sequence.

11.4 Power Tuning

Power tuning is used as another power savings method implemented in the CPC945. With power tuning the
frequency of the Processor Interconnect interfaces can be switched from full speed to half or quarter speed.
This effectively reduces the frequency of the interface, reducing the power consumed by those interfaces.

The power tuning logic in CPC945 is partially contained in the PI and partially contained in the PMR. The
PMR contains the logic which quiesces the PI interfaces prior to switching the clocks. The PMR also contains
the logic that switches the clocks.

Power tuning operations are initiated by a CPU which sends a power tuning transaction on the PI to the
CPC945. The bridge responds by reflecting the power tuning transaction to all CPUs present. This causes all
processors to quiesce current activity and prepare to change bus frequency as specified in the power tuning
transaction. Each processor core signals its quiesced state to the bridge by asserting its Qreq signal. When
the bridge detects that all CPU cores have asserted their respective Qreq signals, it responds by asserting
Qack to each CPU core. The assertion of the Qack signals to the CPU cores is the indication that the CPU
cores should now switch bus frequency as specified in the power tuning transaction. The CPC945 also
switches bus frequency at this time. When each processor has completed the bus frequency change, the

Figure 11-10. PLL4

PLL4 - LCTank

PLL

A
Divider

÷8,16

B Divider
÷1,2

C Divider
÷2,4,6,8

FBK Divider
÷1-32

HyperTransport Link
Frequency Register

Link Frequency

Mapping Logic

HTClkEnable

PLL4Reset

Clock Stop
Sequencer

Configuration Latch
PLL4
Mgr

PLL4Control Register

Mapping
Logic

ForcePLLLoad4

Write (I2C, MemMapped)

PLL4LatchEnable

pmr_clk

En
ab

le
H

TC
lk

PLLSleep

PLL4Running

HT
Power Mgr

ForcePLLReset4

 PLL4SoftwareShutdown

pmr_cl
k

pmr_clk

LDT_STOP_L

LDT_REQ_LSleepClocks4

H
TC

lk
Is

St
op

pe
d

SleepReq

EnablePLL4Shutdown

 HTLogicStopEnable

ClkHTBitGated

ClkHTWideGated

HT RefClk
(66MHz)

PLL Clk
Stop

PL
L2

St
op

pe
d

PL
L2

St
op

HT ÷8 Clock

HT Bit Rate

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
Power Management and Clocks

Page 317 of 655

processor deasserts its Qreq signal. When the bridge has completed its bus frequency transition it looks for
the Qreqs to be deasserted and responds by deasserting the matching QAck. Once all the QAcks have been
deasserted the CPU cores and the CPC945 resumes normal operation at the new bus speed.

The speed selection is handled by an interface between PMR and PI logic. When the PI interfaces have been
quiesced and the clocks need to be switched, the PI/PMR logic sends a speed select to the PMR’s PI clock
logic. The power tuning logic also sends a signal called PrmUpdtBusPrm to indicate that a new speed has
been requested.

Figure 11-11 illustrates a power tuning operation as seen by the various interfaces.

Figure 11-12 is a block diagram of the Power tuning logic contained within the PMR for switching the clock
speeds.

Figure 11-11. Power Tuning Sequence

api_clk

api_clk/2

api_clk/4

APsync

switch_wdw

time0

time0_2

time0_4

1 2 3 4 5 6 70 1 2 3 4 5 6 70

Clock switch points

full->half

half->full

User Manual

CPC945 Bridge and Memory Controller Preliminary

Power Management and Clocks
Page 318 of 655 February 1, 2008

The PMR contains two clock dividers which generate the half and quarter speed clocks. These two clocks
and the full speed clock from the PLL are then muxed to generate the api_clk into the clock stoppers at the
base of the api_clk tree.

The PMR logic is designed so that the clock output multiplexer can only be switched when time0 is aligned for
all three clock speeds. This is critical because the Processor Interconnect interface contains a four deep FIFO
that is constantly sampling the bus. The FIFO is loaded by the incoming bus clock, but the FIFO unload is
done at the local bus speed. Between the bridge and the CPU there exists a situation where one side is
sampling at twice the speed of the other side and the FIFO write pointer can be passing the FIFO read
pointer.

This would normally cause a problem were it not for two mechanisms that are employed in all power tuning
operations. First the bus is constantly driven with an unchanging pattern of null characters. This means the
FIFO data is always null data. The second mechanism is that the bus frequency is always switched at a time0
cycle. Time0 is defined as occurring every four bit times. Switching bus frequency at time0 assures that while
the FIFO pointer relationship can be momentarily disturbed, the original alignment is restored when both
sides have performed their respective frequency change. Changing bus frequency at time0 assures that the
FIFO pointers are unaligned by a distance that is modulo 4 which is the exact size of the FIFO. This brings
the FIFO pointers back to their original alignment.

Figure 11-13 shows the time0 marker at full, half and quarter speed as well as the alignment used to switch
the clocks.

Figure 11-12. Power Tuning Logic

PrmUpdtBusPrm

Clk_Sel[0:1]

÷ 2

÷ 4

Select[0:1]

api_clk_ungated

plloutA

early_APsync

apiFreqSel_r[0:1]

cntrClk_Sel[0:1]

plloutA

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
Power Management and Clocks

Page 319 of 655

The clock switching logic has a counter that keeps track of when time0 occurs in each clock speed, as well as
when the three clocks all have a common time0. Only when all three clocks are about to reach time0 does the
speed selection multiplexer switch to the new clock selection. The speed select is flopped once then a
second time with an inverted clock. This second latch is used to make sure the multiplexer speed select
changes when all three clocks are low just before the rising edge of time0. By switching the multiplexer during
the clock low time, any clock glitches or spikes that might be generated by the switch are avoided.

11.5 PI Frequency Change Operation

Whenever an application does not require the maximum performance from the processor(s), power
consumption can be reduced by decreasing the processor clock frequency. When the processor frequency is
reduced, CPC945’s frequency is reduced by the same percentage. To let CPC945 know a frequency change
is desired, the processor can write a configuration value to the processor’s Power Control Register (PCR).
The write to the PCR generates a new transaction type (0x05) that CPC945 consumes to begin an PI
frequency change. Imbedded in the new transaction is the new frequency (full, half, quarter, or no change)
and voltage to be switched to as well as the processor’s new STATLAT, SNOOPLAT, SNOOPACC. In addi-
tion, the transaction is reflected by CPC945 to any other processors to make sure that all processors and
CPC945 are operating with the same timing and voltage levels.

In detail, the actual frequency change operation consists of a frequency change command being sent from
the processor to the CPC945. The parameters sent with this command are examined in the apiCommandBuf
logic to determine whether it should be forwarded to the apiSnpPipe block. Once the apiSnpPipe block
receives the frequency change command, it sets the frequency change status to in-progress. apiSnpPipe
block also notifies the PMR block of the frequency change command. At this time PMR asserts its QAck
signals to wake up any napping CPUs. Once all the CPU’s are awake and ready to see the reflected

Figure 11-13. Power Tuning Timing

api_clk

api_clk/2

api_clk/4

APsync

switch_wdw

time0

time0_2

time0_4

1 2 3 4 5 6 70 1 2 3 4 5 6 70

Clock switch points

full->half

half->full

User Manual

CPC945 Bridge and Memory Controller Preliminary

Power Management and Clocks
Page 320 of 655 February 1, 2008

command on the PI bus, the PMR block acknowledges the frequency change command. The command is
ready to be reflected on the Processor Interconnect bus. After the command is reflected, PMR monitors the
QReqs from the CPUs, once all CPUs have been quiesced as determined by the QReqs signals going inac-
tive, PMR instructs the PI block to update the bus parameters to the new values from the appropriate
BUSCONF register pair. The PMR then changes the PI clock frequency. Meanwhile CPUs are also changing
their clock frequencies. Once the CPUs are done with the frequency change operation, they assert their
respective QReq signals. In response, the PMR asserts the QAcks and bus operations resume on the
Processor Interconnect bus. When all QReqs and QAcks become active again, PMR notifies the PI logic to
update the frequency change status from in-progress to idle.

Figure 11-14. Timing Diagram for Frequency Change Operation in PI

apiFeqSel[0:1]

apiFeqChgReq

apiFeqChgAck

apiFeqChgRefDone

pmrUpdtBusPrm

CPU QReqs

CPC945 QAcks

apiFeqChgReqDone

CPC945 and
processors
change
frequencies
in this window

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
Power Management and Clocks

Page 321 of 655

Figure 11-15. Block Diagram for a Frequency Change Operation in PI

If incoming Command
Type is 6x’5 &
Address[47] ==1 &
~((Address[45:46] == 2b11) |
(Address[45:46] == CurrentFreqSel)
Then
Pass the command to apiSnpPipe along
the regular command path
Otherwise
Squash the command

apiCommandBuf

PI decoded ADO packet

PAAMWIN[0:4]

SNOOPWIN[0:3]

SNOOPLAT[0:5]

STATLAT[0:5]

CurrentFreqSel[0:1]

StartFreqChgReq

Values from
BUSCONF0
and
BUSCONF1 registers

BUSCONF0_FF
BUSCONF1_FF
BUSCONF0_HF
BUSCONF1_HF
BUSCONF0_QF
BUSCONF1_QF

BUSCONF0
BUSCONF1

If (StartFreqChgReq)
 Set Bit 31 of ApiExp Register
else if (apiFreqChgReqDone)
 Reset Bit 31 of ApiExp Register

CurrentFreqSel[0:1]:
Reset value is 00 (Full Frequency)
When PmrUpdtBusPrm == 1,
then the flops are loaded with
NewFreqSel sent from apiSnpPipe

If (PmrUpdtBusPrm == 1)
 case(NewFreqSel)
 00: BUSCONF <= BUSCONF_FF
 01: BUSCONF <= BUSCONF_HF
 10: BUSCONF <= BUSCONF_QF
 11; BUSCONF <= X
(The BUSCONF are BUSCONF_0
 and BUSCONF_1 and only the
 PAAMWIN, SNOOPWIN,
 STATLAT, and SNOOPLAT fields
 get loaded.)

apiMisc

Command

If CmdType is 5, assert
apiFreqChgReq output.

 Then when apiFreqChgAck is 1,
 reflect the frequency change command
 as soon as possible

Extract the (api,New)FreqSel[0:1] field

 When the Frequency Change
 command is reflected, assert the
 apiFreqChgrefDone output

ChgRefDone

Sel[0:1] NewFreqSel[0:1]

apiFreqChgReqDone

PmrUpdtBusPrm

apiSnpPipe

and
Handshake

Interface with PMR

apiFreq-
ChgReq

ChgAck

apiFreq-

apiFreq-

apiFreq-

User Manual

CPC945 Bridge and Memory Controller Preliminary

Power Management and Clocks
Page 322 of 655 February 1, 2008

11.6 PLL Programming

11.6.1 PLL1 and PLL2

PLL1 and PLL2 both use the same type of PLL macro. These PLLs are used to generate the PI and DDR2
clocks respectively. Figure 11-16 illustrates the major blocks within the PI/DDR2 PLL.

For the CPC945 application the feedback clock (FBCLK) is connected to the PLLOUTB pin of the PLL. This
closes the PLL feedback loop and defines how the PLL dividers should be programmed for a given reference
clock and target PLL output.

To determine the VCO frequency, we use the following equation:
VCO frequency = REFCLK x Feedback_Divider X Forward_DividerB

The resulting VCO frequency should be between 600 MHz and 1334 MHz. With the wide range of program-
mability offered on the outputs, several integer and non-integer relationships can be realized between the
PLLOUTA and PLLOUTB outputs by controlling the A and B dividers. The frequency relationship is given as:
The PLLOUTA and PLLOUTB outputs are always synchronized to the rising edge (that is, the PLLOUTA
rising edge coincides with the PLLOUTB rising edge at the start of the cycle). The PLLOUTC output is not
used or connected in the CPC945.

Figure 11-16. PLL1/ PLL2 Internal Block Diagram

Buffer
REFCLK

Divider-A

Phase
Detector

BUFREFCLK

Charge
Pump

ERR
OUT

Loop
Filters

VCO

Feedback
Divider

1-32

fVCO

1-8,10,12,
14,16

Divider-B
1-8

Divider-C
2,4,6,8,

PLLOUTA

PLLOUTC

PLLOUTB

FBCLK

VCO frequency = REFCLK x Feedback_Divider x Forward_DividerB

 =

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
Power Management and Clocks

Page 323 of 655

The PLL tuning bits, TUNE[9:0], are used to modify the PLL loop parameters by modifying the internal gains
of the charge pumps. This external control allows the PLL to be stable over a wide range of frequencies and
multiplication factors. The following tables describes the proper settings for the PLL tune bits:

The key constraints in choosing values for the dividers are:

• Divider ratios A must be 1 - 8, 10, 12, 14, or 16

• Divider ratios B must be 1 - 8

• Divider ratio C must be 2, 4, 6, or 8

• Feedback ratio M must be 1 - 32

• Tune bits set according to tables above

• REFCLK must be 33 - 500 MHz

• VCO frequency fVCO must be 600 - 1334 MHz

See Section 12.5.6 PLL1 Control Register on page 346 and Section 12.5.7 PLL2 Control Register on
page 350 for programming details.

Table 11-2. PLL1 and PLL2 Tune Bit Settings, 1 of 2.

M = Div-A * Fbk
Tune bits

9 8 7 6 5 4 3 2 1 0

2 ≤ M ≤ 3 0 1 - 0 1 1 0 0 1 0

3 < M ≤ 6 0 1 - 0 1 1 0 1 0 0

6 < M ≤ 10 0 1 - 0 1 1 0 1 1 0

10 < M ≤ 22 1 0 - 0 1 1 1 0 0 0

22 < M ≤ 40 1 1 - 0 1 1 1 1 0 0

Table 11-3. PLL1 and PLL2 Tune Bit Settings, 2 of 2.

VCO Frequency
Tune bits

9 8 7 6 5 4 3 2 1 0

600 MHz < VCO Frequency ≤ 900 MHz - - 0 - - - - - - -

900 MHz < VCO Frequency ≤ 1334 MHz - - 1 - - - - - - -

User Manual

CPC945 Bridge and Memory Controller Preliminary

Power Management and Clocks
Page 324 of 655 February 1, 2008

11.6.2 PLL3

PLL3 is used to generate the clocks for the PCI Express HSSL logic. The PLL used is the LC-Tank PCE
which is designed specifically for use with the PCI Express HSSL macro. The following diagram illustrates the
major blocks within the LC-Tank PCE PLL.

See Section 12.5.8 PLL3 Control Register on page 352 for programming details.

Figure 11-17. PLL 3 Internal Block Diagram

Differential
Reciever

Phase
Detector

Charge
Pump

LC Tank VCO

Divider
N1(2-10)

Divider
M(2-64)

REFCLKP

REFCLKN

Diff Drvr
&

Bypass

PLLOUTSE

PLLOUTC
PLLOUTT

fVCO/N1fVCO/(N1*M)

fVCO

Err
Out

Ctl
Voltage

BUFREFCLK

Lock detect PLLLOCK

Divider
N2(2-10)

fVCO/N1 fVCO/N2

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
Power Management and Clocks

Page 325 of 655

11.6.3 PLL4

PLL4 is used to generate the clocks for the HyperTransport logic. The PLL used is the LC-Tank HTT which is
designed specifically for use with the HyperTransport. The following diagram illustrates the major blocks
within the LC-Tank HTT PLL.

The PLL LC Tank core is programmed by means of the selection of the M and N multipliers. The key equation
describing the output frequency at PLLOUTA is:

PLLOUTA = REFCLK * M

where REFCLK is the frequency of the input signal and M is the multiplier ratio (selected via the M[0:5] input
pins). Note that the frequency at the differential outputs PLLOUTT and PLLOUTC is equal to the frequency at
PLLOUTA.

The VCO frequency fVCO is defined as:
fVCO = REFCLK * M * N

Figure 11-18. PLL 4 Internal Block Diagram

Differential
Reciever

Phase
Detector

Charge
Pump

LC Tank
VCO

Divider
N(2-8)

Divider
M(2-64)

REFCLKP

REFCLKN

Diff Drvr
&

Bypass

PLLOUTA
PLLOUTB
PLLOUTC
PLLOUTT

fVCO/NfVCO/(N*M)

fVCO

Err
Out Ctl

Voltage

BUFREFCLK

Lock detect
PLLLOCK

User Manual

CPC945 Bridge and Memory Controller Preliminary

Power Management and Clocks
Page 326 of 655 February 1, 2008

The key constraints in choosing values for the dividers are:

• The range of divider ratio N must be 2 - 8.

• The range of multiplier ratio M must be 2 - 64.

• The range of REFCLK must be 25 - 320 MHz.

• The range of the VCO frequency fVCO must be 3 - 3.6 GHz

The PLLOUTB output frequency is programmed by choosing the appropriate value for the P divider. The
frequency at this output is the PLLOUTA frequency divided by the value of the P divider.

See Section 12.5.9 PLL4 Control Register on page 355 for programming details.

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
Programmer’s Interface

Page 327 of 655

12. Programmer’s Interface

12.1 Memory Map

The CPC945 core logic uses the 36-bit extended memory map shown in Table 12-1. If a name includes the
word “alias” then any access to the aliased memory space will access the same offset into the memory space
being aliased. For example, the “HT1 16 MB Alias” memory space is a window into the address spaces with
the names “HyperTransport1” and “HT1 I/O Space”. In addition, any unused memory space (for example HT2
and HT3) should not be accessed as this can produce undefined results that might cause harmful effects to
the hardware.

Table 12-1. 36-bit Extended Memory Map.

Start Address End Address Name Comments Page

0x000000000 0x07FFFFFFF Main Memory 2 GB of main memory, linearly accessed.

0x080000000 0x0EFFFFFFF
PCI Bus
Memory Space

2 GB - 256 MBytes of PCI Express/HyperTransport (HT)
memory space for I/O devices.

0x0F0000000 0x0F1FFFFFF PCI Express

PCI Express in CPC945 contains the video expansion
slot.
0x0F0000000-0x0F07FFFFF: PCIe I/O Space
0x0F0800000-0x0F0FFFFFF: PCIe Config. Space
0x0F1000000-0x0F1FFFFFF: PCIe Direct Access to first
256 bytes of Configuration Register Space

505

0x0F2000000 0x0F4FFFFFF HyperTransport1
HyperTransport bridge 1 is used to connect to I/O devices
outside of CPC945. There are no other bridges in
CPC945.

614

0x0F5000000 0x0F7FFFFFF Reserved.

0x0F8000000 0x0F8FFFFFF CPC945 Control Reg-
isters

CPC945 Control Registers are located here. See
Table 12-2. 332

0x0F9000000 0x0F9FFFFFF Undefined

0x0FA000000 0x0FEFFFFFF Undefined

0x0FF000000 0x0FFFFFFFF ROM Space 16 MB of executable ROM space. The reset vector is at
0xFFF00100.

0x100000000 0xFFFFFFFFF Main Memory 60 GB of main memory, linearly addressed.

User Manual

CPC945 Bridge and Memory Controller Preliminary

Programmer’s Interface
Page 328 of 655 February 1, 2008

CPC945 powers up with fourteen hard-decoded spaces:

1. 0x000000000 to 0x07FFFFFFF: 2 GB Memory Space

2. 0x0F08XXXXX: PCIe Config Address Register

3. 0x0F0CXXXXX: PCIe Config Data Register

4. 0x0F2XXXXXX: HT1 Configuration Command Type 0

5. 0x0F3XXXXXX: HT1 Configuration Command Type 1

6. 0x0F4000000 to 0x0F43FFFFF: HT1 I/O Space

7. 0x0F4400000 to 0x0F47FFFFF: HT1 EOI Space

8. 0x0F4800000 to 0x0F4FFFFFF: HT1 Reserved Space

9. 0x0F8000000 to 0x0F8FFFFFF: CPC945 Control Space

10. 0x0F9000000 to 0x0F9FFFFFF: Undefined

11. 0x0FC400000 to 0x0FC7FFFFF: HT1 I/O Access Space

12. 0x0FE400000 to 0x0FE7FFFFF: HT1 EOI Space

13. 0x0FF000000 to 0x0FFFFFFFF: Executable ROM Space

14. 0x100000000 to 0xFFFFFFFFF: 60 GB Memory Space

Note: The entire HyperTransport I/O and EOI Space is located at 0x0FC000000 to 0x0FCFFFFFF and
0x0FE000000 to 0x0FEFFFFFF respectively. Only the HyperTransport 1 Bridge is used in CPC945, so
only the space for that bridge is decoded.

The ROM space requires special setup when the processor is brought out of reset. This is because the
PPC970xx fetches its restart vector from the address 0x0000000100, which must be in the ROM space. As a
part of the Service Processor controlling the PPC970xx, the ROM accesses will be mapped using the Hyper-
visor registers. This will convert the access from 0x000000100 to 0x0FFF00100.

12.2 Memory-Like Space

Any size operand up to 32 bytes can be used to access memory-like space. Memory-like space is defined as
DRAM and ROM. Only DRAM and ROM space are kept coherent by the system hardware (CPC945 and the
microprocessor). It is the responsibility of the operating system software to maintain the cache coherence of
expansion slot spaces.

Although they are mentioned in this section, the CPC945 Control Registers do not act like memory in that
they do not accept burst transactions and do not accept partial word writes. They are accessible in the
memory map by any device in the system.

12.2.1 DRAM

The 36-bit Extended address map allocates 62 GBytes of space for DRAM memory. This space is responded
to on the Processor Interconnect (PI) by the CPC945. Memory transactions that appear on PCI interfaces
with addresses in this space generate snoop requests on PI (to check for coherency) after being remapped
using the DMA Relocation Table (DART) prior to being serviced by the memory controller in CPC945. Up to
62 GBytes of memory can be installed. DRAM memory banks are stitched contiguously.

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
Programmer’s Interface

Page 329 of 655

12.2.2 Noncoherent DRAM Access

Below is the code used in most drivers after writing data to noncoherent memory spaces and immediately
before actually submitting an I/O request to hardware:
{
 SInt32 s32End = (word_count << 2) - 32;

 for(s32Temp = 0; s32Temp < s32End; s32Temp += 32)
 __dcbst(virtual_offset, s32Temp);

 __sync();
 __isync();
 __dcbf(virtual_offset, s32Temp);
 __sync();
 __isync();
 glkRead32(virtual_offset, s32Temp);
 __isync();
}

This code prevents any code reordering problems that could be introduced by the PPC970xx’s ability to
reorder instructions. The Syncs ensure the last write in program order is the last write on the bus. The core
logic operation ensures the read will not complete until the write is complete. Even if writes are reordered,
execution will not continue until all writes have gone to memory.

12.2.3 ROM

The CPC945 36-bit Extended Address Map allocates 16 MB of space for ROM. This space is responded to
on PI by the CPC945. Memory transactions that appear on the PCI interfaces with addresses in this space
are serviced by the CPC945. The 1Mx8 ROM is aliased 16 times within this 16 MB address space. At Reset,
the processor accesses ROM starting at address 0x0FFF00100.

12.2.4 Control Registers

The CPC945 36-bit Extended Address Map allocates 16 MB of space for System Control. This space is
responded to on PI by the CPC945. Memory transactions that appear on the PCI interfaces with addresses in
this space are serviced by the CPC945. The accesses do not need to be remapped via the DART, as they
reside within the first 2 GB of addressable memory. The TEA signal will be asserted in response to any burst
accesses to this address space. CPC945 does not support partial writes of any internal registers. If the write
data does not cover all bits in the register, the results will be indeterminate. This means that a register can be
written with a byte operand if all defined bits are covered by that byte. If a register contains reserved fields,
those fields must be included in the size of the register and should always be written with zeros. If a register
contains undefined fields, those fields can be neglected when determining the width of the register.

12.2.5 PCI Express Configuration Space

The PCI Express configuration space is the memory range from 0xF0BFF000 to 0xF0FFFFFF, which is
populated by two types of registers: PCIe configuration registers in the memory range from 0xF0BFF000 to
0xF0BFFFFF, and XBus configuration registers in the memory range 0xF0C00000 to 0xF0FFFFFF. The PCIe
configuration registers are described in Section 12.11.1 on page 505 and the XBus PCIe configuration regis-
ters are described in Section 12.11.2 on page 551.

User Manual

CPC945 Bridge and Memory Controller Preliminary

Programmer’s Interface
Page 330 of 655 February 1, 2008

Figure 12-1. PCIe XBus Configuration Space

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Legacy Interrupt Control 0x0F0

Link Integrity Interrupt Control 0x0F4
Link Down Interrupt Control 0x0F8

PCI Express 0 Address Mask 0x0FC
Memory Read Completion Time Out 0xF00

I/O Completion Time Out 0xF04
Configuration Completion Time Out 0xF08

Local Competion Time Out 0xF0C
Maximum Advertised Posted Credits 0xF10

Maximum Advertised Nonposted Credits 0xF14
Number of Reserved Posted Credits 0xF18

Number of Reserved Nonposted Credits 0xF1C
Maximum Available Tags 0xF20

Completion Arbiter Priority 0xF24
Version Number 0xF28

L1 Power Mode Request Response 0xF2C
Interrupt Filter (unused) 0xF30

Last NAK’d Write Address 0xF34
Transmission Error Count 0xF38
Dispatch Read Mode 0xF3C

No Snoop Request Mode 0xF40
Direct Access Mode 0xF44
L23 Message Time Out 0xF48

Invalid Transaction 0xF4C
Configuration 4 or 8 0xF50

Unlock Protected 0xF54
Coherent Memory Write Tag Delay (unused) 0xF58
Block Transactions During Configuration Reads 0xF5C

CRC Error Count 0xF60
Unsupported Request or Completer Abort 0xF64

Enable TEA on Unsupported Request Completion 0xF68
Enable TEA on Completer Abort Completion 0xF6C
Enable TEA on Configuration Retry Time Out 0xF70

Enable TEA on Completion Time Out 0xF74
Set PCIE04 Received Completer Abort on Completer Abort 0xF78

Read/Write Unused Protected Read Only

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
Programmer’s Interface

Page 331 of 655

12.3 Control Register Memory Map

CPC945 contains a number of control registers to report board and chip configurations. All the control regis-
ters are 1 - 4 bytes wide and are accessed as 4-byte quantities. The registers are grouped into logical collec-
tions and are provided with their own offsets within the 16 MByte space at 0xF8xxxxxx. Most of these
registers are aligned to 16-byte boundaries, but it is possible for registers to be 4-byte aligned and packed.
The CPC945 register map is shown in Table 12-2. 0xF8xxxxxx is a 32 bit address space, CPC945 uses 36-
bit addressing, and the PPC970xx uses 64-bit addressing. To keep the explanation simple, all address bits
specified for a CPC945 control register are for 32-bit addressing. If 64-bit addressing is wanted, add 32 to
each bit location. This does not affect the bit locations within the registers, just the address.

Table 12-2. Control Register Memory Map.

Address Register Group Page

0xF8000000-
0xF80007FF

CPC945 Control Registers 332

0xF8000800-
0xF8000FFF

CPC945 Clocks and Power Management Registers 338

0xF8001000-
0xF8001FFF

DRAM I2C Master Controller Registers 398

0xF8002000-
0xF8002FFF

Memory Control Registers 447

0xF8004000-
0xF8004FFF

The HyperTransport block converts incoming posted writes associated with an interrupt request to a
write in this space. 283

0xF8005000-
0xF8005FFF

Reserved for PCIe Message Signaled Interrupts (MSI), which are converted into a write to
0xF8005000

0xF8006000-
0xF800FFFF

Not used - reserved

0xF8010000-
0xF801FFFF

Not used - reserved

0xF8020000-
0xF8021FFF

Not used - reserved

0xF8022000-
0xF8022FFF

PI Physical Interface Registers 0 370

0xF8023000-
0xF8023FFF

PI Physical Interface Registers 1 370

0xF8024000-
0xF8024FFF

Not used - reserved

0xF8028000-
0xF802DFFF

Not used - reserved

0xF802E000-
0xF802EFFF

Reserved

0xF802F000-
0xF802FFFF

Not used - reserved

0xF8030000-
0xF803FFFF

Advanced Processor Interconnect Registers 408

0xF8040000-
0xF806FFFF

MPIC Registers 359

User Manual

CPC945 Bridge and Memory Controller Preliminary

Programmer’s Interface
Page 332 of 655 February 1, 2008

12.4 CPC945 Control Registers

0xF8070000-
0xF807FFFF

HyperTransport Registers 614

0xF8080000-
0xF808FFFF

PCI Express Registers 505

0xF8090000-
0xF809FFFF

PCI Express Configuration Registers 505

0xF80A0000-
0xF8FFFFFF

Not used - reserved

Table 12-3. CPC945 Control Register Addresses.

Address Register Name Description Page

0xF8000000-
0xF8000FFF

See below CPC945 Control Registers

0xF8000000 UniRevision CPC945 Revision Number Register 333

0xF8000010 Undefined

0xF8000020 No Longer Implemented (Reads as 0x00000000)

0xF8000030 No Longer Implemented (Reads as 0x00000000)

0xF8000040 No Longer Implemented (Reads as 0x00000000)

0xF8000050 WhoAmI Who am I Bus Master ID register 334

0xF8000060 MPSemaphore Processor Semaphore Register 335

0xF8000070 HWInitState Hardware Initialization State Register 336

0xF8000080 No Longer Implemented (Reads as 0x00000000)

0xF8000090 No Longer Implemented (Reads as 0x00000000)

0xF80000A0 No Longer Implemented (Reads as 0x00000000)

0xF80000B0 No Longer Implemented (Reads as 0x00000000)

0xF80000C0 No Longer Implemented (Reads as 0x00000000)

0xF80000D0 No Longer Implemented (Reads as 0x00000000)

0xF80000E0 CPC945 Toggle Register 337

Table 12-2. Control Register Memory Map.

Address Register Group Page

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
Programmer’s Interface

Page 333 of 655

12.4.1 CPC945 Revision Register

This register contains revision information specific to the given CPC945 implementation. The CPC945 will
contain 0x30 in this register.

Reset Value Chip Specific

Address xF800 0000

Access Type Read Only

Reserved UNType RevNum

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits Field Name Description Access Reset

0:23 Reserved Reserved. R 0x00 0000

24:27 UNType R 0x4

28:31 RevNum
This field specifies the revision level for the CPC945.
0x2: CPC945 DD 1.2
0x4: CPC945 DD 2.0

R Chip Specific

User Manual

CPC945 Bridge and Memory Controller Preliminary

Programmer’s Interface
Page 334 of 655 February 1, 2008

12.4.2 Who Am I Bus Master ID Register

The WhoAmI register returns a value that indicates which bus master has accessed the register. This allows
a processor to determine to which BR/BG pair it is connected.

Reset Value x0000 000n

Address xF800 0050

Access Type Read Only

Undefined Reserved WhoAmI

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits Field Name Description Access Reset

0:23 Undefined R 0x000000

24:28 Reserved R 0b000000

29:31 WhoAmI

This field specifies the accessing master as follows:
WhoAmI[0:2] = 0b000: External Master 0
WhoAmI[0:2] = 0b001: External Master 1
WhoAmI[0:2] = 0b010: External Master 2
WhoAmI[0:2] = 0b011: External Master 3
WhoAmI[0:2] = 0b100: Internal Master 0 (PCI0)
WhoAmI[0:2] = 0b101: Internal Master 1 (HT1)
WhoAmI[0:2] = 0b110: N/A
WhoAmI[0:2] = 0b111: N/A

R N/A

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
Programmer’s Interface

Page 335 of 655

12.4.3 Processor Semaphore Register

This register is used to identify the primary processor. The first processor to read this register is the primary
processor.

Reset Value x0000 0001

Address xF800 0060

Access Type Read Only

Undefined Reserved S
em

ap
ho

re

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits Field Name Description Access Reset

0:23 Undefined This field is all 0’s R x00 0000

24:30 Reserved This field is all 0’s R x00

31 Semaphore

This bit is set to 1 whenever Reset_ or SUSPEND_REQ_L are
asserted. After Reset_ and/or SUSPEND_REQ_L are deasserted, it
will return a 1 on the first read access, and a 0 on any future access
until Reset_ or SUSPEND_REQ_L are again asserted.

R 1

User Manual

CPC945 Bridge and Memory Controller Preliminary

Programmer’s Interface
Page 336 of 655 February 1, 2008

12.4.4 Hardware Initialization State Register

This scratch pad register can be set to any desired value.

Reset Value x0000 0000

Address xF800 0070

Access Type Read and Write

HWInitState

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits Field Name Description Access Reset

0:31 HWInitState

This register is initialized to 0x00000000 when
NORTH_BRIDGE_RESET_L is asserted. After
NORTH_BRIDGE_RESET_L is deasserted, it can be set to any
value that you want and that value will be maintained as long as
CPC945 remains powered.

R/W x0000 0000

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
Programmer’s Interface

Page 337 of 655

12.4.5 CPC945 Toggle Register

This register contains bits to toggle (start/stop) actions within the IBM CPC945 Bridge and Memory
Controller. Toggle bits should be reset after use.

Reset Value x0000 0000

Address xF800 00E0

Access Type Read Only, Read/Write

Undefined M
P

IC
E

na
bl

eO
ut

pu
ts

M
P

IC
R

es
et

R
es

er
ve

d

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits Field Name Description Access Reset

0:28 Undefined This field is all zeros. R x0000 0000

29 MPICEnableOutputs

This bit enables the MPIC register block to notify processors of
pending interrupts.
When cleared, this bit blocks all interrupt outputs from exiting
CPC945. It is cleared by the assertion of
NORTH_BRIDGE_RESET_L and SUSPEND_REQ_L. It is the
responsibility of software to clear the bit. This bit will prevent all
CPUs from receiving interrupts after reset and after exiting system
sleep. Software can clear this bit at the same time it sets the Sleep
bit to guarantee incoming interrupts cease. Software will set this bit
after reset and exiting sleep once it is prepared to handle incoming
interrupts.
0 Mask Interrupts
1 Enable CPU interrupts

R/W 0

30 MPICReset

This bit holds the MPIC in reset and does not clear the pending
interrupts. To get MPIC out of reset, this bit must be set to 0b1.
0 Hold MPIC in reset
1 Enable MPIC to run

R/W 0

31 Reserved Reserved. – 0

User Manual

CPC945 Bridge and Memory Controller Preliminary

Programmer’s Interface
Page 338 of 655 February 1, 2008

Programmer’s Interface

12.5 Clocks and Power Management Registers

In order to optimize the electrical power consumption and thermal performance of computer systems built
with CPC945, there is specific power management logic in CPC945 which switches off clocks to various parts
of the chip when those parts are not needed. There is also logic to control the speeds at which different inter-
faces operate, allowing additional power savings and configuration control. In addition to saving power in the
CPC945, these modes save significant system power by managing and optimizing the power used by the
PPC970xx processor. The registers which control this behavior are documented in this section.

12.5.1 Clock Control Register

The Clock Control Register provides software access for managing power by turning off unused clocks and
PLLs. All clocks and PLLs are stopped and started cleanly (no spikes or short cycles), so logic does not have
to be reset after stopping and restarting its clock.

Table 12-4. PMR Address Space.

Address Reg Description Page

0xF8000800 ClockControl Clock Control Register 338

0xF8000810 PwrSystem System Power Management Register 341

0xF8000820 PwrCPU CPU Power Management Register 342

0xF8000830 PwrCPUQuiesce Power Management System Quiesce Parameters 345

0xF8000840 PwrHT HyperTransport Power Managment Register 345

0xF8000850 PLL1Control PLL1 Control Register (PI) 346

0xF8000860 PLL2Control PLL2 Control Register (DDR2) 350

0xF8000870 PLL3Control PLL3 Control Register (PCI Express) 352

0xF8000880 PLL4Control PLL4 Control Register (HT) 355

0xF8000890 PLLVis PLL/Clock Visibility Control 358

Reset Value 0x000803BC 00000000

Address 0xF8000800

Access Type Read/Write, Read Only

R
es

er
ve

d

PLL Test PL
L

R
es

et

DDR clock Reserved S3 PL PE FP S4 HS HC S1 AS AD

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Undefined

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
Programmer’s Interface

Page 339 of 655

Bits Field Name Description Access Reset

0:1 Reserved This field reads all 0’s R/W 0x00

2:9 PLL Test This field reads all 0’s R 0x00

10 PLL Reset For Manufacturing Test use only. Must be left at ’0’ for normal (nonmanufacturing
test) operation. R/W 0b0

11:13 DDR clock

The four bits map to a core speed as documented in the DDR2 clock speed table
(Table 12-6 on page 349). Writing a new value to this register will load the PLL2
Control Register with the value appropriate for the desired core speed. The update
of the PLL2 Control Register will also clear the PLLLoaded bit in that register. In
order to change the PLL speed, software is required to set either the ForcePLLRe-
set or ForcePLLLoad bit in the PLL2 Control Register before the change is forced
into the PLL, changing the core speed. When the PLL speed has been changed,
the PLLLoaded bit in PLL2 Control will be set by the PLL2 Power Manager.

R/W 0b010

14:21 Reserved This field will read all 0’s. R 0x00

22 S3

EnablePLL3Shutdown- Shutdown used to enable the shutdown of PLL3 whenever
all associated output clocks are stopped. After shutdown, PLL3 requires 100us to
relock. PLL3 is automatically shutdown in Sleep regardless of the setting of this bit.
1 Shutdown PLL3 whenever the clocks to PCIe are stopped
0 Shutdown PLL3 only in sleep

R/W 0b1

23 PL PciELogicStopEnable R/W 0b1

24 PE

PciEClkEnable used to enable and disable clocks on the PCI Express bus. When
enabled, PCI Express clocks are always running. When disabled The PMR logic
stops the PCI Express clocks as soon as the PCIe logic indicates it has reached
L23State.

R/W 0b1

25 FP

PciE_ForcedL23LinkState indicates that during the process of reaching L2/3
Ready (that is, PciE_InL23LinkState active), the Endpoint did not complete the pro-
cess by sending a PME_To_Ack message and therefore the shutdown process
timed out. In this event, the power can be removed immediately as it is assumed
something has gone drastically wrong with the Endpoint (that is, the state is irrecov-
erable).
1 Forced to L23 State.
0 Normal L23 State.

R n/a

26 S4

EnablePLL4Shutdown - Shutdown Used to enable the shutdown of PLL4 whenever
all associate output clocks are stopped. After shutdown, PLL4 requires 100 ms to
relock. PLL4 is automatically shut down in Sleep, regardless of the setting of this
bit.
1 Shut down PLL4 whenever the clocks to HyperTransport are stopped by

software (see Bit 27, below)
0 Shut down PLL4 only in Sleep

R/W 0b1

User Manual

CPC945 Bridge and Memory Controller Preliminary

Programmer’s Interface
Page 340 of 655 February 1, 2008

27 HS

HTLogicStopEnable - Used to enable and disable stopping the bus rate and bit rate
clocks to the internal HyperTransport bridge logic when the LDTSTOP_L sequence
to the external HyperTransport devices should have resulted in the external
devices stopping their internal use of the HyperTransport clock. This bit has no
effect unless HT_LDTSTOP_L is asserted either by an external device or by setting
HTClockControl to 0. If an external device requires use of the HyperTransport bus
while HT_LDTSTOP_L is asserted, it must assert HT_LDTREQ_L in order to cause
a deassertion of HT_LDTSTOP_L. If the CPU or PCI0 attempt to access Hyper-
Transport while HT_LDTSTOP_L is asserted, then CPC945 will assert an internal
LDTREQ_L signal, which will cause the clocks to restart. The clock to HyperTrans-
port logic is stopped automatically when the system goes to sleep, regardless of
the setting of this bit.
1 Stop the bus rate and bit rate clocks to HyperTransport whenever the

LDTSTOP_L sequence should have caused all external HyperTransport
devices to stop their internal use of the HyperTransport clock.

0 Keep the internal HyperTransport clock running, even if the LDTSTOP_L
sequence should have caused all external HyperTransport devices to stop
their internal use of the HyperTransport clock

R/W 0b1

28 HC

HTClkEnable - Used to enable and disable clocks on the HyperTransport bus.
When enabled, HyperTransport clocks are always running. When disabled,
CPC945 generates the HyperTransport protocol for clock stopping, signaling
LDTSTOP_L to all other HyperTransport devices whenever the bus is idle. Other
devices can use HT_LDTREQ_L to signal to CPC945 that they need the Hyper-
Transport bus enabled, which will override HTClkEnable. CPC945 does not control
the external HyperTransport clock but uses the handshake to tell the external
HyperTransport devices when to start and stop their internal uses of the Hyper-
Transport clock. The LDTSTOP_L sequence is used automatically when the sys-
tem goes to sleep, regardless of the setting of this bit.
1 Keep the HyperTransport clock running in all external HyperTransport

devices whenever the system is awake. When this bit is a 1, software can
always access any external HyperTransport device, and the clock to
CPC945’s internal HyperTransport logic is always on (except in sleep).

R/W 0b1

29 S1

EnablePLL1 Shutdown - Used to enable the shutdown of PLL1 whenever all of its
associated output clocks are stopped. After a shutdown, PLL1 requires 100 ms to
relock. PLL1 is automatically shut down in Sleep, regardless of the setting of this
bit.
1 Shut down PLL1 whenever the clocks to the PI interface is stopped by

software.
0 Shut down PLL1 only in Sleep.

R/W 0b1

30 AS

APILogicStopEnable - Used to enable and disable stopping the bus rate and bit
rate clocks to the internal PI interface logic when the QReq/ QAck sequence has
quiesced all CPUs. If any CPU deasserts its QReq signal, or any other device (PCI
Express, HyperTransport) needs to start a snooped I/O cycle, then the clocks will
restart automatically. The clock to the PI logic is stopped automatically when the
system goes to Sleep, regardless of the setting of this bit.
1 Stop the bus rate and bit rate clocks to PI logic whenever the QReq/QAck

sequence has completed and all CPUs attached to this bus are quiesced.
0 Keep the internal PI clocks running, even if the QReq/ QAck sequence

indicates that all CPUs are quiesced.

R/W 0b0

31 AD

APIDebugClkEnable - Used to enable and disable the clock to the PI debug logic.
The clock to PI debug logic is stopped automatically when the system goes to
Sleep, regardless of the setting of this bit.
1 Keep the clocks to the PI debug logic running.
0 Stop all clocks to the PI debug logic.

R/W 0b0

32:63 Undefined This field will read all 0’s. R 0x00000
0

Bits Field Name Description Access Reset

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
Programmer’s Interface

Page 341 of 655

12.5.2 System Power Management Register

The system power management register contains information used by CPC945 to determine whether it
should go to the system sleep state when the power manager deasserts the SUSPEND_REQ_L signal.

Reset Value 0x00000000 00000000

Address 0xF8000810

Access Type Read/Write, Read Only

Reserved su
sp

en
d_

re
q_

m
on

ito
r

S
le

ep

R
es

er
ve

d

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Undefined

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Bits Field Name Description Access Reset

0:28 Reserved This field will read all 0’s. R 0x00000000

29 suspend_req_mon
itor

This bit is cleared when CPC945 receives a suspend_req request
from the PMU and can be used to monitor the occurrence of
suspend_req_l. The bit can be set or cleared by software and controls no
function.

R/W 0b0

30 Sleep

This field controls whether CPC945 will enter the Sleep power saving
state when the SUSPEND_REQ_L signal from the Power Manager is
asserted. This bit must be set by the processor but will be cleared by
CPC945 when the Power Manager deasserts the SUSPEND_REQ_L sig-
nal.

R/W 0b0

31 Reserved This field will read all 0’s. R 0b0

32:63 Undefined This field will read all 0’s. R 0x00000000

User Manual

CPC945 Bridge and Memory Controller Preliminary

Programmer’s Interface
Page 342 of 655 February 1, 2008

12.5.3 CPU Power Management Register

The CPU Power Management Register controls the per-CPU behavior for power management.

Reset Value 0x00000054 00000000

Address 0xF8000820

Access Type Read/Write, Read Only

Reserved PwrDwn Reserved Reserved Reserved PM_Sleep L E FCD PM

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
es

er
ve

d

Q
Ac

k0
 D

el
ay

R
es

er
ve

d

Q
Ac

k1
 D

el
ay

R
es

er
ve

d

Q
Ac

k2
 D

el
ay

R
es

er
ve

d

Q
Ac

k3
 D

el
ay

Undefined

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Bits Field Name Description Access Reset

0:3 Reserved This field will read all 0’s. R 0b0000

4:7 PwrDwn

Power Down Enable Bit for CPUs. This bit controls whether the CPU will assert
PM_SLEEP3 when the CPU is safely in the sleep state.
Bit [4] = Power Down Enable bit for CPU3
Bit [5] = Power Down Enable bit for CPU2
Bit [6] = Power Down Enable bit for CPU1
Bit [7] = Power Down Enable bit for CPU0

R/W 0b0000

8:11 Reserved This field will read all 0’s. R 0x0

12:15 Reserved This field will read 0b0000. R 0b0000

16:19 Reserved This field will read all 0’s. R 0x0

20:23 PM_Sleep

This bit provides software the ability to check if it is OK to power off CPUs. It
reflects the current state of the PM_SLEEP signal, which is asserted only when
CPU is in the “Sleeping” state and CPUPwrDnEnabled3 (bit 4) is set. This bit is
asserted at the same time as QAck is asserted. The assertion of QAck also
causes an internal CPC945 interrupt that will be latched and sent to the proces-
sor through MPIC.
Bit [20] = PMSLEEP for CPU3
Bit [21] = PMSLEEP for CPU2
Bit [22] = PMSLEEP for CPU1
Bit [23] = PMSLEEP for CPU0

R 0b0000

24 L

The APsync_lock bit is used to indicate that the CPC945 PMR has successfully
locked on to the externally supplied APsync, and all internal time0 or APsync
timing should now be synchronous with the external APsync pulse.
1 = APSync Locked

R 0b0

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
Programmer’s Interface

Page 343 of 655

25 E

This bit indicates where the APsync signal is generated. If set, the APsync is
generated externally to CPC945 and is an input to CPC945. The power man-
ager logic will sync up CPC945 clock controls and internal APsync pulses to the
external APsync input. If cleared, the power manager will internally generate the
APsync and the pin on CPC945 is used as an output to drive the APsync signal.

R/W 0b1

26:30 FCD

This field specifies that after a power tuning transaction has been reflected to all
CPUs, CPC945 will wait 1-64 PI bus clock cycles prior to looking for a QReq_l
signal assertion from the CPUs. This time allows the CPUs to deassert any cur-
rent QReq and then reassert the QReq signal for the power tuning transaction.
The number of bus cycles to delay is actually the field value plus 1. The default
value of 0b01010 will cause a delay of 10 + 1 or 11 PI bus cycles.

R/W 0b01010

31 PM

This bit indicates that the system will remove power to CPUs whose PM_Sleep
signal is asserted. If set, CPC945 will tristate all output buffers to any interface
that has all its associated PM_Sleep signals asserted. If set, CPC945 will also
disable all input buffers on a slept interface.

R/W 0b0

32 Reserved This field will read all 0’s. R 0b0

33:35 QAck0 Delay
QAck0 assertion delay - This bit field is used to add an
additional delay to the assertion of QAck0. In reality the entire waveform is
delayed, resulting in adding equal delay to the deassertion as well.

R/W 0b000

36 Reserved This field will read all 0’s R 0b0

37:39 QAck1 Delay
QAck1 assertion delay - This bit field is used to add an
additional delay to the assertion of QAck1.

R/W 0b000

40 Reserved This field will read all 0’s. R 0b0

41:43 QAck2 Delay
QAck2 assertion delay - This bit field is used to add an
additional delay to the assertion of QAck2.

R/W 0b000

44 Reserved This field will read all 0’s. R 0b0

45:47 QAck3 Delay
QAck3 assertion delay - This bit field is used to add an
additional delay to the assertion of QAck3.

R/W 0b000

48:63 Undefined This field will read all 0’s. R 0x00000000

Bits Field Name Description Access Reset

User Manual

CPC945 Bridge and Memory Controller Preliminary

Programmer’s Interface
Page 344 of 655 February 1, 2008

12.5.4 CPU Quiesce Timing Register

This register is intended to put all the System Quiesce parameters in one place. The delay counters count at
the bus clock rate, which is 1/2 the PI bit rate.

Reset Value 0xFFFFFFFF 00000000

Address 0xF8000830

Access Type Read/Write, Read Only

Qack Delay QackIdle Delay Reserved QackMin Low WaitNNC WakeNNC

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Undefined

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Bits Field Name Description Access Reset

0:7 Qack Delay

This field specifies that CPC945 will wait 16 to 256 PI bus clock cycles before
asserting QAck_ after the bus is idle and a processor’s QReq_ has been
asserted. This feature is used to keep processor bus masters from encounter-
ing a delay following the QAck_ de-assertion. The number of bus cycles to
delay is the field value plus 1. The value 0x0f, for example, encodes a QAck-
Delay of 16. Since 16 is the minimum delay allowed, values between 0x00 and
0x0e are restricted in this field.

R/W 0xFF

8:13 QackIdle Delay

This field specifies that CPC945 will wait 8 to 64 PI bus clock cycles after
QAck_ is deasserted before the bus allows any snoop transactions to be pre-
sented. The number of bus cycles to delay is the field value plus 1. The value
0b000111, for example, encodes a QAckIdleDelay of 8. Since 8 is the mini-
mum delay allowed, values between 0b000000 and 0b000110 are restricted in
this field.

R/W 0b111111

14:17 Reserved This field will read 0b1111 R 0b1111

18:23 QackMin Low

This field specifies that CPC945 will wait 8 to 64 PI bus clock cycles after
QAck_ is asserted before it considers the CPU to actually be in any Quiesced
state. This is to guarantee that the PPC970xx actually has the time it needs to
descend into its Nap mode before QAck is deasserted. Otherwise, bad things
happen. The number of bus cycles to delay is actually the field value plus 1.
The value 0b000111, for instance, encodes a QAckMinLowTime of 8. Since 8
is the minimum delay allowed, values between 0b000000 and 0b000110 are
restricted in this field.

R 0b111111

24:27 WaitNNC

This field specifies that CPC945 will wait 2 to 16 PI bus clock cycles after a
CPU state machine has told the system to not accept new bus commands
before it actually believes that the bus logic has heard it. If the system pre-
sents a snoop to the CPU within the WaitNoNewCmds window, the CPU still
accepts the snoop and restarts the process of finding an idle bus. This is to
guarantee that the bus is idled cleanly and there are no transactions in
progress when QAck is asserted. The number of bus cycles to delay is actu-
ally the field value plus 1. The value 0b0001, for instance, encodes a Wait-
NoNewCmds value of 2. Since 2 is the minimum delay allowed, the value of
0b0000 is restricted in this field.

R/W 0b1111

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
Programmer’s Interface

Page 345 of 655

12.5.5 HyperTransport Power Management Register

The HyperTransport Power Management Register controls the amount of time the HyperTransport bus must
be idle before CPC945 will generate an LDTSTOP.

28:31 WakeNNC
This field is identical in description and usage to the WaitNoNewCmds field.
The only difference is that it specifies the delay for a CPU exiting the sleep
state rather than one entering either the nap or sleep state.

R/W 0b1111

32:63 Undefined This field will read all 0’s. R 0x00000000

Reset Value 0x0001012F 00000000

Address 0xF8000840

Access Type Read/Write, Read Only

Reserved A F2 F SE HTStopDelay

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Undefined

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Bits Field Name Description Access Reset

0:11 Reserved This field will read all 0’s. R 0x000

12 A This field reflects the state of the LDTStopAck signal from the HT logic block. R 0b0

13 F2

Setting this bit asserts HT_LDTStop_L on the HyperTransport interface (after
HTStopDelay expires). It overrides all other controls and ignores the
HT_LDTREQ_L signal. The bit and HT_LDTStop_L signal are reset when the
LDTStopAck signal is asserted by the HT logic.

R/W 0b0

14 F

Setting this bit asserts HT_LDTStop_L on the HyperTransport interface (after
HTStopDelay expires). It overrides all other controls and ignores the
HT_LDTREQ_L signal. The bit and HT_LDTStop_L remains asserted until such
time as the bit is cleared by a register write.

R/W 0b0

15 SE

SleepEnable - This bit generates a HyperTransport cold reset during system sleep.
Cold reset is required for the case where any HyperTransport device loses power
during system sleep. If all HyperTransport devices remain powered during system
sleep, then the LDTSTOP protocol will keep these devices quiesced and they will
not lose link state during system sleep.
1 Generate HyperTransport cold reset during system sleep.
0 Do not generate HyperTransport cold reset during system sleep.

R/W 0b1

16:31 HTStopDelay

This field controls the number of 300 MHz reference clocks the HyperTransport
bus must remain idle before CPC945 will generate an LDTSTOP to the bus. The
actual delay is (HTStopDelay + 1) × 3.3 ns. The maximum delay programmable in
CPC945 is 218.43 μs. The default delay is 1 μs
[actually (0x0012F+1) × 3.3ns = 1.0013 μs].

R/W 0x012F

32:63 Undefined This field will read all 0’s. R 0x00000000

Bits Field Name Description Access Reset

User Manual

CPC945 Bridge and Memory Controller Preliminary

Programmer’s Interface
Page 346 of 655 February 1, 2008

12.5.6 PLL1 Control Register

The PLL1 Control Register configures the PI PLL. It is set at reset to support a CPU running a 3:1 ratio
between its core clock and the PI bit rate. The CPU core runs between 2400 MHz and 2664 MHz. The PLL1
Control Register is reloaded during processor reset by the SPU. Its value is initialized at that point to reflect
the proper configuration for the CPUs attached to CPC945. At the same time, the SPU sets the ForcePLL-
Reset bit to reset the PLL concurrently with the loading of new parameters.

When performing dynamic speed control of the processors, it might be necessary for system software to
change the configuration of PLL1. This procedure guarantees a stable PLL1 transition:

1. Software naps or sleeps all but one processor.

2. The last processor loads a new value into PLL1Control, clearing PLLLoaded.

3. The last processor sets APILogicStopEnable and EnablePLL1Shutdown in the clock control register,
if not already set.

4. The last processor sets the decrementer to wake it. The minimum delay is the time required for the
CPU to quiesce and CPC945 to assert QAck. This delay is affected by parameters in the PwrCPU-
Quiesce register.

5. The last processor naps.

6. CPC945 asserts QAck to the last processor (or all processors if they are Napping).

7. CPC945 sees all processors quiesced and APILogicStopEnable set, so it stops the PI clocks.

8. CPC945 sees the PI clocks stopped and EnablePLL1Shutdown set, so it stops PLL1 and loads the
new configuration from PLL1Control.

9. The last processor wakes from its decrementer interrupt.

10. CPC945 sees the last processor de-assert QReq, and starts waking PLL1 with the new configuration.

11. When PLL1 is re-locked, CPC945 restarts clocks to the PI interface.

12. When all clocks are running, CPC945 deasserts QAck and the last processor resumes operation.

13. Last processor checks PLLLoaded bit to make sure that PLL1 was reloaded with the new configura-
tion.

14. Last processor wakes other processors, if desired.

The values which go into the PLL1 Control Register depend upon the speed of the PI interface and the ratio
between the reference clock input and the PI interface. The range of frequencies available for different
processor and PI bus ratios are shown in Table 12-5 PLL1 Clock Settings. Table 12-5 documents the PLL
settings for CPUs running between 600 MHz and 2700 MHz at all three ratios: 2:1, 3:1, and 4:1.

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
Programmer’s Interface

Page 347 of 655

The PLL tuning bits modify the PLL loop parameters by modifying the internal gains of the charge pumps.
This external control allows the PLL to be stable over a wide range of frequencies and multiplication factors.
Programmability helps ensure proper PLL operation with no hardware impact, should changes be required.

Table 12-5. PLL1 Clock Settings.

CPU
to Bus
Ratio

Reference
Clock

CPU (3)

Frequency

Bus
Frequency
(Bus Clock)

Bit Rate (2)

(Data Clock) PLL1 VCO Divisor
Feedback

Control
Register
Setting

Tune

Min Max Min Max Min Max Min Max Min Max A B

2:1 125 150 1000 1200 250 300 500 600 1000 1200 4 8 1 x8400 11B6 1B6

2:1 150 225 1200 1800 300 450 600 900 600 900 2 4 1 x8240 1134 134

2:1 225 333 1800 2664 450 666 900 1332 900 1332 2 4 1 x8240 11B4 1B4

3:1 100 112.5 1200 1350 200 225 400 450 800 900 4 8 1 x8400 1136 136(4)

3:1 112.5 150 1350 1800 225 300 450 600 900 1200 4 8 1 x8400 11B6 1B6(4)

3:1 150 225 1800 2700 300 450 600 900 600 900 2 4 1 x8240 1134 134 (4)

4:1 125 150 1000 1200 125 150 250 300 1000 1200 8 8 1 x8800 11B6 1B6

4:1 150 225 1200 1800 150 225 300 450 600 900 4 4 1 x8440 1134 134

4:1 (5) 225 333 1800 2664 225 333 450 666 900 1332 4 4 1 x8440 11B4 1B4

4:1 300 337.5 2400 2700 300 337.5 600 675 600 675 2 2 1 x8220 1132 132

Notes:
1. VCO = Ref clk × B divisor × Feedback.
2. Bus is a double data rate so Bit Rate is 2x the Bus Frequency.
3. The CPU frequency = BitRate × CPU to Bus Ratio.
4. For the 3:1 bus ratio, alternatives using slower reference clocks are shown.
5. Reset default value.

Reset Value 0x344011B4 04000000

Address 0xF8000850

Access Type Read/Write, Read Only

R F L P ADiv R
es

er
ve

d

BDiv Reserved Feedback R
es

er
ve

d

Tune

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
FSM State Reserved

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

User Manual

CPC945 Bridge and Memory Controller Preliminary

Programmer’s Interface
Page 348 of 655 February 1, 2008

Bits Field Name Description Access Reset

0 R

This field specifies that the PLL will be immediately forced through a reset cycle
where the values in this register will be loaded into the PLL. The ForcePLLReset
function performs no synchronization or protocol stopping, so setting this bit
on an active bus is highly likely to lose data. This bit is intended to be used only
by the SPU for setting the initial state of PLL1.

After the PLL is updated, this bit is reset to 0, indicating that the update has occurred.

R/W 0b0

1 F

This field specifies that the PLL will be immediately updated with the values in this
register. No PLL reset will occur. This can destabilize the PLL and should not be
used without sufficient testing to determine that it is safe. After the PLL is
updated, this bit is reset to 0, indicating that the update has occurred. If new values
are loaded in this register and neither ForcePLLReset nor ForcePLLLoad are set,
they will be loaded into the PLL the next time it is stopped using the power manage-
ment mechanism. For PLL1, that means that EnablePLL1Shutdown and APILogicS-
topEnable must be set in the ClockControl Register (0xF8000020). All CPUs must be
quiesced as well. The contents of this register will also be loaded into PLL1 while it is
stopped during system sleep.

R/W 0b0

2 L

This field will reflect the value of PLL1’s PLLLock output at all times. It tells whether or
not the PLL is locked to its programmed frequency. Whenever the PLL is in reset
(states RESET and PLL SHUTDOWN) PLLLock is deasserted. When reset is deas-
serted, the PLL starts tracking in on lock. PLLLock will assert within 100 μs of reset
deasserting. This signal is not used because as the PLL is locking, the lock output
can toggle back and forth until the PLL is finally locked. This register is to be used
only as feedback for debug to verify that the PLL believes itself to be locked.

R/W 0b0

3 P
This bit is set to a one whenever the PLL control latch is loaded with a new value. If
software desires confirmation that the new values in this register have been loaded
into the PLL, this bit must be cleared when loading a new value into this register.

R/W 0b0

4:7 ADiv
This field holds the A Divider control bits for PLL1. The A divider takes the PLL VCO
frequency and divides it down to create the mem_clk. The value for this divider
should be taken from the Table 12-5 PLL1 Clock Settings on page 347.

R/W 0b0100

8 Reserved This field will read all 0’s. R 0b0

9:11 BDiv

This field holds the B Divider control bits for PLL1. The B Divider takes the PLL fre-
quency and divides it down to generate the ddr_clk rate which is also used as the
feedback clock. The value for the B divider should be taken from the Table 12-5 PLL1
Clock Settings on page 347.

R/W 0b010

12:14 Reserved This field will read all 0’s R 0b000

15:19 Feedback

This field holds the feedback divider control bits for PLL1. The FeedBack divider
divides down the feedback clock in the PLL to be used by the phase comparator
against the reference clock. The settings for the FeedBack divider should be taken
from the Table 12-5 PLL1 Clock Settings on page 347.

R/W 0b00001

20:21 Reserved This field will read all 0’s R 0b0

22:31 Tune This field holds the TUNE[9:0] control bits for PLL1. The suggested values are shown
in the Table 12-5 PLL1 Clock Settings on page 347. R/W 0b0110110

100

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
Programmer’s Interface

Page 349 of 655

32:42 FSM State

This field is used to monitor the state of the PLL state machine which control the PLL.
The bits are defined as follows:
Bit [32] = wake1
Bit [33] = shutdown2
Bit [34] = shutdown1
Bit [35] = sleep
Bit [36] = load
Bit [37] = run
Bit [38] = wake4
Bit [39] = wake3
Bit [40] = wake2
Bit [41] = wake0
Bit [42] = reset

R 0x001

43:63 Reserved This field will read all 0’s. R 0x000000

Table 12-6. PLL2 DDR2 Core Speed.

Core
Speed

Ref Clk
min

(slew)

ddr _clk
min

(slew)
FB A

Divisor
B

Divisor M PLL VCO mem _clk(A) ddr _clk(B) CNTL Register
Setting Tune

000 56.25 225 4 8 4 16 1066.67 133.33 266.67 884042B8 2B8

001 45.00 225 5 8 4 20 1333.34 166.67 333.34 884052B8 2B8

010(1) 50.00 300 6 6 3 18 1200.01 200.00 400.00 863062B8 2B8

011 64.29 450 7 4 2 14 933.34 233.33 466.67 842072B8 2B8

100 56.25 450 8 4 2 16 1066.67 266.67 533.34 842082B8 2B8

101 50.00 450 9 4 2 18 1200.01 300.00 600.00 842092B8 2B8

110 45.00 450 10 4 2 20 1333.34 333.34 666.67 8420A2B8 2B8

111 54.55 600 11 2 1 11 733.34 366.67 733.34 8210B238 238

Note:
1. Reset default value.

Bits Field Name Description Access Reset

User Manual

CPC945 Bridge and Memory Controller Preliminary

Programmer’s Interface
Page 350 of 655 February 1, 2008

12.5.7 PLL2 Control Register

PLL2 generates the clocks for the DDR2 SDRAM memory interface. Its speed is set to 400 MHz at power-on
reset.

It is not expected that software will modify the PLL2 Control Register. If software does modify PLL2Control,
the only safe method of updating is to load in a new value and then take the system all the way into and out of
the system sleep state. It is possible to load a new value and set the ForcePLLLoad bit, which will update the
settings of the PLL. However, this is not guaranteed to be safe. It might be possible for the SPU to perform
this operation at boot time without unduly confusing CPC945.

It is possible for software to modify the PLL2 Control Register and change the core frequency of CPC945.
However, this facility is designed only to support this function when CPC945 is idle and the memory controller
is not activated. To use this facility, read the SPD ROMs on the SDRAM DIMMs to determine DIMM speed.
Then, if the core/SDRAM speed requires changing, set the appropriate three bit code in the Clock Control
Register. This puts the hardware default values into the PLL2 Control Register. If these values need modi-
fying, a read-modify-write should be performed on the appropriate bit fields. After the appropriate value is in
the PLL2 Control Register, a RMW of the register to set the ForcePLLReset bit is performed. At this point,
software should ensure the next set of instructions are present in the instruction cache. Software should
execute some form of loop which keeps it from accessing CPC945 for the next 200 μs. This will prevent any
traffic from entering CPC945 while the core clock is stopped. Once the 200 μs timer has expired, software
can check the PLLLoaded bit to verify that the new core frequency has been set. Once CPC945 is at the
correct frequency for the memory, the Hardware Init code can initialize the memory controller as appropriate.

The PLL tuning bits are used to modify the PLL loop parameters by modifying the internal gains of the charge
pumps. This external control allows the PLL to be stable over a wide range of frequencies and multiplication
factors. Programmability helps ensure proper PLL operation with no hardware impact, should changes be
required.

Reset Value 0x363062B8 04000000

Address 0xF8000860

Access Type Read/Write, Read Only

R F L P ADiv R
es

er
ve

d

BDiv Reserved FeedBack R
es

er
ve

d

Tune

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
FSM State Reserved

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
Programmer’s Interface

Page 351 of 655

Bits Field Name Description Access Reset

0 R

This field specifies that the PLL will be immediately forced through a reset cycle
where the values in this register will be loaded into the PLL. The ForcePLLReset
function performs no synchronization or protocol stopping, so setting this
bit on an active bus is highly likely to lose data. This bit is intended to be used
only by the SPU for setting the initial state of PLL2.

After the PLL is updated, this bit is reset to 0, indicating that the update has
occurred.

R/W 0b0

1 F

This field specifies that the PLL will be immediately updated with the values in this
register. No PLL reset will occur. This can destabilize the PLL and should not
be used without sufficient testing to determine that it is safe. After the PLL is
updated, this bit is reset to 0, indicating that the update has occurred. If new values
are loaded in this register and neither ForcePLLReset nor ForcePLLLoad are set,
they will be loaded into the PLL the next time it is stopped using the power man-
agement mechanism. For PLL1, that means that EnablePLL1Shutdown and API-
LogicStopEnable must be set in the ClockControl Register (0xF8000800). All
CPUs must be quiesced as well. The contents of this register will also be loaded
into PLL2 while it is stopped during System Sleep.

R/W 0b0

2 L

This field will reflect the value of PLL2’s PLLLock output at all times. It tells whether
or not the PLL is locked to its programmed frequency. Whenever the PLL is in reset
(states RESET and PLL SHUTDOWN) PLLLock is deasserted. When reset is
deasserted, the PLL starts tracking in on lock. PLLLock will assert within 100us of
reset deasserting. This signal is not used because as the PLL is locking, the lock
output can toggle back and forth until the PLL is finally locked. This register is to
be used only as feedback for debug to verify that the PLL believes itself to be
locked.

R/W 0b0

3 P
This bit is set to a one whenever the PLL control latch is loaded with a new value. If
software desires confirmation that the new values in this register have been loaded
into the PLL, this bit must be cleared when loading a new value into this register.

R/W 0b0

4:7 ADiv

This field holds the A Divider control bits for PLL2. The A divider takes the PLL
VCO frequency and divides it down to create the memory clock. The value for this
divider should be taken from the PLL2 clock settings table. (See Table 12-6 on
page 349.)

R/W 0b0100

8 Reserved This field will read all 0’s. R 0b0

9:11 BDiv

This field holds the B Divider control bits for PLL2. The B Divider takes the PLL fre-
quency and divides it down to generate the ddr_clk rate which is also used as the
feedback clock for the PLL. The value for the B divider should be taken from the
PLL2 clock settings table. (See Table 12-6 on page 349.)

R/W 0b010

12:14 Reserved This field will read all 0’s. R 0b000

15:19 FeedBack

This field holds the feedback divider control bits for PLL2. The FeedBack divider
divides down the feedback clock in the PLL to be used by the phase comparator
against the reference clock. The settings for the feedback divider should be taken
from the PLL2 clock settings table. (See Table 12-6 on page 349.)

R/W 0b00001

20:21 Reserved This field will read all 0’s. R 0b00

22:31 Tune This field holds the TUNE[9:0] control bits for PLL2. The suggested values are
shown in the PLL2 clock settings table. (See Table 12-6 on page 349.) R/W 0b01101101

00

User Manual

CPC945 Bridge and Memory Controller Preliminary

Programmer’s Interface
Page 352 of 655 February 1, 2008

12.5.8 PLL3 Control Register

The PLL is programmed by selection of the M, N1, N2, and P multipliers/dividers and the NS select pin.
RefClk is the frequency of the input signal, M, N1, N2, and P are the multiplier/divider ratios (selected via the
appropriate input pin/bit settings), and the VCO frequency fVCO is defined as:

fVCO = (RefClk × M × N1)/P

The key equations describing the output frequencies at the PLL output (pllout) are:

pllout = fVCO/N1 if the N1 divider is selected to control the PLL output

pllout = fVCO/N2 if the N2 divider is selected to control the PLL output

The O bit controls whether the N1 or N2 divider is selected to control the PLL output.

The key constraints in choosing values for the dividers are:

• Divider ratios N1 and N2 must be 2 – 10

• Divider ratio P must be 1 – 8

• Multiplier ratio M must be 2 – 63

• REFCLK must be 44 – 350 MHz

• VCO frequency fVCO must be 2.3 – 2.9 GHz

In general it is best to keep the product M x N1 as low as possible and the VCO frequency as high as possible
for low output jitter.

The procedure for selecting the appropriate values can be summarized as:

1. Select an input clock frequency (REFCLK) as high as possible. This allows for a higher VCO frequency
as well as a lower M × N1 product.

32:42 FSM State

This field is used to monitor the state of the PLL state machine which control the
PLL. The bits are defined as follows:
[32] = wake1
[33] = shutdown2
[34] = shutdown1
[35] = sleep
[36] = load
[37] = run
[38] = wake4
[39] = wake3
[40] = wake2
[41] = wake0
[42] = reset

R 0b00000000
001

43:63 Reserved This field will read all 0’s. R 0x0000000

Table 12-7. PLL3 Default Settings.

Pdiv Mdiv N1div N2div PLL VCO F(n1) F(n2) pllout V O

1 5 5 4 2500 500 625 625.00 1 1

Bits Field Name Description Access Reset

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
Programmer’s Interface

Page 353 of 655

2. Select the appropriate values for P, M, N1, and N2 based on the desired output frequency. Select a low
value for N1 and check that fVCO is in the appropriate range (2.3 – 2.9 GHz). It is desirable to keep the
VCO frequency at the top of the range, or as close to the top as possible, while also minimizing the prod-
uct of the M and N1 divide ratios, M × N1.

3. Repeat steps 1 and 2, if needed.

4. Select the appropriate settings for the dividers from the tables in Table 12-7 PLL3 Default Settings on
page 352.

Reset Value 0X30510543 04000007

Address 0xF8000870

Access Type Read/Write, Read Only

R F L P R
es

er
ve

d

M R
es

er
ve

d

PD Reserved N1 N2 R
es

er
ve

d

MC V O

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
FSM State Reserved HL

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Bits Field Name Description Access Reset

0 R

This field specifies that the PLL will be immediately forced through a reset cycle
where the values in this register will be loaded into the PLL. The ForcePLLReset
function performs no synchronization or protocol stopping, so setting this bit
on an active bus is highly likely to lose data. This bit is intended to be used only
by the SPU for setting the initial state of PLL3.
After the PLL is updated, this bit is reset to 0, indicating that the update has occurred.

R/W 0b0

1 F

This field specifies that the PLL will be immediately updated with the values in this
register. No PLL reset will occur. This can destabilize the PLL and should not be
used without sufficient testing to determine that it is safe. After the PLL is
updated, this bit is reset to 0, indicating that the update has occurred. If new values
are loaded in this register and neither ForcePLLReset nor ForcePLLLoad are set,
they will be loaded into the PLL the next time it is stopped using the power manage-
ment mechanism. For PLL1, that means that EnablePLL1Shutdown and APILogicS-
topEnable must be set in the ClockControl Register (0xF8000020). All CPUs must be
quiesced as well. The contents of this register will also be loaded into PLL3 while it is
stopped during System Sleep.

R/W 0b0

2 L

This field will reflect the value of PLL3’s PLLLock output at all times. It tells whether or
not the PLL is locked to its programmed frequency. Whenever the PLL is in reset
(states RESET and PLL SHUTDOWN), PLLLock is deasserted. When reset is deas-
serted, the PLL starts tracking in on lock. PLLLock will assert within 100 μs of reset
deasserting. This signal should not be used by software as an indicator, because as
the PLL is locking, the lock output can toggle back and forth until the PLL is finally
locked. This register is to be used only as feedback for debug to verify that the
PLL believes itself to be locked.

R/W 0b0

3 P

This bit is set to a one by hardware whenever the PLL control latch is loaded with a
new value. If software clears this bit (to zero) when loading a new PLL setting into this
register, a subsequent read and test of this bit can determine if the new values were
loaded.

R/W 0b0

User Manual

CPC945 Bridge and Memory Controller Preliminary

Programmer’s Interface
Page 354 of 655 February 1, 2008

4:5 Reserved This field will read all 0’s. R 0b00

6:11 M This field is used to set up the multiply factor for the M multiplier of the PLL; a factor
of between 2 and 63 is provided. R/W 0b000101

12 Reserved This field will read all 0’s. R 0b0

13:15 PD This field is used to set up the divider ratio for the P divider; a factor of between 2 and
8 is provided. R/W 0b001

16:19 Reserved This field will read all 0’s. R 0x0

20:23 N1 This field controls the N1 divider which divides down the PLL VCO frequency; a factor
of between 2 and 10 is provided. However this divider is not used in this application. R/W 0b0101

24:27 N2
This field controls the N2 divider which divides the PLL VCO frequency down to gen-
erate the 625 MHz clock used to drive the PCI Express HSS logic; a factor of
between 2 and 10 is provided.

R/W 0b0100

28 Reserved This field will read all 0’s. R 0b0

29 MC

The MC field is used to override the lookup table for the M-divider setting. Due to
area and timing constraints not all of the possible bit mappings for the M-Divide field
were coded into the RTL. The RTL lookup table only supports divider settings from 2-
10. For values greater than 10 the Mdivider setting should be looked up in the PLL
spec and entered into the M field. Additionally, the MC bit must be set to 1b1 to over-
ride the table lookup.
1 Override Mdivider lookup table
0 Use Mdivider lookup table

R/W 0b0

30 V

This field is used to set up the VCO for the desired frequency range according to
desired VCO frequecncy.
1 VCO frequency 2.3 – 2.6 GHz
0 VCO frequency 2.6 – 2.9 GHz

R/W 0b1

31 O

This bit is the output select for the PLL. The PLL output can be driven by the output of
N1 or N2 dividers. This bit controls the multiplexer which selects which divider will
drive the clock output of the PLL.
1 N2 divider drives PLL output
0 N1 divider drives PLL output

R/W 0b1

32:42 FSM State

This field is used, primarily during system bring up and debug, to monitor the state of
the PLL state machine which controls the PLLs. The bits are defined as follows:
Bit [32] = wake1
Bit [33] = shutdown2
Bit [34] = shutdown1
Bit [35] = sleep
Bit [36] = load
Bit [37] = run
Bit [38] = wake4
Bit [39] = wake3
Bit [40] = wake2
Bit [41] = wake0
Bit [42] = reset

R 0x001

43:59 Reserved This field will read all 0’s. R 0x000000

60:63 HL

There are three additional PLLs in PCIe, one in each of the three PCIe PHY macros.
This field reflects the state of the PLL lock signals from those PLLs. A ’0111’ indicates
that all 3 are locked.
1 PLL locked
0 PLL not locked
Bit 60 should always be ’0’.

R 0b0000

Bits Field Name Description Access Reset

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
Programmer’s Interface

Page 355 of 655

12.5.9 PLL4 Control Register

PLL4 generates the clocks for HyperTransport. The speed of the link is controlled by the Link Frequency
Register in HyperTransport configuration space.

When the Link Frequency Register is modified, it loads the PLL4 Control register with the appropriate values.
PLL4 is updated using the standard PLL update mechanism, which is tied into the HyperTransport defined
mechanisms for stopping clocks before changing frequencies. If the values automatically loaded into PLL4 by
writing to the Link Frequency Register need modification before being used by the PLL, then software can
modify them appropriately in the PLL4 Control Register before starting the HyperTransport link speed change
sequence.

The PLL V bits modify the PLL loop parameters by modifying the internal gains of the charge pumps. This
external control allows the PLL to be stable over a wide range of frequencies and multiplication factors.
Programmability helps ensure proper PLL operation with no hardware impact, should changes be required.

Table 12-8. PLL4 Control Register Default Values.

LinkFreq
Code Pdiv Mdiv Ndiv V PLL

VCO htbit (A) htwlnk(B) Ext Div Bus Clk ht_core_clk CNTL Reg

000(1) 2 6 8 1 3200 400 50 4 200 200 80006281

001 2 9 6 0 3600 600 75 4 300 300 80009260

010 4 12 4 1 3200 800 100 2 400 200 8000C441

011 4 15 3 1 3000 1000 125 2 500 250 8000F431

100 4 18 3 0 3600 1200 150 2 600 300 80012430

101 4 24 2 1 3200 1600 200 2 800 400 80018421

110(2) 4 27 2 0 3600 1800 225 2 900 450 8001B420

Notes:
1. Reset default value.
2. Warning: Do not use. This selection is not supported in CPC945. PLL4 does not support 1.8 GHz mode.

User Manual

CPC945 Bridge and Memory Controller Preliminary

Programmer’s Interface
Page 356 of 655 February 1, 2008

Reset Value 0x30006281 04000000

Address 0xF8000880

Access Type Read/Write, Read Only

R F L P Reserved M PD N Reserved V

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
FSM State Reserved

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Bits Field Name Description Access Reset

0 R

This field specifies that the PLL will be immediately forced through a reset cycle
where the values in this register will be loaded into the PLL. The ForcePLLReset
function performs no synchronization or protocol stopping, so setting this
bit on an active bus is highly likely to lose data. This bit is intended to be used
only by the SPU for setting the initial state of PLL4.
After the PLL is updated, this bit is reset to 0, indicating that the update has
occurred.

R/W 0b0

1 F

This field specifies that the PLL will be immediately updated with the values in this
register. No PLL reset will occur. This can destabilize the PLL and should not
be used without sufficient testing to determine that it is safe. After the PLL is
updated, this bit is reset to 0, indicating that the update has occurred. If new val-
ues are loaded in this register and neither ForcePLLReset nor ForcePLLLoad are
set, they will be loaded into the PLL the next time it is stopped using the power
management mechanism. For PLL1, that means that EnablePLL1Shutdown and
APILogicStopEnable must be set in the ClockControl Register (0xF8000020). All
CPUs must be quiesced as well. The contents of this register will also be loaded
into PLL4 while it is stopped during System Sleep.

R/W 0b0

2 L

This field reflects the value of PLL4’s PLLLock output at all times. It tells whether
or not the PLL is locked to its programmed frequency. Whenever the PLL is in
reset (states RESET and PLL SHUTDOWN), PLLLock is deasserted. When
reset is deasserted, the PLL starts tracking in on lock. PLLLock asserts within
100us of reset deasserting. This signal is not used because as the PLL is locking,
the lock output can toggle back and forth until the PLL is finally locked. This reg-
ister is to be used only as feedback for debug to verify that the PLL believes
itself to be locked.

R/W 0b0

3 P

This bit is set to a one whenever the PLL control latch is loaded with a new value.
If software desires confirmation that the new values in this register have been
loaded into the PLL, this bit must be cleared when loading a new value into this
register.

R/W 0b0

4:13 Reserved This field will read all 0’s. R 0x000

14:19 M This field is used to set up the multiply factor for the M multiplier of the PLL; a fac-
tor of between 2 and 64 is provided. R/W 0b001011

20:23 PD This field is used to set up the divider ratio for the P divider; a factor of between 2
and 8 is provided. R/W 0b000

24:27 N
This field controls the N divider which divides the PLL VCO frequency down to
generate the 625 MHz clock used to drive the PCI Express HSS logic; a factor of
between 2 and 10 is provided

R/W 0b0110

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
Programmer’s Interface

Page 357 of 655

28:30 Reserved This field will read all 0’s. R 0b000

31 V

This field is used to set up the VCO for the desired frequency range according to
desired VCO frequecncy.
1 VCO frequency 3.0 – 3.5 GHz
0 VCO frequency 3.5 – 3.6 GHz

R/W 0b1

32:42 FSM State

This field is used to monitor the state of the PLL state machine which control the
PLL. The bits are defined as follows:
Bit [32] = wake1
Bit [33] = shutdown2
Bit [34] = shutdown1
Bit [35] = sleep
Bit [36] = load
Bit [37] = run
Bit [38] = wake4
Bit [39] = wake3
Bit [40] = wake2
Bit [41] = wake0
Bit [42] = reset

R 0b0000000000
1

43:63 Reserved This field will read all 0’s. R 0x000000

Bits Field Name Description Access Reset

User Manual

CPC945 Bridge and Memory Controller Preliminary

Programmer’s Interface
Page 358 of 655 February 1, 2008

12.5.10 PLL/Clock Visibility and Test

The PLLVis is test circuitry providing external visibility to examine PLL stability and operation. The circuitry
consists of a multiplexer which allows software to select one signal to provide to a single external pin for lab
debug. The signal to be provided is selected by the PLLVis register.

Reset Value 0x00000001 00000000

Address 0xF8000890

Access Type Read/Write, Read Only

Signal Selection

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Undefined

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Bits Field Name Description Access Reset

0:31 Signal
Selection

Enables the specified signal to be driven to the PMR observability pin. Enables
are defined as:
[0:14] = undefined
[15] = real_api_plllock, real PLL1 lock signal
[16] = real_ddr_plllock, real PLL2 lock signal
[17] = real_pcie_plllock, real PLL3 lock signal
[18] = real_ht_plllock, real PLL4 lock signal
[19] = api_plloutA, PLL1 output A
[20] = ddr_plloutA, PLL2 output B
[21] = pcie_plloutse, PLL3 output
[22] = ht_plloutB, PLL4 output B
[23] = PI_clk
[24] = ddr_clk
[25] = mem_clk
[26] = PCLK250
[27] = ht_clk
[28] = pmr_clk
[29] = NoIOReqs, NoIO DMA request from PI to PMR during nap.
[30] = SDA_sampled, I2C data as sampled by CPC945 logic
[31] = SCL_sampled, I2C clock as sampled by CPC945 logic

These visibility bits should only have one bit set at a time. However, there is no
logic to prevent that and if multiple bits were to be set, the bits would be logically
ORed.

R/W 0x00000001

32:63 Undefined This field will read all 0’s. R 0x00000000

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
Programmer’s Interface

Page 359 of 655

Programmer’s Interface

12.6 MPIC Registers

CPC945 contains a number of registers for software access to its internal MPIC interrupt controller. The
MPIC register block lies at an address base of 0x50000. The reset and enable output bits for MPIC are
located in the CPC945 Toggle Register (0xF80000E0). All MPIC registers are 32 bits wide and are accessed
with 4-byte big-endian (that is, byte-reversed) operands. These registers are mapped to exist on 16-byte
boundaries.

Table 12-9. Register Addresses .

Address Register Name Description Page

0xF8041000 MPIC Feature Reporting Register 360

0xF8041020 MPIC Global Configuration Register 361

0xF8041080 MPIC Vendor ID Register 362

0xF8041090 MPIC Processor Initialization Register (not supported, reserved) 362

0xF80410A0
0xF80410B0
0xF80410C0
0xF80410D0

MPIC IPI (0,1,2,3) Vector/Priority Register 363

0xF80410E0 MPIC Spurious Vector Register 363

0xF8050000
0xF8050020,
0xF8050040 ...
0xF8050FE0

MPIC Interrupt Source 0-124 Vector/Priority Register 364

0xF8050030,
0xF8050050 ...
0xF8050FF0

MPIC Interrupt Source 0-124 Destination Registers 365

0xF8060040,
0xF8061040,
0xF8062040,
0xF8063040,
0xF8060050,
0xF8061050,
0xF8062050,
0xF8063050,
0xF8060060,
0xF8061060,
0xF8062060,
0xF8063060,
0xF8060070,
0xF8061070,
0xF8062070,
0xF8063070

MPIC CPU(0-3) IPI(0-3) Dispatch Command Registers 366

0xF8060080,
0xF8061080,
0xF8062080,
0xF8063080

MPIC CPU(0-3) Current Task Priority Registers 367

0xF80600A0,
0xF80610A0,
0xF80620A0,
0xF80630A0

MPIC CPU(0-3) Interrupt Acknowledge Registers 368

0xF80600B0,
0xF80610B0,
0xF80620B0,
0xF80630B0

MPIC CPU(0-3) End-of-Interrupt Registers 369

User Manual

CPC945 Bridge and Memory Controller Preliminary

Programmer’s Interface
Page 360 of 655 February 1, 2008

12.6.1 MPIC Feature Reporting Register

This register contains information about the number of interrupt sources and microprocessors supported by
this implementation of MPIC.

Reset Value x007B0302
Address 0xF8041000
Access Type Read Only

Reserved NumIRQSources Reserved NumCPU VersionID

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 21 10 9 8 7 6 5 4 3 2 1 0

Bits Field Name Description Access Reset

31:27 Reserved Always returns zero when read. R 0x00

26:16 NumIRQSources The number of the highest IRQ source supported. R 0d123
(0x7B)

15:13 Reserved Always returns zero when read. R 0b00

12:8 NumCPU The number of the highest physical CPU supported. CPC945’s
MPIC supports 4 microprocessors, numbered 0 to 3. R 0x03

7:0 VersionID

This value will report the level of OpenPIC specification supported
by an implementation. Values are:
1 OpenPIC version 1.0 compliant
2 OpenPIC version 1.2 compliant
All others reserved.

R 0x02

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
Programmer’s Interface

Page 361 of 655

12.6.2 MPIC Global Configuration Register 0

This register resets the MPIC logic and sets up the MPIC for cascading an external 8259 pair.

Reset Value x0000 0000
Address 0xF8041020
Access Type Read Only, Read/Write

M
P

IC
 R

es
et

R
es

er
ve

d

P
as

s
Th

ro
ug

h

Reserved

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 21 10 9 8 7 6 5 4 3 2 1 0

Bits Field Name Description Access Reset

31 MpicReset

This bit resets the MPIC including clearing all pending interrupts.
After the MPIC resets, the MPIC starts running again and this bit
resets itself to 0b0. If the goal is to hold the MPIC in reset, use the
MPICReset in the Section 12.4.5 CPC945 Toggle Register on
page 337 instead.
0 MPIC Running
1 Reset MPIC

R/W 0b0

30 Reserved Always returns zero when read. R 0b0

29 Pass Through

OpenPIC 8259 pass through enable bit.
0 Pass through enabled
1 Pass through disabled
Note: The CPC945 has no pass through function, so this but must
always be set to 1 to allow the 124 I/O interrupt sources to be seen
by the interrupt controller.

R/W 0b0

28:0 Reserved Always returns zero when read. R 0x00000000

User Manual

CPC945 Bridge and Memory Controller Preliminary

Programmer’s Interface
Page 362 of 655 February 1, 2008

12.6.3 MPIC Vendor ID Register

This register uniquely identifies the MPIC implementation.

12.6.4 MPIC Processor Initialization Register

This register is not supported and left as reserved. The MPIC Register contains legacy logic that implements
a register decode for the Processor Initialization Register specified by OpenPIC. The intended mainline func-
tion of this register, which is to activate an initialization of the attached processors, is not implemented on the
CPC945 because this function is not supported by the PowerPC 970xx family of microprocessors.

Reset Value x1446 0000
Address 0xF8041080
Access Type Read Only

Reserved Reserved Device ID Vendor ID

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 21 10 9 8 7 6 5 4 3 2 1 0

Bits Field Name Description Access Reset

31:24 Reserved Always returns zero when read. R 0x00

23:16 Reserved Always returns zero when read. R 0x00

15:8 Device ID Vendor-specified identifier for this device (MPIC-2A) R 0x46

7:0 Vendor ID Manufacturer ID. Note: This ID was not assigned by OpenPIC. R 0x14

Reset Value x0000 0000
Address 0xF8041090
Access Type Read Only

Reserved

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 21 10 9 8 7 6 5 4 3 2 1 0

Bits Field Name Description Access Reset

31:0 Reserved Always returns zero when read. R 0x0000 0000

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
Programmer’s Interface

Page 363 of 655

12.6.5 MPIC IPI (0,1,2,3) Vector/Priority Registers

This set of 4 registers contains the masking bit, status bit, priority level, and interrupt vector for IPI interrupts 0
through 3.

12.6.6 MPIC Spurious Vector Register

This register contains the interrupt vector for spurious interrupts.

Reset Value 0x0000 0001
Address 0xF80410A0, 0xF80410B0, 0xF80410C0, 0xF80410D0
Access Type Read Only, Read/Write

M
as

k

A
ct

iv
e

Reserved
Priority

Reserved
Vector

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 21 10 9 8 7 6 5 4 3 2 1 0

Bits Field Name Description Access Reset

31 Mask A logic one on this bit disables future interrupts from this source. R/W 0b1

30 Active This bit is asserted (=1) when an interrupt is active for this source. R 0b0

29:20 Reserved Always returns zero when read. R 0x000

19:16 Priority Interrupt priority. Priority levels of 0x0 to 0xF are supported, with
0x0 as the lowest and 0xF as the highest. R/W 0x0

15:8 Reserved Always returns zero when read. R 0x00

7:0 Vector Interrupt vector address. R/W 0x00

Reset Value 0xFF00 0000
Address 0xF80410E0
Access Type Read Only, Read/Write

Reserved Vector

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 21 10 9 8 7 6 5 4 3 2 1 0

Bits Field Name Description Access Reset

31:8 Reserved Always returns zero when read. R 0x000000

7:0 Vector Interrupt vector address. R/W 0xFF

User Manual

CPC945 Bridge and Memory Controller Preliminary

Programmer’s Interface
Page 364 of 655 February 1, 2008

12.6.7 MPIC Interrupt Source 0-123 Vector/Priority Registers

This set of 124 registers contains the masking bit, status bit, sense, priority level, and interrupt vector for
Interrupt Sources 0 through 123.

Note: MPIC contains legacy logic which implements Bit 23 equal to the polarity, for register 0xF805000 only.
Unlike the other Interrupt Source Vector/Priority Registers (0xF8050020, ...), (for register 0xF805000) bit 23
can be set and read back. If set to one, this changes the default operation from sense from active low/nega-
tive edge to active high/positive edge. However, for proper operation in the CPC945, this bit must always be
set equal to 0.

Reset Value 0x0000 0001
Address 0xF8050000, 0xF8050020, 0xF8050040, 0xF8050060, ..., 0xF8050F60
Access Type Read Only, Read/Write

M
as

k

A
ct

iv
e Reserved

Se
ns

e

R
es

er
ve

d
Priority

Reserved
Vector

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 21 10 9 8 7 6 5 4 3 2 1 0

Bits Field Name Description Access Reset

31 Mask A logic one on this bit disables future interrupts from this source. R/W 0b1

30 Active This bit is asserted (equal to 1) when an interrupt is active for this
source. R 0b0

29:23 Reserved Always returns zero when read. R 0x00

22 Sense
Interrupt line sense.
0 Positive Edge-Triggered
1 Negative Level-Sensitive

R/W 0b0

21:20 Reserved Always returns zero when read. R 0b0

19:16 Priority Interrupt priority. Priority levels of 0x0 to 0xF are supported, with 0x0 as
the lowest and 0xF as the highest. R/W 0x0

15:8 Reserved Always returns zero when read. R 0x00

7:0 Vector Interrupt vector address. R/W 0x00

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
Programmer’s Interface

Page 365 of 655

12.6.8 MPIC Interrupt Source 0-123 Destination Registers

This set of 124 registers contains the processor destination bits for all interrupt sources (0 to 123). If a single
microprocessor is selected (directed delivery mode), then interrupts from this source are directed to that
microprocessor. If multiple destination microprocessors are selected (distributed delivery mode), then inter-
rupts from this source are distributed among the selected destination processors using an implementation-
specific algorithm

Reset Value 0x0000 0001
Address 0xF8050030, 0xF8050050, 0xF8050070, ..., 0xF8050F70
Access Type Read Only, Read/Write

Reserved P3 P2 P1 P0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 21 10 9 8 7 6 5 4 3 2 1 0

Bits Field Name Description Access Reset

31:4 Reserved Always returns zero when read. R 0x0000000

3 P3 CPU3 is the destination of the interrupt when this bit is set. R/W 0b0

2 P2 CPU2 is the destination of the interrupt when this bit is set. R/W 0b0

1 P1 CPU1 is the destination of the interrupt when this bit is set. R/W 0b0

0 P0 CPU0 is the destination of the interrupt when this bit is set. R/W 0b0

User Manual

CPC945 Bridge and Memory Controller Preliminary

Programmer’s Interface
Page 366 of 655 February 1, 2008

12.6.9 MPIC CPU(0-3) IPI(0-3) Dispatch Command Registers

This set of 16 registers is defined as write-only. Reads have no side effects and return 0x00000000. There
are four IPI dispatch command registers for each microprocessor. Writing to an IPI dispatch command
register causes an interprocessor interrupt request to be sent to one or more processors. A microprocessor is
interrupted if the bit in the IPI dispatch command register corresponding to that microprocessor is set during
the write. The IPI dispatch command registers are shared by all processors, but are located in the per-
processor register space.

Reset Value 0x0000 0001
Address 0xF8060040, 0xF8061040, 0xF8062040, 0xF8063040, 0xF8060050,

0xF8061050, 0xF8062050, 0xF8063050, 0xF8060060, 0xF8061060,
0xF8062060, 0xF8063060, 0xF8060070, 0xF8061070, 0xF8062070,
0xF8063070

Access Type Read Only, Write Only

Reserved P3 P2 P1 P0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 21 10 9 8 7 6 5 4 3 2 1 0

Bits Field Name Description Access Reset

31:4 Reserved Always returns zero when read. R 0x0000000

3 P3 CPU3 is the destination of the interrupt when this bit is set. W 0b0

2 P2 CPU2 is the destination of the interrupt when this bit is set. W 0b0

1 P1 CPU1 is the destination of the interrupt when this bit is set. W 0b0

0 P0 CPU0 is the destination of the interrupt when this bit is set. W 0b0

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
Programmer’s Interface

Page 367 of 655

12.6.10 MPIC CPU(0-3) Current Task Priority Registers

This set of 4 registers contains the minimum interrupt priority level needed to generate a microprocessor
interrupt. There is one task priority register per microprocessor. Setting the task priority to 0xF masks all inter-
rupts to a given microprocessor, since no interrupt source can have a priority higher than 0xF. It is recom-
mended, however, that PowerPC microprocessors use the MSR[EE] bit rather than the task priority registers
to disable internal interrupts.

Reset Value 0x0000 0000
Address 0xF8060080, 0xF8061080,0xF8062080,0xF8063080
Access Type Read Only

Reserved Priority

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 21 10 9 8 7 6 5 4 3 2 1 0

Bits Field Name Description Access Reset

31:4 Reserved Always returns zero when read. R 0x000000

3:0 Priority
Interrupt source priorities need to be higher than this value in order
to generate a microprocessor interrupt. Minimum priority is 0x0, and
maximum priority is 0xF.

R 0x00

User Manual

CPC945 Bridge and Memory Controller Preliminary

Programmer’s Interface
Page 368 of 655 February 1, 2008

12.6.11 MPIC CPU(0-3) Interrupt Acknowledge Registers

This set of 4 read-only registers contains the interrupt vector for the next pending microprocessor interrupt.
There is one interrupt acknowledge register per microprocessor. Reading the Interrupt Acknowledge register
returns the interrupt vector corresponding to the highest-priority pending interrupt in that microprocessor’s
Interrupt Request Register (IRR). It also transfers the highest-priority pending interrupt from that micropro-
cessor’s IRR to that microprocessor’s In-Service Register.

Clears the bit in the Interrupt Pending Register (IPR) corresponding to the highest-priority pending interrupt in
that microprocessor’s IRR. This is only effective for edge-triggered interrupts. Level-triggered interrupts
normally cause the bit in the IPR to be set every cycle until the device driver’s interrupt service routine has
cleared the interrupt source.

The IRR, IPR, and In-Service Registers are internal to MPIC and are not visible to software.

Reset Value x0000 0000
Address 0xF80600A0, 0xF80610A0, 0xF80620A0, 0xF80630A0
Access Type Read Only

Reserved Vector

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 21 10 9 8 7 6 5 4 3 2 1 0

Bits Field Name Description Access Reset

31:8 Reserved Always returns zero when read. R 0x000000

7:0 Vector Interrupt vector address. R 0x00

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
Programmer’s Interface

Page 369 of 655

12.6.12 MPIC CPU(0-3) End-of-Interrupt Registers

Writing to this set of 4 write-only registers signals the end of processing for the highest-priority interrupt
currently in service by the associated microprocessor. When this register is written with a value of
0x00000000, the highest-priority interrupt in the In-Service Priority Register is reset along with the corre-
sponding bit in the interrupt source In-Service Register. Writes of values other than 0x00000000 will not
generate an EOI event. Reads of this register will have no side effects, and will return 0x00000000.

Reset Value 0x0000 0000
Address 0xF80600B0, 0xF80610B0, 0xF80620B0, 0xF80630B0
Access Type Write Only

EOI

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 21 10 9 8 7 6 5 4 3 2 1 0

Bits Field Name Description Access Reset

31:0 EOI

Writing 0x00000000 to this register will generate an EOI event for
the associated microprocessor (see above). Writing a value other
than 0x00000000 will have no effect. Reads will have no side
effects, and will return 0x00000000.

W 0x0000 0000

User Manual

CPC945 Bridge and Memory Controller Preliminary

Programmer’s Interface
Page 370 of 655 February 1, 2008

Programmer’s Interface

12.7 PI Physical Interface Registers

12.7.1 APIPhy Command and Status Register Bus

The APIPhy Command and Status Register Bus is an internal configuration and debug bus that is inside the
Processor Interconnect (PI) interface logic block. It is used to configure the APIPhy logic at boot time or
during wake up, and can be used as a debug mechanism for checking the APIPhy status. The APIPhy
receiver status register contains data from several internal sources. As detailed below, this consists of an I/O
group select (iogrp_sel[0:3], command (command_data[0:14]), a command_load bit, a status data select
(data_stat_sel [0:2]), and a status data register (data_stat[0:15]).

The iogrp_sel, command_data, and data_stat_sel Registers reside as bit fields in the register,
Section 12.7.4.4 APIPhy Receiver Mode and Command Register (APIPhyRcvModeCmd) on page 385. The
data_stat register resides as bit fields in the register, Section 12.7.4.3 APIPhy Status 0 Register
(APIPhySTAT0) on page 382.

The I/O group select register, iogrp_sel, is a 4 bit read-or-write register that is used to select which I/O group’s
(15 possible I/O groups; 0 to 14) status registers are to be accessed and is also used to obtain the global
status of the APIPhy receiver. In CPC945, the only active I/O group is group 0; All other I/O groups are
reserved (1 to 14). The encodings for this register are as follows.

Table 12-10. I/O Group Select Register Settings, iogrp_sel[0:3]

iogrp_sel Description

0000 Select I/O group 0

0001 - 1110 Reserved

1111 Select global status

Table 12-11. Status data select register, data_stat_sel[0:2] - io_group_sel = 0x0

data_stat_sel Returned Data (data_stat[0:15])

000*
(0:7) I/O Clock Delay
(8:15) IAP Flag 0

001*
(0:7) IAP Flag 1
(8:15) IAP Flag 2

010**

(0) Underflow of per-bit deskew from eical for selected group
(1) Overflow of per-bit deskew from eical for selected group
(2) Guardband delay underflow (gb = 0) for selected group
(3) Guardband delay overflow (gb = maximum) for selected group
(4) Guardband Threshold value exceeded
(5:9) Guardband minimum for selected group
(10:15) Reserved

011 Reserved

100 Reserved

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
Programmer’s Interface

Page 371 of 655

101 Reserved

110 Reserved

111*

(0) IAP Status (0): Clock period too large (critical)
(1) IAP Status (1): No IAP pattern detected (fatal)
(2) IAP Status (2): Could not find trailing edge of latest bit in IAP pattern (critical)
(3) IAP Status (3): At least one data bit was deskewed to maximum (warning)
(4) IAP Status (4): No valid flag 0, that is, No valid IAP “all 1's” pattern found in deskewed bus (fatal)
(5) IAP Status (5): No valid flag 1, that is, No start of trailing edge of IAP pattern found in deskewed bus

(critical)
(6) IAP Status (6): No valid flag 2, that is, No end of trailing edge of IAP pattern found in deskewed bus

(critical)
(7) IAP Status (7): Final values fail, that is, No valid IAP “all 1's” pattern found in fully aligned bus (fatal)
(8) IAP Status (8): Final delay value negative-nonoptimal sampling point used (warning)
(9:15) Reserved

Table 12-12. Status data select register, data_stat_sel[0:2] - io_group_sel = 0xF

data_stat_sel Returned Data (data_stat[0:15])

000**
(0:7) I/O Clock Period
(8:15) Reserved

001**

(0) Underflow of per-bit deskew from eical
(1) Overflow of per-bit deskew from eical
(2) Guardband delay underflow (gb = 0)
(3) Guardband delay overflow (gb = max)
(4) Guardband threshold value exceeded
(5:9) Reserved
(10:12) Learned Target Cycle
(13:15) Learned Target Cycle Spread

010 Reserved

011**
(0) IAP Status nonzero fro Clock Group 0
(1:15) Reserved

100 Reserved

Table 12-11. Status data select register, data_stat_sel[0:2] - io_group_sel = 0x0 (Continued)

data_stat_sel Returned Data (data_stat[0:15])

User Manual

CPC945 Bridge and Memory Controller Preliminary

Programmer’s Interface
Page 372 of 655 February 1, 2008

The status data select register, data_stat_sel, is a 3 bit read-or-write register that is used to select which
status data is to be read. This register is set after the I/O group select register has been set to either I/O
Group 0 (0x0) or to global status (0xF). The data status register, data_stat, is a 16 bit read-only register that
displays the returned status data that was selected by data_stat_sel. The encodings for the data_stat_sel
register when the I/O group select register has been set to I/O Group 0 (0x0) and the returned data from the
data_stat register are defined as follows:

* I/O group must be selected before IAP for returned status data to be valid

** I/O group can be selected at anytime before or after IAP for returned status data to be valid.

The encodings for the data_stat_sel register when the I/O group select register has been set to global status
(0xF) and the returned data from the data_stat register are defined as follows:

* I/O group must be selected before IAP for returned status data to be valid

** I/O group can be selected at anytime before or after IAP for returned status data to be valid.

The command and status register bus also allows for changing the PI clock delay. To do this, the command
bus register (command_data(0:14), command_load) must be used. The bus procedure for changing the PI
clock delay is similar to the procedure for reading the status registers. First a target I/O group must be
selected (only 1 target group exists: 0x0) via the I/O group select register (iogrp_sel(0:3)). Second the
command_load bit is set and the desired clock delay value is written into the command bus register in the
following format:

101 Reserved

110 Reserved

111**

IAP status values below (bits 0 to 8) are a global logical OR of all I/O groups’ respective IAP status bits:
(0) IAP Status (0): Clock period too large (critical)
(1) IAP Status (1): No IAP pattern detected (fatal)
(2) IAP Status (2): Could not find trailing edge of latest bit in IAP pattern (critical)
(3) IAP Status (3): At least one data bit was deskewed to maximum (warning)
(4) IAP Status (4): No valid flag 0, that is, No valid IAP “all 1's” pattern found in deskewed bus (fatal)
(5) IAP Status (5): No valid flag 1, that is, No start of trailing edge of IAP pattern found in deskewed bus

(critical)
(6) IAP Status (6): No valid flag 2, that is, No end of trailing edge of IAP pattern found in deskewed bus

(critical)
(7) IAP Status (7): Final values fail, that is, No valid IAP “all 1's” pattern found in fully aligned bus (fatal)
(8) IAP Status (8): Final delay value negative-nonoptimal sampling point used (warning)
(9) IAP Done (on only when RIAP is asserted and IAP completed; disappears after RIAP is deasserted)
(10) Learned Target cycle passed
(11) Learned Target cycle failed
(12) EST passed or RDT passing
(13) EST or RDT failed
(14:15) Reserved

Table 12-12. Status data select register, data_stat_sel[0:2] - io_group_sel = 0xF (Continued)

data_stat_sel Returned Data (data_stat[0:15])

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
Programmer’s Interface

Page 373 of 655

Finally, the command_load bit is cleared with a write of 0 to trigger the IAP Register state machine to update
the new clock value.

Because shadow registers are used to capture clock-group-specific data and are only loaded during IAP, it is
not possible to read back the value written to the PI clock delay registers. For example, after IAP the PI clock
delay for clock group 0 is found to be 0x08 (set iogrp_sel to 0x0, data_stat_sel to 0x0 and read
data_stat = 0x08). It is possible to change the PI clock delay by writing 0x10 to the command bus register,
however, the value read back from data_stat after the change would be still be 0x08 and not 0x10. The logic
would be updated, so the PI bus clock delay would be set to 0x10.

Table 12-13. Changing the PI clock delay (command_data[0:14],ncommand_load)

Field Description

command_data[0:7] PI clock delay value

command_data[8:14] 0x00

command_load 1

User Manual

CPC945 Bridge and Memory Controller Preliminary

Programmer’s Interface
Page 374 of 655 February 1, 2008

12.7.2 PI Physical Interface Registers

This section describes functional details for each register. The base address can be found in the Section 12.3
Control Register Memory Map on page 331.

Table 12-14. PI Physical Interface Register Address Space

System Bus Address Register Name Description Page

offset 0x000 APIPhyDRVIAPPATMASK APIPhy Driver IAP Pattern Mask 375

offset 0x010 APIPhyRCVIAPPATMASK APIPhy Receiver IAP Pattern Mask 376

offset 0x020 APIPhyCONFIGREG0 APIPhy Configuration 0 377

offset 0x030 APIPhyCONFIGREG1 APIPhy Configuration 1 379

offset 0x040 APIPhySTR APIPhy Shorts Test Configuration 381

offset 0x050 APIPhySTAT0 APIPhy Status 0 382

offset 0x060 APIPhyCLKSTAT APIPhy Clock Status 385

offset 0x070 APIPhyRIAPSTATE APIPhy Receiver IAP State 387

offset 0x080 DATAERROR0 APIPhy Data Error 0 388

offset 0x090 DATAERROR1 APIPhy Data Error 1 389

offset 0x0A0 DATAERROR2 APIPhy Data Error 2 390

offset 0x0B0 APIPhyDATAERROR3 APIPhy Data Error 3 391

offset 0x0C0 DATAERROR4 APIPhy Data Error 4 392

offset 0x0D0 DATAERROR5 APIPhy Data Error 5 393

offset 0x0E0 APIPhyIOCTRL APIPhy I/O Control Register 394

offset 0x0F0 APIPhyPMRIOCTRL APIPhy PMR I/O Control Register 396

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
Programmer’s Interface

Page 375 of 655

12.7.3 APIPhy Configuration Registers

12.7.3.1 APIPhy Driver IAP Pattern Mask (APIPhyDRVIAPPATMASK)

This 44-bit mask value determines which driving lines of the AD bus will be inverted or not such that there are
an equal number of ones and zeroes that are transmitted. This mask register controls the converting of the
logical IAP signature to the physical IAP signature. The APIPhyDRVIAPPATMASK register of the PI Physical
Interface in the transmitting chip must have the same value as the APIPhyRCVIAPPATMASK register of the
PI Physical Interface in the receiving chip.

Reset Value N/A

Offset 0x000

Access Type Read/Write

iapptn_snd

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

iapptn_snd Reserved

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Bits Field Name Description Access Reset

0:47 iapptn_snd [0:47]
Driver IAP Pattern Mask
Bits 0:43 for the AD bus and bits 44:47] for the snoop response bus
{sr0, sr0_n, sr1, sr1_n}.

R/W 0xF21C 3BC8
70E5

48:63 Reserved Reserved; Writes have no effect on hardware and
reads return undefined read data. R/W Undefined

User Manual

CPC945 Bridge and Memory Controller Preliminary

Programmer’s Interface
Page 376 of 655 February 1, 2008

12.7.3.2 APIPhy Receiver IAP Pattern Mask (APIPhyRCVIAPPATMASK)

This 44-bit mask value determines which receiving lines of the AD bus will be inverted or not such that there
are an equal number of ones and zeroes that are transmitted. This mask register controls the converting of
the logical IAP signature to the physical IAP signature. The APIPhyDRVIAPPATMASK register of the PI
Physical Interface in the transmitting chip must have the same value as the APIPhyRCVIAPPATMASK
register of the PI Physical Interface in the receiving chip.

Reset Value N /A

Offset 0x010

Access Type Read/Write

iapptn_rcv

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

iapptn_rcv Reserved

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Bits Field Name Description Access Reset

0:47 iapptn_rcv [0:47]
Receiver IAP Pattern Mask
Bits 0:43 for the AD bus and bits 44:47 for the snoop response bus
{sr0, sr0_n, sr1, sr1_n}.

R/W 0xF21C 3BC8
70E5

48:63 Reserved Reserved; Writes have no effect on hardware and Reads return
undefined read data. R/W Undefined

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
Programmer’s Interface

Page 377 of 655

12.7.4 APIPhy Configuration 0 Register (APIPhyCONFIGREG0)

Reset Value N/A

Offset 0x020

Access Type Read/Write

Reserved ia
p_

ph
as

e_
st

ra
p

Reserved tim
e_

ze
ro

_p
ha

se

Reserved data_wind Reserved by
pa

ss

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Reserved ta
rg

et
_t

im
e_

qt
r

R
es

er
ve

d

ta
rg

et
_t

im
e_

ha
lf

R
es

er
ve

d

ta
rg

et
_t

im
e_

fu
ll

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Bits Field Name Description Access Reset

0:3 Reserved Reserved; Writes have no effect on hardware and reads return
undefined read data. R/W Undefined

4:7 iap_phase_strap
Phase adjustment of launching of IAP pattern 10001000....
by APIPhy driver. By default (4x0), “1” in the IAP pattern is launched
at time zero.

R/W 0x0

8:11 Reserved Reserved; Writes have no effect on hardware and reads return
undefined read data. R/W Undefined

12:15 time_zero_phase Phase adjustment for time zero reset. By default (4x0), time zero
reset is pulsed at system time zero. R/W 0x0

16:19 Reserved Reserved; Writes have no effect on hardware and reads return
undefined read data. R/W Undefined

20:23 data_wind

Data windage: Phase offset of the final data bus bits expressed in
delay elements. Binary encoded from 0 - 15. The programming of
the wind value allows the flexibility of modifying the data bus delay
for “centering” as a function of bus speed, system configuration,
process, etc.

R/W 0b000

24:30 Reserved Reserved; Writes have no effect on hardware and reads return
undefined read data. R/W Undefined

31 bypass Enable APIPhy bypass mode: Bypass the APIPhy physical layer
(the data and clock deskew logic). R/W 0b0

(disabled)

User Manual

CPC945 Bridge and Memory Controller Preliminary

Programmer’s Interface
Page 378 of 655 February 1, 2008

32:52 Reserved Reserved; Writes have no effect on hardware and Reads return
undefined read data. R/W Undefined

53:55 target_time_qtr

Target beat number for quarter frequency: Also called the target
cycle. The target cycle is programmed as the cycle the data is to be
received. The target cycle is referenced to time = 0 and is mod 4
(The most significant bit, bit 53, is reserved; writes to this bit has no
effect on hardware). The programming of the target value allows the
flexibility of modifying the target cycle as a function of bus speed,
system configuration, process, etc.

R/W Undefined

56 Reserved Reserved; Writes have no effect on hardware and Reads return
undefined read data. R/W Undefined

57:59 target_time_half

Target beat number for half frequency: Also called the target cycle.
The target cycle is programmed as the cycle the data is to be
received. The target cycle is referenced to time = 0 and is mod 4
(The most significant bit, bit 57, is reserved; writes to this bit has no
effect on hardware). The programming of the target value allows the
flexibility of modifying the target cycle as a function of bus speed,
system configuration, process, etc.

R/W Undefined

60 Reserved Reserved; Writes have no effect on hardware and Reads return
undefined read data. R/W Undefined

61:63 target_time_full

Target beat number for full frequency: Also called the target cycle.
The target cycle is programmed as the cycle the data is to be
received. The target cycle is referenced to time = 0 and is mod 4
(The most significant bit, bit 61, is reserved; writes to this bit has no
effect on hardware). The programming of the target value allows the
flexibility of modifying the target cycle as a function of bus speed,
system configuration, process, etc.

R/W 0b011 (target
beat three)

Bits Field Name Description Access Reset

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
Programmer’s Interface

Page 379 of 655

12.7.4.1 APIPhy Configuration 1 Register (APIPhyCONFIGREG1)

Reset Value N/A

Address 0x030

Access Type Read/Write

Reserved

A
P

sy
nc

R
cv

_e
n

m
as

k_
di

s

A
P

sy
nc

_s
el

th
_e

rr
or

_g
en

_d
is

th
_e

ve
n_

ph
as

e_
rc

v

ad
_e

ve
n_

ph
as

e_
rc

v

sr
_e

ve
n_

ph
as

e_
rc

v

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Reserved ia
p_

cy
cl

es

bu
s_

xf
er

_e
n

st
op

A
ps

yn
c

R
es

er
ve

d

w
ia

p

ria
p

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Bits Field Name Description Access Reset

0:21 Reserved Reserved; Writes have no effect on hardware and Reads return
undefined read data. R/W Undefined

22 APsyncRcv_en
External APsync enable. If system designed with external clock
chip generating APsync, this bit needs to be set to 1 to put CPC945
in mode to use this externally generated APsync.

R/W 0x0

23 mask_dis IAP pattern mask register disable. If set to 1, IAP pattern masks for
both receiver and driver are disabled. R/W Undefined

User Manual

CPC945 Bridge and Memory Controller Preliminary

Programmer’s Interface
Page 380 of 655 February 1, 2008

24:26 APsync_sel

FOR DEBUG PURPOSES ONLY.
APsync pulse timing adjustment. By default APsync is launched
from CPC945 at the rising edge of APclk (PI reference clock) and
pulsed every 24 APclk clocks.
APsync_sel is used to program the APIPhy to launch APsync ear-
lier in half APclk increments according to the following table:

APsync_sel
000 Reserved; aliases to 001
001 Default APsync
010 Launch APsync 1/2 APclk earlier
011 Launch APsync 1 APclk earlier
100 Launch APsync 1 1/2 APclks earlier
101 Launch APsync 2 APclks earlier
110 Reserved; aliases to 001
111 Reserved; aliases to 001

R/W Undefined

27 th_error_gen_dis Disable generation of transfer handshake parity error within APIPhy R/W 0b0

28 th_even_phase_rcv
Receiver TH Beat Phase adjustment: If a 0, data TH beat is being
received 180 degrees out of phase of the bus clock, else data is
being received in phase with bus clock.

R/W 0b0

29 ad_even_phase_rcv
Receiver AD Beat Phase adjustment: If a 0, data AD beat is being
received 180 degrees out of phase of the bus clock, else data is
being received in phase with bus clock.

R/W 0b1

30 sr_even_phase_rcv
Receiver SR Beat Phase adjustment: If a 0, data SR bear is being
received 180 degrees out of phase of the bus clock, else data is
being received in phase with bus clock.

R/W 0b0

31:55 Reserved Reserved; Writes have no effect on hardware and Reads return
undefined read data. R/W 0b1

56:57 iap_cycles

IAP Pattern generation modes.
iap_cycles
00 Generate 4-cycle pattern, (10001000...)
01 Generate 8-cycle pattern, (1000000010000000...)
10 Generate 12-cycle pattern,

(100000000000100000000000...)
11 Generate 16-cycle pattern,

(10000000000000001000000000000000...)

R/W 0b0

58 bus_xfer_en Enable snoop, command, and data transactions from APIPhy to PI
and from PI to APIPhy. R/W 0b1

59 stopApsync Stop APsync (disable APsync generation): If set to a value of 1,
stop generating APsync pulse. R/W Undefined

60:61 Reserved Reserved; Writes have no effect on hardware and Reads return
undefined read data. R/W 0b00

62 wiap

WIAP Start Driver IAP sequence: If set to a value of 1, WIAP is
enabled. The IAP signature of “1000” is continuously transmitted by
the APIPhy. Should not be set to a 0 until the RIAP done signal on
the receiving side is confirmed.

R/W 0b0

63 riap

RIAP Start Receiver IAP sequence: If set to a value of 1, RIAP is
enabled. Should not be set to a 0 until RIAP done is confirmed.
Note that the WIAP signal on the transmitting side must be active
when RIAP is asserted.

R/W 0b0
(disabled)

Bits Field Name Description Access Reset

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
Programmer’s Interface

Page 381 of 655

12.7.4.2 APIPhy Shorts Test Configuration Register (APIPhySTR)

Reset Value N/A

Offset x‘040’

Access Type Read/Write

co
un

t_
on

e_
fa

ils

co
un

t_
ze

ro
_f

ai
ls

Reserved es
tm

od
e_

rc
v

re
st

rr
dt

ce
st

es
to

ne
_r

cv

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Reserved rd
tm

od
e

es
tm

od
e_

dr
v

w
es

t

w
rd

t

es
to

ne
_d

rv

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Bits Field Name Description Access Reset

0 count_one_fails Receiver control. enable error detection during RDT; an error is an
expected zero detected as a one. R/W 0b0

1 count_zero_fails Receiver control. enable error detection during RDT; an error is an
expected one detected as a zero. R/W 0b0

2:26 Reserved Reserved; Writes have no effect on hardware and Reads return
undefined read data. R/W Undefined

27 estmode_rcv Receiver control. Processor interface Shorts Test Mode. If 1, sets
receiver in shorts test mode and enables use of rest command. R/W 0b0

28 rest Receiver control. Setting to 1 sends command to begin receiver
processor interface shorts test when estmode_rcv is asserted. R/W 0b0

29 rrdt Receiver control. If 1, sends command to begin receiver random
data test. R/W 0b0

30 cest
Receiver control. If 1, sends command to check for errors (shorts
from another bus’ (PPC970xx processor interface) EST test) on this
bus (CPC945 processor interface).

R/W 0b0

31 estone_rcv
Receiver control. Determines type of REST or CEST. If 0, EST is
walking ones test. If 1, EST is walking zeros test. This must be pro-
grammed to the same value as the estone_drv.

R/W 0b0

32:58 Reserved Reserved; Writes have no effect on hardware and reads return
undefined read data. R/W Undefined

User Manual

CPC945 Bridge and Memory Controller Preliminary

Programmer’s Interface
Page 382 of 655 February 1, 2008

12.7.4.3 APIPhy Status 0 Register (APIPhySTAT0)

This register holds copies of various 1 to 4 bit status registers to allow software to access this data from
diverse locations, via a single register read operation. The mappings follow:

59 rdtmode

Driver control. Used in conjunction with estmode.
[estmode, rdtmode]
00 Nontest; functional mode
01 rdt mode
10 est mode
11 Invalid

R/W 0b0

60 estmode_drv

Driver control. Used in conjunction with rdtmode.
[estmode, rdtmode]
00 Nontest; functional mode
01 rdt mode
10 est mode
11 Invalid

R/W 0b0

61 west Driver control. If 1, send command to begin Write Processor Inter-
face Shorts Test. Asserted after estmode/estone asserted. R/W 0b0

62 wrdt Driver control. If 1, send command to begin write random data test
when rdtmode is asserted. R/W 0b0

63 estone_drv
Driver control. Determines type of REST or CEST. If 0, EST is walk-
ing ones test. If 1, EST is walking zeros test. This must be pro-
grammed to the same value as the estone_rcv.

R/W 0b0

Bit Field Description

24:27

copy of eical_status[0:3] found in 0x205/0x305 bits 10:13
where bit 24 = Overflow of per-bit deskew from eical
where bit 25 = Underflow of per-bit deskew from eical
where bit 26 = Guardband delay underflow
where bit 27 = Guardband delay overflow

28 copy of gb_threshold_bad found in 0x205/0x305 bit 14

29 copy of ltc_invalid found in 0x205/0x305 bit 15

30 copy if riap_done found in 0x205/0x305 bit 1

31 copy of data_stat[12] found in 0x205/0x305 bit 60

32 copy of data_stat[13] found in 0x205/0x305 bit 61

33:39 RESERVED (should read all zeros)

Reset Value x‘0000 0000 0000 0000’

Offset x‘050’

Access Type Read Only

Bits Field Name Description Access Reset

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
Programmer’s Interface

Page 383 of 655

A
P

IP
hy

_d
at

a_
 e

rr
or

_
cy

cl
e0

ria
p_

do
ne

ex
tA

P
sy

nc
_a

ct
iv

e

Reserved eical_status gb
_t

hr
es

ho
ld

_b
ad

ltc
_i

nv
al

id

rc
v_

ad
_d

ly
ed

rc
v_

th
_d

ly
ed

rc
v_

sr
_d

ly
ed

R
es

er
ve

d

ta
rg

et
_t

im
e_

st
at

rcv_error_vector

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

rcv_error_vector Reserved data_stat

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Bits Field Name Description Access Reset

0 APIPhy_data_ error_ cycle0 Parity or BCM data error status: if 1, a data error was detected else
no error detected. R 0b0

1 riap_done

RIAP_DONE: If value is a 1, then RIAP for APIPhy complete. If
value is a 0, then RIAP is not complete
0 Receiver IAP sequence not complete
1 Receiver IAP sequence finished

R 0b0

2 extAPsync_enabled

External APsync enabled: if 1, APIPhy and the processors are
using the external APsyncs generated off chip by the clock chip to
determine time zero. If 0, APIPhy is generating its own APsync
internally and generating the APsyncs for the processors to deter-
mine time zero. Mode of APsync is set in PMR Configuration Regis-
ters.

R 0b0

3:9 Reserved Reserved R 0x00

10:13 eical_status PI calibration status. R 0x0

14 gb_threshold_bad If 1, guardband below threshold set by gb_min_thresh. R 0b0

15 ltc_invalid If 1, learned target cycle could not be determined. Need to manually
set appropriate target cycle. R 0b0

16 rcv_ad_dlyed

When read as a 0b1, the PI PHY receiver is delaying the AD
(address/data) bus one PI PHY cycle to align it to the api_clk for the
PI functional unit. This field adds observability into the PI PHY to
see when the PI PHY even phase logic adds a delay to align odd
aligned data and commands from the processor to the even edge of
the PI clock.

R 0bX

17 rcv_th_dlyed

When read as a 0b1, the PI PHY receiver is delaying the TH (Trans-
fer Handshake) bus one PI PHY cycle to align it to the api_clk for
the PI functional unit. This field adds observability into the PI PHY to
see when the PI PHY even phase logic adds a delay to align odd
aligned data and commands from the processor to the even edge of
the PI clock.

0bX

User Manual

CPC945 Bridge and Memory Controller Preliminary

Programmer’s Interface
Page 384 of 655 February 1, 2008

18 rcv_sr_dlyed

When read as a 0b1, the PI PHY receiver is delaying the SR
(Snoop Response) bus one PI PHY cycle to align it to the api_clk
for the PI functional unit. This field adds observability into the PI
PHY to see when the PI PHY even phase logic adds a delay to align
odd aligned data and commands from the processor to the even
edge of the PI clock.

0bX

19-20 Reserved Reserved 0b00

21:23 target_time_stat
The currently loaded target beat (target cycle). The value here is the
target cycle that has been chosen for the current power tuning
mode (full, half, or quarter).

R 0b011

24:39 rcv_error_vector

Status of eical
Error vector of various error/attention/interrupt signals.
rcv_error_vector holds copies of various 1 to 4 bit status registers
that reside in several places and puts it in one register. This way
software did not have to do several register reads to collect this
data.
Bit Field Description
24:27 copy of eical_status[0:3]
 (found in 0x205/0x305, bits 10:13)
 bit 24 = Overflow of per-bit deskew from eical
 bit 25 = Underflow of per-bit deskew from eical
 bit 26 = Guardband delay underflow
 bit 27 = Guardband delay overflow
28 copy of gb_threshold_bad found in 0x205/0x305 bit 14
29 copy of ltc_invalid found in 0x205/0x305 bit 15
30 copy if riap_done found in 0x205/0x305 bit 1
31 copy of data_stat[12] found in 0x205/0x305 bit 60
32 copy of data_stat[13] found in 0x205/0x305 bit 61
33:39 RESERVED (should read all zeros)

R 0x0000

40:47 Reserved Reserved R 0x00

48:63 data_stat

The data status register, data_stat, is a 16 bit read-only register that
displays the returned status data that was selected by data_stat_sel
in the Section 12.7.4.4 APIPhy Receiver Mode and Command Reg-
ister (APIPhyRcvModeCmd) on page 385.

R 0x0000

Bits Field Name Description Access Reset

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
Programmer’s Interface

Page 385 of 655

12.7.4.4 APIPhy Receiver Mode and Command Register (APIPhyRcvModeCmd)

Reset Value N/A

Offset x‘060’

Access Type Read Only

R
es

er
ve

d

gb_min_thresh w
id

e_
gb

_m
od

e

se
t_

gb
m

in

ei
ca

l_
ac

tiv
e

w
ei

ca
l

Reserved ltc_adjust R
es

er
ve

d

ltc
_c

on
tro

l

Reserved iogrp_sel

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Reserved da
ta

_s
ta

t_
se

l

Reserved cmd_data cm
d_

lo
ad

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Bits Field Name Description Access Reset

0:1 Reserved Reserved; Writes have no effect on hardware and reads return
undefined read data. R/W 0b0

2:6 gb_min_tresh[0:4] Guardband minimum threshold value R/W 0b0

7 wide_gb_mode Guardband mode control. If 1, in wide guardband mode. R/W 0b0

8 set_gbmin If 1, restart the guardband minimum detector R/W 0b0

9 eical_active If 1, start processor interface calibration R/W Undefined

10 weical If 1, use eical pattern instead of functional data during PI calibration R/W 0b000

11:16 Reserved Reserved; Writes have no effect on hardware and reads return
undefined read data. R/W Undefined

17:19 ltc_adjust[0:2] Used when in learned target cycle mode. Target cycle windage R/W 0b11

20:21 Reserved Reserved; Writes have no effect on hardware and reads return
undefined read data. R/W Undefined

22:23 ltc_control[0:1]

learned target cycle control:
ltc_control
00 search for minimum working target cycle
01 search for minimum working target cycle + 1
10 search for minimum working target cycle + 2
11 disable learned target cycle and set manually

R/W 0x0

24:27 Reserved Reserved; Writes have no effect on hardware and reads return
undefined read data. R/W Undefined

User Manual

CPC945 Bridge and Memory Controller Preliminary

Programmer’s Interface
Page 386 of 655 February 1, 2008

28:31 iogroup_sel[0:3] I/O group select. Used for selecting I/O group from which to read
status or write configuration commands. R/W 0b111

32:36 Reserved Reserved; Writes have no effect on hardware and reads return
undefined read data. Undefined

37:39 data_status_sel[0:2] Status select. Used to select what status data to collect for the cur-
rently selected I/O group. 0x0000

40:47 Reserved Reserved; Writes have no effect on hardware and read return unde-
fined read data.

48:62 command_data[0:14] Bus used to load values into clock delay registers.

63 command_load

Load command data into APIPhy register bus. Set to a 1 to load
command data (located in bits 48:62 of this register: APIPhyRcvMo-
deCmd Register). Follow with a clear of this bit (set to 0) to trigger
the write of the command data.

Bits Field Name Description Access Reset

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
Programmer’s Interface

Page 387 of 655

12.7.4.5 APIPhy Receiver IAP State Register (APIPhyRIAPSTATE)
This register allows software to sense the state of the IAP state machine. This feature can be used to
determine if the state machine is running or stopped.

Reset Value x‘8000 0000 0000 0000’

Address x‘070’

Access Type Read Only

ste

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

ste Reserved

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Bits Field Name Description Access Reset

0:39 ste

Receiver IAP State Machine State (IAP_STATE).
Reports the current state of the IAP state machine. Only one bit is
active at a time. The bit position of the active bit corresponds to the
current IAP state. (One hot-active bit position determines current
state).

R 0x8000000000
(Ready State)

40:63 Reserved Reserved R 0x000000

User Manual

CPC945 Bridge and Memory Controller Preliminary

Programmer’s Interface
Page 388 of 655 February 1, 2008

12.7.4.6 APIPhy Data Error 0 Register (DATAERROR0)

Reset Value x‘0000 0000 0000 0000’

Address x‘080’

Access Type Read Only

Reserved APIPhy_ syndrome_ cycle0 Reserved APIPhy_bad_ data_cycle0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

APIPhy_bad_ data_cycle0

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Bits Field Name Description Access Reset

0:3 Reserved Reserved R 0000

4:11 APIPhy_ syndrome_ cycle0
Syndrome Cycle 0. This register holds syndrome of the initial beat
that caused a parity error. Syndrome of the nonBCM mode
(APSel = 0) parity error.

R 0x00

12:19 Reserved Reserved R 0x00

20:63 APIPhy_bad_ data_cycle0

Bad Data Cycle 0 (BAD_DATA_CYCLE 0). This register holds the
initial beat of data that caused a parity or BCM error. If in nonBCM
mode (APSel = 0), this register holds the 36 bit data and its corre-
sponding 8 bit encoded parity that caused the parity error. If in BCM
mode (APSel = 1), this register holds the 44 bit BCM encoded data
that caused the data error.

R 0x0000

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
Programmer’s Interface

Page 389 of 655

12.7.4.7 APIPhy Data Error 1 Register (DATAERROR1)

Reset Value x‘0000 0000 0000 0000’

Address x‘090’

Access Type Read Only

Reserved APIPhy_ syndrome_ cycle1 Reserved APIPhy_bad_ data_cycle1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

APIPhy_bad_ data_cycle1

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Bits Field Name Description Access Reset

0:3 Reserved Reserved R 0000

4:11 APIPhy_ syndrome_ cycle1
Syndrome Cycle 1. This register holds the data of the 1st syndrome
after the initial beat that caused a parity error. Syndrome of the non-
BCM mode (APSel =0) parity error.

R 0x00

12:19 Reserved Reserved R 0x00

20:63 APIPhy_bad_ data_cycle1

Bad Data Cycle 1 (BAD_DATA_CYCLE 1). This register holds the
data of the 1st data beat after the initial beat that caused a parity or
BCM error. If in nonBCM mode (APSel = 0), this register holds the
36 bit data and its corresponding 8 bit encoded parity that caused
the parity error. If in BCM mode (APSel = 1), this register holds the
44 bit BCM encoded data that caused the data error.

R 0x0000

User Manual

CPC945 Bridge and Memory Controller Preliminary

Programmer’s Interface
Page 390 of 655 February 1, 2008

12.7.4.8 APIPhy Data Error 2 Register (DATAERROR2)

Reset Value x‘0000 0000 0000 0000’

Address x‘0A0’

Access Type Read Only

Reserved APIPhy_ syndrome_ cycle2 Reserved APIPhy_bad_ data_cycle2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

APIPhy_bad_ data_cycle2

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Bits Field Name Description Access Reset

0:3 Reserved Reserved R 0000

4:11 APIPhy_ syndrome_ cycle2
Syndrome Cycle 2. This register holds the data of the 2nd syn-
drome after the initial beat that caused a parity error. Syndrome of
the nonBCM mode (APSel =0) parity error.

R 0x00

12:19 Reserved Reserved R 0x00

20:63 APIPhy_bad_ data_cycle2

Bad Data Cycle 2 (BAD_DATA_CYCLE 2). This register holds the
data of the 2nd data beat after the initial beat that caused a parity or
BCM error. If in nonBCM mode (APSel = 0), this register holds the
36 bit data and its corresponding 8 bit encoded parity that caused
the parity error. If in BCM mode (APSel = 1), this register holds the
44 bit BCM encoded data that caused the data error.

R 0x0000

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
Programmer’s Interface

Page 391 of 655

12.7.4.9 APIPhy Data Error 3 Register (APIPhyDATAERROR3)

Reset Value x‘0000 0000 0000 0000’

Address x‘0B0’

Access Type Read Only

Reserved APIPhy_ syndrome_ cycle3 Reserved APIPhy_bad_ data_cycle3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

APIPhy_bad_ data_cycle3

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Bits Field Name Description Access Reset

0:3 Reserved Reserved R 0000

4:11 APIPhy_ syndrome_ cycle3
Syndrome Cycle 3. This register holds the data of the 3rd syndrome
after the initial beat that caused a parity error. Syndrome of the non-
BCM mode (APSel =0) parity error.

R 0x00

12:19 Reserved Reserved R 0x00

20:63 APIPhy_bad_ data_cycle3

Bad Data Cycle 3 (BAD_DATA_CYCLE 3). This register holds the
data of the 3rd data beat after the initial beat that caused a parity or
BCM error. If in nonBCM mode (APSel = 0), this register holds the
36 bit data and its corresponding 8 bit encoded parity that caused
the parity error. If in BCM mode (APSel = 1), this register holds the
44 bit BCM encoded data that caused the data error.

R 0x0000

User Manual

CPC945 Bridge and Memory Controller Preliminary

Programmer’s Interface
Page 392 of 655 February 1, 2008

12.7.4.10 APIPhy Data Error 4 Register (APIPhyDATAERROR4)

Reset Value x‘0000 0000 0000 0000’

Address x‘0C0’

Access Type Read Only

Reserved APIPhy_ syndrome_ cycle4 Reserved APIPhy_bad_ data_cycle4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

APIPhy_bad_ data_cycle4

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Bits Field Name Description Access Reset

0:3 Reserved Reserved R 0000

4:11 APIPhy_ syndrome_ cycle4
Syndrome Cycle 4. This register holds the data of the 4th syndrome
after the initial beat that caused a parity error. Syndrome of the non-
BCM mode (APSel =0) parity error.

R 0x00

12:19 Reserved Reserved R 0x00

20:63 APIPhy_bad_ data_cycle4

Bad Data Cycle 4 (BAD_DATA_CYCLE 4). This register holds the
data of the 4th data beat after the initial beat that caused a parity or
BCM error. If in nonBCM mode (APSel = 0), this register holds the
36-bit data and its corresponding 8-bit encoded parity that caused
the parity error. If in BCM mode (APSel = 1), this register holds the
44-bit BCM encoded data that caused the data error.

R 0x0000

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
Programmer’s Interface

Page 393 of 655

12.7.4.11 APIPhy Data Error 5 Register (APIPhyDATAERROR5)

Reset Value x‘0000 0000 0000 0000’

Address x‘0D0’

Access Type Read only

Reserved APIPhy_ syndrome_ cycle5 Reserved APIPhy_bad_ data_cycle5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

APIPhy_bad_ data_cycle5

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Bits Field Name Description Access Reset

0:3 Reserved Reserved R 0000

4:11 APIPhy_ syndrome_ cycle5
Syndrome Cycle 5. This register holds the data of the 5th syndrome
after the initial beat that caused a parity error. Syndrome of the non-
BCM mode (APSel =0) parity error.

R 0x00

12:19 Reserved Reserved R 0x00

20:63 APIPhy_bad_ data_cycle5

Bad Data Cycle 5 (BAD_DATA_CYCLE 5). This register holds the
data of the 5th data beat after the initial beat that caused a parity or
BCM error. If in nonBCM mode (APSel = 0), this register holds the
36-bit data and its corresponding 8-bit encoded parity that caused
the parity error. If in BCM mode (APSel = 1), this register holds the
44-bit BCM encoded data that caused the data error.

R 0x0000

User Manual

CPC945 Bridge and Memory Controller Preliminary

Programmer’s Interface
Page 394 of 655 February 1, 2008

12.7.4.12 APIPhy I/O Control Register (APIPhyIOCTRL)

This register configures the APIPhy I/O pads for ADO, ADI, BCLKO, and BCLKI signals:

• The "ADO" inputs to the CPC945 use BBPICMP55TERM I/O (1.5, 1.2, 1.0V Test Bus Pumped Processor
Interface-2 Three State CIO) configured as inputs using bits 34:39. The description is located in the IBM
Standard Cell Nontest I/Os document (see Section 13 References on page 645).

• The "ADI" outputs of the CPC945 use BBPICMP55TERM configured as outputs using bits 42:47.

• The "BCLKO" input to the CPC945 uses IBPI55 I/O (1.5, 1.2, 1.0V Nontest Bus Pumped Processor Inter-
face-2 Differential Clock Receiver) which is configured using bits 49:55.

• The "BCLKI" output of the CPC945 use OBP I/O (1.5, 1.2, 1.0V Nontest Bus Pumped Processor Inter-
face-2 Differential Clock Driver) which is configured using bits 61:63.

Reset Value N/A

Address x‘0E0’

Access Type Read/Write

Reserved

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
es

er
ve

d

In
D

yn
am

ic
P

w
r

In
D

riv
eE

na
bl

e

In
D

riv
eS

tre
ng

th

IR
es

er
ve

d

In
R

cv
Le

ve
l

In
R

cv
E

na
bl

e

R
es

er
ve

d

O
ut

D
riv

eE
na

bl
e

O
ut

D
riv

eP
C

D
is

ab
le

O
ut

D
riv

eS
tre

ng
th

O
ut

Te
rm

E
na

bl
e

O
ut

R
cv

Le
ve

l

O
ut

R
cv

E
na

bl
e

R
es

er
ve

d

ClkInVREFCtl C
lk

In
D

riv
eE

na
bl

e

C
lk

In
R

cv
Le

ve
l

C
lk

In
R

cv
E

na
bl

e

Reserved C
lk

O
ut

D
riv

eE
na

bl
e

C
lk

O
ut

D
riv

eS
tre

ng
th

C
lk

O
ut

R
cv

E
na

bl
e

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Bits Field Name Description Access Reset

0:33 Reserved Reserved; Writes have no effect on hardware and Reads return
undefined read data. R/W Undefined

34 InDynamicPwr
1 Dynamic disable during bus quiesce as well as bus and

system sleep
0 Dynamic disable only for bus and system sleep

R 0b1

35 InDriveEnable
1 Enable driver to pad except for bus and system sleep
0 Always tristate driver portion of buffer

R/W 0b0

36 InDriveStrength
1 Set driver output impedance to 20 Ω
0 Set driver output impedance to 40 Ω

R/W 0b1

37 Reserved This field will read 0b1. R/W 0b1

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
Programmer’s Interface

Page 395 of 655

38 InRcvLevel
1 Optimize for 1.2 V I/O
0 Optimize for 1.0 V I/O

R/W 0b1

39 InRcvEnable
1 Enable receiver on pad with dynamic disable
0 Disable receiver

R/W 0b1

40:41 Reserved Reserved; Writes have no effect on hardware and Reads return
undefined read data. R/W Undefined

42 OutDriveEnable
1 Enable driver to pad except for bus and system sleep
0 Always tristate driver portion of buffer

R/W 0b1

43 OutDrivePCDisable

1 Disable driver dynamic precompensation. Drive
strength statically set. by register write to OutDriveStrength
register.

0 Enable driver dynamic precompensation. Drive
strength dynamically controlled by APIPhy unit

R/W 0b1

44 OutDriveStrength
1 Set driver output impedance to 20 Ω
0 Set driver output impedance to 40 Ω

R/W 0b0

45 OutTermEnable
1 Enable terminators at 90 Ω to Vdd/2 except for bus and

system sleep
0 Disable terminators

R/W 0b0

46 OutRcvLevel
1 Optimize for 1.2V I/O
0 Optimize for 1.0V I/O

R/W 0b1

47 OutRcvEnable
1 Enable receiver on pad except for bus and system sleep
0 Disable receiver

R/W 0b0

48 Reserved Reserved. Writes have no effect on hardware and Reads return
undefined read data. R/W Undefined

49:52 ClkInVREFCtl

0000 ZVref = 0.5 × V1.2/V1.0 (module test)
0001 ZVref = 0.48 × Vcm
0010 ZVref = 0.46 × Vcm
0011 ZVref = 0.44 × Vcm
0100 ZVref = 0.46 × Vcm
0101 ZVref = 0.44 × Vcm
0110 ZVref = 0.43 × Vcm
0111 ZVref = 0.41 × Vcm
1000 ZVref = 0.59 × Vcm
1001 ZVref = 0.57 × Vcm
1010 ZVref = 0.55 × Vcm
1011 ZVref = 0.54 × Vcm
1100 ZVref = 0.55 × Vcm
1101 ZVref = 0.54 × Vcm
1110 ZVref = 0.52 × Vcm
1111 ZVref = 0.5 × Vcm

R/W 0x0

53 ClkInDriveEnable
1 Enable driver to receiver pad except for bus and

system sleep
0 Always tristate driver portion of buffer

R/W 0b0

54 ClkInRcvLevel
1 Optimize for 1.2V I/O
0 Optimize for 1.0V I/O

R/W 0b1

55 ClkInRcvEnable
1 Enable receiver on pad except for bus and system sleep
0 Disable receiver

R/W 0b1

56:59 Reserved Reserved; Writes have no effect on hardware and reads return
undefined read data. R/W Undefined

Bits Field Name Description Access Reset

User Manual

CPC945 Bridge and Memory Controller Preliminary

Programmer’s Interface
Page 396 of 655 February 1, 2008

12.7.4.13 APIPhy PMR I/O Control Register (APIPhyPMRIOCTRL)

This APIPhy PMR I/O Control Register (APIPhyPMRIOCTRL) controls all I/O pins using the APIPhy I/O pads
except the pins used by the actual PI Physical Interface. See BBPICMPTERMT: 1.5, 1.2, 1.0V Test Bus
Pumped Processor Interface-2 Three State CIO. The description is located in the IBM Standard Cell Nontest
I/Os document (see Section 13 References on page 645). This register configures the APIPhy I/O pads for
APsync, QREQ, QACK, IRQ, PI_CSTP, API0_SE and API1_SE signals:

• The APsync signal of the CPC945 uses BBPICMP55TERM I/O (1.5, 1.2, 1.0V Test Bus Pumped Proces-
sor Interface-2 Three State CIO) configured as Inputs using bits 1:5.

• The PI_QREQ0, PI_QREQ1, PI_QACK0, PI_QACK1, IRQ0, IRQ1, and API0_SE signals of the CPC945
use the BBPICMP55TERM I/O configured using bits 59_63 at address 0xF802 20F0.

• The PI_QREQ2, PI_QREQ3, PI_QACK2, PI_QACK3, IRQ2, IRQ3, PI_CSTP and API1_SE signals of the
CPC945 use the BBPICMP55TERM I/O configured using bits 59:63 at address 0xF802 30F0.

60 Reserved Reserved; Writes have no effect on hardware and Reads return
undefined read data. R/W Undefined

61 ClkOutDriveEnable
1 Enable driver to pad except for bus and system sleep
0 Always tristate driver portion of buffer

R/W 0b1

62 ClkOutDriveStrength
1 Set driver output impedance to 20 Ω
0 Set driver output impedance to 40 Ω

R/W 0b1

63 ClkOutRcvEnable
1 Enable receiver on pad except for bus and system sleep
0 Disable receiver

R/W 0b0

Reset Value N/A

Address x‘0F0’

Access Type Read/Write

AP
sy

nc
_o

vr

AP
sy

nc
D

rv
En

ab
le

AP
sy

nc
R

cv
E

na
bl

e

AP
sy

nc
D

rv
St

re
ng

th

AP
sy

nc
Te

rm
E

na
bl

e

AP
sy

nc
V

ol
ta

ge
Le

ve
l

Reserved

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Reserved R
cv

E
na

bl
e

V
ol

ta
ge

Le
ve

l

Te
rm

En
ab

le

D
riv

eS
tre

ng
th

D
riv

eE
na

bl
e

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Bits Field Name Description Access Reset

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
Programmer’s Interface

Page 397 of 655

12.7.5 Related Registers

12.7.5.1 Bus Encode Disable

Bit 31 of the CPC945 Configurable Timing Delay Parameter Register (BUSCONF). This register resides in PI.
Set this bit to 1; APSel is the invert of this signal.

Bits Field Name Description Access Reset

0 APsync_ovr

If set to 1, APsync0 and APsync1 pads’ driver enables
(APsync_ts) and receiver enables (APsync_rg) can be set or dis-
abled manually with a register write. If set to 0, then driver enables
and receiver enables states are determined by APsync mode set-
ting. If external APsync is enabled, APIPhy and the processors are
using the external APsyncs generated off chip by the clock chip to
determine timezero and APsync0 and APsync1 pads’ driver
enables are set to 0 and their receiver enables are set to 1. If not,
APIPhy is generating its own APsync internally and generating the
APsyncs for the processors to determine timezero. Also APsync0
and APsync1 pads’ driver enables are set to 1 and their receiver
enables are set to 0. Mode of APsync is set in PMR Configuration
registers.

R/W 0b0

1 APsyncDrvEnable
1 Enable driver to pad
0 Always tristate driver portion of buffer

R/W 0b0

2 APsyncRcvEnable
1 Enable receiver on pad
0 Disable receiver

R/W 0b1

3 APsyncDrvStrength
1 Set driver output impedance to 20 Ω
0 Set driver output impedance to 40 Ω

R/W 0b0

4 APsyncTermEnable
1 Enable terminators at 55 Ω to Vdd/2
0 Disable terminators

R/W 0b0

5 APsyncVoltageLevel
1 Optimize for 1.2V I/O
0 Optimize for 1.0V I/O

R/W 0b1

6:58 Reserved Reserved; Writes have no effect on hardware and reads return
undefined read data. R/W Undefined

59 RcvEnable
1 Enable receiver on pad
0 Disable receiver

R/W 0b1

60 VoltageLevel
1 Optimize for 1.2V I/O
0 Optimize for 1.0V I/O

R/W 0b1

61 TermEnable
1 Enable terminators at 55 Ω to Vdd/2
0 Disable terminators

R/W 0b0

62 DriveStrength
1 Set driver output impedance to 20 Ω
0 Set driver output impedance to 40 Ω

R/W 0b0

63 DriveEnable
1 Enable driver to pad
0 Always tristate driver portion of buffer

R/W 0b1

User Manual

CPC945 Bridge and Memory Controller Preliminary

Programmer’s Interface
Page 398 of 655 February 1, 2008

Programmer’s Interface

12.8 DRAM I2C Master Controller Registers

12.8.1 I2C Controller MODE Register

The MODE register contains four mode bits used to configure the transmission mode of the I2C cell and the
data bit rate of the I2C interface. The register is initialized to 0x00.

This register cannot be written when the I2C interface is busy, as indicated by the BUSY bit in the STATUS
register.

Table 12-15. CPC945 I2C Control Register Addresses

Address Register Name Description Page

0xF8001000-0xF8001FFF See below I2C Controller Registers

0xF8001000 MODE I2C Mode Register 398

0xF8001010 CNTRL I2C Control Register 400

0xF8001020 STATUS I2C Status Register 401

0xF8001030 ISR I2C Interrupt Status Register 402

0xF8001040 IER I2C Interrupt Enable Register 403

0xF8001050 ADDR I2C Address Register 404

0xF8001060 SUBADDR I2C Sub-Address Register 404

0xF8001070 DATA I2C Data Transmit/Receive Register 405

0xF8001080 REV I2C Revision Register 405

0xF8001090 RISETIMECNT I2C ISCL Rise Time Count Register 406

0xF80010A0 BITTIMECNT I2C Bit Time Count Register 407

Reset Value 0x00000000

Offset 0xF8001000

Access Type Read/Write, Read Only

Undefined P
O

R
TS

E
L

A
P

M
O

D
E

N

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits Field Name Description Access Reset

0:26 Undefined This field reads 0. R 0x0000000

27 PORTSEL

This field is set by writing the desired value to its bit position. It controls the active
I2C port used by the I2C cell:
0 The I2C cell transmits and receives data on the ISCL0 and ISDA0 interface.
1 The I2C cell transmits and receives data on the ISCL1 and ISDA1 interface.

R/W 0b0

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
Programmer’s Interface

Page 399 of 655

28:29 APMODE

This field is set by writing the desired value to its bit positions. This field controls the
address transmission mode of the I2C cell as follows:
00 The I2C cell operates in dumb mode. In dumb mode, the transmissions are

accomplished using the START and STOP control bits, and the DATA reg-
ister.

01 The I2C cell operates in Standard Address mode. Transmissions are
accomplished using the XADDR control bit and the ADDR and DATA regis-
ters.

10 The I2C cell operates in Standard Address with Sub-address mode. In Std
Address with Sub-address mode, the transmissions are accomplished
using the XADDR control bit, and the ADDR, SUBADDR, and DATA regis-
ters.

11 The I2C cell operates in Combined mode. Transmissions are accomplished
using the XADDR control bit, and the ADDR, SUBADDR, and DATA regis-
ters.

In the three automated address transmission modes, the I2C cell aborts the address
transmission and sends a STOP condition if it receives a Not Acknowledge during
the address transmission phase. This event is indicated by the BUSY status bit
being cleared, the LASTAAK bit being cleared, and the IADDR interrupt bit being
set.

R/W 0b00

30:31 N

The N field is set by writing the desired value to its bit positions. This field controls
the transmission speed of the I2C interface as follows:
00 100 kHz
01 50 kHz
10 25 kHz

R/W 0b00

Bits Field Name Description Access Reset

User Manual

CPC945 Bridge and Memory Controller Preliminary

Programmer’s Interface
Page 400 of 655 February 1, 2008

12.8.2 I2C Controller CNTRL Register

The CNTRL register contains four bits used to initiate the various operations on the I2C interface. All register
bits are cleared to zero when the ResetClk_ signal is asserted.

Reset Value 0x00000000

Offset 0xF8001010

Access Type Read/Write, Read Only

Undefined S
TA

R
T

S
TO

P

X
A

D
D

R

A
A

K

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits Field Name Description Access Reset

0:27 Undefined These fields read 0. R 0x0000000

28 START
This bit is set by writing a one to its position. When this bit is set, a start condition is
transmitted on the I2C interface. When the start condition has been sent, the bit is
cleared. Writing a zero to the START bit has no effect.

R/W 0b0

29 STOP
This bit is set by writing a one to its position. When this bit is set, a stop condition is
transmitted on the I2C interface. When the stop condition has been sent, the bit is
cleared. Writing a zero to this bit has no effect.

R/W 0b0

30 XADDR

This bit is set by writing a one to its position. When this bit is set, an address phase
is transmitted on the I2C interface. The address mode is determined by bits in the
MODE register. When the address phase has been sent, the bit is cleared. Writing
a zero to this bit has no effect.

R/W 0b0

31 AAK

This bit is set by writing the desired value to its bit position. When this bit is set to
one, an acknowledge is sent (low on SDA) during the acknowledge bit time follow-
ing a received data byte. When this bit is set to zero, a Not Acknowledge is sent
(high on SDA) during the acknowledge bit time following a received data byte.

R/W 0b0

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
Programmer’s Interface

Page 401 of 655

12.8.3 I2C Controller STATUS Register

The STATUS register contains the status bits that describe the state of the I2C cell and the I2C interface. The
register is initialized to 0x00.

Reset Value 0x0000001A

Offset 0xF8001020

Access Type Read Only

Unused IS
C

L

IS
D

A

LA
S

TR
W

_

LA
S

TA
A

K

B
U

S
Y

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits Field Name Description Access Reset

0:26 Unused These fields read 0. R 0x0000000

27 ISCL This bit is the double rank synchronized input from the ISCL line of the I2C interface
currently selected. R 0b0

28 ISDA This bit is the double rank synchronized input from the ISDA line of the I2C interface
currently selected. R 0b0

29 LASTRW_ This bit indicates the value of the last R/W_ bit transmitted on the I2C interface cur-
rently selected. R 0b0

30 LASTAAK

This bit indicates the value of the last Acknowledge bit transmitted or received on
the I2C interface as follows:
1 An Acknowledge was transmitted.
0 A Not Acknowledge was transmitted.

R 0b0

31 BUSY
This bit indicates the state of the I2C interface and the I2C cell. If the BUSY bit is set,
the I2C interface is running properly. This bit is cleared when a STOP condition has
been sent, and ISDA and ISCL are both high.

R 0b0

User Manual

CPC945 Bridge and Memory Controller Preliminary

Programmer’s Interface
Page 402 of 655 February 1, 2008

12.8.4 I2C Controller Interrupt Status (ISR) Register

The Interrupt Status Register (ISR) contains the status bits for the four interrupt conditions that can occur in
the I2C cell. A status bit is cleared by writing a one to its bit position. The register is initialized to 0x00.

Reset Value 0x00000000

Offset 0xF8001030

Access Type Read/Write, Read Only

Unused IS
TA

R
T

IS
TO

P

IA
D

D
R

ID
A

TA

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits Field Name Description Access Reset

0:27 Unused These fields read 0. R 0x0000000

28 ISTART The start condition sent interrupt flag. R/W 0b0

29 ISTOP The stop condition sent interrupt flag. R/W 0b0

30 IADDR The address phase sent interrupt flag. R/W 0b0

31 IDATA The data byte sent or received interrupt flag. R/W 0b0

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
Programmer’s Interface

Page 403 of 655

12.8.5 I2C Controller Interrupt Enable (IER) Register

The Interrupt Enable Register (IER) contains the enable bits that allow the four interrupt status conditions
indicated in the ISR to cause assertion of the Int_ signal from the I2C cell. When a bit is set in the IER, the
corresponding bit in the ISR register, when set, will cause the Int_ signal to be asserted. The register is initial-
ized to 0x00.

Reset Value 0x00000000

Offset 0xF8001040

Access Type Read/Write, Read Only

Unused E
S

TA
R

T

E
S

TO
P

E
A

D
D

R

E
D

A
TA

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits Field Name Description Access Reset

0:27 Unused These fields read 0. R 0x0000000

28 ESTART This bit enables start condition sent interrupt. R/W 0b0

29 ESTOP This bit enables stop condition sent interrupt. R/W 0b0

30 EADDR This bit enables address phase sent interrupt. R/W 0b0

31 EDATA This bit enables data byte sent or received interrupt. R/W 0b0

User Manual

CPC945 Bridge and Memory Controller Preliminary

Programmer’s Interface
Page 404 of 655 February 1, 2008

12.8.6 I2C Controller ADDR Register

The ADDR register contains the 7-bit Master address and the R/W_ bit. The R/W_ bit is sent following the 7-
bit address, except during the first transmission of the 7-bit address in the combined mode. In the combined
mode, the R/W_ bit following the 7-bit address is forced low, or to W_, on the first transmission. After the
repeated start condition, the 7-bit address and R/W_ bit are sent as usual.

12.8.7 I2C Controller SUBADDR Register

The SUBADDR register contains the 8-bit Master Sub-Address that will be transmitted following the ADDR
and R/W_ or W_ bits in either Std with Sub-address or Combined modes.

Reset Value 0x00000000

Offset 0xF8001050

Access Type Read/Write, Read Only

Unused ADDR[0:6] R
/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits Field Name Description Access Reset

0:23 Unused This field will read all 0’s R 0x000000

24:30 ADDR[0:6] Master address. R/W 0b0000000

31 R/W This is the R/W bit. R/W 0b0

Reset Value 0x00000000

Offset 0xF8001060

Access Type Read/Write, Read Only

Unused SUBADDR[0:7]

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits Field Name Description Access Reset

0:23 Unused This field will read all 0’s. R 0x000000

24:31 SUBADDR[0:7] Subaddress R/W 0x00

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
Programmer’s Interface

Page 405 of 655

12.8.8 I2C Controller Data Transmit/Receive Register

The DATA register contains the byte of data to be transmitted in write mode, or the last byte of data received
in read mode. This register is actually the I/O shift register. Following transmission, the register will contain
the byte that was actually transmitted on the I2C interface. During transmission, the value in the register is
invalid.

12.8.9 I2C Controller Revision Register

The REVNUM register contains the 8-bit I2C Cell Revision Number.

Reset Value 0x00000000

Offset 0xF8001070

Access Type Read/Write, Read Only

Unused DATA[0:7]

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits Field Name Description Access Reset

0:23 Unused This field will read all 0’s. R 0x000000

24:31 DATA[0:7] Data Transmit/Receive R/W 0x00

Reset Value 0x000000A2

Offset 0xF8001080

Access Type Read/Write, Read Only

Unused RevNum

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits Field Name Description Access Reset

0:23 Unused This field will read all 0’s. R 0x000000

24:31 RevNum Revision number R 0xA2

User Manual

CPC945 Bridge and Memory Controller Preliminary

Programmer’s Interface
Page 406 of 655 February 1, 2008

12.8.10 I2C Controller RISETIMECNT Register

The RISETIMECNT register contains the 10-bit ISCL rise time count value. This register determines the time
period that the I2C cell waits after tri-stating the ISCL output before it stalls its bit time counter because of
slave clock stretching. The value programmed into this register is the number of periods, minus one, of the
I2C CLK input that corresponds to the desired rise time period. The desired rise time period is the worst
possible case, which is 110 ns for this design. The I2C clock input is the ddr_clk input. For example if the
ddr_clk was running at 100 MHz, the register is initialized to 0x00A, representing 11 clock periods, or 110 ns.
The initial values entered below are for a 333 MHz ddr_clk (167 MHz memory controller clock). These values
should be changed by software if a higher ddr_clk is used.

Reset Value 0x00000025

Offset 0xF8001090

Access Type Read/Write, Read Only

Unused RISETIMECNT [0:9]

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits Field Name Description Access Reset

0:21 Unused This field will read all 0’s. R 0x000000

22:31 RISETIMECNT [0:9] This is the ISCL rise time clock count value. R/W 0x025

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
Programmer’s Interface

Page 407 of 655

12.8.11 I2C Controller BITTIMECNT Register

The BITTIMECNT Register contains the 10-bit I2C bit time count value. The value programmed into this
register is the number of periods, minus one, of the I2C Clk input that corresponds to one fourth of the desired
bit time period or 2.5 µs. The I2C clock input is the ddr_clk input. For example if the ddr_clk was running at
100 MHz, the register is initialized to 0x0F9, representing 250 clock periods, or 2.5 µs. The initial values
entered below are for a 333 MHz ddr_clk (167 MHz memory controller clock). These values should be
changed by software if a higher ddr_clk is used.

Reset Value 0x00000342

Offset 0xF80010A0

Access Type Read/Write, Read Only

Unused BITTIMECNT [0:9]

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits Field Name Description Access Reset

0:21 Unused This field will read all 0’s. R 0x000000

22:31 BITTIMECNT [0:9] This is the bit time count. R/W 0x342

User Manual

CPC945 Bridge and Memory Controller Preliminary

Programmer’s Interface
Page 408 of 655 February 1, 2008

Programmer’s Interface

12.9 Advanced Processor Interconnect Registers

Table 12-16. PI Registers.

System Bus
Address Register Name Description Page

0XF8030000 APIProcCmd API Proc Command Slot Configuration 409

0XF8030010 APIIOPnd API I/O Pending Queues Configuration 411

0XF8030020 APICmdArb API Command Arbitration 412

0XF8030030 APITRqCfg API Target Request Queue Configuration 414

0XF8030040 APITRspCfg API Target Response Queue Configuration 415

0XF8030050 APIDtQCfg API Data Queue Configuration 416

0XF8030060 APIWdbCfg API Write Data Buffer Configuration 417

0XF8030070 APIIntCfg API Intervention Buffer Configuration 418

0XF8030080 APIMemReqCfg API Memory Request Queue Configuration 419

0XF8030090 APIMemRdCfg API Memory Read Data Configuration 421

0XF80300A0 APIExcp API Exception 423

0XF80300B0 APIMask0 API Mask 0 424

0XF80300C0 APIMask1 API Mask 1 426

0XF80300D0 APITRqGuar API Target Request Queue Guarantees 427

0XF80300E0 APISnpSltCfg API Snoop Slot Configuration 429

0XF8030100 APIPaamWin API PAAM Window Values 430

0XF8030110 APISnoopWin API Snoop Window Values 431

0XF8030120 APIIOSnoopWin API I/O Snoop Window Values 432

0XF8030130 APIStatLat API Handshake Status Latency Values 433

0XF8030140 APISnoopLat API Snoop Latency Values 434

0XF80301C0 PSRO PSRO Register 435

0XF8030200-
0XF8030210

SysCmdCntl[0:1] System Command Control [0:1] Register 436

0XF8030220 SysCmdStat System Command Status Register 436

0XF8030240-
0XF8030270

SysCmdDt[0:3] System Command Data [0:3] Register 436

0XF8031000-
0XF8031050

 Reserved Reserved

0XF8031080-
0XF80310D0

 Reserved Reserved

0XF8033000 DARTCntl DART Control Register 441

Note: Any register addresses in the F803xxxx range not listed here do not exist. Access to these registers is undefined.

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
Programmer’s Interface

Page 409 of 655

12.9.1 API Proc Command Slot Configuration Register (APIProcCmd)

This register defines the values associated with command slots.

0XF8033010 DARTBase DART Base Register 442

0XF8033020 DARTSize DART Size Register 442

0XF8033030 DARTExcp DART Exception Status Register 443

0XF8034000-
0XF8034FF0

DARTTag[0:3] DART TLB Tag Array 445

0XF8038000-
0XF803BFF0

DARTData[0:3] DART TLB Data Array 446

Reset Value 0x85540000

Offset 0xF8030000

Access Type Read/Write, Read Only

NumProcCmd[0:4] M
in

G
ua

rP
0C

m
d[

0:
1]

M
in

G
ua

rP
1C

m
d[

0:
1]

M
in

G
ua

rP
2C

m
d[

0:
1]

M
in

G
ua

rP
3C

m
d[

0:
1]

P
E

12
8W

rK
ill

U
nu

se
d

C
Q

N
oF

P

D
ar

t D
eb

ug
H

al
t

C
ur

rF
re

qS
el

Unused A
pi

E
n

A
pi

P
or

tS
el

E
iE

nc
dD

is

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits Field Name Description Access Reset

0:4
Num

ProcCmd
[0:4]

Number of Processor command Slots.
Minimum: 7, Maximum: 16, Default: 16
Must be greater than the sum of the MinGuarP[0,1,2,3] values plus 2.

R/W 0b10000

5:6
MinGuar
P0Cmd

[0:1]

Minimum guaranteed number of Command Slots for Proc 0.
Minimum: 1, Maximum: 3, Default: 2
See NumProcCmd constraints.

R/W 0b10

7:8
MinGuar
P1Cmd

[0:1]

Minimum guaranteed number of Command Slots for Proc 1.
Minimum: 1, Maximum: 3, Default: 2
See NumProcCmd constraints.

R/W 0b10

9:10
MinGuar
P2Cmd

[0:1]

Minimum guaranteed number of Command Slots for Proc 2.
Minimum: 1, Maximum: 3, Default: 2
See NumProcCmd constraints.

R/W 0b10

Table 12-16. PI Registers.

System Bus
Address Register Name Description Page

Note: Any register addresses in the F803xxxx range not listed here do not exist. Access to these registers is undefined.

User Manual

CPC945 Bridge and Memory Controller Preliminary

Programmer’s Interface
Page 410 of 655 February 1, 2008

11:12
MinGuar
P3Cmd

[0:1]

Minimum guaranteed number of Command Slots for Proc 3.
Minimum: 1, Maximum: 3, Default: 2
See NumProcCmd constraints.

R/W 0b10

13 PE128
WrKill

PCIe 128 byte write with kill support. PCIe interface to PI supports write with
kill if 128-byte transfer and WrAll active, otherwise use writes with flush.
0 All writes with flush
1 Writes with kill

R/W 0b1

14 Unused This field is not writable and will read all 0’s R 0b0

15 CQNoFP

CmdQ no fast path. This bit disables a Fast Path from the Processor Inter-
face to Command Queue Arbiter.
0 Fast enabled
1 Fast disabled

R/W 0b0

16 Dart Debug
Halt

DART debug halt requests. This bit halts DART translation requests from
being granted. Used for debug.
0 No halt requests
1 Halt requests

R/W 0b0

17:18 CurrFreq
Sel

Current frequency select. This field indicates the current frequency mode
that PI is in (full, half, or quarter) due to a power tuning command.
This is a read only value. Changing this value can only occur with a power
tuning command.
00 Full
01 Half
10 Quarter

R 0b00

19:28 Unused This field is not writable and will read all 0’s. R 0x000

29 ApiEn

API interface enable. After reset the PI interface is disabled so that queue
parameters can be updated. After the parameters are updated, this bit is
enabled to start PI transactions.
The queue parameters affected are in the APIWdbCfg and APIMemRdCfg
registers.
This bit should not be disabled (0) by a write.
0 Disabled
1 Enabled

R/W 0b0

30 ApiPortSel

API port select. This bit remaps ProcessID to PI Module. The remapping
maps “abcd” to “abdc” for MTag bits [0:3].
0 No Mapping
1 Mapping

R/W 0b0

31 EiEncdDis
PI encode disable. This bit enables PI encoding.
0 Encoding
1 No Encoding

R/W 0b0

Bits Field Name Description Access Reset

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
Programmer’s Interface

Page 411 of 655

12.9.2 API I/O Pending Queue Configuration Register (APIIOPnd)

This register defines the values associated with the I/O pending queues.

Reset Value 0x88880000

Offset 0xF8030010

Access Type Read/Write, Read Only

S
iz

Pc
R

P
nd

Q
[0

:3
]

S
iz

Pc
W

P
nd

Q
[0

:3
]

S
iz

H
tR

P
nd

Q
[0

:3
]

S
iz

H
tW

Pn
dQ

[0
:3

]
Unused

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits Field Name Description Access Reset

0:3 SizPcRPndQ
[0:3]

Size of PCIe Read Pending Queue.
Minimum: 1, Maximum: 8, Default: 8

R/W 0b1000

4:7 SizPcWPndQ
[0:3]

Size of PCIe Write Pending Queue.
Minimum: 1, Maximum: 8, Default: 8

R/W 0b1000

8:11 SizHtRPndQ
[0:3]

Size of HT Read Pending Queue.
Minimum: 1, Maximum: 8, Default: 8

R/W 0b1000

12:15 SizHtWPndQ
[0:3]

Size of HT Write Pending Queue.
Minimum: 1, Maximum: 8, Default: 8

R/W 0b1000

16:31 Unused This field is not writable and will read all 0’s R 0x0000

User Manual

CPC945 Bridge and Memory Controller Preliminary

Programmer’s Interface
Page 412 of 655 February 1, 2008

12.9.3 API Command Arbitration Register (APICmdArb)

This register specifies the weights for the round-robin arbitration. Each agent can have a weight assigned
such that agent retains the priority for that many requests of the arbiter once it has priority. A weight of zero
indicates that this requester does not participate in the round-robin selection (it has low priority) and is only
serviced when the other requesters are idle.

This arbitration is temporarily overridden when a HT or PCIe request encounters a retry (and DynArbWtEn is
active). This is called dynamic arbitration. When this occurs, the arbitration weight for processor requests is
temporarily set to the value specified by DynArbWtProc. This weight stays in effect until the number of
requests specified by DynArbWtCnt has been granted to the processor or the processor command request
queue is empty. When this occurs the processor arbitration weight returns to ArbWtProc.

Reset Value 0x57180200

Offset 0xF8030020

Access Type Read/Write

A
rb

W
tP

ro
c[

0:
1]

A
rb

W
tP

cW
[0

:1
]

A
rb

W
tH

tW
[0

:1
]

D
yn

A
rb

W
tE

n

D
yn

A
rb

W
tC

nt
[0

:3
]

D
yn

A
rb

W
tP

ro
c[

0:
1]

P
ci

eW
trq

E
n

H
tW

trq
E

n

D
is

A
rb

P
ro

cT
O

Lm
t

ArbProcTOLmt[0:15]

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits Field Name Description Access Reset

0:1 ArbWt
Proc[0:1]

Arbitration weight for processor commands
Minimum: 0, Maximum: 3, Default: 1
0 Low priority
n n requests

R/W 0b01

2:3 ArbWt
PcW[0:1]

Arbitration weight for PCIe commands.
Minimum: 0, Maximum: 3, Default: 1
0 Low priority
n n requests

R/W 0b01

4:5 ArbWt
HtW[0:1]

Arbitration weight for HT commands.
Minimum: 0, Maximum: 3, Default: 1
0 Low priority
n n requests

R/W 0b01

6 DynArb
WtEn

Enables the dynamic arbitration weight feature described above.
0 Disabled
1 Enabled

R/W 0b1

7:10 DynArbWt
Cnt[0:3]

Dynamic arbitration weight count
The number of processor requests that need to be satisfied during dynamic arbitra-
tion before returning to ArbWtProc.

R/W 0b1000

11:12 DynArbWt
Proc[0:1]

The temporary weight for processor requests during dynamic arbitration.
Minimum: 1, Maximum: 3, Default: 3

R/W 0b11

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
Programmer’s Interface

Page 413 of 655

13 Pcie
WtrqEn

PCIe waiting to reflect queue (Wtrq) enable
This bit enables the feature of allowing more than PCIe read to be in the Waiting to
Reflect Queue.
0 Disabled
1 Enabled

R/W 0b0

14 Ht
WtrqEn

HT Wtrq enable
This bit enables the feature of allowing more than HT read to be in the waiting to
reflect queue.
0 Disabled
1 Enabled

R/W 0b0

15 DisArbProc-
TOLmt

Disable Arb Proc timeout limit
This bit disables the processor timeout (snoop watchdog timer).
0 Enabled
1 Disabled

R/W 0b0

16:31 ArbProc
TOLmt[0:15]

Arb Proc timeout limit
Initial value for Arb Proc Timeout Counter (snoop watchdog timer). Whenever the
processor is granted arbitration, this counter is reset to this initial value, otherwise it
decrements. If the timer reaches zero then the highest priority command to I/O that is
waiting to be reflected is reflected and forced to retry.

R/W 0x0200

Bits Field Name Description Access Reset

User Manual

CPC945 Bridge and Memory Controller Preliminary

Programmer’s Interface
Page 414 of 655 February 1, 2008

12.9.4 API Target Request Queue Configuration Register (APITRqCfg)

These values are used to configure the target and synchronization request queues for nonmemory accesses.

If any of these values are changed from their default value, then SafeQCnt needs to be disabled. (See
Section 12.9.15 API Snoop Slot Configuration Register (APISnpSltCfg) on page 429.)

Reset Value 0x89248000

Offset 0xF8030030

Access Type Read/Write, Read Only

S
iz

eS
yn

cT
R

qQ
[0

:3
]

S
iz

eP
cW

TR
qQ

[0
:2

]

S
iz

eP
cR

TR
qQ

[0
:2

]

S
iz

eH
tW

TR
qQ

[0
:2

]

S
iz

eH
tR

TR
qQ

[0
:2

]

S
iz

eG
cr

TR
qQ

[0
:1

]

E
or

S
D

is
ab

le
Unused

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits Field Name Description Access Reset

0:3 SizeSync
TRqQ[0:3]

Number of entries in Sync Target Request queue.
Minimum: 4, Maximum: 8, Default: 8

R/W 0b1000

4:6
SizePcW

TRqQ
[0:2]

Number of entries in PCIe Write Target Request queue.
Minimum: 2, Maximum: 4, Default: 4
Must be greater than or equal to the sum of MinGuarProcPcWTRqQ and MinGuarI-
OPcWTRqQ.
See Section 12.9.4 API Target Request Queue Configuration Register (APITRqCfg)
on page 414.

R/W 0b100

7:9
SizePcR

TRqQ
[0:2]

Number of entries in PCIe Read Target Request queue.
Minimum: 2, Maximum: 4, Default: 4
Must be greater than or equal to the sum of MinGuarProcPcRTRqQ and MinGuarI-
OPcRTRqQ.
See Section 12.9.4 API Target Request Queue Configuration Register (APITRqCfg)
on page 414.

R/W 0b100

10:12
SizeHtW

TRqQ
[0:2]

Number of entries in HT Write Target Request queue.
Minimum: 2, Maximum: 4, Default: 4
Must be greater than or equal to the sum of MinGuarProcHtWTRqQ and MinGuarI-
OHtWTRqQ.
See Section 12.9.4 API Target Request Queue Configuration Register (APITRqCfg)
on page 414.

R/W 0b100

13:15
SizeHtR
TRqQ
[0:2]

Number of entries in HT Read Target Request queue.
Minimum: 2, Maximum: 4, Default: 4
Must be greater than or equal to the sum of MinGuarProcHtRTRqQ and MinGuarI-
OHtRTRqQ.
See Section 12.9.4 API Target Request Queue Configuration Register (APITRqCfg)
on page 414.

R/W 0b100

16:17 SizeGcr
TRqQ[0:1]

Number of entries in Gcr Target Request queue.
Minimum: 1, Maximum: 2, Default: 2

R/W 0b10

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
Programmer’s Interface

Page 415 of 655

12.9.5 API Target Response Queue Configuration Register (APITRspCfg)

These values are used to configure the target response queues for nonmemory accesses.

If any of these values are changed from their default value, then SafeQCnt needs to be disabled. (See
Section 12.9.15 API Snoop Slot Configuration Register (APISnpSltCfg) on page 429.)

18 EorS
Disable

EorS disable
Disables the EorS signal on the target interfaces.
0 Enabled
1 Disabled

R/W 0b0

19:31 Unused This field is not writable and will read all 0’s. R 0x0000

Reset Value 0x88800000

Offset 0xF8030040

Access Type Read/Write, Read Only

S
iz

eP
cR

sp
Q

[0
:3

]

SizeHtRspQ[0:3] S
iz

eG
cr

R
sp

Q
[0

:2
]

Unused

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits Field Name Description Access Reset

0:3 SizePcRspQ
[0:3]

Number of entries in PCIe Response queue.
Minimum: 4, Maximum: 8, Default: 8

R/W 0b1000

4:7 SizeHtRspQ
[0:3]

Number of entries in HT Response queue.
Minimum: 4, Maximum: 8, Default: 8

R/W 0b1000

8:10 SizeGcrRspQ
[0:2]

Number of entries in GCR Response queue.
Minimum: 2, Maximum: 4, Default: 4

R/W 0b100

11:31 Unused This field is not writable and will read all 0’s R 0x000000

Bits Field Name Description Access Reset

User Manual

CPC945 Bridge and Memory Controller Preliminary

Programmer’s Interface
Page 416 of 655 February 1, 2008

12.9.6 API Target Data Queue Configuration Register (APIDtQCfg)

These values are used to configure the target data queues for nonmemory accesses.

If any of these values are changed from their default value, then SafeQCnt needs to be disabled. (See
Section 12.9.15 API Snoop Slot Configuration Register (APISnpSltCfg) on page 429.)

Reset Value 0x7BDEDA00

Offset 0xF8030050

Access Type Read/Write, Read Only

SizePcRdDtQ[0:4] SizePcWtDtQ[0:4] SizeHtRdDtQ[0:4] SizeHtWtDtQ[0:4] S
iz

eG
cr

R
dD

tQ
[0

:1
]

S
iz

eG
cr

W
tD

tQ
[0

:1
]

Unused

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits Field Name Description Access Reset

0:4
SizePc
RdDtQ

[0:4]

Number of entries in PCIe Read Data queue.
Minimum: 8, Maximum: 16, Default: 15

R/W 0b01111

5:9
SizePc
WtDtQ
[0:4]

Number of entries in PCIe Write Data queue.
Minimum: 8, Maximum: 15, Default: 15

R/W 0b01111

10:14
SizeHt
RdDtQ

[0:4]

Number of entries in HT Read Data queue.
Minimum: 8, Maximum: 16, Default: 15

R/W 0b01111

15:19
SizeHt
WtDtQ
[0:4]

Number of entries in HT Write Data queue.
Minimum: 8, Maximum: 15, Default: 15

R/W 0b01111

20:21
SizeGcr
RdDtQ

[0:1]

Number of entries in GCR Read Data queue.
Minimum: 1, Maximum: 2, Default: 2

R/W 0b10

22:23
SizeGcr
WtDtQ
[0:1]

Number of entries in GCR Write Data queue.
Minimum: 1, Maximum: 2, Default: 2

R/W 0b10

24:31 Unused This field is not writable and will read all 0’s. R 0x00

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
Programmer’s Interface

Page 417 of 655

12.9.7 API Write Data Buffer (WDB) Configuration Register (APIWdbCfg)

These values are used to configure the size of the API WDB and how many entries are guaranteed for writes
and interventions per processor. This register should only be updated when ApiEn is disabled (see
Section 12.9.1 API Proc Command Slot Configuration Register (APIProcCmd)).

If any of these values are changed from their default value, then SafeQCnt needs to be disabled. (See
Section 12.9.15 API Snoop Slot Configuration Register (APISnpSltCfg) on page 429)

Reset Value 0x82AAA800

Offset 0xF8030060

Access Type Read/Write, Read Only

NumWDB[0:5] M
in

G
ua

rW
db

P
0W

r[0
:1

]

M
in

G
ua

rW
db

P
0I

nt
[0

:1
]

M
in

G
ua

rW
db

P
1W

r[0
:1

]

M
in

G
ua

rW
db

P
1I

nt
[0

:1
]

M
in

G
ua

rW
db

P
2W

r[0
:1

]

M
in

G
ua

rW
db

P
2I

nt
[0

:1
]

M
in

G
ua

rW
db

P
3W

r[0
:1

]

M
in

G
ua

rW
db

P
3I

nt
[0

:1
]

Unused

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits Field Name Description Access Reset

0:5 NumWDB[0:5]

Number of 128-byte PI WDB entries.
Minimum: 12, Maximum: 32, Default: 32
Must be greater than or equal to the sum of the MinGuarWdbP[0,1,2,3]Wr and
MinGuarWdbInt[0,1,2,3] values.

R/W 0b100000

6:7 MinGuarWdbP0Wr
[0:1]

Minimum number of PI WDB entries guaranteed for Proc 0 Writes.
Minimum: 2, Maximum: 3, Default: 2

R/W 0b10

8:9 MinGuarWdbP0Int
[0:1]

Minimum number of PI WDB entries guaranteed for Proc 0 Interventions.
Minimum: 1, Maximum: 3, Default: 2

R/W 0b10

10:11 MinGuarWdbP1Wr
[0:1]

Minimum number of PI WDB entries guaranteed for Proc 1 Writes.
Minimum: 2, Maximum: 3, Default: 2

R/W 0b10

12:13 MinGuarWdbP1Int
[0:1]

Minimum number of PI WDB entries guaranteed for Proc 1 Interventions.
Minimum: 1, Maximum: 3, Default: 2

R/W 0b10

14:15 MinGuarWdbP2Wr
[0:1]

Minimum number of PI WDB entries guaranteed for Proc 2 Writes.
Minimum: 2, Maximum: 3, Default: 2

R/W 0b10

16:17 MinGuarWdbP2Int
[0:1]

Minimum number of PI WDB entries guaranteed for Proc 2 Interventions.
Minimum: 1, Maximum: 3, Default: 2

R/W 0b10

18:19 MinGuarWdbP3Wr
[0:1]

Minimum number of PI WDB entries guaranteed for Proc 3 Writes.
Minimum: 2, Maximum: 3, Default: 2

R/W 0b10

20:21 MinGuarWdbP3Int
[0:1]

Minimum number of PI WDB entries guaranteed for Proc 3 Interventions.
Minimum: 1, Maximum: 3, Default: 2

R/W 0b10

22:31 Unused This field is not writable and will read all 0’s. R 0x000

User Manual

CPC945 Bridge and Memory Controller Preliminary

Programmer’s Interface
Page 418 of 655 February 1, 2008

12.9.8 API Intervention Buffer Configuration Register (APIIntCfg)

These values are used to configure the size of the API intervention buffer and how many entries are guaran-
teed for per processor.

If any of these values are changed from their default value, then SafeQCnt needs to be disabled. (See
Section 12.9.15 API Snoop Slot Configuration Register (APISnpSltCfg) on page 429.)

Reset Value 0xFFAA0000

Offset 0xF8030070

Access Type Read/Write, Read Only

NumIntBfr0[0:3] NumIntBfr1[0:3] M
in

G
ua

rIn
tP

0[
0:

1]

M
in

G
ua

rIn
tP

1[
0:

1]

M
in

G
ua

rIn
tP

2[
0:

1]

M
in

G
ua

rIn
tP

3[
0:

1]

Unused

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits Field Name Description Access Reset

0:3 NumIntBfr0
[0:3]

Number of Intervention Buffers for Port 0.
Minimum: 1, Maximum: 15, Default: 15
Must be greater than or equal to the sum of the MinGuarIntP[0,1] values.

R/W 0b1111

4:7 NumIntBfr1
[0:3]

Number of Intervention Buffers for Port 1.
Minimum: 1, Maximum: 15, Default: 15
Must be greater than or equal to the sum of the MinGuarIntP[2,3] values.

R/W 0b1111

8:9 MinGuarIntP0
[0:1]

Minimum number of Intervention Buffers guaranteed for Proc 0.
Minimum: 2, Maximum: 3, Default: 2

R/W 0b10

10:11 MinGuarIntP1
[0:1]

Minimum number of Intervention Buffers guaranteed for Proc 1.
Minimum: 2, Maximum: 3, Default: 2

R/W 0b10

12:13 MinGuarIntP2
[0:1]

Minimum number of Intervention Buffers guaranteed for Proc 2.
Minimum: 2, Maximum: 3, Default: 2

R/W 0b10

14:15 MinGuarIntP3
[0:1]

Minimum number of Intervention Buffers guaranteed for Proc 3.
Minimum: 2, Maximum: 3, Default: 2

R/W 0b10

16:31 Unused This field is not writable and will read all 0’s. R 0x0000

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
Programmer’s Interface

Page 419 of 655

12.9.9 API Memory Request Configuration Register (APIMemReqCfg)

These values are used to configure the parameters associated with memory requests.

If any of the “Size” or “Guar” values are changed from their default value, then SafeQCnt needs to be
disabled. (See Section 12.9.15 API Snoop Slot Configuration Register (APISnpSltCfg) on page 429.)

Reset Value 0x2082234C

Offset 0xF8030080

Access Type Read/Write

B
yp

sD
is

U
nu

se
d

SizBypsQ[0:5] SizMemReq [0:4] M
in

G
ua

rM
em

R
qP

ro
c[

0:
3]

M
in

G
ua

rM
em

R
qI

O
[0

:3
]

N
um

B
yp

sC
ut

O
ff[

0:
3]

S
iz

M
em

Sy
nc

Q
[0

:2
]

N
um

A
vl

In
M

em
R

eq
Q

[0
:3

]

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits Field Name Description Access Reset

0 BypsDis

Bypass Disable
Specifies whether SnoopBypass is disabled. SnoopBypass is the feature that
allows a memory request to be initiated before a command has been snooped
by the processors.
0 Enabled
1 Disabled

R/W 0b0

1 Unused This field is not writable and will read all 0’s. R/W 0b0

2:7 SizBypsQ[0:5]
Size of Bypass Queue.
For now this should always be 32 and not modified.

R/W 0b100000

8:12 SizMemReq [0:4]

Size of Memory Request Queue.
Minimum: MinGuarMemRqProc + MinGuarMemRqIO + 2
Maximum: 16
Default: 16

R/W 0b10000

13:16 MinGuarMem
RqProc[0:3]

Minimum number of Memory Request Queue entries guaranteed for Proces-
sor requests.
Minimum: 1
Maximum: SizMemReq - MinGuarMemRqIO – 2
Default: 4

R/W 0b0100

17:20 MinGuarMem
RqIO[0:3]

Minimum number of Memory Request Queue entries guaranteed for I/O
requests.
Minimum: 1
Maximum: SizMemReq - MinGuarMemRqProc - 2
Default: 4

R/W 0b0100

User Manual

CPC945 Bridge and Memory Controller Preliminary

Programmer’s Interface
Page 420 of 655 February 1, 2008

21:24 NumBypsCutOff
[0:3]

Number Bypass CutOff.
Number of entries in Memory Request Queue after which bypass is blocked.
Minimum: 1
Maximum: SizMemReq - MinGuarMemRqProc – MinGuarMemRqIO - 2
Default: 6

R/W 0b0110

25:27 SizMemSyncQ
[0:2]

Size of Sync Queue to DDR2.
For now this should always be 4 and not modified.

R/W 0b100

28:31 NumAvlIn
MemReqQ[0:3]

Number Avail Mark in MemReqQ.
This field specifies the number of Memory Request Queue entries that need
to be available to make it safe for the Snoop Pipe to not have to check for
resources.
This field is only valid when the SafeQCnt feature is enabled. (See
Section 12.9.15 API Snoop Slot Configuration Register (APISnpSltCfg) on
page 429)
Minimum: MinGuarMemRqIO + MinGuarMemRqProc + 4
Maximum: SizMemReq
Default: 12

R/W 0b1100

Bits Field Name Description Access Reset

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
Programmer’s Interface

Page 421 of 655

12.9.10 API Memory Read Configuration Register (APIMemRdCfg)

These values are used to configure the parameters associated with memory read requests and read data.

This number of buffer fields and guaranteed values (bits 0:21) should only be updated when ApiEn is
disabled (see Section 12.9.1 API Proc Command Slot Configuration Register (APIProcCmd) on page 409). If
any of the “Number” or “Guar” values are changed from their default value, then SafeQCnt needs to be
disabled. (See Section 12.9.15 API Snoop Slot Configuration Register (APISnpSltCfg) on page 429.)

Reset Value 0x841B6D62

Offset 0xF8030090

Access Type Read/Write

N
um

M
em

R
dB

frA
[0

:4
]

N
um

M
em

R
dB

frB
[0

:4
]

M
in

G
ua

rM
em

R
d0

P
ro

c[
0:

2]

M
in

G
ua

rM
em

R
d1

P
ro

c[
0:

2]

M
in

G
ua

rM
em

R
d2

P
ro

c[
0:

2]

M
in

G
ua

rM
em

R
d3

P
ro

c[
0:

2]
ApiMemDly[0:3] R

dT
gQ

Sr
ch

Lm
t[0

:3
]

M
em

R
dF

as
tP

at
hE

n

U
nu

se
d

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits Field Name Description Access Reset

0:4
NumMem

RdBfrA
[0:4]

Number of Read Buffers for Port 0.
Minimum: MinGuarMemRd0Proc. + MinGuarMemRd1Proc. Maximum: 16,
Default: 16

R/W 0b10000

5:9
NumMem

RdBfrB
[0:4]

Number of Read Buffers for Port 1.
Minimum: MinGuarMemRd2Proc. + MinGuarMemRd3Proc. Maximum: 16,
Default: 16

R/W 0b10000

10:12
MinGuar

MemRd0Proc
[0:2]

Minimum number of Memory Read buffers guaranteed for Processor 0.
Minimum: 3, Maximum: 7, Default: 3

R/W 0b010

13:15
MinGuar

MemRd1Proc
[0:2]

Minimum number of Memory Read buffers guaranteed for Processor 1.
Minimum: 3, Maximum: 7, Default: 3

R/W 0b010

16:18
MinGuar

MemRd2Proc
[0:2]

Minimum number of Memory Read buffers guaranteed for Processor 2.
Minimum: 3, Maximum: 7, Default: 3

R/W 0b010

19:21
MinGuar

MemRd3Proc
[0:2]

Minimum number of Memory Read buffers guaranteed for Processor 3.
Minimum: 3, Maximum: 7, Default: 3

R/W 0b010

22:25 ApiMemDly
[0:3]

PI Mem Delay
Delay in DDR2 cycles from the TgV to Read Data on the DDR2 to PI Read Data
Interface. If this value is changed, then the ApiRdTgDelay field in the “Memory Bus
Configuration Register 2” on page 474 (in PROGDDR) needs to be updated.

R/W 0b0101

User Manual

CPC945 Bridge and Memory Controller Preliminary

Programmer’s Interface
Page 422 of 655 February 1, 2008

26:29
RdTgQ
SrchLmt

[0:3]

Read Tag Queue Search Limit
This field specifies how many entries into the Tag Q should be searched looking for
requests that have Snoop Status available, skipping over bypass requests that do
not have Snoop Status available.

R/W 0b1000

30 MemRd
FastPathEn

Memory Read Data Fast Path Enable
Enables Memory Read Fast Path that bypasses the Memory Read Data Buffers.
Even if this bit is enabled, the FastPath feature is disabled by hardware if the PI
block is not running in “Full” frequency Power tuning mode. See CurrFreqSel field in
Section 12.9.1 API Proc Command Slot Configuration Register (APIProcCmd) on
page 409.
0: Fast Path disabled
1: Fast Path enabled
Warning: api_clk frequency must be greater than ddr_clk frequency for FastPath to
be enabled.

R/W 0b1

31 Unused This field is not writable and will read all 0’s R/W 0b0

Bits Field Name Description Access Reset

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
Programmer’s Interface

Page 423 of 655

12.9.11 API Exception Register (APIExcp)

Exceptions detected in API Block. Any bit on that is enabled through APIMASK0 register activates an PI
Exception (pin PI_CSTP). Any bit on that is enabled through APIMASK1 register activates a ChipFault (pin
CHP_FAULT_N).

Reset Value 0x60000000

Offset 0xF80300A0

Access Type Read/Write, Read Only

D
ar

tE
xc

p

A
di

0E
xc

p

A
di

1E
xc

p

S
ta

tE
xc

p

D
er

rE
xc

p

A
dr

s0
E

xc
p

A
dr

s1
E

xc
p

A
dr

s2
E

xc
p

A
dr

s3
E

xc
p

E
cc

U
E

E
xc

p

E
cc

C
E

E
xc

p

A
pi

W
db

P
E

H
tW

db
P

E

P
ci

eW
db

P
E

R
db

0P
E

R
db

1P
E

M
em

M
ap

 E
xc

p

Unused Fr
eq

C
ha

ng
e

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits Field Name Description Access Reset

0 DartExcp DART Translation Exception *R/W 0b0

1 Adi0Excp
ADI0 Exception
Handshake error on ADI bus for PI port 0.

*R/W 0b0

2 Adi1Excp
ADI1 Exception
Handshake error on ADI bus for PI port 1.

*R/W 0b0

3 StatExcp
Snoop Status Exception
Incorrect or unexpected Accumulated Snoop Status received.

*R/W 0b0

4 DerrExcp
Data Error Exception
Data Error Exception due to receiving a TEA.

*R/W 0b0

5 Adrs0Excp Addressing exception from Processor 0. *R/W 0b0

6 Adrs1Excp Addressing exception from Processor 1. *R/W 0b0

7 Adrs2Excp Addressing exception from Processor 2. *R/W 0b0

8 Adrs3Excp Addressing exception from Processor 3. *R/W 0b0

9 EccUEExcp
ECC Uncorrectable Error Exception.
This exception is from DDR2 so that it can send a ChipFault and CheckStop.

*R/W 0b0

10 EccCEExcp ECC Correctable Error Exception. This exception is from DDR2 so that it can
send a ChipFault and CheckStop. *R/W 0b0

11 ApiWdbPE PI WDB Parity Error Exception. *R/W 0b0

12 HtWdbPE HT WDB Parity Error Exception. *R/W 0b0

13 PcieWdbPE PCIe WDB Parity Error Exception. *R/W 0b0

14 Rdb0PE RDB0 Parity Error Exception. *R/W 0b0

Note: *These bits clear when read.

User Manual

CPC945 Bridge and Memory Controller Preliminary

Programmer’s Interface
Page 424 of 655 February 1, 2008

12.9.12 API Exception Mask 0 Register (APIMask0)

These bits enable the Exceptions in APIEXCP. Any enabled exception bit causes an API exception, which
causes a checkstop (pin PI_CSTP).

Encoding is:
0: disabled
1: enabled

15 Rdb1PE RDB1 Parity Error Exception. *R/W 0b0

16 MemMap Excp
Memory Mapping Exception.
This exception is from DDR2 so that it can send a ChipFault and CheckStop.

*R/W

17:30 Unused This field is not writable and will read all 0’s R 0x0000

31 FreqChange

Frequency Change Pending
Indicates whether a Frequency change operation is pending.
0 Not pending
1 Pending

R/W

Reset Value 0x00000000

Offset 0xF80300B0

Access Type Read/Write, Read Only

D
ar

t M
as

k0

A
di

0
M

as
k0

A
di

1
M

as
k0

S
ta

tM
as

k0

D
er

r M
as

k0

A
dr

s0
 M

as
k0

A
dr

s1
 M

as
k0

A
dr

s2
 M

as
k0

A
dr

s3
 M

as
k0

E
cc

U
E

 M
as

k0

E
cc

C
E

 M
as

k0

A
pi

W
db

P
E

 M
as

k0

H
tW

db
PE

 M
as

k0

P
ci

eW
db

P
E

 M
as

k0

R
db

0P
E

 M
as

k0

R
db

1P
E

 M
as

k0

M
em

M
ap

 M
as

k0

Unused

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits Field Name Description Access Reset

0 Dart Mask0 Enables DART Translation Exception R/W 0b0

1 Adi0 Mask0 Enables ADI0 Exception R/W 0b0

2 Adi1 Mask0 Enables ADI1 Exception R/W 0b0

3 StatMask0 Enables Snoop Status Exception R/W 0b0

4 Derr Mask0 Enables Data Error Exception R/W 0b0

5 Adrs0 Mask0 Enables Addressing Exception from Processor 0 R/W 0b0

6 Adrs1 Mask0 Enables Addressing Exception from Processor 1 R/W 0b0

Bits Field Name Description Access Reset

Note: *These bits clear when read.

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
Programmer’s Interface

Page 425 of 655

7 Adrs2 Mask0 Enables Addressing Exception from Processor 2 R/W 0b0

8 Adrs3 Mask0 Enables Addressing Exception from Processor 3 R/W 0b0

9 EccUE Mask0 Enables ECC Uncorrectable Error Exception R/W 0b0

10 EccCE Mask0 Enables ECC Correctable Error Exception R/W 0b0

11 ApiWdbPE Mask0 Enables PI WDB Parity Error Exception R/W 0b0

12 HtWdbPE Mask0 Enables HT WDB Parity Error Exception R/W 0b0

13 PcieWdbPE Mask0 Enables PCIe WDB Parity Error Exception R/W 0b0

14 Rdb0PE Mask0 Enables RDB0 Parity Error Exception R/W 0b0

15 Rdb1PE Mask0 Enables RDB1 Parity Error Exception R/W 0b0

16 MemMap Mask0 Enables Memory Mapping Exception R/W 0b0

17:31 Unused This field is not writable and will read all 0’s R 0x0000

Bits Field Name Description Access Reset

User Manual

CPC945 Bridge and Memory Controller Preliminary

Programmer’s Interface
Page 426 of 655 February 1, 2008

12.9.13 API Exception Mask 1 Register (APIMask1)

These bits enable the exceptions in APIEXCP. Any enabled exception bit causes a ChipFault (pin
CHP_FAULT_N).

Encoding is:
0: disabled
1: enabled

Reset Value 0x00000000

Offset 0xF80300C0

Access Type Read/Write, Read Only

D
ar

t M
as

k1

A
di

0M
as

k1

A
di

1
M

as
k1

S
ta

t M
as

k1

D
er

r M
as

k0

A
dr

s0
 M

as
k1

A
dr

s1
 M

as
k1

A
dr

s2
 M

as
k1

A
dr

s3
M

as
k1

E
cc

U
E

 M
as

k1

E
cc

C
E

 M
as

k1

A
pi

W
db

PE
 M

as
k1

H
tW

db
P

E
 M

as
k1

P
ci

eW
db

P
E

M
as

k1

R
db

0P
E

 M
as

k1

R
db

1P
E

 M
as

k1

M
em

M
ap

 M
as

k1

Unused

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits Field Name Description Access Reset

0 Dart Mask1 Enables DART Translation Exception R/W 0b0

1 Adi0Mask1 Enables ADI0 Exception R/W 0b0

2 Adi1 Mask1 Enables ADI1 Exception R/W 0b0

3 Stat Mask1 Enables Snoop Status Exception R/W 0b0

4 Derr Mask0 Enables Data Error Exception R/W 0b0

5 Adrs0 Mask1 Enables Addressing Exception from Processor 0 R/W 0b0

6 Adrs1 Mask1 Enables Addressing Exception from Processor 1 R/W 0b0

7 Adrs2 Mask1 Enables Addressing Exception from Processor 2 R/W 0b0

8 Adrs3Mask1 Enables Addressing Exception from Processor 3 R/W 0b0

9 EccUE Mask1 Enables ECC Uncorrectable Error Exception. R/W 0b0

10 EccCE Mask1 Enables ECC Correctable Error Exception. R/W 0b0

11 ApiWdbPE Mask1 Enables PI WDB Parity Error Exception. R/W 0b0

12 HtWdbPE Mask1 Enables HT WDB Parity Error Exception. R/W 0b0

13 PcieWdbPEMask1 Enables PCIe WDB Parity Error Exception. R/W 0b0

14 Rdb0PE Mask1 Enables RDB0 Parity Error Exception. R/W 0b0

15 Rdb1PE Mask1 Enables RDB1 Parity Error Exception. R/W 0b0

16 MemMap Mask1 Enables Memory Mapping Exception. R/W 0b0

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
Programmer’s Interface

Page 427 of 655

12.9.14 API Target Request Queues Guarantees Register (APITRqGuar)

These values are used to configure the parameters associated with nonmemory target request queue guar-
antee values.

If any of the “Guar” values are changed from their default value, then SafeQCnt needs to be disabled. (See
Section 12.9.15 API Snoop Slot Configuration Register (APISnpSltCfg) on page 429.)

17:31 Unused This field is not writable and will read all 0’s. R 0x0000

Reset Value 0x55554444

Offset 0xF80300D0

Access Type Read/Write, Read Only

M
in

G
ua

rIO
H

tW
TR

qQ
[0

:1
]

M
in

G
ua

rP
ro

cH
tW

TR
qQ

[0
:1

]

M
in

G
ua

rIO
H

tR
TR

qQ
[0

:1
]

M
in

G
ua

rP
ro

cH
tR

TR
qQ

[0
:1

]

M
in

G
ua

rIO
P

cW
TR

qQ
[0

:1
]

M
in

G
ua

rP
ro

cP
cW

TR
qQ

[0
:1

]

M
in

G
ua

rIO
P

cR
TR

qQ
[0

:1
]

M
in

G
ua

rP
ro

cP
cR

TR
qQ

[0
:1

]

N
um

H
tR

Ta
iT

rg
t[0

:3
]

N
um

H
tW

Ta
iT

rg
t[0

:3
]

N
um

P
cR

Ta
iT

rg
t[0

:3
]

N
um

P
cW

Ta
iT

rg
t[0

:3
]

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits Field Name Description Access Reset

0:1
MinGuar

IOHtWTRqQ
[0:1]

Minimum guarantee of available spaces for I/O writes to the HT Target Request
Queue.
Minimum: 1, Maximum: 3, Default:1
Must be less than or equal to SizeHtWTRqQ - MinGuarProcHtWTRqQ

R/W 0b01

2:3
MinGuar

ProcHtWTRqQ
[0:1]

Minimum guarantee of available spaces for Proc writes to the HT Target Request
Queue.
Minimum: 1, Maximum: 3, Default:1
Must be less than or equal to SizeHtWTRqQ - MinGuarIOHtWTRqQ

R/W 0b01

4:5
MinGuar

IOHtRTRqQ
[0:1]

Minimum guarantee of available spaces for I/O reads to the HT Target Request
Queue.
Minimum: 1, Maximum: 3, Default:1
Must be less than or equal to SizeHtRTRqQ - MinGuarProcHtRTRqQ

R/W 0b01

6:7
MinGuar

ProcHtRTRqQ
[0:1]

Minimum guarantee of available spaces for Proc reads to the HT Target Request
Queue.
Minimum: 1, Maximum: 3, Default:1
Must be less than or equal to SizeHtRTRqQ - MinGuarIOHtRTRqQ

R/W 0b01

8:9
MinGuar

IOPcWTRqQ
[0:1]

Minimum guarantee of available spaces for I/O writes to the PCIe Target Request
Queue.
Minimum: 1, Maximum: 3, Default:1
Must be less than or equal to SizePcWTRqQ - MinGuarProcPcWTRqQ

R/W 0b01

Bits Field Name Description Access Reset

User Manual

CPC945 Bridge and Memory Controller Preliminary

Programmer’s Interface
Page 428 of 655 February 1, 2008

10:11
MinGuar

ProcPcWTRqQ
[0:1]

Minimum guarantee of available spaces for Proc writes to the PCIe Target Request
Queue.
Minimum: 1, Maximum: 3, Default:1
Must be less than or equal to SizePcWTRqQ – MinGuarIOPcWTRqQ

R/W 0b01

12:13
MinGuar

IOPcRTRqQ
[0:1]

Minimum guarantee of available spaces for I/O reads to the PCIe Target Request
Queue.
Minimum: 1, Maximum: 3, Default:1
Must be less than or equal to SizePcRTRqQ – MinGuarProcPcRTRqQ

R/W 0b01

14:15
MinGuar

ProcPcRTRqQ
[0:1]

Minimum guarantee of available spaces for Proc reads to the PCIe Target Request
Queue.
Minimum: 1, Maximum: 3, Default:1
Must be less than or equal to SizePcRTRqQ - MinGuarIOPcRTRqQ

R/W 0b01

16:19
NumHtR
TaiTrgt

[0:3]

The number of entries in the HT Read TAI Target Queue in the HT Unit.
 Minimum: 1, Maximum: 4, Default:4

R/W 0b0100

20:23
NumHtW
TaiTrgt

[0:3]

The number of entries in the HT Write TAI Target Queue in the HT Unit.
 Minimum: 1, Maximum: 4, Default:4

R/W 0b0100

24:27
NumPcR
TaiTrgt

[0:3]

The number of entries in the PCIe Read TAI Target Queue in the PCIe Unit.
 Minimum: 1, Maximum: 4, Default:4

R/W 0b0100

28:31
NumPcW
TaiTrgt

[0:3]

The number of entries in the PCIe Write TAI Target Queue in the PCIe Unit.
 Minimum: 1, Maximum: 4, Default: 4

R/W 0b0100

Bits Field Name Description Access Reset

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
Programmer’s Interface

Page 429 of 655

12.9.15 API Snoop Slot Configuration Register (APISnpSltCfg)

These values are used to configure the parameters associated with configuring the snoop slots.

Reset Value 0xC4111100

Offset 0xF80300E0

Access Type Read/Write, Read Only

NumSnpSlts[0:3] M
in

G
ua

rP
ro

cS
np

S
lt[

0:
3]

M
in

G
ua

rH
tW

rS
np

S
lt[

0:
3]

M
in

G
ua

rH
tR

dS
np

S
lt[

0:
3]

M
in

G
ua

rP
cW

rS
np

S
lt[

0:
3]

M
in

G
ua

rP
cR

dS
np

S
lt[

0:
3]

S
af

eQ
C

nt
D

is
ab

le

S
np

W
trq

B
yp

sD
is

Unused

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits Field Name Description Access Reset

0:3 NumSnpSlts
[0:3]

Number of available Snoop Slots.
Minimum: 6, Maximum: 12, Default: 12
Must be greater than or equal to the sum of MinGuarProcSnpSlt, MinGuarHt-
WrSnpSlt, MinGuarHtRdSnpSlt, MinGuarPcWrSnpSlt, and MinGuarPcRd-
SnpSlt.

R/W 0b1100

4:7
MinGuar

ProcSnpSlt
[0:3]

Minimum guarantee of Snoop Slots for Proc Ops.
Minimum: 2, Maximum: 8, Default: 4
See NumSnpSlts constraints.

R/W 0b0100

8:11
MinGuar

HtWrSnpSlt
[0:3]

Minimum guarantee of Snoop Slots for HT Writes.
Minimum: 1, Maximum: 8, Default: 1
See NumSnpSlts constraints.

R/W 0b0001

12:15
MinGuar

HtRdSnpSlt
[0:3]

Minimum guarantee of Snoop Slots for HT Reads.
Minimum: 1, Maximum: 8, Default: 1
See NumSnpSlts constraints.

R/W 0b0001

16:19
MinGuar

PcWrSnpSlt
[0:3]

Minimum guarantee of Snoop Slots for Pcie Writes.
Minimum: 1, Maximum: 8, Default: 1
See NumSnpSlts constraints.

R/W 0b0001

20:23
MinGuar

PcRdSnpSlt
[0:3]

Minimum guarantee of Snoop Slots for Pcie Reads.
Minimum: 1, Maximum: 8, Default: 1
See NumSnpSlts constraints.

R/W 0b0001

24 SafeQCnt
Disable

Safe Queue Count Disable
Disables the feature of reflecting a command quickly without checking
resources because all of the resources are at a “safe” level. If any of the
“Size”, “Number”, or “Guar” values of the PI queues and buffers change from
their default value, then SafeQCnt must be disabled.
0 Enabled
1 Disabled

R/W 0b0

User Manual

CPC945 Bridge and Memory Controller Preliminary

Programmer’s Interface
Page 430 of 655 February 1, 2008

12.9.16 API Bus Configuration Registers

These fields specify the API Bus parameters.

Note: An additional constraint for the hardware is that the PAAMWIN value must be greater than the
SNOOPLAT value. Normally the PAAMWIN value is set to SNOOPLAT + SNOOPACCC + 6.

12.9.16.1 PI PAAM Window (APIPaamWin)

PAAMWIN specifies the number of beats (PI bus clocks) that have to occur between reflecting successive
commands that target the same 128-byte block address.

Every time a command is reflected, a window (PAAM Window) is generated that is PAAMWIN cycles wide.
There can many PAAM Windows active at various stages of time.

When a new command enters the Snoop Slots, a qualification is made whether this new command should
check the PAAM Windows. If this command is from an HT or PCIe source and its destination is HT or PCIe,
or if it is a power tuning command, then the check is not made. All other commands check the PAAM
Windows.

If the block address of the new command matches the address of the PAAM Window command, or the P Bit
of the new command is 0 and the P bit of the PAAM Window command is 0, then the new command waits
until the PAAM Window has completed.

25 SnpWtrq
BypsDis

Snoop Wtrq Bypass Disable
Disables the feature of bypassing the Waiting-to-Reflect-queue when the
snoop slots are empty.
0: enabled
1: disabled

R/W 0b0

26:31 Unused This field is not writable and will read all 0’s R 0x00

Reset Value 0x12121212

Offset 0xF8030100

Access Type Read/Write, Read Only

PAAMWIN_FF [0: 7] PAAMWIN_HF [0: 7] PAAMWIN_QF [0: 7] PAAMWIN [0: 7]

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits Field Name Description Access Reset

0:7 PAAMWIN_FF [0: 7]
PAAM Window for full frequency.
Minimum: 10, Maximum: 52, Initial: 18.

R/W 0x12

8:15 PAAMWIN_HF [0: 7]
PAAM Window for Half frequency.
Minimum: 10, Maximum: 52, Initial: 18.

R/W 0x12

16:23 PAAMWIN_QF [0: 7]
PAAM Window for Quarter frequency.
Minimum: 10, Maximum: 52, Initial: 18.

R/W 0x12

Bits Field Name Description Access Reset

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
Programmer’s Interface

Page 431 of 655

12.9.16.2 API Snoop Window (APISnoopWin)

SNOOPWIN specifies the number of beats (PI bus clocks) that have to occur between reflecting any succes-
sive commands. The commands might be under additional constraints as specified by PAAMWIN and
IOSNOOPWIN.

24:31 PAAMWIN [0: 7]
Current PAAMWIN
Read only value of the current PAAMWIN selected by CurFreqSel.

R 0x12

Reset Value 0x04040404

Offset 0xF8030110

Access Type Read/Write, Read Only

SNOOPWIN_FF [0: 7] SNOOPWIN_HF [0: 7] SNOOPWIN_QF [0: 7] SNOOPWIN [0: 7]

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits Field Name Description Access Reset

0:7 SNOOPWIN_FF [0: 7]
Snoop Window for Full frequency.
Minimum: 4, Max 30, Initial: 4.

R/W 0x04

8:15 SNOOPWIN_HF [0: 7]
Snoop Window for Half frequency.
Minimum: 4, Max 30, Initial: 4.

R/W 0x04

16:23 SNOOPWIN_QF [0: 7]
Snoop Window for Quarter frequency.
Minimum: 4, Max 30, Initial: 4.

R/W 0x04

24:31 SNOOPWIN [0: 7]
Current SNOOPWIN
Read only value of the current SNOOPWIN selected by CurFreqSel.

R 0x04

Bits Field Name Description Access Reset

User Manual

CPC945 Bridge and Memory Controller Preliminary

Programmer’s Interface
Page 432 of 655 February 1, 2008

12.9.16.3 I/O Snoop Window (APIIOSnoopWin)

The IOSNOOPWIN specifies a constraint (in addition to PAAMWIN and SNOOPWIN) on the number of beats
(PI bus clocks) that have to occur between reflecting HT and PCIe originated commands. IOSNOOPWIN
beats have to occur since the last HT command before reflecting the next HT Command and since the last
PCIe command before reflecting the next PCIe command.

Reset Value 0x08080808

Offset 0xF8030120

Access Type Read/Write, Read Only

IOSNOOPWIN_FF [0: 7] IOSNOOPWIN_HF[0: 7] IOSNOOPWIN_QF [0: 7] IOSNOOPWIN [0: 7]

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits Field Name Description Access Reset

0:7 IOSNOOPWIN_FF [0: 7]
I/O Snoop Window for Full frequency.
Minimum: 8, Max 30, Initial: 8.

R/W 0x08

8:15 IOSNOOPWIN_HF[0: 7]
I/O Snoop Window for Half frequency.
Minimum: 8, Max 30, Initial: 8.

R/W 0x08

16:23 IOSNOOPWIN_QF [0: 7]
I/O Snoop Window for Quarter frequency.
Minimum: 8, Max 30, Initial: 8.

R/W 0x08

24:31 IOSNOOPWIN [0: 7]
Current IOSNOOPWIN
Read only value of the current IOSNOOPWIN selected by Cur-
FreqSel.

R 0x08

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
Programmer’s Interface

Page 433 of 655

12.9.16.4 API Handshake Status Latency (APIStatLat)

STATLAT specifies the number of beats (PI bus clocks) that occur between reflecting a command or
returning read data and receiving the Handshake Status.

Reset Value 0x14141414

Offset 0xF8030130

Access Type Read/Write, Read Only

STATLAT_FF [0: 7] STATLAT_HF [0: 7] STATLAT_QF [0: 7] STATLAT [0: 7]

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits Field Name Description Access Reset

0:7 STATLAT_FF [0: 7]
Handshake Status Latency for Full frequency.
Minimum: 14, Max 40, Initial: 20.

R/W 0x14

8:15 STATLAT_HF [0: 7]
Handshake Status Latency for Half frequency.
Minimum: 14, Max 40, Initial: 20.

R/W 0x14

16:23 STATLAT_QF [0: 7]
Handshake Status Latency for Quarter frequency.
Minimum: 14, Max 40, Initial: 20.

R/W 0x14

24:31 STATLAT [0: 7]
Current STATLAT
Read only value of the current STATLAT selected by CurFreqSel.

R 0x14

User Manual

CPC945 Bridge and Memory Controller Preliminary

Programmer’s Interface
Page 434 of 655 February 1, 2008

12.9.16.5 API Snoop Latency Values (APISnoopLat)

SNOOPLAT specifies the number of beats (PI bus clocks) that occur between reflecting a command and
receiving the Snoop Status.

Reset Value 0x0C0C0C0C

Offset 0xF8030140

Access Type Read/Write, Read Only

SNOOPLAT_FF [0: 7] SNOOPLAT_HF [0: 7] SNOOPLAT_QF [0: 7] SNOOPLAT [0: 7]

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits Field Name Description Access Reset

0:7 SNOOPLAT_FF [0: 7]
Snoop Status Latency for Full frequency.
Minimum: 8, Max 40, Initial: 12.

R/W 0x0b

8:15 SNOOPLAT_HF [0: 7]
Snoop Status Latency for Half frequency.
Minimum: 8, Max 40, Initial: 12.

R/W 0x0b

16:23 SNOOPLAT_QF [0: 7]
Snoop Status Latency for Quarter frequency.
Minimum: 8, Max 40, Initial: 12.

R/W 0x0b

24:31 SNOOPLAT [0: 7]
Current SNOOPLAT.
Read only value of the current SNOOPLAT selected by CurFreqSel.

R 0x0b

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
Programmer’s Interface

Page 435 of 655

12.9.17 PSRO Register (PSRO)

Reset Value x‘00000000’

Address x‘F80301C0’

Access Type Read

Reserved PSRO Reserved

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits Field Name Description Access Reset

0:15 Reserved Read 0x0000

16:24 PSRO Nine-bit hexadecimal value representing PRSO. For additional
information, see the CPC945 Datasheet. Read 0b000000000

25:31 Reserved Read 0b0000000

User Manual

CPC945 Bridge and Memory Controller Preliminary

Programmer’s Interface
Page 436 of 655 February 1, 2008

12.9.18 PI System Command Registers

The PI System Command Registers provide a mechanism for accessing any memory-mapped location in the
system through the SBus Interface. A request is written to the SysCmdCntl0 and SysCmdCntl1 registers.
These registers have similar attributes to PI Bus requests. Writing to SysCmdCntl0 initiates the request.

The request participates in the Snoop reflection protocol on the PI bus and returns an Accumulated Snoop
Status in the SysCmdStat register. If the status indicates a retry, the request will be reissued the number of
times specified in the NumRetry field in that register. The number of times the request was retried is indicated
in the RetryCnt field. If the request comes back with a nonretry status or the RetryCnt exceeds the NumRetry
value then the StatDone bit is set. A NumRetry value of zero indicates that the request should be reissued
until nonretry status is received (RetryCnt is ignored). The RetryCnt will stay at its maximum value if it is
reached.

On a write operation the data that is placed in the SysCmdData registers is written to the requested destina-
tion when the status indicated is nonretry. When the nonretry status is seen, StatDone is set and the write
request is sent. When the data operation has completed the DataDone bit is set. If the RetryCnt exceeds the
NumRetry value, the StatDone is set and DataAbort is set indicating that the operation has completed without
the data being written.

On a read operation the StatDone bit is set if the RetryCnt exceeds the NumRetry value, the status returned
is Intervention, or a valid (Null or Shared) response is received. Only with a Null or Shared response does the
read request continue to its destination. When the data is returned from the Read request, it is placed in
SysData registers and the DataDone bit is set completing the operation. If the Read request is not sent, and a
StatDone condition occurs, the DataAbort bit is set indicating the operation has completed.

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
Programmer’s Interface

Page 437 of 655

12.9.18.1 System Command Control [0:1] Registers (SysCmdCntl[0:1])

Reset Value 0x0E0F0040 (SysCmdCntl0)
0xF8030210 (SysCmdCntl1)

Address 0xF8030200 (SysCmdCntl0)
0xF8030210 (SysCmdCntl1)

Access Type Read/Write, Read Only

SysCmdCntl0

Unused TType [0:4] Unused MasterTag [4:8] Unused AdMod [0:5] TSiz [0:3]
PhysAdrs

[28:31]

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits Field Name Description Access Reset

0:2 Unused This field is not writable and will read all 0’s. R 0b000

3:7 TType [0:4] Transfer Type. R/W 0b00000

8:10 Unused This field is not writable and will read all 0’s. R 0b000

11:15 MasterTag [4:8]
Master Tag.
0xF is used for Master Tag bits [0:3].

R/W 0b00000

16:17 Unused This field is not writable and will read all 0’s. R 0b00

18:23 AdMod [0:5] Address Modifiers. R/W 0b000000

24:27 TSiz [0:3]
Transfer Size.
Only sizes of 16 bytes or less are allowed.

R/W 0b1001

28:31 PhysAdrs [28:31]
Physical Address.
Spans registers 0xF8030200 and 0xF8030210.

R/W 0x0_0000_0000

SysCmdCntl1
PhysAdrs [32:63]

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits Field Name Description Access Reset

 0:31 PhysAdrs [32:63]
Physical Address
Spans registers 0xF8030200 and 0xF8030210

R/W 0x0_0000_0000

User Manual

CPC945 Bridge and Memory Controller Preliminary

Programmer’s Interface
Page 438 of 655 February 1, 2008

12.9.18.2 System Command Status Register (SysCmdStat)

Reset Value 0xC0000000

Address 0xF8030220

Access Type Read/Write, Read Only

S
ta

tD
on

e

D
at

aD
on

e

D
at

aA
bo

rt

U
nu

se
d

SnoopStat [0:3] Unused RetryCnt [0:7] NumRetry [0:7]

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits Field Name Description Access Reset

0 StatDone
Status Done
Nonretry has been received and is indicated in the SnoopStat field or the
RetryCnt has reached the NumRetry value.

R/W 0b0

1 DataDone
Data Done
Data has been written for a write request or data has returned on a read
request.

R/W 0b0

2 DataAbort
Data Abort
The operation has completed without data being sent or received due to a Stat-
Done condition.

R/W 0b0

3 Unused This field is not writable and will read all 0’s R 0b0

4:7 SnoopStat [0:3]
Snoop Status
Snoop status when StatDone condition has occurred.

R/W 0b0000

8:15 Unused This field is not writable and will read all 0’s R 0b0

16:23 RetryCnt [0:7]
Current retry count.
Incremented when a status of retry is returned. When this value exceeds the
NumRetry value, the operation completes.

R/W 0x00

24:31 NumRetry [0:7]
Number of Retries Limit
Indicates how many times the request should be retried before giving up and
setting StatDone.

R/W 0x00

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
Programmer’s Interface

Page 439 of 655

12.9.18.3 System Command Data0 Register (SysCmdDt0)

12.9.18.4 System Command Data1 Register (SysCmdDt1)

Reset Value N/A

Address 0xF8030240

Access Type

Data

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits Field Name Description Access Reset

0:31 Data

Reset Value N/A

Address 0xF8030250

Access Type

Data

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits Field Name Description Access Reset

0:31 Data

User Manual

CPC945 Bridge and Memory Controller Preliminary

Programmer’s Interface
Page 440 of 655 February 1, 2008

12.9.18.5 System Command Data2 Register (SysCmdDt2)

12.9.18.6 System Command Data3 Register (SysCmdDt3)

Reset Value N/A

Address x‘F8030260’

Access Type

Data

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits Field Name Description Access Reset

0:31 Data

Reset Value N/A

Address x‘F8030270’

Access Type

Data

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits Field Name Description Access Reset

0:31 Data

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
Programmer’s Interface

Page 441 of 655

12.9.19 DART Control Register (DARTCNTL)

The DART Control Register is a 32-bit memory-mapped location that enables the DART for translation
and controls the invalidating of entries in the DART TLB. The DARTEN bit enables the DART for mapping. If
this bit is zero no mapping occurs. The DART TLB entries can be invalidated individually by the IONE bit or
entirely by the IALL bit. For individual invalidates the ILPN field specifies the Logical Page Address (27 bits,
[25:51]) associated with the DART TLB entry that is to be invalidated. Writing a one to the IALL bit invalidates
the entire DART TLB. This bit returns to zero when the invalidation is complete. Writing a one to the IONE bit
invalidates the one entry that matches (hits) with the ILPN. This bit returns to zero when the invalidation is
complete. The IDLE bit indicates that the DART is not currently processing a miss or a read or write request.
The PEEn bit enables DART RAM parity checking.

Reset Value 0x08000000

Address 0xF8033000

Access Type Read/Write, Read Only

D
A

R
TE

N

IO
N

E

IA
LL

ID
LE

P
E

E
N

ILPN

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits Field Name Description Access Reset

0 DARTEN DART Enable (0:disabled) R/W 0b0

1 IONE Invalidate one DART TLB entry (using ILPN) R/W 0b0

2 IALL Invalidate all DART TLB entries R/W 0b0

3 IDLE DART is idle. R 0b0

4 PEEN Parity checking is enabled. R/W 0b1

5:31 ILPN 27-bit logical page address for invalidating one TLB entry. R/W undefined

User Manual

CPC945 Bridge and Memory Controller Preliminary

Programmer’s Interface
Page 442 of 655 February 1, 2008

12.9.20 DART Base Register (DARTBASE)

The DART is located in Memory at a 4K-byte-aligned address. The 24-bit DART Base Register (DARTBASE)
defines the location of the DART in Memory (24-bit address concatenated with 12 bits of zeroes).

12.9.21 DART Size Register (DARTSIZE)

The 17-bit DART Size Register (DARTSIZE) defines how big the DART is in 4K-byte pages. A value of zero
indicates the maximum size (128K pages).

Reset Value 0x00000000

Address 0xF8033010

Access Type Read/Write

Undefined DARTBASE

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits Field Name Description Access Reset

0:7 Undefined This field is not writable and will read all 0’s R/W 0x00

8:31 DARTBASE Base Address of DART (4K–byte Alignment) R/W undefined

Reset Value 0x00000000

Address 0xF8033020

Access Type Read/Write

Undefined DARTSIZE

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits Field Name Description Access Reset

0:14 Undefined This field is not writable and will read all 0’s R/W 0x0000

15:31 DARTSIZE
Size of DART in 4K-Byte Pages (Max 128K pages, all zeroes). 27-bit LPN deter-
mines 128M pages to be mapped. Each page of the DART maps 1024 pages so
the maximum size of DART is 128K pages to map 128M pages.

R/W undefined

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
Programmer’s Interface

Page 443 of 655

12.9.22 DART Exception Status Register (DARTEXCP)

The DARTEXCP register is used when an exception occurs and contains information pertaining to the
address that caused the exception. Addresses that access outside of the DART Table cause an Out-Bounds-
Exception. Addresses that access a DART Table entry that have a “Valid” bit of zero cause an Entry Excep-
tion. Addresses from Read operations that access a Valid DART Table entry that have a Read bit of one
cause a Read Protection Exception. Addresses from Write operations that access a Valid DART Table entry
that have a Write bit of one cause a Write Protection Exception. When mapping is disallowed, an access
beyond the range of physical memory causes an Address Exception (XAD). See Memory Mapping Table
above. When an XAD occurs the LPN contains bits 25:51 of the address causing the exception. A Parity Error
in the DART TLB causes an XPE. A DART TLB Parity Error only occurs when no other exception occurs and
the TLB Data Array is accessed.

There are 6 different kinds of DART exception:

1. XWE - DART Write Protection Exception
– when a write request hits a page that is write protected, this exception flag will be set.
– the write request will continue as normal to DDR2 interface but the actual “write” to memory will be

disabled.
– DDR2 will return with a TgEV (instead of TgV) to complete this write request.
– the exception address and the agent that causes the exception will be logged.
– the exception flag will be clear with a read to the DART Exception Register.

2. XRE - DART Read Protection Exception
– when a read request hits a page that is read protected, this exception flag will be set.
– the read request will continue as normal to DDR2 interface but the actual “read” to memory will be

disabled.
– DDR2 will return with a TgEV (instead of TgV) to complete this read request.
– the exception address and the agent that causes the exception will be logged.
– the exception flag will be clear with a read to the DART Exception Register.

3. XEE - DART Entry Exception
– when a read/write request hits a page that is not VALID in the DART memory, this exception flag will

be set.
– the corresponding DART TLB entry will be forced to VALID in order for this request to complete.
– the request will continue as normal to DDR2 interface but the actual “request” to memory will be dis-

abled.
– DDR2 will return with a TgEV (instead of TgV) to complete this request.
– the exception address and the agent that causes the exception will be logged.
– the exception flag will be clear with a read to the DART Exception Register.

4. XPE - DART TLB Parity Error
– when a DART TLB read that detected a parity error, this exception flag will be set.
– the request will continue as normal to DDR2 interface but the actual “request” to memory will be dis-

abled.
– DDR2 will return with a TgEV (instead of TgV) to complete this request.
– the exception address and the agent that causes the exception will be logged.
– the exception flag will be clear with a read to the DART Exception Register.

5. XBE - DART Out-of-Bounds Exception (FATAL)
– when a request hits a page that is outside the DART Table, this exception flag will be set.
– the “DART Miss” request will still be sent and whatever data returned by the system, will be used for

translation and protection check.
– since unpredictable data is returned, this exception is FATAL to the system.

User Manual

CPC945 Bridge and Memory Controller Preliminary

Programmer’s Interface
Page 444 of 655 February 1, 2008

– the exception address and the agent that causes the exception will be logged.
– the exception flag will be clear with a read to the DART Exception Register.

6. XAE - DART Addressing Exception (FATAL)
– when a request hits a page that is beyond the range of physical memory, this exception flag will be

set.
– the “DART Miss” request will still be sent and whatever data returned by the system, will be used for

translation and protection check.
– since unpredictable data is returned, this exception is FATAL to the system.
– the exception address and the agent that causes the exception will be logged.
– the exception flag will be clear with a read to the DART Exception Register.

Reset Value 0xFFE77DDF

Address 0xF8033030

Access Type Read Only

R
Q

SR
C

LPN R
Q

O
P

XCD

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits Field Name Description Access Reset

0 RQSRC
Request Source.
0 PCIe
1 HT

R undefined

1:27 LPN 27-bit Logical Address of Exception [25:51] R undefined

28 RQOP
Requesting Operation
0 Read
1 Write

R undefined

29:31 XCD

3-bit DART Exception Code (Initial value undefined):
000 XBE DART Out-of-Bounds Exception
001 XEE DART Entry Exception
010 XRE DART Read Protection Exception
011 XWE DART Write Protection Exception
100 XAD Addressing Exception
101 XPE DART TLB Parity Error
110 Undefined
111 Undefined

R undefined

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
Programmer’s Interface

Page 445 of 655

12.9.23 Entry in DART TLB Tag Array Register (DARTTAG)

The DART TLB can be accessed by direct read and write operations and by an invalidate operation. The
following shows the system address needed for read and write operations to the Tag Array.

Bits 13:19 of the 32 bit DMA address generated by HyperTransport or PCI0 are used to address the DART
TLB Tag Array Register. An address for the correct Tag Array Address Register is formed by eight bits [20:27]
arranged as:

wwtttttt, where
 "ww" represents the way (correct set of a set-associative TLB), and
 "tttttt" is the set of the desired entry.

The desired Tag Array Register is accessed using the address: 0x F 8 0 3 4 wwtt tttt 0000.

See Section 3.4 DMA Address Relocation Table (DART) on page 53 for details.

Note: The eight bits used to determine the correct Tag Array Address Register shown above are for a 32 bit
address space. For a programmer using the PPC970xx, a 64-bit address space is desired. The correct bit
locations can be found by adding 32 to produce [53:59].

Reset Value

Address 0xF8034000-0xF8034FF0

Access Type Read/Write, Read Only

SYS WW TTTTTT Undefined

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits Field Name Description Access Reset

0:19 SYS System defined address R/W 0x00000

20:21 WW 2-bit tag way number R/W 0b00

22:27 TTTTTT 6-bit tag index format of TLB tag address R/W 0b000000

28:31 Undefined This field will read all 0’s R 0x0000

User Manual

CPC945 Bridge and Memory Controller Preliminary

Programmer’s Interface
Page 446 of 655 February 1, 2008

12.9.24 Entry in DART TLB Data Array Register (DARTDATA)

The DART TLB can be accessed by direct read and write operations and by an invalidate operation. The
following shows the system address needed for read and write operations to the Data Array.

Bits 11:19 of the 32-bit DMA address generated by HyperTransport or PCI0 are used to address the DART
TLB Data Array Register. A Data Array Address is formed by 9 bits [19:27]. The desired Data Array Register
is accessed using the address:
 0x F 8 0 3 10ww qqtt tttt 0000

"tttttt" is the set of the desired entry.
 "ww" represents the way within the set (correct set of a set-associative

TLB), and
 "qq" is the page.

See Section 3.4 DMA Address Relocation Table (DART) on page 53 for details.

Note: The seven bits used to determine the correct Tag Array Address Register shown above are for a 32-bit
address space. For a programmer using the PPC970xx, a 64-bit address space is desired. The correct bit
locations can be found by adding 32 to produce [51:59].

Reset Value

Address xF8038000-xF803BFF0

Access Type Read/Write, Read Only

SYS WW TTTTTT QQ Undefined

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits Field Name Description Access Reset

0:17 SYS System defined address R/W 0x00000

18:19 WW 2-bit tag way number R/W 0b00

20:25 TTTTTT 6-bit tag index format of TLB tag address R/W 0b000000

26:27 QQ 2-bit entry index within quadword R/W 0b00

28:31 Undefined This field will read all 0’s R 0b0000

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
Programmer’s Interface

Page 447 of 655

Programmer’s Interface

12.10 Memory Control Registers

The memory controller block contains the following registers to program the memory timing parameters,
physical bank address boundaries, memory types, refresh rate, interface configuration, and other controls.
The following table lists all the memory controller register addresses. Functional details of each register
follow.

Table 12-17. Memory Controller Register Address Space

System Bus
Address Register Name Description Page

0XF8002030 RASTimer0 RAS Command Timer0 Register 449

0XF8002040 RASTimer1 RAS Command Timer1 Register 449

0XF8002050 CASTimer0 CAS Command Timer0 Register 449

0XF8002060 CASTimer1 CAS Command Timer1 Register 449

0XF8002070 MemRfshCntl Memory Refresh Control Register (refresh period) 454

0XF80020B0 MemProgCntl Programming of the DDR2 SDRAM memory 456

0XF80020C0 MRSRegCntl Settings in the Mode Register on the SDRAMs 457

0XF80020D0 EMRSRegCntl Settings in the Extended Mode Register on the SDRAMs 457

0XF80020E0-
0XF80020F0

MemMapExcp[0:1] Contains info when an addressing exception occurs during mem-
ory mapping 460

0XF8002100-
0XF80021F0

MemInitReg[0:15] Memory Initialization Registers [0:15] 462

0XF8002200-
0XF8002230

DmCnfg[0:3] DIMM [0:3] Configuration Registers 463

0XF8002280 MemArbWt Specifies weights in the memory arbiter 464

0XF8002290 UsrCnfg User Configuration: CS mode, bank mode 465

0XF80022A0 MemRdQCnfg Memory read request queue configuration 467

0XF8002270 MemWrQCnfg Memory write request queue configuration 468

0XF80022B0 MemQArb Memory reorderQ arbitration configuration 470

0XF80022C0 MemRWArb Memory R/W arbitration configuration 471

0XF80022D0 MemBusConfig Specifies external timing delays to read data 472

0XF80022E0 MemBusConfig2 Additional timing delays to read data 474

0XF80023A0 ODTCntl ODT Control Register 475

0XF8002400 MSCR Memory Scrub Control Register 476

0XF8002410 MSRSR Memory Scrub Range Start Register 477

0XF8002420 MSRER Memory Scrub Range End Register 478

0XF8002430 MSPR Memory Scrub Pattern Register 478

0XF8002440 MCCR Memory Check Control Register 479

User Manual

CPC945 Bridge and Memory Controller Preliminary

Programmer’s Interface
Page 448 of 655 February 1, 2008

0XF8002460-
0XF8002470

MEAR[0:1] Memory Error Address Register [0:1] 480

0XF8002480 MESR Memory Error Syndrome Register 482

0XF8002500 MemModeCntl Memory Mode Control Register 483

0xF8002880 MemPhyModeCntl Memory PHY Mode Control 485

0xF80029A0 IOPadCntl I/O Pad Control bits 487

0xF8002800-
0xF8002830

ByteWrClkDelayC0B00-
ByteWrClkDelayC0B03

Write Strobe Control Registers 489

0xF8002900-
0xF8002930

ByteWrClkDelayC1B04-
ByteWrClkDelayC1B07

Write Strobe Control Registers 489

0xF8002980 ByteWrClkDelayC1B16 Write Strobe Control Registers 489

0xF8002A00-
0xF8002A30

ByteWrClkDelayC2B08-
ByteWrClkDelayC2B11

Write Strobe Control Registers 489

0xF8002B00-
0xF8002B30

ByteWrClkDelayC3B12-
ByteWrClkDelayC3B15

Write Strobe Control Registers 489

0xF8002B80 ByteWrClkDelayC3B17 Write Strobe Control Registers 489

0xF8002840-
0xF8002870

ReadStrobeDelayC0B00-
ReadStrobeDelayC0B03

Read Data Strobe Control Registers 491

0xF8002940-
0xF8002970

ReadStrobeDelayC1B04-
ReadStrobeDelayC1B07

Read Data Strobe Control Registers 491

0xF8002990 ReadStrobeDelayC1B16 Read Data Strobe Control Registers 491

0xF8002A40-
0xF8002A70

ReadStrobeDelayC2B08-
ReadStrobeDelayC2B11

Read Data Strobe Control Registers 491

0xF8002B40-
0xF8002B70

ReadStrobeDelayC3B12-
ReadStrobeDelayC3B15

Read Data Strobe Control Registers 491

0xF8002B90 ReadStrobeDelayC3B17 Read Data Strobe Control Registers 491

0xF8002890 CKDelayL CK Control Lower Register 493

0xF80028A0 CKDelayU CK Control Upper Register 493

0xF80028D0 RstLdEnVerniersC0 ResetLdEn Vernier Control Register C0 494

0xF80029D0 RstLdEnVerniersC1 ResetLdEn Vernier Control Register C1 494

0xF8002AD0 RstLdEnVerniersC2 ResetLdEn Vernier Control Register C2 494

0xF8002BD0 RstLdEnVerniersC3 ResetLdEn Vernier Control Register C3 494

0xF80028B0 ExtMuxVernier0 ExtMux Vernier Control Register 0 494

0xF80028C0 ExtMuxVernier1 ExtMux Vernier Control Register 1 494

0xF80028F0 CalCntlDlyMeasC0 Calibration Control and Delay Measurement Register C0 496

0xF80029F0 CalCntlDlyMeasC1 Calibration Control and Delay Measurement Register C1 496

Table 12-17. Memory Controller Register Address Space (Continued)

System Bus
Address Register Name Description Page

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
Programmer’s Interface

Page 449 of 655

12.10.1 Memory Timing Parameter Registers

The Memory Timing Parameter Registers contain values that are used in the Page Table Timers and Reorder
Queue State Timers. There are 4 registers of Timer values. The RAS Command Timer [0:1] Registers
(RASTimer0, RASTimer1) contain values associated with Activates and Precharges. The CAS Command
Timer [0:1] Registers (CASTimer0, CASTimer1) contain values associated with read and writes, like data
multiplexer switching time effects.

The values put into these registers are functions of the DDR2 JEDEC specification or vendor specification
values.

• CL is the programmed CAS Latency of the memories; usually 3, 4 or 5.

• WL = Write Latency is defined by JEDEC as RL -1, where RL (Read Latency) is defined by JEDEC as
AL + CL. Since AL = 0 for the CPC945 (“EMRS Settings” on page 153), WL = CL -1.

• BL = Burst Length = 4 for the 128-bit configuration and 8 for the 64-bit configurations.

• Values starting with “t” are found in the JEDEC or memory vendor specifications, usually in terms of ns.
There values must be converted to tCK clock cycles. Example: 533MHz SDRAM has tRAS = 45ns. The
CK going to memory is 266MHz which has a period tCK = 3.75ns. To satisfy the tRAS requirement at the
memory chip, the controller must generate tRAS = 45ns <==> (45ns/3.75ns/clock) = 12 clocks. So “12” is
the value for tRAS in the CPC945 RASTimer0 registers.

• For the CAS Timer0 and CAS Timer1 registers, the terms RRMux, WRMux, WWMux and RWMux pro-
vide time, in (in tCK clocks), for the external data bus to be “turned around” (to allow one device to stop
driving in time before another device starts driving the bus). These values have a minimum value of 1
clock. For boards with external muxes, the value might need to be increased to account for the switching
time of the multiplexer.

• The equations for the register settings take into account an internal 2 clock delay required in accessing
the programmed value. For example, the minimum Activate to Precharge delay at the SDRAM is the
JEDEC specified parameter tRAS. The equation for TiAtP, Activate to Precharge, in RASTimer0 gives a
programming value of tRAS - 2, reflecting the fact that 2 additional cycles will be added to the pro-
grammed value.

0xF8002AF0 CalCntlDlyMeasC2 Calibration Control and Delay Measurement Register C2 496

0xF8002BF0 CalCntlDlyMeasC3 Calibration Control and Delay Measurement Register C3 496

0xF80029B0 CalConf0 Calibration Configuration 0 Register 499

0xF80029C0 CalConf1 Calibration Configuration 1 Register 499

0xF80028E0 CalRsltC0 Calibration Read Margin Result Register C0 502

0xF80029E0 CalRsltC1 Calibration Read Margin Result Register C1 502

0xF8002AE0 CalRsltC2 Calibration Read Margin Result Register C2 502

0xF8002BE0 CalRsltC3 Calibration Read Margin Result Register C3 502

Table 12-17. Memory Controller Register Address Space (Continued)

System Bus
Address Register Name Description Page

User Manual

CPC945 Bridge and Memory Controller Preliminary

Programmer’s Interface
Page 450 of 655 February 1, 2008

For the above example of tRAS = 12 cycles the value programmed for TiAtP in RASTimer0 should be 10
(= 12 - 2).

• Many values are a function of the type of memory installed. If the installed memories support different tim-
ing values among themselves, the most conservative value must be used. Fox example, if one of the
DRAMS has a slower tRCD then the slower value should be used. tRCD is one of several values that is
different depending on the “speed grade” of the SDRAM. Note that some parameters can be a function of
other attributes, such as the chip size (in bits or banks) or row size. For example, tRDD is one value for
SDRAMs with 1K pages and a different value for SDRAMs with 2K pages. Again, for a mixture of values
the most conservative value must be used.

• The memory controller generates timings on clock period boundaries; calculated values must therefore
be rounded up to the nearest clock. tRDD (1K pages) is 7.5ns. For 533MHz DIMMs (tCK = 3.75ns) the
exactly 2 clocks will meet this specification. But for 400 MHz DIMMs (tCK = 5ns), one clock is not enough
(5ns), and 2 clocks generates more timing than needed (10ns). The rounded up value of 2 clocks must be
used.

• Similarly, “RND” in the equation indicates “Round-up to nearest integer cycle count”.

• See Section 7.15 Timing Parameters on page 175 for additional discussion of these timing parameters,
and Section 7.15.3 Timing Parameter Examples on page 176 for example calculations.

12.10.1.1 RAS Command Timer0 Register (RASTimer0)

Reset Value 0x72566380

Offset 0xF8002030

Access Type Read/Write, Read Only

TiAtP[0:4] TiRtP[0:4] TiWtP[0:4] TiPtA[0:4] TiPAtA[0:4] Unused

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits Field Name Description Access Reset

0:4 TiAtP[0:4]
Timer Init Activate to Precharge Time
Calculation: tRAS -2

R/W 0b01110

5:9 TiRtP[0:4]
Timer Init Read to Precharge Time
Calculation: (BL/2-2) + tRTP -2

R/W 0b01001

10:14 TiWtP[0:4]
Timer Init Write to Precharge Time
Calculation: WL + BL/2 + tWR -2

R/W 0b01011

15:19 TiPtA[0:4]
Timer Init Precharge to Activate Time
Calculation: tRP -2

R/W 0b00110

20:24 TiPAtA[0:4]
Timer Init Precharge All to Activate Time
Calculation: tRP -2 or
tRP - 1, if 8 Bank devices

R/W 0b00111

25:31 Unused Writes have no effect; reads are undefined. R undefined

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
Programmer’s Interface

Page 451 of 655

12.10.1.2 RAS Command Timer1 Register (RASTimer1)

Reset Value 0x39CAB120

Offset 0xF8002040

Access Type Read/Write, Read Only

TiRAPtA[0:4] TiWAPtA[0:4] TiAtARk[0:4] TiAtABk[0:4] TiAtRW[0:4] TiAtARkWin[0:4] Unused

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits Field Name Description Access Reset

0:4 TiRAPtA[0:4]
Timer Init Read Auto Precharge to Activate Time
Calculation: (BL/2) – 2 + RND (tRTP + tRP) - 2

R/W 0b00111

5:9] TiWAPtA[0:4]
Timer Init Write Auto Precharge to Activate Time
Calculation: CL + (BL/2) – 1 + RND (tWR + tRP) - 2

R/W 0b00111

10:14 TiAtARk[0:4]
Timer Init Activate to Activate Time within Rank to different Bank.
Calculation: tRRD - 2

R/W 0b00101

15:19 TiAtABk[0:4]
Timer Init Activate to Activate Time to same Bank.
Calculation: tRC - 2

R/W 0b01011

20:24 TiAtRW[0:4]
Timer Init Activate to Read/Write Time.
Calculation: tRCD - 2

R/W 0b00010

25:29 TiAtARkWin[0:4]
Timer Activate Window: Designates the window where 4 activates are
allowed for 8 bank devices.
Calculation: 4 * tRRD

 R/W 0b01000

30:31 Unused Writes have no effect; reads are undefined. R undefined

User Manual

CPC945 Bridge and Memory Controller Preliminary

Programmer’s Interface
Page 452 of 655 February 1, 2008

12.10.1.3 CAS Command Timer0 Register (CASTimer0)

Reset Value 0x00445084

Offset 0xF8002050

Access Type Read/Write, Read Only

TiRtRRk[0:4] TiRtRDm[0:4] TiRtRSy[0:4] TiWtRRk[0:4] TiWtRDm[0:4] TiWtRSy[0:4] Unused

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits Field Name Description Access Reset

0:4 TiRtRRk[0:4]
Timer Init Read to Read Time within the same Rank.
Encoding: BL/2 - 2

R/W 0b00000

5:9 TiRtRDm[0:4]
Timer Init Read to Read Time to the same DIMM, different Rank.
Encoding: BL/2 - 1

R/W 0b00001

10:14 TiRtRSy[0:4]
Timer Init Read to Read Time to different DIMM.
Encoding: BL/2 + RRMux - 2
RRMux is time to switch Data Multiplexer for Read-Read

R/W 0b00010

15:19 TiWtRRk[0:4]
Timer Init Write to Read Time within the same Rank.
Encoding: (CL-1) + BL/2 + tWTR - 2

R/W 0b00101

20:24 TiWtRDm[0:4]
Timer Init Write to Read Time to the same DIMM, different Rank.
Encoding: BL/2 - 1

R/W 0b00001

25:29 TiWtRSy[0:4]
Timer Init Write to Read Time to different DIMM.
Encoding: BL/2 +WRMux - 2
WRMux is time to switch Data Multiplexer for Write-Read

R/W 0b00001

30:31 Unused Writes have no effect; reads are undefined. R undefined

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
Programmer’s Interface

Page 453 of 655

12.10.1.4 CAS Command Timer1 Register (CASTimer1)

Reset Value 0x0044210C

Offset 0xF8002060

Access Type Read/Write, Read Only

TiWtWRk[0:4] TiWtWDm[0:4] TiWtWSy[0:4] TiRtWRk[0:4] TiRtWDm[0:4] TiRtWSy[0:4] Unused

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits Field Name Description Access Reset

0:4 TiWtWRk[0:4]
Timer Init Write to Write Time within the same Rank.
Encoding: BL/2 - 2

R/W 0b00000

5:9 TiWtWDm[0:4]
Timer Init Write to Write Time to the same DIMM, different Rank.
Encoding: BL/2 - 1

R/W 0b00001

10:14 TiWtWSy[0:4]
Timer Init Write to Write Time to different DIMM.
Encoding: BL/2 + WWMux - 2
WWMux is time to switch Data Multiplexer for Write - Write

R/W 0b00010

15:19 TiRtWRk[0:4]
Timer Init Read to Write Time within the same Rank.
Encoding: TRTW = BL/2

R/W 0b00010

20:24 TiRtWDm[0:4]
Timer Init Read to Write Time to the same DIMM, different Rank.
Encoding: BL/2

R/W 0b00010

25:29 TiRtWSy[0:4]
Timer Init Read to Write Time to different DIMM.
Encoding: BL/2 + RWMux - 1
RWMux is time to switch Data Multiplexer for Read - Write

R/W 0b00011

30:31 Unused Writes have no effect; reads are undefined. R undefined

User Manual

CPC945 Bridge and Memory Controller Preliminary

Programmer’s Interface
Page 454 of 655 February 1, 2008

12.10.2 Memory Refresh Control Register (MemRfshCntl)

This register programs the refresh parameters. RefTime defines the frequency of refresh cycles. A 13-bit
refresh counter continuously counts MemClk cycles. When the high order 9 bits of the refresh counter
matches the RefTime value, a refresh operation is initiated and the refresh counter is reset to zero. This gives
the ability to program the following Refresh Periods.

MemClk Frequency MemClk Period

Refresh Period
Minimum RefTime
0b0_0000_0001

(16 cycles)

Refresh Period
Maximum RefTime

0x1_1111_1111
(16 x 511 = 8176 cycles)

200 5 ns 80 ns 40.88 μs

267 3.75 ns 60 ns 30.66 μs

333 3 ns 48 ns 24.53 μs

Reset Value 0x04001800

Offset 0xF8002070

Access Type Read/Write, Read Only

RefTime[0:8] Unused D
ef

er
R

ef
[0

:1
]

tRFC[0:7] Unused

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits Field Name Description Access Reset

0:8 RefTime[0:8] The RefTime value is compared to the high order 9 bits of the 13-bit Refresh
Counter to determine the Refresh Period as defined above. R/W 0b00001000

9:13 Unused Writes have no effect; reads are undefined R undefined

14:15 DeferRef[0:1]

The DeferRef field specifies how many refreshes can be deferred before the
Refresh is forced. NOTE: If scrub is enabled, a scrub request will be pre-
sented to the request arbiter at the time the refresh interval counter kicks off,
not later when a deferred refresh actually happens. Also, the update of the
1/2-bit time measurement in the DDR2 PHY happens when the refresh hap-
pens, so if the refresh is deferred so is the 1/2-bit time update.
0x00 No deferred.
0x01 1 deferred
0x10 2 deferred
0x11 3 deferred

R/W 0x00

16:23 tRFC[0:7]

The Refresh Cycle Time is the minimum number of MemClks between a
Refresh command to an Activate or another Refresh command within the
same rank.
0x00 2 cycles
0x01 3 cycles
....
0xFF 257 clocks

R/W 0x18

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
Programmer’s Interface

Page 455 of 655

RefTime example: JEDEC specification = 7.8μs/refresh. 400 MHz DIMMs, CK = 200 MHz, tCK = 5ns.
7.8 μs/5ns = 1560 cycles, = 0x618 cycles. Drop low 4 bits => 0x610 cycles. 13-bit value adjusted to register
field boundary => MemRfshCntl[0:11] = 0x308.

The tRFC value in the MemRfshCntl register is a cycle count. Similar to the cycle counts in the RAS and CAS
Timer registers, the value must be rounded up to satisfy the tRFC value in ns specified by JEDEC. The tRFC
value varies with chip size (larger chips have larger values). Just as with the RAS and CAS Timing registers
the most conservative value must be used.

Also note that the computed value must compensate for an internal 2 cycle delay, the same as the RAS and
CAS Timer values. For example, the programmed value = the computed value - 2.

tRFC example: tCK = 5 ns for 400 MHz chips. Largest chip size = 1 Gb => tRFC = 127.5 ns (from JEDEC).
127.5 ns/5 ns = 25.5. Round up to 26. Subtract 2, the result is 24. The value programmed into MemRfshCntl
bits 16:23 = 24 = 0x18.

24:31 Unused Writes have no effect; reads are undefined R undefined

Bits Field Name Description Access Reset

User Manual

CPC945 Bridge and Memory Controller Preliminary

Programmer’s Interface
Page 456 of 655 February 1, 2008

12.10.3 Memory Programming Control Register (MemProgCntl)

This register is used to start, control, and detect the completion of the initialization sequence. See
Section 12.10.6 Memory Initialization Registers [0:15] (MemInitReg[0:15]) on page 462.

Reset Value 0x00000000

Offset 0xF80020B0

Access Type Read/Write, Read Only

In
itS

ta
rt

In
itC

m
pl

t

In
itB

lo
ck

A
ut

oR
ef

Unused R
es

er
ve

d

InitRank[0:7] InitLoopCount[0:7] Unused

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits Field Name Description Access Reset

0 InitStart
Start initialization. When the StartInit bit is written from low (0) to high (1)
the Initialization Sequence starts. This bit automatically clears to zero when
the full initialization sequence completes, as indicated by the InitCmplt bit.

R/W 0b0

1 InitCmplt

The Initialization Complete bit is set by hardware when the full initialization
sequence (as specified in the InitRegs) has been executed and the loop
counter has gone to zero. This bit will automatically clear when a new initial-
ization sequence is started with the InitStart bit.

R/W 0b0

2 InitBlockAutoRef

This bit controls the setting of the arefEnable bit when an initialization
sequence completes. When active, auto-refresh cycles are prevented
(blocked). When the bit is inactive, the auto-refresh function is enabled
when the initialization sequence is finished.
0 Auto-refresh Enabled
1 Block Auto-refresh

R/W 0b0

3:6 Unused Writes have no effect; reads are undefined. R undefined

7 Reserved This bit must be set to 0. R/W 0b0

8:15 InitRank[0:7]

Initialization Rank Enables. The InitRank field specifies which ranks are to
undergo the Initialization Sequence. If the InitRank is 0h00 then the DmEn
and SS bits determine which ranks are enabled. (See Section 12.10.7
DIMM Configuration Registers on page 463)
0x00 use DmCnfg
Anything else use InitRank bit.

R/W 0h00

16:23 InitLoopCount[0:7]

The InitLoopCount specifies how many times the initialization sequence is
executed. A Count of zero indicates that the sequence runs indefinitely.
0x00 Infinite
Anything else use InitLoopCount value.

R/W 0h00

24:31 Unused Writes have no effect; reads are undefined.

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
Programmer’s Interface

Page 457 of 655

12.10.4 Mode Register Set (MRS) Register (MRSRegCntl) and Extended Mode Register Set Register
(EMRSRegCntl)

The MRSRegCntl Register contains a copy of the fields that are sent to the SDRAMs during initialization time.
These values are defined in the JEDEC DDR2 SDRAM Spec. The A[x] designation indicates the Address
signals that are driven to the external memories when the MRS is loaded during the SDRAM initialization
sequence.

Note: The MRS register has no functional use. If programmed with a copy of the actual MRS contents that
are written to the memories, software routines can read this register as a reference.

Reset Value 0x0000064A

Offset 0xF80020C0 (MRSRegCntl)
0xF80020D0 (EMRSRegCntl)

Access Type Read/Write, Read Only

Unused PD WR[0:2]
DL
L TM CL[0:2] BT BL [0:2]

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits Field Name Description Access Reset

0:18 Unused Writes have no effect; reads are undefined R undefined

19 PD

This bit specifies whether the active power down exit time is tXARD (fast
exit) or tXARDS (slow exit).
0 Fast Exit
1 Slow Exit

R/W 0b0

20:22 WR[0:2]

Auto-Pre-Charge Write Recovery time.
001 2 cycles
010 3 cycles
011 4 cycles
100 5 cycles
101 6 cycles
All others reserved

R/W 0b011

23 DLL

This field specifies DLL Reset.
If the “Reset DLL” mode is used, the next command should return the part
to normal operation.
0 No DLL reset
1 DLL reset

R/W 0b0

24 TM
This field specifies whether Test Mode is active.
0 Normal
1 Test mode

R/W 0b0

25:27 CL[0:2]

Programs the CAS latency required by the SDRAM modules.
011 3 bus clocks
100 4 bus clocks
101 5 bus clocks
All others reserved

R/W 0b100

User Manual

CPC945 Bridge and Memory Controller Preliminary

Programmer’s Interface
Page 458 of 655 February 1, 2008

The EMRSRegCntl Register does have a functional use if OCD calibration is performed. If the optional OCD
Calibration is not performed then this EMRS register copy has no functional use. See Section 7.11 MRS
Register on page 154 for more discussion.

28 BT

This field programs the burst type. Interleaved burst mode must be used in
CPC945.
0 Sequential
1 Interleaved

R/W 0b1

29:31 BL[0:2]

This field programs the burst length.
Burst length of 8 is only used for 64BitCfg or 64BitBus.
010 4
011 8
All others are reserved

R/W 0b010

Unused Q
of

f

R
D

Q
S

E
na

b

D
Q

S
E

n_

OCDCal R
tt[

0]

AL R
tt[

1] DI
C D

LL
D

is

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits Field Name Description Access Reset

0:18 Unused Writes have no effect; reads are undefined R undefined

19 QoffA[12]

Output buffer disable.
This is an optional DDR2 feature
0 Output buffer enabled
1 Output buffer disabled

R/W 0b0

20 RDQSEnabA[11]

If RDQS is enabled, the DM function is disabled. RDQS is active for reads
and don’t care for writes
0 Disable
1 Enable

Note: RDQS is not supported. Always set bit 20 to ‘0’.

R/W 0b0

21 DQSEn_A[10]
DQS enable. Note that this is active low.
0 Enable
1 Disable

R/W 0b0

22:24 OCDCalA[9:7]

Off-chip driver (OCD) calibration program
000 OCD mode exit; maintain setting
001 Drive(1)
010 Drive(0)
100 Adjust mode
111 OCD calibration default

R/W 0b000

25 Rtt[0]A[6]

Rtt (nominal), [A6, A2], Specifies ODT (on-die termination) disable and
strength. See bit 29.
00 ODT disabled
01 75 Ω
10 150 Ω
11 Reserved

R/W 0b00

Bits Field Name Description Access Reset

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
Programmer’s Interface

Page 459 of 655

26:28 AL
A[5:3]

Additive latency (AL)
000 0 cycles (default)
001 1 cycle
010 2 cycles
011 3 cycles
100 4 cycles
101-111 Reserved

R/W 0b000

29 Rtt[1]
A[2]

Rtt (nominal), [A6, A2], Specifies ODT (on-die termination) disable and
strength. See bit 25.
00 ODT disabled
01 75 Ω
10 150 Ω
11 Reserved

R/W 0b00

30 DIC
A[1]

Driver impedance control. This field programs the strength of the DRAM
output driver impedance.
0 Normal (100% driver size)
1 Weak (60% driver size)

R/W 0b0

31 DLLDis
A[0]

DLL disable. This field defines whether the DLL mode (DelayLock Loop)
is used. When enabled, aligns the strobe signal to data (normal Opera-
tion). When enabled, data strobes cannot be used.
0 Enable delay lock loop
1 Disable delay lock loop

R/W 0b0

Bits Field Name Description Access Reset

User Manual

CPC945 Bridge and Memory Controller Preliminary

Programmer’s Interface
Page 460 of 655 February 1, 2008

12.10.5 Memory Mapping Exception Registers

The 2 Memory Mapping Exception Registers contain information about a memory request that caused an
addressing exception while trying to map to a rank, bank, and so on. The main cause of this exception is
probably accessing beyond the bounds of memory. The MemMapExcpAd contains address bits 28:59 of the
request while the MemMapExcpCtl contain control information like TSiz, RW, Tag, RID, etc.

12.10.5.1 Memory Mapping Exception Address Register (MemMapExcpAd)

Reset Value 0x00000000

Offset 0xF80020E0

Access Type Read Only

Ad

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits Field Name Description Access Reset

0:31 Ad Contains bits 28:59 of the memory request that caused the address-
ing exception. R undefined

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
Programmer’s Interface

Page 461 of 655

12.10.5.2 MemMapExcpCtl Register (MemMapExcpCtl)

Reset Value 0x00000000

Offset 0xF80020F0

Access Type Read/Write, Read Only

R
eq

Ty
pe

[0
:1

]

Rd Tg[0:6] TSiz[0:3] Rid[0:3] W
rA

ll

Unused E
xc

pM
as

k

M
ap

E
xc

pV

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits Field Name Description Access Reset

0:1 ReqType[0:1]

Request Type. Indicates whether this request is coherent, noncoherent (PCIe
only) or a scrub request
00 Coherent
01 Non-coherent
10 Scrub

R/W 0b00

2 Rd
Indicates if this request is a read or write.
0 Write
1 Read

R/W 0b0

3:9 Tg[0:6]
Tag. The Tg is the 7-bit Tg presented with the requests.
For writes, this Tag specifies the WDB location.
For reads, this Tag is returned with the read data.

R/W 0b0000000

10:13 TSiz[0:3] Transaction Size. Indicates the size in bytes of the transaction R/W 0b0

14:17 Rid[0:3]

Requestor ID. Indicates the source of the request, either Proc[0:3] or Debug,
HT, or PCIe.
00nn Proc[nn]
0100 PCIe
0101 HT
1110 Scrub
1111 Debug

R/W 0b0000

18 WrAll Write All. On a write request, the WrAll signal indicates that all the Write Enables
are active that are specified in the TSiz. R/W 0b0

19:29 Unused Writes have no effect; reads are undefined R undefined

30 ExcpMask

The Exception Mask turns on or off the generation of an interrupt when an
address Exception occurs.
0 Interrupt Enabled
1 Interrupt Disabled

R/W 0b0

31 MapExcpV

The Map Exception Valid bit (when set) indicates that an Exception has
occurred. This bit generates an interrupt to the processor when the Exception
Mask is 0.
*When the MemMapExcpCtl Register is read, this bit clears (0).
Warning: Writing a one to this bit will cause an Exception.
0 No Exception
1 Exception occurred

R*/W 0b0

User Manual

CPC945 Bridge and Memory Controller Preliminary

Programmer’s Interface
Page 462 of 655 February 1, 2008

12.10.6 Memory Initialization Registers [0:15] (MemInitReg[0:15])

There are sixteen 32-bit Memory Initialization Registers. The fields in these registers control the command
and address signals to memory during the initialization sequence. The following is the format of each register.

The initialization sequence is initiated by setting the InitStart bit in the MemProgCntl register defined above.
This initiates a sequence starting with MemInitReg0. If the En bit (Enable) in MemInitReg0 is active (1), then
the MemInitReg0 defines a Command that is sent to the memory interface with the specified state of the RAS,
CAS, WE, BA, and MA signals. Each enabled Rank (See MemProgCntl register) is sent the Command on
consecutive cycles.

While the Command is being issued, a Delay counter is counting off the number of cycles (MemClks) speci-
fied in the Delay field. Once that command has been sent to the enabled Ranks, the sequencer waits the
number of cycles specified in the Delay counter before sending the next command. For example if there are 8
enabled Ranks and the Delay value is 2 (4 cycles), the delay is hidden under the CS cycles. If there are 2
Ranks and the delay is 3 (5 cycles) then there will be 2 CS cycles followed by 3 noop cycles.

Reset Value 0x00000000

Offset 0xF8002100-0xF80021F0

Access Type Read/Write

En R
A

S

C
A

S

WE Delay Lo
op

BA [2:0] A [15:0]

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits Field Name Description Access Reset

0 En
This command is enabled.
0 No Command
1 Valid Command

R/W 0b0

1 RAS RAS signal to DRAM. Active low R/W 0b0

2 CAS CAS signal to DRAM. Active low R/W 0b0

3 WE WE signal to DRAM. Active low R/W 0b0

4:11 Delay

Number of MemClks to delay after issuing this command
0 2 cycles
1 3 cycles
…
255 257 cycles

R/W 0x00

12 Loop

This field indicates whether the sequence should start over from
MemInitReg0. When active the sequence continues to loop for the
number of times specified in MemProgCntl or turning this bit off
cause the loop to terminate.
0 Looping disabled
1 Looping enabled

R/W 0b0

13:15 BA [2:0] Bank address signals to DRAM. R/W 0b000

16:31 A [15:0] Memory address signals to DRAM. R/W 0x0000

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
Programmer’s Interface

Page 463 of 655

The next Command comes from MemInitReg1. If this En bit is active then another command is sent using the
fields from MemIntReg1. A Delay also occurs before proceeding to the next MemInitReg. This continues until
an En bit is reached that is 0. When this happens the sequence is terminated and the InitCmplt bit in the
MemProgCntl reg is set.

If a MemInitReg is executed with its Loop bit set, then the sequence starts over with MemInitreg0. The
sequence continues until an En is found with a 0, or repeats when a Loop bit of 1 is found. Also, the looping
continues for the number of times specified in the InitLoopCount field of the MemProgCntl register.

12.10.7 DIMM Configuration Registers

These registers specify the size and types of DIMMs installed in the system and are used by the Memory
Bank Mapping to determine how the 36-bit physical address maps into Rank, Bank, Row, and Column
addresses.

There are a total of four DIMM configuration registers. Each register designates the size and type of a single
DIMM and whether that DIMM is enabled. These registers are loaded based upon the types and configuration
of DIMMs installed. See Section 7.14.10 DIMM Configuration Algorithm on page 163 for an general method
of programming these registers, and Section 7.14.11 DIMM Configuration Examples on page 165 for
example values.

Table 12-18. DIMM Configuration Registers

DIMM Configuration Register Reset Value Offset Access Type

Dm0Cnfg 08081001 0xF8002200

Read/Write,
Read Only

Dm1Cnfg 08081041 0xF8002210

Dm2Cnfg 08081101 0xF8002220

Dm3Cnfg 08081141 0xF8002230

Add2G[28:32] Unused Sub2G[28:32] Unused MemMd[0:3] Strategies[28:36] U
nu

se
d

SS D
m

E
n

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits Field Name Description Access Reset

0:4 Add2G[28:32] High order address bits of the additional 2 GB memory space that is
part of this rank due to the 2 GB I/O hole R/W 0b0000_1

5:7 Unused Writes have no effect; reads are undefined R undefined

8:12 Sub2G[28:32]
High order address bits of the 2 GB memory space that should be
removed from the address spaces defined by the StartAdrs and
MemMd due to the 2 GB I/O hole

R/W 0b0000_1

13:15 Unused Writes have no effect; reads are undefined R undefined

16:19 MemMd[0:3] Memory mode. Specifies one of the 12 types (size, chip width) of
DIMMs for this rank. See Table 7-6 Memory Modes on page 157. R/W 0b0001

User Manual

CPC945 Bridge and Memory Controller Preliminary

Programmer’s Interface
Page 464 of 655 February 1, 2008

12.10.8 Memory Arbiter Weight Register (MemArbWt)

This register specifies the weights for the round-robin arbitration. Each agent can have a weight assigned
such that the agent retains the priority for that many requests of the arbiter once it has priority. A weight of
zero indicates that this requester does not participate in the round-robin selection (it has low priority) and is
only serviced when the other requesters are idle.

20:28 Strategies
[28:36]

Specifies the starting physical address for this DIMM of memory. This
address along with the memory size specified in the MemMd deter-
mines the address space for this DIMM. If this is part of a DIMM group
that is greater than 2 GB then the Add2G and Sub2G fields provide
corrections to this address space.

R/W

Dm0: 0b0000_0000_0
Dm1: 0b0000_0100_0
Dm2: 0b0001_0000_0
Dm3: 0b0001_0100_0

29 Unused Writes have no effect; reads are undefined R undefined

30 SS

Single Sided. Specifies whether this DIMM is single sided (contains
only 1 rank) or double sided (contains 2 ranks).
0 Double
1 Single

R/W 0b0

31 DmEn

DIMM Enable. Specifies whether this DIMM is enabled. Used in bank
mapping and memory initialization sequencing.
0 Disabled
1 Enabled

R/W 0b1

Reset Value 0x54000000

Offset 0xF8002280

Access Type Read/Write, Read Only

C
oh

W
t[0

:1
]

N
C

oh
W

t[0
:1

]

S
cr

bW
t[0

:1
]

Unused

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits Field Name Description Access Reset

0:1 CohWt[0:1]

Coherent weight. Specifies the arbiter weight for coherent requests.
00 Low priority
01 1 request
10 2 requests
11 3 requests

R/W 0b01

2:3 NCohWt[0:1]

Noncoherent weight. Specifies the arbiter weight for noncoherent requests.
00 Low priority
01 1 request
10 2 requests
11 3 requests

R/W 0b01

Bits Field Name Description Access Reset

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
Programmer’s Interface

Page 465 of 655

12.10.9 Memory User Configuration Register (UsrCnfg)

This register indicates the chip select mode, interleave mode, and page strategy mode.

4:5 ScrbWt[0:1]

Scrub weight. Specifies the arbiter weight for scrub requests.
If the weight is zero, then the scrub requests are the lowest priority and do not par-
ticipate in the round-robin arbitration.
00 Low priority
01 1 request
10 2 requests
11 3 requests

R/W 0b01

6:31 Unused Writes have no effect; reads are undefined. R undefined

Reset Value 0x00000000

Offset 0xF8002290

Access Type Read/Write, Read Only

D
m

0C
sM

d[
0:

1]

D
m

1C
sM

d[
0:

1]

D
m

2C
sM

d[
0:

1]

D
m

3C
sM

d[
0:

1]

In
trl

vM
d

P
gP

ol
ic

y[
0:

1]

Unused

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits Field Name Description Access Reset

0:1 Dm0CsMd[0:1]
Specifies the type of ChipSelect grouping for DIMM 0.
Encoding: See Section 7.14.8 Chip Select Mode on page 158.

R/W 0b00

2:3 Dm1CsMd[0:1] Specifies the type of ChipSelect grouping for DIMM 1. R/W 0b00

4:5 Dm2CsMd[0:1] Specifies the type of ChipSelect grouping for DIMM 2. R/W 0b00

6:7 Dm3CsMd[0:1] Specifies the type of ChipSelect grouping for DIMM 3. R/W 0b00

8 IntrlvMd

Specifies whether the bank interleave mode is based on a DRAM page
or the L2 cache line size.
0 DRAM page
1 L2 cache line

R/W 0b0

Bits Field Name Description Access Reset

User Manual

CPC945 Bridge and Memory Controller Preliminary

Programmer’s Interface
Page 466 of 655 February 1, 2008

9:10 PgPolicy[0:1]

Specifies the type of open/close page policy in effect.
Usually open policy causes a page to be left open after a data com-
mand unless there are no other data commands to that page from the
same queue and there are other requests to a different page and same
bank/rank from the same queue.
Usually closed policy causes a page to be closed after the data com-
mand unless there are requests still pending to the same page from the
same queue.
0 Usually open
1 Usually closed
2 Leave open
3 Leave closed

R/W 0b00

11:31 Unused Writes have no effect; reads are undefined R undefined

Bits Field Name Description Access Reset

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
Programmer’s Interface

Page 467 of 655

12.10.10 Memory Read Request Queue Configuration Register (MemRdQCnfg)

This register specifies the parameters controlling the Read Reorder Queue.

Reset Value 0x20020820

Offset 0xF80022A0

Access Type Read/Write, Read Only

SzRdQ[0:5] Unused PcieAgCnt[0:3] P
ci

eA
gM

d[
0:

3]

HtAgCnt[0:3] H
tA

gM
d[

0:
1]

ApiAgCnt[0:3 A
pi

A
gM

d[
0:

1]

Q
G

rn
tM

d

U
nu

se
d

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits Field Name Description Access Reset

0:5 SzRdQ[0:5]
Size of Read Reorder Queue. Specifies the number of entries in the Read
Reorder Queue.
Minimum: 1, Maximum: 8, Default: 8

R/W 0b001000

6:11 Unused Writes have no effect; reads are undefined. R undefined

12:15 PcieAgCnt
[0:3]

Specifies the number of cycles (MemClks) a PCIe read request can wait before
it is aged and whether aging is enabled. Counting does not start until a transac-
tion hits the bottom of the queue. The value changes depending on PcieAgMd.
0000-1110 See PcieAgMd
1111 PCIe Aging Disabled

R/W 0b0010

16:17 PcieAgMd[0:3]

Specifies how the PcieAgCnt is to be interpreted.
0 Use PcieAgCnt
1 Use PcieAgCnt * 4
2 Use PcieAgCnt * 16
3 Use PcieAgCnt * 64

R/W 0b00

18:21 HtAgCnt[0:3]

Specifies the number of cycles (MemClks) a HT read request could wait before
it is aged and whether aging is enabled. Counting does not start until a transac-
tion hits the bottom of the queue. The value changes depending on HtAgMd.
0000-1110 See HtAgMd
1111 HT Aging Disabled

R/W 0b0010

22:23 HtAgMd[0:1]

HT Read Aging Mode. Specifies how the HtAgCnt is to be interpreted.
0 Use HtAgCnt
1 Use HtAgCnt * 4
2 Use HtAgCnt * 16
3 Use HtAgCnt * 64

R/W 0b00

24:27 ApiAgCnt[0:3

PI Read Aging Count. Specifies the number of cycles (MemClks) an PI (proc)
read request can wait before it is aged and whether aging is enabled. Counting
does not start until a transaction hits the bottom of the queue. The value
changes depending on ApiAgMd.
0000-1110 See ApiAgMd
1111 PI Aging Disabled

R/W 0b0010

User Manual

CPC945 Bridge and Memory Controller Preliminary

Programmer’s Interface
Page 468 of 655 February 1, 2008

12.10.11 Memory Write Request Queue Configuration Register (MemWrtQCnfg)

This register specifies the parameters controlling the Write Reorder Queue.

28:29 ApiAgMd[0:1]

PI Read Aging Mode. Specifies how the ApiAgCnt is to be interpreted.
0 Use ApiAgCnt
1 Use ApiAgCnt * 4
2 Use ApiAgCnt * 16
3 Use ApiAgCnt * 64

R/W 0b00

30 QGrntMd

Queue Grant Mode. When this bit is set, no new requests are allowed into the
Read Reorder Queue (RdQ) or the Write Reorder Queue (WrQ) if either the
RdQ or the WrQ are full.
With this bit set, fastpath disabled and the RdQ and WrQ size set to one, the
memory controller will execute requests in the same order that was seen on the
request interface.
0 Normal
1 Special

R/W 0b0

31 Unused Writes have no effect; reads are undefined. R undefined

Reset Value 0x40041040

Offset 0xF8002270

Access Type Read/Write, Read Only

SzWrQ[0:5] Unused P
ci

eW
rA

gC
nt

[0
:3

]

P
ci

eW
rA

gM
d[

0:
1]

HtWrAgCnt[0:3] H
tW

rA
gM

d[
0:

1]

Api-
WrAgCnt[0:3] A

pi
W

rA
gM

d[
0:

1]

Unused

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits Field Name Description Access Reset

0:5 SzWrQ[0:5]
Size of Write Reorder Queue. Specifies the number of entries on the Write
Reorder Queue.
Minimum: 1, Maximum: 16, Default: 16

R/W 0b010000

6:11 Unused Writes have no effect; reads are undefined R undefined

12:15 PcieWr
AgCnt[0:3]

PCIe Write Aging Count. Specifies the number of write requests a PCIe write
request can wait before it is aged and whether aging is enabled. Counting
does not start until a transaction hits the bottom of the queue. The value
changes depending on PcieWtAgMd.
0000-1110 See PcieWtAgMd
1111 PCIe aging disabled

R/W 0b0100

Bits Field Name Description Access Reset

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
Programmer’s Interface

Page 469 of 655

16:17 PcieWr
AgMd[0:1]

PCIe write aging mode. Specifies how the PcieWtAgCnt is to be interpreted.
0 Use PcieWtAgCnt
1 Use PcieWtAgCnt × 4
2 Use PcieWtAgCnt × 16
3 Use PcieWtAgCnt × 64

R/W 0b00

18:21 HtWr
AgCnt[0:3]

HT write aging count. Specifies the number of write requests a HT write
request can wait before it is aged and whether aging is enabled. Counting
does not start until a transaction hits the bottom of the queue. The value
changes depending on HtWtAgMd.
0000-1110 See HtWtAgMd
1111 HT aging disabled

R/W 0b0100

22:23 HtWr
AgMd[0:1]

HT Write Aging Mode. Specifies how to interpret HtWtAgCnt.
0 Use HtWtAgCnt
1 Use HtWtAgCnt × 4
2 Use HtWtAgCnt × 16
3 Use HtWtAgCnt × 64

R/W 0b00

24:27 ApiWr
AgCnt[0:3]

PI write aging count. Specifies the number of write requests an PI (proc) write
request can wait before it is aged and whether aging is enabled. Counting
does not start until a transaction hits the bottom of the queue. The value
changes depending on ApiWtAgMd.
0000-1110 See ApiWtAgMd
1111 PI aging disabled

R/W 0b0100

28:29 ApiWr
AgMd[0:1]

PI write aging mode. Specifies how the ApiWtAgCnt is to be interpreted.
0 Use ApiWtAgCnt
1 Use ApiWtAgCnt × 4
2 Use ApiWtAgCnt × 16
3 Use ApiWtAgCnt × 64

R/W 0b00

30:31 Unused Writes have no effect; reads are undefined. R undefined

Bits Field Name Description Access Reset

User Manual

CPC945 Bridge and Memory Controller Preliminary

Programmer’s Interface
Page 470 of 655 February 1, 2008

12.10.12 Memory Reorder Queue Arbitration Register (MemQArb)

This register specifies the parameters controlling the read and write ReOrderQ Arbitration modes.

Reset Value 0x00000000

Offset 0xF80022B0

Access Type Read/Write, Read Only

RdQCVEn[0:5] RdQRVEn[0:5] WrQCVEn[0:5] WrQRVEn[0:5] Unused

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits Field Name Description Access Reset

0:5 RdQCVEn
[0:5]

Specifies the number of entries in the read reorder queue (RdReoQ) that
participate in CV arbitration.
0 All entries
n Number of entries

R/W 0b000000

6:11 RdQRVEn
[0:5]

Specifies the number of entries in the read reorder queue (RdReoQ) that
participate in RV Arbitration.
0 All entries
n Number of entries

R/W 0b000000

12:17 WrQCVEn
[0:5]

Specifies the number of entries in the write reorder queue (WrReoQ) that
participate in CV Arbitration.
0 All entries
n Number of entries

R/W 0b000000

18:23 WrQRVEn
[0:5]

Specifies the number of entries in the write reorder queue (WrReoQ) that
participate in RV Arbitration.
0 All entries
n Number of entries

R/W 0b000000

24:31 Unused Writes have no effect; reads are undefined R undefined

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
Programmer’s Interface

Page 471 of 655

12.10.13 Memory R/W Arbitration Register (MemRWArb)

This register specifies the parameters controlling the read and write arbitration modes.

Reset Value 0x30413CC0

Offset 0xF80022C0

Access Type Read/Write

WrQMk[0:5] WrBurst [0:5] RdBurst [0:5] R
W

A
rb

M
d

[0
:1

]

H
tW

D
B

M
k[

0:
2]

Fa
st

P
at

hD
is

P
cW

D
B

M
k[

0:
2]

TiRtWRMW[0:4]

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits Field Name Description Access Reset

0:5 WrQMk[0:5] Write queue high water mark. Specifies the high water mark in the WrReoQ. R/W 0b001100

6:11 WrBurst [0:5]

Write burst. Specifies the minimum number of write requests issued before
switching priority to RdQ. Only counts for switches caused by high water-
marks.
0 No entries
n n entries
Maximum: All entries

R/W 0b000100

12:17 RdBurst [0:5]

Read burst. Specifies the minimum number of read requests issued before
switching priority to WrQ.
0 No entries
n n entries
Maximum: All entries

R/W 0b000100

18:19 RWArbMd [0:1]

Read/write arbitration mode. RWArbMd is a 2-bit field that designates allowing
requests from nonpriority queue when giving priority to the current queue.
When in a current queue state, only requests from that queue can be pro-
cessed. The RWArbMd overrules the priority and allows CAS commands to
execute if they are ready and there is not a CAS command ready for the cur-
rent queue.
This only applies for CAS commands.
RWArbMd[0] = 1: Writes are allowed in read queue state.
RWArbMd[1] = 1: Reads are allowed in write queue state.

R/W 0b11

20:22 HtWDBMk[0:2]
Specifies the high water mark for the HT write data buffer (WDB).
0 8 entries.
n n entries.

R/W 0b110

23 FastPathDis
Disables the fast bypass path around the read reorder queue.
0 Enable
1 Disable

R/W 0b0

24:26 PcWDBMk[0:2]
High water mark for the PCIe write data buffer (WDB).
0 8 entries
n n entries

R/W 0b110

User Manual

CPC945 Bridge and Memory Controller Preliminary

Programmer’s Interface
Page 472 of 655 February 1, 2008

12.10.14 Memory Bus Configuration Register (MemBusConfig)

This register specifies parameters for the timing of data bus for reads and writes.

27:31 TiRtWRMW[0:4]

Read to write timer for read-modify-write (RMW). Specifies the timer delay to
be loaded when transitioning from read to write for read-modify-write opera-
tions.
Calculation: CEIL((RdMacDel + 1)/2) + 6 – WL.
Because of the latency in loading a timer, 2 should be subtracted from the
“calculation” value.

R/W 0b00000

Reset Value 0x00000008

Offset 0xF80022D0

Access Type Read/Write

RdMacDel[0:3] ResMuxDel[0:3] R
dE

xt
M

ux
D

ly
[0

:3
]

W
rE

xt
M

ux
D

ly
[0

:3
]

WdbRqDly[0:3] S
ta

rtL
dE

nO
n

R
dO

E
O

nD
ly

[0
:1

]

RdOEOffDly[0:3
] R

es
er

ve
d

A
d2

C
yc

64
Bi

tC
fg

64
Bi

tB
us

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits Field Name Description Access Reset

0:3 RdMacDel[0:3]

Read macro delay. RdMacDel sets the delay (ddr_clks) from the read command
to the cycle in which the ddr_phy data capture registers begin to be transferred to
the ddr_clk domain. There is a multi-ddr_clk cycle window in which to begin this
transfer and the exact cycle is dependent on the round-trip board and system
logic delays in the memory interface. See Section 12.10.15 Memory Bus Config-
uration Register 2 on page 474.
0b0000 = 2
0b0001 = 3
0b0010 = 4
…
0b1111 = 17

R/W 0b0000

4:7 ResMuxDel[0:3]

Res multiplexer delay. ResMuxDel sets the delay (ddr_clks) from the read com-
mand to the cycle in which the ddr_phy data capture registers begin to sample
the DQ data signal with the DQS strobe input (delayed). There is a multi-ddr_clk
cycle window where this delay must fall and it includes the read DQS preamble
time. Round-trip board delays, system logic delays and byte-lane skews contrib-
ute to the position of this window as well as its width and the proper value is typi-
cally found through educated guess and test methods. Additional delay verniers
are available in the MiscVernierC0-3 registers. See Section 12.10.30 Reset
LdEn Offset Delay Registers (RstLdEnVerniersCn) on page 494.
0b0000 = 0
0b0001 = 1
0b0010 = 2
0b0011 = 3
…
0b1111 = 15

R/W 0b0000

Bits Field Name Description Access Reset

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
Programmer’s Interface

Page 473 of 655

8:11 RdExtMuxDly
[0:3]

Read Multiplexer Enable Delay. Sets the delay (ddr_clks) from a Read command
to the cycle in which the external multiplexer controls change to their new value.
Additional delay verniers are available in the MiscVernierC0-3 registers. See
Section 12.10.15 Memory Bus Configuration Register 2 on page 474.
0b0000 = 0
0b0001 = 1
…
0b1111 = 15

R/W 0b0000

12:15 WrExtMuxDly
[0:3]

Write Multiplexer Enable Delay. Sets the delay (ddr_clks) from a Write command
to the cycle in which the external multiplexer controls change to their new value.
Additional delay verniers are available in the MiscVernierC0-3 registers.
0b0000 = 0
0b0001 = 1
…
0b1111 = 15

R/W 0b0000

16:19 WdbRqDly[0:3]

WDB request delay. Specifies the number of ddr_clk cycles to wait after sending
a Write command to request write data from the WDB. Set to 2 × (CL +
n_register_clk_dlys - 4) + n ddr_cycles of CK delay to SDRAM. For example,
CL = 4, registered DIMMs, negligible wiring delay, WdbRqDly = 2 × (4 + 1 - 4) + 0
= 2. Note that unregistered DIMMs with CL = 3 and negligible board delay is not
supported because this would require a negative RdbRqDly.
0b0000 = 0
0b0001 = 1
…
0b1111 = 15

R/W 0b0000

20 StartLdEnOn StartLdEnOn. Override of the DQS glitch filter logic in the DDR_PHY read data
capture module. R/W 0b0

21:23 RdOEOnDly[0:1]
Read OE On Delay. Specifies how many ddr_clk cycles the DQ/DQS OE
remains “off” following the completion of a Read Command. Typically set to zero.
See Section 12.10.15 Memory Bus Configuration Register 2 on page 474.

R/W 0b00

24:27 RdOEOffDly[0:3]
Read OE off delay. Specifies the delay in ddr_clk cycles from the CAS read
Command to the DQ/DQS OE turning “off”.
Typically set to (2 × (CL + n_register_delays)) – 4 + n ddr_cycles of CK delay.

R/W 0b0000

28 Reserved This bit must be set to 0. R/W 0b1

29 Ad2Cyc

Specifies using 2-cycle addressing. 2-cycle addressing places the memory com-
mand on the memory bus for two memory cycles instead of one.
0 1 cycle
1 2 cycle

R/W 0b0

30 64BitCfg

This bit specifies whether the DIMMs are in a 64-bit configuration. Data is sent to
the DIMMs 64 bits at a time instead of 128 bits.
0 128 bit
1 64 bit

R/W 0b0

31 64BitBus

This bit specifies whether the external interface has a 64-bit data bus. A 128-bit
bus requires paired DIMMs to work.
0 128-bit bus
1 64-bit bus

R/W 0b0

Bits Field Name Description Access Reset

User Manual

CPC945 Bridge and Memory Controller Preliminary

Programmer’s Interface
Page 474 of 655 February 1, 2008

12.10.15 Memory Bus Configuration Register 2

This register specifies additional parameters for the timing of data bus for read.

Reset Value 0x00000000

Offset 0xF80022E0

Access Type Read/Write, Read Only

ApiRdT-
gDly[0:3] R

es
er

ve
d

Unused R
dP

ip
eD

ly
[0

:1
]

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits Field Name Description Access Reset

0:3 ApiRdTgDly
[0:3]

ApiRdTgDly sets the delay (ddr_clks) from the read command to the cycle in
which the TgV is sent to the PI unit. Initially this value should be set the same as
RdMacDel. Reducing this delay causes the TgV to be seen earlier giving the PI
unit more time to set up for the data. Whenever this delay is reduced, the
ApiMemDly value in the PI register, APIMemRdCfg, needs to be increased by an
equal amount.
0b0000 = 2
0b0001 = 3
0b0010 = 4
…
0b1111 = 17

R/W 0b0000

4 Reserved This bit must be set to 0. R/W 0

5:29 Unused Writes have no effect; reads are undefined. R undefined

30:31 RdPipeDly
[0:1]

RdPipeDly specifies the additional delay in ddr_clks that is added to the read
parameters to move the read data window into a better programmable range.
This additional delay is added to the following fields: ApiRdTgDly, RdMacDel,
ResMuxDel, RdExtMuxDly, and RdOEOffDly. (See Section 12.10.14 Memory
Bus Configuration Register (MemBusConfig) on page 472)
0b00 0 delay
0b01 4 cycle delay
0b10 8 cycle delay
0b11 12 cycle delay

R/W 0b00

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
Programmer’s Interface

Page 475 of 655

12.10.16 ODT Control Register (ODTCntl)

This register specifies the controls for ODT.

Reset Value 0x00000000

Offset 0xF80023A0

Access Type Read/Write, Read Only

O
D

TD
is

O
D

TR
es

O
D

TA
ss

ig
n

O
D

TR
dE

n

Unused

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits Field Name Description Access Reset

0 ODTDis
ODT disable. Defines whether ODT is disabled.
0 Enabled
1 Disabled

R/W 0b0

1 ODTRes

ODT resolution mode
When ODT is enabled, this bit must be set to 1. Although the default is 0, the bit must be
set to 1 for ODT to function correctly.

When set to 1, ODT is assumed to be routed per DIMM so:
ODT[0] = 1 enables DIMM 0,
ODT[1] = 1 enables DIMM 1,
ODT[2] = 1 enables DIMM 2, etc.

Assuming the following DIMM/rank numbering:
rank 0,1 DIMM 0 DIMM 4
rank 2,3 DIMM 1 DIMM 5
rank 4,5 DIMM 2 DIMM 6
rank 6,7 DIMM 3 DIMM 7

R/W 0b0

2 ODTAssign

ODT assignment mode
Defines whether ODT is using direct mode (for multiplexer systems) or indirect mode
(for multidrop systems). In direct mode, the DIMM being accessed is the one for which
termination is turned on. In indirect mode, termination is turned on for the DIMM that is
not being accessed.
0 Direct
1 Indirect

R/W 0b0

3 ODTRdEn

ODT Read Enable. Selects whether ODT is driven for reads as well as writes, or for
writes only.
0 Writes only
1 Both

R/W 0b0

4:31 Unused Writes have no effect; reads are undefined. R undefined

User Manual

CPC945 Bridge and Memory Controller Preliminary

Programmer’s Interface
Page 476 of 655 February 1, 2008

12.10.17 Memory Scrub Control Register (MSCR)

This register is used in conjunction with the Memory Scrub Pattern Register (MSPR), Memory Scrub Range
Start Register (MSRSR), Memory Scrub Range End Register (MSRER) to perform main memory fill, initializa-
tion, test, and background soft error scrub. The scrub logic automatically skips over the third and fourth GB of
address space (if the MPRSR and MSRER are set to include a portion or all of this space) that is reserved for
I/O.

Reset Value 0x00000000

Offset 0xF8002400

Access Type Read/Write, Read Only

S
C

R
U

B
_M

O
D

[0
:1

]

Reserved SI [0:7] Unused

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits Field Name Description Access Reset

0:1 SCRUB_MOD
[0:1]

Scrub mode
This field defines the mode of operation for the memory scrub control logic.
Background: Scrub read and write one successive 64-byte block every interval.
This mode will remain set indefinitely, or until re-programmed by system soft-
ware.
Immediate: Scrub read and write one successive 64-byte block continuously
(without regard to the background interval). This mode will be reset after one
complete pass through memory.
Immediate with Fill: Scrub write (without read) successive 64-byte blocks con-
tinuously (without regard to the background interval). Write data is derived from
the Memory Scrub Pattern Register (MSPR), where the 4-byte register content is
repeated (modulo 4 byte) across the 16-byte memory data path before data is
sent through the ECC generator circuits. This mode will be reset after one com-
plete pass through memory.
00 Off. No scrub activity.
01 Background
10 Immediate
11 Immediate with fill

R/W 0b00

2:7 Reserved Reserved R/W 0x00

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
Programmer’s Interface

Page 477 of 655

12.10.18 Memory Scrub Range Start Register (MSRSR)

8:15 SI [0:7]

Background scrub interval.
This field defines the period at which the scrub controller will scrub 64-byte block
while operating in background scrub mode. The scrub controller maintains an
internal decrementer, which is clocked at the refresh rate, defined by the Memory
Refresh Period Register. When the internal decrementer reaches zero, a request
is issued to scrub the next successive 64-byte memory block, and the decre-
menter is reloaded with the scrub interval value.
0x00 Every refresh interval
0x01 Every other refresh interval
0x02 Every 3rd refresh interval
…..
0xFF Every 256th refresh interval

R/W 0h00

16:31 Unused Writes have no effect; reads are undefined. R undefined

Reset Value 0x00000000

Offset 0xF8002410

Access Type Read/Write, Read Only

ScrbStrtAd[28:57] Unused

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits Field Name Description Access Reset

0:29 ScrbStrtAd[28:57]

This field defines the 64-byte scrub operation start address, within a
64 GB address range. The value in this register represents the upper 30
address bits of a 36-bit address. For example, if this register is set to
0x0000_00EC, then the scrub starts with physical address
0x0_0000_0EC0.

R/W b0

30:31 Unused Writes have no effect; reads are undefined. R undefined

Bits Field Name Description Access Reset

User Manual

CPC945 Bridge and Memory Controller Preliminary

Programmer’s Interface
Page 478 of 655 February 1, 2008

12.10.19 Memory Scrub Range End Register (MSRER)

12.10.20 Memory Scrub Pattern Register (MSPR)

Reset Value 0x00000000

Offset 0xF8002420

Access Type Read/Write, Read Only

ScrbEndAd[28:57] Unused

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits Field Name Description Access Reset

0:29
Scrb

EndAd
[28:57]

This field defines the 64-byte scrub operation end address, within a 64 GB address
range. For example, if this register is set to 0x0000_00EC, then the scrub ends
with physical address 0x0_0000_0EFF. If this address is less than the start
address defined in the MSRSR, then no scrub operation will occur. If the
addresses are equal, a scrub range of 64-byte is defined. For example, if
MSRSR = MSRER = 0x0000_00A8 then the range of addresses that are scrubbed
are 0x0_0000_0A80 – 0x0_0000_0ABF.

R/W 0b0

30:31 Unused Writes have no effect; reads are undefined. R undefined

Reset Value 0x00000000

Offset 0xF8002430

Access Type Read/Write

PAT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits Field Name Description Access Reset

0:31 PAT Scrub pattern. This field defines the bit patterns required by scrub modes defined
in Memory Scrub Control Register (MSCR). R/W 0b00

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
Programmer’s Interface

Page 479 of 655

12.10.21 Memory Check Control Register (MCCR)

This register is used to enable and test memory data error detection and correction (EDC) circuits. Memory
address and ECC syndrome for detected data errors are logged in the Memory Error Syndrome and Address
Registers (MESR, MEAR).

Reset Value 0x00000000

Offset 0xF8002440

Access Type Read/Write

E
C

C
_E

N

E
C

C
_A

P
_D

IS

R
es

er
ve

d

B
yt

eL
an

eE
C

C
S

ub

E
I_

E
N

E
C

C
_U

E
_M

A
S

K

E
C

C
_C

E
_M

A
S

K

Reserved EI_PAT[0:15]

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits Field Name Description Access Reset

0 ECC_EN

Specifies whether the ECC check is enabled which checks all memory read
data. If disabled, ECC check bit data strobe signal pins (DDR_DQSP[0:1]), are
high Z, and ECC check bit signal pins (DDR_DQP[0:15]), are driven low.
0 ECC disabled
1 ECC enabled

R/W 0b0

1 ECC_AP_DIS

Specifies whether the ECC address parity generation and checking functions
normally or generates special uncorrectable errors.
0 AP enabled (normal)
1 AP disabled (special)

R/W 0b0

2:3 Reserved Bits are r/w, but not connected to logic. R/W 0b00

4 ByteLane
ECCSub

Controls whether operating in normal mode where the 16-bit ECC code is
placed on byte-lanes 16 and 17 or in calibrate mode where the 16-bit ECC
code is distributed on the least significant bit (LSb) of each byte-lane, overrid-
ing the original data that was written or expected in those locations.
This bit is only used to assist in memory timing calibration of systems that do
not have ECC DIMMs.
0 Normal
1 Calibrate

R/W 0b0

5 EI_EN

Specifies whether the 16-bit pattern in EI_PAT is selected instead of the 16-bit
ECC check bit generator output during memory outputs.
0 Select generator
1 Select EI_PAT

R/W 0b0

6 ECC_UE_
MASK

Specifies whether a ECC_UE bit state is propagated outside this register
except during read operations.
0 Propagate UE
1 Mask off UE

R/W 0b0

User Manual

CPC945 Bridge and Memory Controller Preliminary

Programmer’s Interface
Page 480 of 655 February 1, 2008

12.10.22 Memory Error Address Registers

This pair of registers is loaded with the memory address signals upon detection of an error while reading the
memory. These registers are updated simultaneously with the Memory Error Syndrome Register (MESR), as
these registers exist as a logical set. Updates occur according to the Error Code priority defined in the MESR.

12.10.22.1 MEAR0 Register (MEAR0)

7 ECC_CE_
MASK

Specifies whether a ECC_CE bit state is propagated outside this register
except during read operations.
0 Propagate CE
1 Mask off CE

R/W 0b0

8:15 Reserved Reserved. Bits are r/w, but not connected to logic. R/W 0x00

16:31 EI_PAT[0:15] This field defines the pattern used for the ECC check bits during a memory
write operation when ECC check bit injection is enabled. R/W 0b0

Reset Value 0x00000000

Offset 0xF8002460

Access Type Read/Write

RK [0:2] COL [10:0] BK [2:0] ROW [14:0]

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits Field Name Description Access Reset

0:2 RK [0:2] Rank Address. Encoded 0:7 chip select interface. R/W 0b000

3:13 COL [10:0] SDRAM Column Address R/W 0b0

14:16 BK [2:0] SDRAM Bank Address R/W 0b0

17:31 ROW [14:0] SDRAM Row Address R/W 0b0

Bits Field Name Description Access Reset

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
Programmer’s Interface

Page 481 of 655

12.10.22.2 MEAR1 Register (MEAR1)

Reset Value 0x00000000

Offset 0xF8002470

Access Type Read/Write, Read Only

UECnt[0:7] CECnt[0:7] Unused BCNT[0:3] RK [0:2]

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits Field Name Description Access Reset

0:7 UECnt[0:7] This field counts the number of uncorrectable errors (UE) detected. R*/W 0x00

8:15 CECnt[0:7] This field counts the number of correctable errors (CE) detected. R*/W 0x00

16:24 Unused Writes have no effect; reads are undefined. R undefined

25:28 BCNT[0:3] This field contains the burst count for the memory read access with
which an ECC error was detected. R/W 0b0000

29:31 RK [0:2] Rank address. Encoded 0:7 chip select interface. R/W 0b000

Note: *Resets to zero when read and holds at its maximum value, 0xFF.

User Manual

CPC945 Bridge and Memory Controller Preliminary

Programmer’s Interface
Page 482 of 655 February 1, 2008

12.10.23 Memory Error Syndrome Register (MESR)

This register is loaded with the ECC syndromes upon detection of an error while reading the physical memory
via scrub or normal memory access. This register is updated simultaneously with the Memory Error Address
Registers (MEAR1, MEAR2), as these registers exist as a logical set.

The MEAR and the MESR.ECC_SYN are captured for the first correctable error and no uncorrectable error
has been logged (MESR.ECC_CE = 0 and MESR.ECC_UE = 0), or the first uncorrectable error
(MESR.ECC_UE = 0). This implies that the uncorrectable error is a higher priority over a correctable error,
where the MESR.ECC_SYN and MEAR1 and MEAR2 state always pertains to the uncorrectable error when
MESR.ECC_UE = 1 and MESR.ECC_CE = 1.

Reset Value 0x00000000

Offset 0xF8002480

Access Type Read/Write, Read Only

E
C

C
_U

E

E
C

C
_C

E

E
C

C
_U

E
W

T

Unused ECC_SYN[0:15]

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits Field Name Description Access Reset

0 ECC_UE
ECC uncorrectable error. This bit is set when the ECC checker detects an uncor-
rectable error during a valid data read access to the memory. This bit is cleared
when read.

R*/W 0b0

1 ECC_CE ECC correctable error. This bit is set when the ECC checker detects a correctable
error during a valid data read access to the memory. This bit is cleared when read. R*/W 0b0

2 ECC_UEWT

ECC uncorrectable error write. This bit is set when an uncorrectable error is
detected in the read data that is modified during a read-modify-write (RMW) mem-
ory operation. This state implies that the erroneous data was changed after the
error was detected during the initial RMW. This bit is not set if a write operation is
performed on the erroneous data, after the initial RMW. This bit is cleared when
read.

R*/W 0b0

3:15 Unused Writes have no effect; reads are undefined. R undefined

16:31 ECC_SYN
[0:15] ECC syndrome for the full 16 bytes of the SDRAM interface (DDR_DQ[0:127]). R/W 0b0

Note: *The error bits are cleared when read.

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
Programmer’s Interface

Page 483 of 655

12.10.24 Memory Mode Control Register (MemModeCntl)

This register contains various timing and power saving modes of the memory interface.

The dynamic CKE power down mode is implemented to be able to switch the DDR2 devices into a low power
state while the memory bus is idle, even for short periods. The clock is still running during the power down
state. The Clock Enable signals, CKE [0:7], are de-asserted while the respective banks are idle when this
mode is enabled. The CKE signals do not toggle during normal operation when this mode is disabled.

The self-refresh power down mode is used by the external power manager to power down the memory sub-
system while preserving the memory content. In this mode, the clocks to the memory devices could be halted.

Reset Value 0x00000000

Offset 0xF8002500

Access Type Read/Write, Read Only, Write Only

C
K_

O
n

Unused D
IM

M
C

ke

D
yn

C
ke

U
nu

se
d

X
S

R
D

EL
AY

Unused Id
le

_B
us

E
n

C
ke

Ts
E

n

Unused

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits Field Name Description Access Reset

0 CK_On

Turns on clocks to the DIMMs. Must be set prior to the setting of the InitStart bit (see
MemProgCtl) which turns on CKE. CK_On resets to zero (off) when entering sleep.
Once CK_On is one (on) only a reset or sleep can reset it.
0 CK Off
1 CK On

W 0b0

1:4 Unused Writes have no effect; reads are undefined. R undefined

5 DIMMCke

Specifies whether CKEs are on a per DIMM or per Rank basis. If DynCKe is enabled
and ODT is enabled, then DIMMCke must be set equal to ‘1’. Otherwise, this bit
should be set equal to ‘0’.
0 DIMM Mode
1 Rank Mode

R/W 0b0

6 DynCke

When this mode is enabled, all Clock Enables (CKEs) are brought low whenever the
request and data queues stay empty for 12 memory clocks, and selectively brought
high as requests to their respective banks/DIMMs are detected.
0 Disabled
1 Enabled

R/W 0b0

7 Unused Writes have no effect; reads are undefined. R undefined

User Manual

CPC945 Bridge and Memory Controller Preliminary

Programmer’s Interface
Page 484 of 655 February 1, 2008

8 XSR
DELAY

This bit delays the exit from self-refresh (sleep mode only). When the bit is set it
allows extra time for the clock to wake up and become stable. The memory controller
will not exit self-refresh (raise CKE) while this bit is set in the event that the clock is
not yet stable. This bit can be set before entering self-refresh and then cleared once
the clock is stable.

Note: The use of this bit is mandatory. ddr_clk will tristate during sleep and this bit
must be used to guarantee that memory does not exit self-refresh until the ddr_clk
has resumed clocking.
0 Exits self-refresh normally
1 Will not exit self-refresh

R/W 0b0

9:11 Unused Writes have no effect; reads are undefined. R undefined

12 Idle_
BusEn

This determines whether output enable remains asserted when bus is idle or output
enable is deasserted and mode control termination turned off when bus is idle and no
requests are in the queues.
0 Asserted
1 De-asserted

R/W 0b0

13 CkeTsEn
Specifies whether CKE remains deasserted or tristates during sleep.
0 De-asserted
1 Tri-state

R/W 0b0

14:31 Unused Writes have no effect; reads are undefined. R undefined

Bits Field Name Description Access Reset

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
Programmer’s Interface

Page 485 of 655

12.10.25 Mem PHY Mode Control Register (MemPhyModeCntl)

This register contains the delay adjusts for the address and command buses – DDR_MA, DDR_RAS,
DDR_CAS, DDR_WE, DDR_CKE, DDR_CS, and DDR_ODT. The default setting is 0b00, which specifies a
minimum delay through the delay adjust pipeline. Incrementing the DelayAdjust field by one causes the rele-
vant bus to be registered one additional ddr_clk.

The DDR_CKE bus is split into two 4-bit wide lower and upper segments. Normally these 2 fields will have the
same value.

This register also contains a control field to override the automatic selection of the verniers used for control-
ling the optional external data muxes.

The override bit and override value are used to control the 1/2 bit time offset used by the DQS write and read
verniers. By default the 1/2 Bit Time Offset is measured by a hardware unit and sent to the DQS verniers. If
the override bit is set, the override value in bits 24:31 is used instead.

Reset Value 0x00000000

Offset 0xF8002880

Access Type Read/Write, Read Only

A
dd

rD
el

ay
A

dj
us

t[0
:1

]

R
es

er
ve

d

C
ke

LD
el

ay
A

dj
us

t[0
:1

]

C
ke

U
D

el
ay

A
dj

us
t[0

:1
]

C
sD

el
ay

A
dj

us
t[0

:1
]

O
D

TD
el

ay
A

dj
us

t[0
:2

]

E
xt

D
at

aM
ux

O
ve

rr
id

e[
0:

1]

U
nu

se
d

H
al

f-b
it

D
el

ay
 O

ve
rr

id
eE

na
bl

e

Unused Override Delay Value[0:7]

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits Field Name Description Access Reset

0:1 AddrDelayAdjust
[0:1]

This specifies a timing adjustment for ADDR. The ADDR could be directly
driven to the pad or registered through 1, 2, or 3 ddr_clk delay stages and then
sent to the output.
0 Minimum delay
1 Registered 1 ddr_clk cycle
2 Registered 2 cycles
3 Registered 3 cycles

R/W 0b00

2:3 Reserved These bits must be set to 00. R/W 0b00

4:5 CkeLDelayAdjust
[0:1]

This specifies a timing adjustment for CSKE[0:3]. The signals could be directly
driven to the pad or registered through 1, 2, or 3 ddr_clk delay stages and then
sent to the output.
0 Minimum delay
1 Registered 1 ddr_clk cycle
2 Registered 2 cycles
3 Registered 3 cycles

R/W 0b00

User Manual

CPC945 Bridge and Memory Controller Preliminary

Programmer’s Interface
Page 486 of 655 February 1, 2008

6:7 CkeUDelayAdjust
[0:1]

This specifies a timing adjustment for CSKE[4:7]. The signals could be directly
driven to the pad or registered through 1, 2, or 3 ddr_clk delay stages and then
sent to the output.
0 Minimum delay
1 Registered 1 ddr_clk cycle
2 Registered 2 cycles
3 Registered 3 cycles

R/W 0b00

8:9 CsDelayAdjust[0:1]

This specifies a timing adjustment for CS. The signals could be directly driven
to the pad or registered through 1, 2, or 3 ddr_clk delay stages and then sent
to the output.
0 Minimum delay
1 Registered 1 ddr_clk cycle
2 Registered 2 cycles
3 Registered 3 cycles

R/W 0b00

10:12 ODTDelayAdjust
[0:2]

This specifies a timing adjustment for ODT. The signals could be directly
driven to the pad or registered through 1, 2, or up to 7 additional ddr_clk delay
stages and then sent to the output.
Outside of the phy, Read ODT is driven a fixed one mem_clk later than this
setting, which is the delay for write ODT.
0 Minimum delay
1 Registered 1 ddr_clk cycle
2 Registered 2 cycles
…
7 Registered 7 cycles

R/W 0b000

13:14 ExtDataMux
Override[0:1]

This field specifies which of two verniers, read vernier and write vernier is used
to delay the external multiplexer selects. Setting this to a nonzero value over-
rides the internal (to the DDR2 controller) read v/s write switching of the verni-
ers. That is the default operation is to let the DDR2 controller pick the
appropriate vernier, based on the command (read or write). (See
Section 12.10.31 External Data Multiplexer Delay Registers (ExtMuxVernier)
on page 495)
00 Default, automatic switching for read versus write
01 Use read vernier delay for all operations (read, write)
10 Use write vernier delay for all operations (read, write)
11 Unused

R/W 0b00

15 Unused Writes have no effect; reads are undefined. R undefined

16 Half-bit Delay
OverrideEnable

This specifies that the half-bit delay offset be overridden with the appropriate
override value.
0 No override
1 Override

R/W 0b0

17:23 Unused Writes have no effect; reads are undefined. R undefined

24:31 Override Delay
Value[0:7] The override delay setting for a half-bit time R/W 0x00

Bits Field Name Description Access Reset

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
Programmer’s Interface

Page 487 of 655

12.10.26 I/O Pad Control Register (IOPadCntl)

These are the mode control bits for the I/O pads. Two types of driver/receivers are used: a three state driver/
receiver and a differential driver/receiver. Control bits below are for both unless stated otherwise.

Reset Value 0x00000000

Offset 0xF80029A0

Access Type Read/Write, Read Only

M
C

D
H

A
LF

_c
k

M
C

D
H

A
LF

_c
s

M
C

D
H

A
LF

_a
dd

r

M
C

D
H

A
LF

_d
q

M
C

D
H

A
LF

_d
qs

M
C

D
H

A
LF

_c
ke

M
C

D
H

A
LF

_m
x

M
C

D
H

A
LF

_o
dt

R
es

er
ve

d

Unused M
C

S
E

_d
qs

M
C

TT
0_

dq
s[

0:
1]

M
C

TT
0N

_d
qs

[0
:1

]

M
C

TT
1_

dq
s

M
C

TT
0_

dq
[0

:1
]

M
C

TT
1_

dq

Unused

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits Field Name Description Access Reset

0 MCDHALF_ck
Mode control to specify output impedance for clock pads
0 SSTL 18
1 Half Strength

R/W 0b0

1 MCDHALF_cs
Mode control to specify output impedance for CS pads
0 SSTL 18
1 Half strength

R/W 0b0

2 MCDHALF_addr

Mode control to specify output impedance for Address/RAS/CAS/WE
pads
0 SSTL 18
1 Half strength

R/W 0b0

3 MCDHALF_dq
Mode control to specify output impedance for data pads
0 SSTL 18
1 Half strength

R/W 0b0

4 MCDHALF_dqs
Mode control to specify output impedance for DQS pads
0 SSTL 18
1 Half strength

R/W 0b0

5 MCDHALF_cke
Mode control to specify output impedance for CKE pads
0 SSTL 18
1 Half strength

R/W 0b0

6 MCDHALF_mx

Mode control to specify output impedance for the external data multiplexer
select pads
0 SSTL 18
1 Half strength

R/W 0b0

7 MCDHALF_odt
Mode control to specify output impedance for ODT pads
0 SSTL 18
1 Half strength

R/W 0b0

8 Reserved This bit must be set to 0 R/W 0b0

9:10 Unused Writes have no effect; reads are undefined. R undefined

User Manual

CPC945 Bridge and Memory Controller Preliminary

Programmer’s Interface
Page 488 of 655 February 1, 2008

11 MCSE_dqs

Mode control to specify single-ended or differential driver/receiver strobe
pad configuration
0 Differential
1 Single ended

R/W 0b0

12:13 MCTT0_dqs[0:1]

Selects whether termination for the bidirectional strobe pad is determined
from DQSEnable (termination is on for reads and off for writes) or is
always on or is always off. MCTT0 controls the termination at the PAD
output pin.
0x Termination always off
10 Termination based on dsqEn (OE)

On for reads, off for writes
11 Termination always on

R/W 0b00

14:15 MCTT0N_dqs[0:1]

Selects whether termination for the bidirectional strobe pad is determined
from DQSEnable (termination is on for reads and off for writes) or is
always on or is always off. MCTT0N controls the termination at the PADN
output pin.
0x Termination always off
10 Termination based on dsqEn (OE)

On for reads, off for writes
11 Termination always on

R/W 0b00

16 MCTT1_dqs
Selects the termination impedance setting for the bidirectional strobe pad
0 75 Ω
1 150 Ω

R/W 0b0

17:18 MCTT0_dq[0:1]

Selects whether termination for the DQ (data) pads is determined from
DQSEnable (termination is on for reads and off for writes) or is always on
or is always off
0x Termination always off
10 Termination based on dsqEn (OE)

On for reads, off for writes
11 Termination always on

R/W 0b00

19 MCTT1_dq
Selects the termination impedance setting for the DQ data pads
0 75 Ω
1 150 Ω

R/W 0b0

20:31 Unused Writes have no effect; reads are undefined. R undefined

Bits Field Name Description Access Reset

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
Programmer’s Interface

Page 489 of 655

12.10.27 Write Strobe Control Registers (ByteWrClkDelay)

The write clock delay is adjusted through the use of two delay stacks or chains, each spanning up to roughly
a half-bit time and this delayed write clock drives the output registers for data (DQ and OE). A single register,
WrClkOffset, is used to program the two delay stacks, each delay stage gets half the value. The write strobe
is adjusted by an additional delay to center the strobe in the data window. There are two separate such
delays in each byte lane, one for each of the two strobes. The additional strobe delay adjust is specified as a
delta offset, added or subtracted from the half-bit time delay value. The lower and upper strobe offsets
(DeltaL and DeltaU respectively) drive the APD and APN pins on the strobe pads, and can be independently
adjusted for ×4 mode of operation. In ×8 mode, it is recommended that both the offsets be programmed to the
same value for consistency but this is not required for correct operation. Only the DeltaL offset is referred to
for ×8 mode.

Reset Value

Offset 0xF8002800 (ByteWrClkDelayC0B00)
0xF8002810 (ByteWrClkDelayC0B01)
0xF8002820 (ByteWrClkDelayC0B02)
0xF8002830 (ByteWrClkDelayC0B03)
0xF8002900 (ByteWrClkDelayC1B04)
0xF8002910 (ByteWrClkDelayC1B05)
0xF8002920 (ByteWrClkDelayC1B06)
0xF8002930 (ByteWrClkDelayC1B07)
0xF8002980 (ByteWrClkDelayC1B16)
0xF8002A00 (ByteWrClkDelayC2B08)
0xF8002A10 (ByteWrClkDelayC2B09)
0xF8002A20 (ByteWrClkDelayC2B10)
0xF8002A30 (ByteWrClkDelayC2B11)
0xF8002B00 (ByteWrClkDelayC3B12)
0xF8002B10 (ByteWrClkDelayC3B13)
0xF8002B20 (ByteWrClkDelayC3B14)
0xF8002B30 (ByteWrClkDelayC3B15)
0xF8002B80 (ByteWrClkDelayC3B17)

Access Type Read/Write, Read Only

User Manual

CPC945 Bridge and Memory Controller Preliminary

Programmer’s Interface
Page 490 of 655 February 1, 2008

WrClkOffset[0:7] Unused WrClkOffsetDeltaL[0:7] WrClkOffsetDeltaU[0:7]

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits Field Name Description Access Reset

0:7 WrClkOffset[0:7]

Write clock delay offset
Dual delay chain spans a full bit time (with setup and hold margin). The
two delay stacks each get half the value programmed into this field.
8-bit unsigned magnitude

 R/W 0x00

8:15 Unused Writes have no effect; reads are undefined. R undefined

16:23 WrClkOffsetDeltaL[0:7]
Write clock delay lower strobe delta offset
1-bit sign, 7-bit magnitude for half-bit +/- offset, with (negative) saturation
clamping (LDQS)

 R/W 0x00

24:31 WrClkOffsetDeltaU[0:7]
Write clock delay upper strobe delta offset
1-bit sign, 7-bit magnitude for half-bit +/- offset, with (negative) saturation
clamping (UDQS)

 R/W 0x00

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
Programmer’s Interface

Page 491 of 655

12.10.28 Read Data Strobe Control Registers (ReadStrobeDelay)

The read strobe is passed through delay chains to derive the rising (R) and falling (F) edge clocks that feed
the DQ data FIFO. Separate delay adjusts are used for each edge and also for the two strobes in each byte
lane ((L)ower and (U)pper). In the ×4 mode of operation, the lower and upper strobe offsets (DeltaLR and
DeltaLF as a pair and DeltaUR and DeltaUF as a pair) are driven by the ZPD and ZPN pins on the strobe
pads respectively, and can be independently programmed. In ×8 mode, the ZDF pad output is fed to two both
delay offset chains and hence, the same value must be programmed into both fields. For example, in
×8 mode, DeltaLR should always be set equal to DeltaUR, and DeltaLF should always be set equal to
DeltaUF.

Reset Value 0x00000000

Offset 0xF8002840 (ReadStrobeDelayC0B00)
0xF8002850 (ReadStrobeDelayC0B01)
0xF8002860 (ReadStrobeDelayC0B02)
0xF8002870 (ReadStrobeDelayC0B03)
0xF8002940 (ReadStrobeDelayC1B04)
0xF8002950 (ReadStrobeDelayC1B05)
0xF8002960 (ReadStrobeDelayC1B06)
0xF8002970 (ReadStrobeDelayC1B07)
0xF8002990 (ReadStrobeDelayC1B16)
0xF8002A40 (ReadStrobeDelayC2B08)
0xF8002A50 (ReadStrobeDelayC2B09)
0xF8002A60 (ReadStrobeDelayC2B10)
0xF8002A70 (ReadStrobeDelayC2B11)
0xF8002B40 (ReadStrobeDelayC3B12)
0xF8002B50 (ReadStrobeDelayC3B13)
0xF8002B60 (ReadStrobeDelayC3B14)
0xF8002B70 (ReadStrobeDelayC3B15)
0xF8002B90 (ReadStrobeDelayC3B17)

Access Type Read/Write

User Manual

CPC945 Bridge and Memory Controller Preliminary

Programmer’s Interface
Page 492 of 655 February 1, 2008

RdStrOffsetDeltaLR[0:7] RdStrOffsetDeltaLF[0:7] RdStrOffsetDeltaUR[0:7] RdStrOffsetDeltaUF[0:7]

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits Field Name Description Access Reset

0:7 RdStrOffsetDeltaLR[0:7]
Read lower strobe delta offset rising edge
1-bit sign, 7-bit magnitude for half-bit +/- offset, with (negative) sat-
uration clamping

 R/W 0x00

8:15 RdStrOffsetDeltaLF[0:7]
Read lower strobe delta offset falling edge
1-bit sign, 7-bit magnitude for half-bit +/- offset, with (negative) sat-
uration clamping x

 R/W 0x00

16:23 RdStrOffsetDeltaUR[0:7]
Read upper strobe delta offset rising edge
1-bit sign, 7-bit magnitude for half-bit +/- offset, with (negative) sat-
uration clamping

 R/W 0x00

24:31 RdStrOffsetDeltaUF[0:7]
Read upper strobe delta offset falling edge
1-bit sign, 7-bit magnitude for half-bit +/- offset, with (negative) sat-
uration clamping

 R/W 0x00

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
Programmer’s Interface

Page 493 of 655

12.10.29 CK Control Registers (CKDelay)

The 1x clock is generated through the use of three delay stacks in series. The first two stacks each span up to
roughly a half-bit time and the cumulative delay through the pair, is typically set to match the write DQ/DQS
delay adjusts. A single register, CKDelayOffset, is used to program the two delay stacks. Each delay stage
gets half the value. The third and final delay chain is used to push the signal out by an additional delta offset.

There is a special override control on the delta offset. When the delta offset field is all zeros (that is, its default
value, coming out of hardware reset), the override logic will force a value of 0x20 onto the delta offset control.
This is meant to guarantee that the 1× clk has sufficient hold time margin with respect to the address and
command bits. This constant override value of 0x20 corresponds to approximately 800 ps to 1600 ps of hold
margin, depending on the process corner, and it provides sufficient hold and setup margins for DDR2 266/
400/533 MHz operation.

When a nonzero value is programmed into the delta offset field, the override logic is implicitly disabled and
the user value is passed through, unmodified.

Reset Value 0x00000000

Offset 0xF8002890
0xF80028A0

Access Type Read/Write, Read Only

CKDelayOffset[0:7] Unused CKDelta[0:7] Unused

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits Field Name Description Access Reset

0:7 CKDelayOffset
[0:7]

1× Clk (CK) delay stack offset. Dual delay chain spans a full bit time (with setup
and hold margin). The two delay stacks each get half the value programmed into
this field.
Encoding: 8-bit unsigned magnitude.

R/W 0x00

8:15 Unused Writes have no effect; reads are undefined. R undefined

16:23 CKDelta
[0:7]

1× Clk (CK) delta offset. 8-bit unsigned pure offset delay (for example, no half-
cycle adjustment). See notes above, on the hardware override control. R/W 0x00

24:31 Unused Writes have no effect; reads are undefined. R undefined

User Manual

CPC945 Bridge and Memory Controller Preliminary

Programmer’s Interface
Page 494 of 655 February 1, 2008

12.10.30 Reset LdEn Offset Delay Registers (RstLdEnVerniersCn)

The Reset LdEn offset delay register is used to delay tune the reset control to the FIFO load pointers. There
is a dual stack, each delay spanning up to roughly a half-bit time. This delay offset is shared by two bytes in
each cluster (or group) of four byte-lanes (and one delay offset is shared by up to three byte-lanes in the ECC
clusters). The cluster grouping of the various byte lanes is described in more detail later, in the calibration
configuration register section.

Reset Value 0x00000000

Offset 0xF80028D0 (RstLdEnVerniersC0)
0xF80029D0 (RstLdEnVerniersC1)
0xF8002AD0 (RstLdEnVerniersC2)
0xF8002BD0 (RstLdEnVerniersC3)

Access Type Read/Write, Read Only

ResetLdEnOffset[0:7] ResetLdEnOffset[0:7] Unused

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits Field Name Description Access Reset

0:7 ResetLdEn
Offset[0:7]

Single delay stack only, shared across two byte lanes (three for the ECC cluster).
Dual delay chain spans a full bit time (with setup and hold margin). The two delay
stacks each get half the value programmed into this field.
Encoding: 8-bit unsigned

R/W 0h00

8:15 ResetLdEn
Offset[0:7]

Single delay stack only, shared across two byte lanes. Dual delay chain spans a full
bit time (with setup and hold margin). The two delay stacks each get half the value
programmed into this field.
Encoding: 8-bit unsigned

R/W 0h00

16:31 Unused Writes have no effect; reads are undefined. R 0h00

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
Programmer’s Interface

Page 495 of 655

12.10.31 External Data Multiplexer Delay Registers (ExtMuxVernier)

The external data multiplexer selects are delay tuned by programming two separate registers, one for reads
and one for writes. The hardware controller automatically switches to the correct vernier based on read
versus write commands. See Section 12.10.25 Mem PHY Mode Control Register (MemPhyModeCntl) on
page 485 for a description of how this default behavior can be overridden statically. There are four sets or
pairs of multiplexer selects, each pair has two bits that drive the 4:1/1:4 multiplexer / demultiplexer. Hence a
total of eight verniers, four read adjusts and four write adjusts, are provided – bits 0:7 of register F80028B0
control bits [0:1] of the external multiplexer select bus for read operations, bits 8:15 control selects [2:3] and
so on.

Reset Value 0x00000000

Offset 0xF80028B0 (ExtMuxVernier0)
0xF80028C0 (ExtMuxVernier1)

Access Type Read/Write

ExtDataMuxSelRdOffset [0:7] ExtDataMuxSelRdOffset [0:7] ExtDataMuxSelRdOffset [0:7] ExtDataMuxSelRdOffset [0:7]

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

ExtDataMuxSelWrOffset [0:7] ExtDataMuxSelWrOffset [0:7] ExtDataMuxSelWrOffset [0:7] ExtDataMuxSelWrOffset [0:7]

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits Field Name Description Access Reset

0:7,
8:15,

16:23,
24:31

ExtDataMuxSel
RdOffset

[0:7]

External data multiplexer read offset. Single delay stack only, in each
cluster, for the two bit encoded selects.
8-bit unsigned
0:7 Mux Sel[0:1]
8:15 Mux Sel[2:3]
16:23 Mux Sel[4:5]
24:31 Mux Sel[6:7]

R/W 0x00

0:7,
8:15,

16:23,
24:31

ExtDataMuxSel
WrOffset

[0:7]

External data multiplexer write offset. Single delay stack only, in each
cluster, for the two bit encoded selects.
8-bit unsigned
0:7 Mux Sel[0:1]
8:15 Mux Sel[2:3]
16:23 Mux Sel[4:5]
24:31 Mux Sel[6:7]

R/W 0x00

User Manual

CPC945 Bridge and Memory Controller Preliminary

Programmer’s Interface
Page 496 of 655 February 1, 2008

12.10.32 Calibration Control and Delay Measurement Registers

The DDR2 PHY contains a calibration unit which might optionally be used to assist in determining values to
be programmed into the controls for capturing read data. The calibration unit has 2 modes of operation:
single-step (manual) and autocalibration.

As discussed in Section 7.22.2 Clusters on page 214, the PHY is divided into 4 clusters:

Cluster 0 : Byte lanes 0, 1, 2 and 3

Cluster 1 : Byte lanes 4, 5, 6, 7. Also byte lane 16 for ECC.

Cluster 2 : Byte lanes 8, 9, 10 and 11

Cluster 3: Byte lanes 12, 13, 14, 15. Also byte lane 17 for ECC.

Each cluster has its own calibration unit. In general all four clusters will be used in parallel to perform a given
calibration or measurement.

In single-step mode bit 0, Reset Cal Registers (Control and Delay Measurement Registers, this section) is
used to initiate a calibration step. The results are made available in the Calibration Read Margin Result regis-
ters (Section 12.10.34 on page 502).

In autocalibration mode bit 1, Start Autocalibration State Machine (Control and Delay Measurement registers,
this section) is used to initiate a series of calibration steps. Bit 3, autocalibration done, indicates when the
FSM (finite state machine) has completed the series. In autocalibration mode a timing vernier will be adjusted
between steps. The final value of this vernier (the “delay measurement”) is made available in bits 8:15, CalF-
SMSettingResult.

The CalFSMSettingResult also encodes two special conditions – the value 0xFF signifies that the delay offset
setting exceeded the user-programmed limit (see Section 12.10.33 Calibration Configuration Registers on
page 499) and the autocalibration measurement was hence terminated. The value 0xFE signals that an
internal time-out error was encountered. The timeout is implicitly set to (231) - 1 ddr_clk cycles, if an insuffi-
cient numbers of read operations were encountered in that time interval, the autocalibration is terminated.

The Reset bit (single-step mode) and the Start bit (autocalibration mode) are written to a ‘1’ by the
programmer to initiate the action and they get automatically cleared to a ‘0’ by the hardware later, no
programmer update required. The Done bit (autocalibration mode) is set to a ‘1’ by the autocalibration state
machine to indicate that the result is ready (or an error condition occurred) and it must be cleared by the
programmer before subsequent runs.

The Calibration Configuration 0 and 1 Registers (Section 12.10.33 on page 499) specify the calibration
options and are common to all four clusters.

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
Programmer’s Interface

Page 497 of 655

12.10.32.1 Half Bit Time Measurement Results

As discussed in “1/2 Bit Time Averager” on page 216 and shown in Figure 7-8 on page 218, the DDR2 PHY
contains a 1/2 bit time measurement unit in Cluster 0. The outputs of this unit are shared with 2 calibration
registers.

The full and half-bit time measurement results can be read in bits 16:31 of the CalCntlDlyMeasC0 Register
(this section).

Half-bit time status bits can be read in bits 29:31 of the Calibration Read Margin Result C0 Register
(Section 12.10.34 Calibration Read Margin Result Registers on page 502).

Calibration Control and Delay Measurement Registers

CntlDlyMeasC0 Register

CntlDlyMeasC1, CntlDlyMeasC2, CntlDlyMeasC3 Registers

Register Reset Value Offset Access Type

CalCntlDlyMeasC0 0x00008843 0xF80028F0

Read/Write, Read Only
CalCntlDlyMeasC1 0x00000000 0xF80029F0

CalCntlDlyMeasC2 0x00000000 0xF8002AF0

CalCntlDlyMeasC3 0x00000000 0xF8002BF0

Cal Control Cal FSM Setting Result Full Bit Time Measurement[0:7] Half bit time average[0:7]

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Cal Control Cal FSM Setting Result Unused Unused

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

User Manual

CPC945 Bridge and Memory Controller Preliminary

Programmer’s Interface
Page 498 of 655 February 1, 2008

Bits Field Name Description Access Reset

0:7 Cal Controll

Control and status byte for calibration unit.

In single-step mode, the Reset Cal bit is used to place all calibration monitor
registers or latches into a known state and ready for subsequent measure-
ment(s). In autocalibration mode, the Start bit is used to initiate an autocali-
bration measurement cycle, the Done bit indicates the completion of the
cycle. The Reset and the Start bits are written to a ‘1’ by the programmer to
initiate the action and they get automatically cleared to a ‘0’ by the hardware
later. The Done bit is set to a ‘1’ by the autocalibration state machine to indi-
cate that the result is ready or an error condition occurred. The done bit must
be cleared by the user before subsequent runs.

(*) Writing a ‘1’ into one or more bits of this field triggers an internal pulse
generator that will implicitly clear the bit(s) to zeros. Hence, reading this field
back subsequently returns zeros.

Writing all zeros to this field will clear all bits.

Encoding:
[0] Reset calibration registers
[1] Start autocalibration state machine
[2] Unused
[3] Autocalibration done

1 Done
0 In-progress (or not started)

[4:7] Unused

R/W* 0x00

8:15 CalFSMSetting
Result

The result of the autocalibration cycle (the “delay measurement”), written by
the hardware upon completion, as indicated by the Done bit. There are dif-
ferent modes of operation and the result signifies various different margins,
as configured by the autocalibration config 0 register (Section 12.10.33 on
page 499).
(*) Writing a ‘1’ into one or more bits of this field triggers an internal pulse
generator that implicitly clears the bit(s) to zeros. Hence, reading this field
back subsequently returns zeros. Writing all zeros to this field clears all bits.

Encoding: [0:7]: Value read is the measurement expressed in increments of
the delay chain.

Special (Error) Values:
0xFF Delay setting limit exceeded, autocalibration terminated
0xFE Read timeout, autocalibration terminated

R/W* 0x00

16:23
Full Bit Time

Measurement
[0:7]

Full bit time measurement from the on-chip cycle time calibration register,
value read is the bit time or ddr_clk, expressed in increments of the delay
chain. The measurement is expressed in increments of the delay chain.

R 0x00

24:31 Half bit time
average[0:7]

Half bit time measurement from the on-chip cycle time calibration register,
value read is the 1/2 bit time or ddr_clk, expressed in increments of the delay
chain and averaged over several measurements. The measurement is
expressed in increments of the delay chain.

R 0x00

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
Programmer’s Interface

Page 499 of 655

12.10.33 Calibration Configuration Registers

The two calibration configuration registers, CalConf0 (0xF80029B0) and CalConf1 (0xF80029C0) are
common to all 4 clusters.

The Calibration Configuration 0 Register contains settings for the read margin measurement and calibration
unit. This register must be programmed for any calibration type.

The Calibration Configuration 1 Register contains a vernier control setting used by the calibration unload
monitor. It needs to be programmed only for the unload offset measurement mode, when running the calibra-
tion unit in single-step mode.

The calibration unit can be run in one of two modes: single-step or autocalibration.

In single-step mode, the user programs the various delay offsets. The pass/fail data, that is, Calibration Read
Margin Result Registers are then reset to a known, initial state by writing a ‘1’ to the ‘Reset Cal Registers’ bit
in the each of the Calibration Status and Delay Measurement Registers. Next, several read commands are
issued and the Calibration Read Margin Result Registers continuously accumulate the margin measurement
pass/fail results and can be read at any time. Note that the ‘Reset Cal Registers’ bit can also be written to a ‘1’
at any time to restart the measurement.

In autocalibration mode, a state machine automatically steps through a range of delay offsets for a specified
test mode and it monitors the calibration result to derive pass and fail status. Based on the result, it continu-
ally adjusts the delay settings until it locks onto the final result. This is saved in the Calibration Control and
Delay Measurement Register in the CalFSMSetting field, one for each cluster. The state machines share
configuration settings, but each cluster has its own independent control and status. Note that the state
machines cannot be interrupted without an explicit reset.

The auto mode is initiated by writing a ‘1’ to the ‘Start auto cal’ bit in the control register, the state machine
indicates completion or an error condition by writing a ‘1’ to the ‘Done’ bit in the same register.

The autocalibration logic compares the load result (one nibble per byte lane) or the unload result (single bit
per byte lane) against the four bit Pass Result field in the Calibration Configuration 0 Register, using the 4-bit
pass mask, to determine if the current measurement qualifies as a pass or a fail.

Since each cluster has a minimum of four byte lanes, the byte lane select field is used to pick one of the lanes
for auto-calibration. There are four different measurement modes:

• Read Strobe Eye Width (rising hHalf)
• Read Strobe Eye Width (falling half)
• Reset Load Enable Margin (read preamble)
• Unload Clock Offset

The first three modes above correspond to the transfer of data bits, read from the memory DIMMs into a data
FIFO in the memory controller and the fourth mode checks the unloading of the data FIFO, as it is transferred
from the external read strobe domain to the internal (controller) clock domain. Since the data FIFO has four
entries, the load calibration monitors store four bits for each byte lane and a single bit for the unload result, in
each byte lane. (See Section 12.10.34 Calibration Read Margin Result Registers on page 502.)

In Unload Clock Offset measurement mode Calibration Configuration 1 supplies the unload clock offset value.

In single-fstep mode, the byte lane select and the mode select are irrelevant. The programmer simply reads
the measurement result from the register, and the result is available across all the byte lanes in the cluster.

User Manual

CPC945 Bridge and Memory Controller Preliminary

Programmer’s Interface
Page 500 of 655 February 1, 2008

The eighteen byte lanes (for a total of 144 data bits, big-endian layout) are distributed across four clusters in
this manner:

• Cluster 0 : Byte lanes 0, 1, 2, and 3
• Cluster 1 : Byte lanes 4, 5, 6, 7, and 16 (ECC)
• Cluster 2 : Byte lanes 8, 9, 10, and 11
• Cluster 3 : Byte lanes 12, 13, 14, 15, and 17 (ECC)

Thus, a byte lane select of 0bb001 picks byte lanes 1, 5, 9 and 13 in the four clusters.

Reset Value 0x00000000

Offset 0xF80029B0

Access Type Read/Write

C
al

ib
ra

tio
n

P
as

s
R

es
ul

t [
0:

3]

C
al

ib
ra

tio
n

P
as

s
M

as
k[

0:
3]

R
ea

d
S

tre
am

 M
od

e

Delay Offset Limit[0:6] M
ea

su
re

m
en

t R
es

et
 L

at
en

cy
[0

:3
]

M
ea

su
re

m
en

t R
es

ul
t L

at
en

cy
[0

:3
]

B
yt

e
La

ne
 S

el
ec

t[0
:2

]

C
al

ib
ra

tio
n

M
od

e
Se

le
ct

[0
:1

]

U
nL

d
ca

lib
ra

tio
n

se
le

ct
[0

:1
]

U
nL

d
C

al
ib

ra
tio

n
S

en
se

 M
od

e

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits Field Name Description Access Reset

0:3 Calibration Pass
Result [0:3]

This is the expected load monitor result (a nibble per byte lane), which qualifies
as a pass. For unload calibration, only bit[0] is used. R/W 0x0

4:7 Calibration Pass
Mask[0:3]

A 4-bit mask field is used to determine which of the four bits in the pass result
field are checked to determine the pass/fail status. For unload calibration, only
bit[0] is used.
1: Sample this bit
0: Ignore (or mask) this bit.

R/W 0x0

8 Read Stream Mode

This specifies whether the read commands issued for calibration are in a con-
tinuous stream, with minimum delay or are pulsed (for example, spaced apart
by several cycles).
0: Pulsed Mode
1: Continuous Mode

R/W 0b0

9:15 Delay Offset Limit
[0:6]

This specifies the upper bound on the delay offset driven from the autocalibra-
tion state machine, as it attempts to get to the final result. The limit is in delay
chain increments and is added or subtracted on top of the full bit time setting.
7-bit sign magnitude, in delay chain increments.

R/W 0x00

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
Programmer’s Interface

Page 501 of 655

16:19 Measurement Reset
Latency[0:3]

This specifies, in bit clock (ddr_clk) increments, how long the calibration state
machine waits after a read command is issued before the result monitors are
reset to a known state (that is, at the start of each measurement) to determine
pass/fail status.
In the hardware, the reset latency is implicitly set to match the controller
ResMuxDel. This field is a sign-magnitude delta offset which can be used to
increment or decrement over the base delay - ResMuxDel. 4-bit sign magni-
tude, bit 0 is the sign bit, bits 1:3 are the magnitude.
Actual Reset Latency = Controller ResMuxDel +/- Offset

R/W 0x0

20:23 Measurement Result
Latency[0:3]

This specifies, in bit clock (ddr_clks) increments, how long the calibration state
machine waits after a read command is issued and before the result monitors
are read to determine pass/fail status. The delay is implicitly incremented by
the Measurement Reset Latency Field. This field is a positive-only delta offset.
Actual Result Latency = Actual Reset Latency + Offset
4-bit magnitude only

R/W 0x0

24:26 Byte Lane Select
[0:2]

Selects byte lane, in each cluster, for autocalibration measurements. Only valid
for 0 - 4.
n Cluster Byte Lane n

R/W 0b000

27:28 Calibration Mode
Select[0:1]

Specifies the mode for autocalibration.
00 Read Strb (rising)
01 Read Strb (falling)
10 ResetLdEn
11 Unload clock offset

R/W 0b00

29:30 UnLd calibration
select[0:1]

Specifies which of the four latches in the read FIFO is sampled by the UnLd
calibration logic.
n Read FIFO bit n

R/W 0b00

31 UnLd Calibration
Sense Mode

Specifies the Sense mode ONLY for the UnLd calibration monitor register. Late
mode measures the latest arriving signal transition, early mode measures the
earliest arriving signal transition.
For the read strobe and resetLdEn modes, the sense mode is implicitly set to
early. Changing this bit has no effect in the strobe and resetLdEn modes.
0 Late mode
1 Early mode

R/W 0b0

Reset Value 0x00000000

Offset 0xF80029C0

Access Type Read/Write, Read Only

CalUnLdClkOffset[0:7] Unused

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits Field Name Description Access Reset

0:7 CalUnLdClkOffset
[0:7]

The clock insertion delay of the calibration monitor register used for
data unload margin testing R/W 0x00

8:31 Unused Writes have no effect; reads are undefined. R undefined

Bits Field Name Description Access Reset

User Manual

CPC945 Bridge and Memory Controller Preliminary

Programmer’s Interface
Page 502 of 655 February 1, 2008

12.10.34 Calibration Read Margin Result Registers

There are four different measurement or calibration modes:

• Read Strobe Eye Width / Margin (Rising Half)
• Read Strobe Eye Width / Margin (Falling Half)
• Reset Load Enable Margin (Read Preamble)
• Unload Clock Offset

The first three modes above correspond to the transfer of data bits, read from the memory dimms to a data
FIFO in the memory controller and the fourth mode checks the unloading of the read data in the memory
controller, as it is transferred from the external read strobe domain to the internal controller clock domain.

The calibration can be done in two modes – single-stepping and auto-calibration, each with its own start bit in
register(s) 0xF8002*F0 as described previously. Note how each cluster has its own control in the 0xF8002*F0
register(s). The setting of the ‘done’ flag in the same register signals the end of auto-calibration.

The unload result is the measurement from one sticky latch on the unload side of the read data FIFO, one per
byte lane. The load result is the measurement from four sticky latches on the load side of the read data FIFO,
a nibble per byte lane. The ‘stickiness’ refers to the mechanism by which the pass or fail status is accumu-
lated over a sequence of several read operations. The clusters 0 through 3 contain the following byte lanes:

• Cluster 0 : Byte lanes 0, 1, 2 and 3
• Cluster 1 : Byte lanes 4, 5, 6, 7 and 16 (ECC)
• Cluster 2 : Byte lanes 8, 9, 10 and 11
• Cluster 3: Byte lanes 12, 13, 14, 15 and 17 (ECC)

The above mapping is to be used when decoding the byte lane references in the following description. For
instance, a reference to byte lane 0 in the table below would correspond to byte lane 0 in cluster 0, byte lane
4 in cluster 1, byte lane 8 in cluster 2 and byte lane 12 in cluster 3. Similarly, byte lane 4 in the following
description refers to one of the ECC byte lanes, 16 or 17.

As discussed in Section 12.10.32.1 Half Bit Time Measurement Results on page 497 the CalRsltC0 Register
is shared: bits 29:31 contain the status bits from the Half Bit Time Measurement unit.

CalRsltC0 Register

Reset Value 0x00000000

Offset 0xF80028E0 (CalRsltC0)
0xF80029E0 (CalRsltC1)
0xF8002AE0 (CalRsltC2)
0xF8002BE0 (CalRsltC3)

Access Type Read/Write, Read Only

Ld Result01[0:7] Ld Result23[0:7] Unused
UnLd Result /Full Bit Time Mea-

surement Flags

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
Programmer’s Interface

Page 503 of 655

CalRsltC2 Register

CalRsltC1 and CalRsltC3 Registers

Ld Result01[0:7] Ld Result23[0:7] Unused UnLd Result

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Ld Result01[0:7] Ld Result23[0:7] LdResultECC UnLd ResultECC

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits Field Name Description Access Reset

0:7 Ld Result01[0:7]
Calibration Load results from byte lanes 0 and 1 in each cluster.
[0:3] Load result from cluster byte lane 0
[4:7] Load result from cluster byte lane 1

R/W* 0x0

8:15 Ld Result23[0:7]
Calibration Load results from byte lanes 2 and 3 in each cluster.
[0:3] Load result from cluster byte lane 2
[4:7] Load result from cluster byte lane 3

 R/W* 0x0

0:7 UnLd Result[0:7]

Calibration Unload result.
[0] Unload result from cluster byte lane 0
[1] Unload result from cluster byte lane 1
[2] Unload result from cluster byte lane 2
[3] Unload result from cluster byte lane 3
[4:7] Unused

R/W* 0x0

0:7 UnLd ResultEcc[0:7]

Calibration Unload result for ECC cluster
[0] Unload result from cluster byte lane 0
[1] Unload result from cluster byte lane 1
[2] Unload result from cluster byte lane 2
[3] Unload result from cluster byte lane 3
[4] Unload result from cluster byte lane 4 (ECC)
[5:7] Unused

R/W* 0x0

16:23 Ld ResultEcc[0:7]
Calibration Load results from byte lanes 4 (ECC) in each cluster.
[0:3] Load result from cluster byte lane 4 (ECC)
[4:7] Unused

 R/W* 0x0

16:23 Unused Writes have no effect; reads are undefined. R undefined

24:31 UnLd Result / Full Bit
Meas Flags [0:7]

Calibration unload result (cluster) and Full Bit Time Measurement status
flags
[0] Unload result from cluster byte lane 0
[1] Unload result from cluster byte lane 1
[2] Unload result from cluster byte lane 2
[3] Unload result from cluster byte lane 3
[4] Unused
[5] (C0 Only) Measurement done

1 Done
0 Not done

[6] (C0 Only) Overflow (bit time too long)
[7] (C0 Only) Underflow (bit time too short)

R/W* 0x00

User Manual

CPC945 Bridge and Memory Controller Preliminary

Programmer’s Interface
Page 504 of 655 February 1, 2008

(*) Writing a ‘1’ into one or more bits of this register triggers an internal pulse generator that will implicitly clear
the bit(s) to zeros. Hence, reading this field back will subsequently return zeroes. Writing all zeros to this
register will clear all bits. (This does not apply to C0 bits 29:31, the Half Bit Time Measurement unit status
bits.)

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
Programmer’s Interface

Page 505 of 655

Programmer’s Interface

12.11 PCI Express Registers

PCI Express registers are categorized in three groups:

• Configuration Registers defined by the PCI Express Specifications. Refer to Section 12.11.1 , below.

• Expansion Registers unique to CPC945’s PCIe implementation. Refer to Section 12.11.2 , below.

• General Control Registers for configuration control of the PCIe interface as implemented in CPC945.
(See Section 12.11.3 PCI Express GCR Registers on page 584.)

Note: The register reset values as described in this section are shown as read through the I2C slave inter-
face port and are in big-endian format. This is byte reversed from what might be expected as the register
descriptions are in Little Endian format, in compliance with the PCI specification.

12.11.1 PCIe Configuration Registers

The CPC945 PCIe Configuration Register space consists of four groups of registers as shown in Table 12-
19. These register groups are defined in the PCIe Specification as PCI-compatible configuration space regis-
ters, PCI Power Management Capability register structure, PCIe capability register structure and Advanced
Error reporting structure. If an optional extended capability is not described in the following sections, that
capability is not supported in the CPC945.
.

Table 12-19. PCIe Configuration Registers Blocks

Offset Block Description Page

0x000-0x03F PCI 2.3 PCI Configuration Space Header (PCI) 506

0x040-0x047 Power Management (PM) PCI Power Management Capability Structure (PM) 520

0x048-0x06B PCI Express Capability PCI Express Capability Structure (EC) 524

0x100-0x137 Advanced Error Reporting Advanced Error Reporting Extended Capability Structure (AER) 538

User Manual

CPC945 Bridge and Memory Controller Preliminary

Programmer’s Interface
Page 506 of 655 February 1, 2008

The CPC945 uses a Type-1 PCI Header. The header fields and offsets are shown below.

Table 12-20. PCI Configuration Space Header

Register Name (Mnemonic) Address DWord Offset Access Mode See Page

PCI - Vendor ID Register 0x00 Read Only 507

PCI - Device ID Register 0x00 Read Only 507

PCI - Command Register 0x04 Mixed 508

PCI - Status Register 0x04 Mixed 508

PCI - Revision ID Register 0x08 Read Only 509

PCI - Class Code Register 0x08 Read Only 509

PCI - Cache Line Size Register 0x0C Read/Write 510

PCI - Master Latency Timer 0x0C Read Only 510

PCI - Header Type Register 0x0C Read Only 510

PCI - BIST Register 0x0C Read Only 510

PCI - Base Address Register 0 (BAR0) 0x10 Mixed 510

PCI - Base Address Register 1 (BAR1) 0x14 Mixed 511

PCI - Bridge Primary Bus Number 0x18 (Type-1) Read/Write 511

PCI - Bridge Secondary Bus Number 0x18 (Type-1) Read/Write 511

PCI - Bridge Subordinate Bus Number 0x18 (Type-1) Read/Write 511

PCI - Bridge Secondary Latency Timer 0x18 (Type-1) Read Only 511

PCI - Bridge I/O Base Register 0x1C (Type-1) Mixed 512

PCI - Bridge I/O Limit Register 0x1C (Type-1) Mixed 512

PCI - Bridge Secondary Status Register 0x1C (Type-1) Mixed 512

PCI - Bridge Memory Base Register 0x20 (Type-1) Mixed 514

PCI - Bridge Memory Limit Register 0x20 (Type-1) Mixed 514

PCI - Bridge Prefetchable Memory Base Register 0x24 (Type-1) Mixed 515

PCI - Bridge Prefetchable Memory Limit Register 0x24 (Type-1) Mixed 515

PCI - Bridge Prefetchable Base Upper 32 Bits Register 0x28 (Type-1) Mixed 516

PCI - Bridge Prefetchable Limit Upper 32 Bits Register 0x2C (Type-1) Mixed 516

PCI - Bridge I/O Base Upper 16Bits 0x30 (Type-1) Mixed 512

PCI - Bridge I/O Limit Upper 16Bits 0x30 (Type-1) Mixed 512

PCI - Capabilities Pointer Register 0x34 Read Only 517

PCI - Bridge Expansion ROM Base Address Register 0x38 (Type-1) Mixed 518

PCI - Interrupt Line Register 0x3C Read/Write 519

PCI - Interrupt Pin Register 0x3C Read Only 519

PCI - Bridge Control Register (BCR) 0x3C (Type-1) Mixed 519

User Manual

CPC945 Bridge and Memory Controller Preliminary

Programmer’s Interface
Page 507 of 655 February 1, 2008

12.11.1.1 PCI 2.3 Configuration Space Header

PCI – Vendor ID and Device ID Registers

The PCI vendor ID and device ID registers are read-only registers, used to communicate device identification
information to the software operating system.

Reset Value 0x6B105B00

Address x0F1F00000

Access Type Read Only

Device_ID_Register Vendor_ID_Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits Field Name Description Access Reset

31:16 Device_ID_Register Register bit I/O signals: SYS_PCI00_DEVICE_ID R 0x005B

15:0 Vendor_ID_Register Register bit I/O signals: SYS_PCI00_VENDOR_ID R 0x106B

User Manual

CPC945 Bridge and Memory Controller Preliminary

Programmer’s Interface
Page 508 of 655 February 1, 2008

PCI – Command and Status Registers

The PCI Command and Status registers are used to communicate device status and control information
between the hardware and software.

Reset Value 0x0010 0007 (Note that this default is little Endian.)

Address Offset 0x04

Access Type Mixed

S
R

15
_D

et
E

rr

S
R

14
_D

et
E

rr

S
R

13
_R

ec
dM

st
rA

bo
rt

S
R

12
_R

ec
dT

ar
gt

A
bo

rt

S
R

11
_S

ig
nl

dT
gt

A
bo

rtr

R
es

er
ve

d

S
R

08
_M

st
rD

at
aP

ar
ity

E
rr

R
es

er
ve

d

S
R

04
_I

C
ap

Li
st

S
R

03
_I

nt
S

ta
tu

s

R
es

er
ve

d

C
R

15
_1

1

C
R

10
_I

nt
D

is
ab

le

R
es

er
ve

d

C
R

8_
S

E
R

R
en

ab
le

R
es

er
ve

d

C
R

6_
P

E
R

R
en

ab
le

R
es

er
ve

d

C
R

2_
B

us
M

st
rE

na
bl

e

C
R

1_
M

em
S

pE
na

bl
e

C
R

0_
Io

S
pE

na
bl

e

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits Field Name Description Access Reset

31 Status Reg 15 - Detected
Parity Error

PCIe received poisoned TLP, primary bus for TYPE1 devices
Field register bit I/O signals: AL_PCI04_REC_POISONED_TLP

R 0b0

30 Status Reg 14 - Signaled
System Error

Set when PCIe devices send fatal or nonfatal Messages and the
SERR Enable bit in the Command Register (PCI04[8]) is set.
Field register bit I/O signals: CFG_PCI04_SERR

R 0b0

29 Status Reg 13 - Received
Master Abort

This bit is always forced to zero
Field register bit I/O signals: AL_PCI04_CMPL_UR

R 0b0

28 Status Reg 12 - Received
Target Abort

PCIe received completion abort primary bus for TYPE1 devices
Field register bit I/O signals: AL_PCI04_REC_CMPL_ABORT

R 0b0

27 Status Reg 11 - Signaled
Target Abort Field register bit I/O signals: AL_PCI04_SIG_CMPL_ABORT R 0b0

26:25 Reserved Reserved R 0b00

24 Status Reg 8 - Master Data
Parity Error

Never get a PCIe poisoned TLP from the primary
Register bit I/O signals: AL_PCI04_SIG_POISONED_TLP

R 0b0

23:21 Reserved Reserved R 0b000

20 Status Reg 4 -
Capabilities List Always equals ‘1’ for PCIe R 0b1

19 Status Reg 3 -
Interrupt Status

Indicates INTx pending in PCIe.
Register bit I/O signals: AL_PCI04_INTX_STATUS

R/W 0b0

18:16 Reserved Reserved R 0b000

15:11 Command Regs 15:11 Reserved R 0b0000

10 Command Reg 10 -
Interrupt Disable

Controls INTx Messages in PCIe.
Register bit I/O signals: CFG_PCI04_INTX_DISABLE

R/W 0b0

User Manual

CPC945 Bridge and Memory Controller Preliminary

Programmer’s Interface
Page 509 of 655 February 1, 2008

PCI – Revision ID and Class Code Registers

The PCI revision ID and class code are read-only registers used to communicate additional device identifica-
tion information to the software operating system.

The class code register is used to identify the generic function of the device and/or register level program-
ming interface.

9 Reserved Reserved R 0b0

8 Command Reg 8 - System
Error (SERR) Enable Register bit I/O signals: CFG_PCI04_SERR_ENABLE R 0b0

7 Reserved Reserved R 0b0

6 Command Reg 6 - Parity
Error (PERR) Enable Register bit I/O signals: PERR_ENABLE R/W 0b0

3:5 Reserved Reserved R 0b00

2 Command Reg 2 - Bus Mas-
ter Enable Register bit I/O signals: CFG_PC104_BUSMASTER_ENABLE R/W 0b1

1 Command Reg 1 - Memory
Space Enable Register bit I/O signals: CFG_PC104_MEM_ENABLE R/W 0b1

0 Command Reg 0 - I/O Space
Enable Register bit I/O signals: CFG_PC104_IO_ENABLE R/W 0b1

Reset Value 0x06040000

Address Offset 0x08

Access Type Read Only

Class_Code_Register Revision_ID_Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits Field Name Description Access Reset

31:8 Class Code Register Register bit I/O signals: SYS_PCI08_CLASS_CODE [23:0] R 0x060400

7:0 Revision_ID_Register Register bit I/O signals: SYS_PCI08_REVISION_ID [7:0] R 0x00

Bits Field Name Description Access Reset

User Manual

CPC945 Bridge and Memory Controller Preliminary

Programmer’s Interface
Page 510 of 655 February 1, 2008

PCI – Header Type

The Header Type Register is read only and is used by the software to determine the register memory map of
the remaining PCI Legacy header registers (0x00=TYPE0, 0x01=TYPE1). The CPC945 uses a TYPE1
header. (Note that the default for this register is big-endian.)

PCI – Base Address Register #0 (BAR0)

The BAR registers must exist in the configuration space memory map (required), but are not used in the
CPC945 implementation.

Reset Value 0x00000100

Address Offset 0x0C

Access Type Read Only, Read/Write

Reserved Type1 Reserved Reserved

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits Field Name Description Access Reset

31:24 Reserved Reserved R 0x00

23:16 Type1 Register bit I/O signals: HDRTYPE R 0x01

15:8 Reserved Reserved R 0x00

7:0 Reserved Reserved R/W 0x00

Reset Value 0x00000000

Address Offset 0x10

Access Type Read Only

Base Address Register 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits Field Name Description Access Reset

31:0 Base Address Register 0 Reserved. Not used in CPC945 implementation. R 0x00000000

User Manual

CPC945 Bridge and Memory Controller Preliminary

Programmer’s Interface
Page 511 of 655 February 1, 2008

PCI – Base Address Register #1 (BAR1)

The BAR1 is not used in the CPC945 implementation.

PCI – Primary, Secondary, and Subordinate Bus Number Registers, and Secondary Latency Timer Register

The Primary Bus Number, Secondary Bus Number, and Subordinate Bus Number Registers are required for
all TYPE-1 devices such as the CPC945. These registers are implemented as read/write bits for software bus
number assignment in the PCI bus hierarchy. The hardware uses the value programmed in these registers for
decoding, and handling of PCI configuration space transactions.

The secondary latency timer does not apply to PCI Express devices and is implemented as an 8-bit read-only
zero register.

Reset Value 0x00000000

Address Offset 0x14

Access Type Read Only

Base Address Register 1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits Field Name Description Access Reset

31:0 Base Address Register 1 Reserved. Not used in CPC945 implementation. R 0x00000000

Reset Value 0xF0F1F100

Address Offset 0x18

Access Type Read Only, Read/Write

Reserved Type1 Reserved Reserved

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits Field Name Description Access Reset

31:24 Secondary Latency Timer [7:0] Reserved R 0x00

23:16 Subordinate Bus Number [7:0]
Type 1
Register bit I/O signals: CFG_PCI18_SUBORDINATE_BUS

R/W 0xF1

15:8 Secondary Bus Number [7:0]
Reserved
Register bit I/O signals: CFG_PCI18_SECONDARY_BUS

R 0xF1

7:0 Primary Bus Number [7:0]
Reserved
Register bit I/O signals: CFG_PCI18_PRIMARY_BUS

R/W 0xF0

User Manual

CPC945 Bridge and Memory Controller Preliminary

Programmer’s Interface
Page 512 of 655 February 1, 2008

PCI – I/O Base, I/O Limit, and Secondary Status Registers

The I/O Base and I/O Limit Registers are used to control I/O transaction forwarding in a TYPE-1 device.

The Secondary Status Register is similar in function and bit definition to the Device Status Register (configu-
ration space address 0x004), however, the Secondary Status Register reflects the status of the secondary
bus while the device status register reflects status of the primary bus.

Reset Value 0x0010 0007

Address Offset 0x1C

Access Type Read, Read/Write

S
S

R
15

_D
et

P
ar

E
rr

S
S

R
14

_R
ec

dS
ys

Er
r

S
S

R
13

_R
ec

dM
st

rA
bo

rt

S
S

R
12

_R
ec

dT
ar

gt
A

bo
rt

S
S

R
11

_S
ig

nl
dT

gt
A

bo
rtr

S
S

R
10

:0
9_

D
ev

Se
lT

im
in

g

S
S

R
08

_M
st

rD
at

aP
ar

ity
E

rr

S
S

R
07

:0
0

IO
lim

itR
eg

07
:0

4

IO
lim

itR
eg

03
:0

0

IO
ba

se
R

eg
07

:0
4

IO
ba

se
R

eg
03

:0
0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits Field Name Description Access Reset

31 Secondary Status Register
[15] - Detected Parity Error

PCIe received a poisoned TLP on the TYPE1 device secondary bus
AL_PCI1C_REC_POISONED_TLP R/W 0b0

30 Secondary Status Register
[14] - Received System Error

PCIe received nonfatal/fatal error message on the TYPE1 device
secondary bus
AL_PCI1C_NONFATAL_ERROR_MSG
AL_PCI1C_FATAL_ERROR_MSG

R/W 0b0

29 Secondary Status Register
[13] - Received Master Abort

PCIe received completion with unsupported request on the TYPE1
Device Secondary Bus
AL_PCI1C_CMPL_UR

R/W 0b0

28 Secondary Status Register
[12] - Received Target Abort

PCI Express received completion abort on the TYPE1 device sec-
ondary bus
AL_PCI1C_REC_CMPL_ABORT

R/W 0b0

27 Secondary Status Register
[11] - Signaled Target Abort

PCIe signaled completion abort on the TYPE1 device secondary
bus
AL_PCI1C_SIG_CMPL_ABORT

R/W 0b0

26:25 Secondary Status Register
[10:9] - DevSEL Timing R 0b00

24 Secondary Status Register
[8] - Master Data Parity Error

Poisoned TLP, on the TYPE1 device secondary bus
AL_PCI1C_SIG_POISONED_TLP R/W 0b0

23:16 Secondary Status
Register [7:0] R 0x00

15:12 I/O Limit Register [7:4] PCIEXCFG_IO_BASE_LIMIT_32
CFG_PCI1C_IO_LIMIT [7:4] R/W 0x1

11:8 I/O Limit Register [3:0] PCIEXCFG_IO_BASE_LIMIT_32 R 0x1

User Manual

CPC945 Bridge and Memory Controller Preliminary

Programmer’s Interface
Page 513 of 655 February 1, 2008

7:4 I/O Base Register [7:4]
CFG_PCI1C_IO_BASE [7:4]
PCIEXCFG_IO_BASE_LIMIT_32
Defines RW bits

R/W 0x0

3:0 I/O Base Register [3:0]
PCIEXCFG_IO_BASE_LIMIT_32
Defines register = 4’b0001

R 0x1

Bits Field Name Description Access Reset

User Manual

CPC945 Bridge and Memory Controller Preliminary

Programmer’s Interface
Page 514 of 655 February 1, 2008

PCI – Memory Base and Memory Limit Registers

The Memory Base and Memory Limit Registers define the memory mapped address range used to control
memory transaction forwarding in a TYPE-1 device. The lower four bits of both registers are always read only
zero.

Reset Value 0x00000000

Address Offset 0x20

Access Type Read Only, Read/Write

Memory Limit Register [15:04] M
em

or
y

Li
m

it
R

eg
is

te
r [

03
:0

0]

Memory Base Register [15:04] M
em

or
y

B
as

e
R

eg
is

te
r [

03
:0

0]

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits Field Name Description Access Reset

31:20 Memory Limit Register
[15:04] Register bit I/O signals: CFG_PCI20_MEM_LIMIT [15:4] R/W 0x000

19:16 Memory Limit Register
[03:00] R 0x0

15:4 Memory Base Register
[15:04] Register bit I/O signals: CFG_PCI20_MEM_BASE [15:4] R/W 0x000

3:0 Memory Base Register
[03:00] R 0x0

User Manual

CPC945 Bridge and Memory Controller Preliminary

Programmer’s Interface
Page 515 of 655 February 1, 2008

PCI – Prefetchable Memory Base and Prefetchable Memory Limit Registers

The Prefetchable Memory Base and Prefetchable Memory Limit Registers are used to control memory trans-
action forwarding in a TYPE-1 device. The lower four bits of the prefetchable memory base and prefetchable
memory limit registers are always read-only bits, with the same value in each register (describes either 32-bit
or 64-bit memory prefetch addressing).

Reset Value 0x10001000

Address Offset 0x24

Access Type Read Only, Read/Write

Prefetchable Memory Limit Register [15:04] P
re

fe
tc

ha
bl

e
M

em
or

y
Li

m
it

R
eg

is
te

r [
03

:0
0]

Prefetchable Memory Base Register [15:04] P
re

fe
tc

ha
bl

e
M

em
or

y
B

as
e

R
eg

is
te

r [
03

:0
0]

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits Field Name Description Access Reset

31:20 Prefetchable Memory Limit
Register [15:04]

Register bit I/O signals: CFG_PCI20_PREFETCH_LIMIT [15:4] R/W 0x000

19:16 Prefetchable Memory Limit
Register [03:00] R 0x1

15:4 Prefetchable Memory Base
Register [15:04]

Register bit I/O signals: CFG_PCI24_PREFETCH_BASE [15:4] R/W 0x000

3:0 Prefetchable Memory Base
Register [03:00] R 0x1

User Manual

CPC945 Bridge and Memory Controller Preliminary

Programmer’s Interface
Page 516 of 655 February 1, 2008

PCI – Prefetchable Memory Base Upper 32 Bits Register

The Prefetchable Memory Base Upper 32 Bits Register is used (with the Prefetchable Memory Limit Upper
32 Bits Register) to control 64-bit memory transaction forwarding in a TYPE-1 device.

PCI – Prefetchable Memory Limit Upper 32 Bits Register

The prefetchable memory limit upper 32 bits register is used (with the prefetchable memory base upper 32
bits register) to control 64-bit memory transaction forwarding in a TYPE-1 device.

Reset Value 0x00000000

Address Offset 0x28

Access Type Read/Write

Prefetchable Mem Base Upper 32 Bits Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits Field Name Description Access Reset

31:0 Prefetchable Memory Base
Upper-32 bits Register

Register bit I/O signals: CFG_PCI28_PREFETCH_BASE_UPPER
[31:0] R/W 0x00000000

Reset Value 0x00000000

Address Offset 0x2C

Access Type Read/Write

Prefetchable Mem Limit Upper 32 Bits Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits Field Name Description Access Reset

31:0 Prefetchable Memory Limit
Upper-32 bits Register

Register bit I/O signals: CFG_PCI28_PREFETCH_LIMIT_UPPER
[31:0] R/W 0x00000000

User Manual

CPC945 Bridge and Memory Controller Preliminary

Programmer’s Interface
Page 517 of 655 February 1, 2008

PCI – I/O Base Upper 16 Bits and I/O Limit Upper 16 Bits Registers (Required for TYPE1)

The I/O Base Upper 16 Bits and I/O Limit Upper 16 Bits Registers are used to control I/O transaction
forwarding in a TYPE-1 device.

PCI – Capabilities Pointer Register

The PCI Capabilities Pointer Register is required for all PCI Express devices. This byte wide register contains
the linked list pointer to the first PCI capabilities structure.

Reset Value 0x00000000

Address Offset 0x30

Access Type Read/Write

I/O Limit Upper 16 Bits Register [15:0] I/O Base Upper 16 Bits Register [15:0]

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits Field Name Description Access Reset

31:16 I/O Limit Upper 16 Bits
Register [15:0] Register bit I/O signals: CFG_PCI30_IO_LIMIT_UPPER [15:0] R/W 0x0000

15:0 I/O Base Upper 16 Bits
Register [15:0] Register bit I/O signals: CFG_PCI30_IO_BASE_UPPER [15:0] R 0x0000

Reset Value 0x40000000

Address Offset 0x34

Access Type Read Only, Read/Write

Reserved
Capabilities Pointer

Register {7:0]

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits Field Name Description Access Reset

31:8 Reserved R 0x000000

7:0 Capabilities Pointer
Register [7:0] Register bit I/O signals: SYS_PCI34_CAP_PTR [7:0] R/W 0x40

User Manual

CPC945 Bridge and Memory Controller Preliminary

Programmer’s Interface
Page 518 of 655 February 1, 2008

PCI – Expansion ROM Base Address Register (Required for TYPE1)

The PCI Expansion ROM Base Address Register (BAR) is not used in the CPC945.

The Expansion ROM Base Address Register exists in the configuration space memory map, but is imple-
mented with 32 read-only zero bits to indicate that no expansion ROM is present.

Reset Value 0x00000000

Address Offset 0x38

Access Type Read

Expansion ROM Base Address Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits Field Name Description Access Reset

31:0 Expansion ROM Base
Address Register Register bit I/O signals: CFG_PCIXX_ROM_BAR [31:0] R 0x00000000

User Manual

CPC945 Bridge and Memory Controller Preliminary

Programmer’s Interface
Page 519 of 655 February 1, 2008

PCI – Interrupt Line, Interrupt Pin, Bridge Control Registers

The byte wide PCI Interrupt Line and Interrupt Pin Registers are the first two bytes located at configuration
space address 0x3C.

The Interrupt Line Register is an 8-bit read/write register that is used by the system software to save the
system interrupt routing number associated with the device. This register has no effect on the PCI device
hardware functionality.

The interrupt pin in this register is an 8-bit read-only register that defines interrupt pins implementation. The
CPC945 does not have an interrupt pin, so these bits are all zero.

The Bridge Control Register (BCR) provides extensions to the device command register (configuration space
address 0x004). The Bridge Control Register provides many of the same controls for the secondary interface
that are provided be the command register for the primary interface.

Reset Value 0x00000000

Address Offset 0x3C

Access Type Read Only, Read/Write

BCRs 7-15 Reserved B
C

R
6

R
es

er
ve

d

B
C

R
3

B
C

R
2

B
C

R
1

B
C

R
0

Interrupt Pin Register [7:0] Interrupt Line Register [7:0]

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits Field Name Description Access Reset

31:23 Bridge Control Registers [7]
through [15] Reserved Reserved R 0x00

22 Bridge Control Register [6]
(Secondary Bus Reset) Register bit I/O signals: CFG_PCI3C_BCR_SB_RESET R/W 0b0

21:20 Reserved Reserved R 0b00

19 Bridge Control Register [3] Register bit I/O signals: CFG_PCI3C_BCR_VGA_ENABLE R/W 0b0

18 Bridge Control Register [2] Register bit I/O signals: CFG_PCI3C_BCR_ISA_ENABLE R/W 0b0

17 Bridge Control Register [1] Register bit I/O signals: CFG_PCI3C_BCR_SERR_ENABLE R/W 0b0

16
Bridge Control Register [0] -

Parity Error Response
Enable

Register bit I/O signals:
CFG_PCI3C_BCR_PERR_RESP_ENABLE R/W 0b0

15:8 Interrupt Pin Register [7:0]
Register bit I/O signals: SYS_PCI3C_INTERRUPT_PIN [7:0]
- I/O Pins if NO define

R 0x00

8:0 Interrupt Line Register [7:0] R/W 0x00

User Manual

CPC945 Bridge and Memory Controller Preliminary

Programmer’s Interface
Page 520 of 655 February 1, 2008

12.11.1.2 PCI Power Management Capability Structure

The PCI power management (PM) capability structure contains eight bytes of registers (two DWords of
configuration space). The PM registers are used for communicating and controlling the power management
capabilities of the CPC945 all PCI Express root complex.

Table 12-21. PCI Power Management Capability Structure

Register Name (Mnemonic) Address DWord Offset Access Mode See Page

PM - Capability ID Register 0x40 Read Only 521

PM - Next PTR Register 0x40 Read Only 521

PM - Power Management Capabilities Register (PMC) 0x40 Read Only 521

PM - Power Management Control and Status Register
(PMCSR)

0x44 Mixed 523

PM - Power Management Control/Status Bridge Support
Extension Register (PMCSR_BSE) - Reserved in CPC945

0x44 Read Only 523

PM - Data Register - Reserved in CPC945 0x44 Read Only 523

User Manual

CPC945 Bridge and Memory Controller Preliminary

Programmer’s Interface
Page 521 of 655 February 1, 2008

PM – Power Management Capability ID, Next PTR, and Capabilities Registers

The first two bytes of the PCI capability structure contains the:

• Read-only capability ID (a unique code that identifies the type, size, and format of the capability structure)

• Next pointer register (which points to the next capability structure in the linked list, or all zeros to termi-
nate the capability structure linked list)

The Power Management Capability (PMC) Register is the two-byte, read-only register that is used to commu-
nicate the hardware supported power management capabilities of the device to the software operating
system.

Reset Value 0x0148446F

Address Offset 0x40

Access Type Read, Read/Write

P
M

C
 R

eg
is

te
rs

 [1
5:

11
] P

M
E

_S
up

po
rt

P
M

C
 R

eg
is

te
r [

10
] D

2_
S

up
po

rt

P
M

C
 R

eg
is

te
r [

9]
 D

1_
S

up
po

rt

P
M

C
 R

eg
is

te
rs

 [8
:6

] A
ux

 C
ur

re
nt

P
M

C
 R

eg
is

te
r [

5]
 D

ev
ic

e
S

pe
ci

fic
 In

iti
al

iz
at

io
n

R
es

er
ve

d

P
M

C
 R

eg
is

te
r [

2:
0]

 P
M

 V
er

si
on

 N
um

be
r

P
M

-N
ex

t P
TR

 R
eg

is
te

r [
7:

0]

P
M

-C
ap

ab
ili

ty
 ID

 R
eg

is
te

r [
7:

0]

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits Field Name Description Access Reset

31:27 PM Capabilities Registers
[15:11] Register bit I/O signals: PM_PME_Support R 0b01111

26 PM Capabilities Register [10] Register bit I/O signals: PM_D2_Support R 0b1

25 PM Capabilities Register [9] Register bit I/O signals: PM_D1_Support R 0b1

24:22 PM Capabilities Registers
[8:6] Register bit I/O signals: PM_AUX_CURRENT R 0b000

21 PM Capabilities Register [5] Register bit I/O signals: PM_DSI R 0b1

20:19

Reserved

Bit [20] is RsvdP; reserved and preserved. Reserved for future R/W
implementations. Registers are read-only and must return 0 when
read. Software must preserve the value read for writes to bits.
Bit [19] is not applicable to PCIe and hardwired to ‘0’.

R 0b00

18:16 PM Capabilities Registers
[2:0] PM Version Number R 0b010

User Manual

CPC945 Bridge and Memory Controller Preliminary

Programmer’s Interface
Page 522 of 655 February 1, 2008

15:8 Next PTR Register Register bit I/O signals: PM_NEXT_CAP_PTR R 0x48

7:0 PM Capability ID Register Power Management Capability R 0x01

Bits Field Name Description Access Reset

User Manual

CPC945 Bridge and Memory Controller Preliminary

Programmer’s Interface
Page 523 of 655 February 1, 2008

PM – PM Control/Status (PMCSR), PM Control/Status Bridge Support Extensions (PMCSR_BSE), and PM
Data Registers

The 16-bit Power Management Control/Status (PMCSR) Register is used to communicate power manage-
ment control and status information between the hardware and software.

The 8-bit Power Management Control/Status Bridge Support Extensions (PMCSR_BSE) Register is imple-
mented as read only zero for all PCI Express devices.

The 8-bit Power Management Data Register is not implemented in the CPC945.

Reset Value 0x00800000

Address Offset 0x44

Access Type Read, Read/Write

Reserved P
M

C
S

R
 [8

] P
M

E
 E

na
bl

e

Reserved P
M

C
S

R
 [0

:1
] P

ow
er

 S
ta

te

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits Field Name Description Access Reset

31:9 Reserved

Bits Description
31:24 Reserved, unused
23:22 Not applicable to PCIe, wired to ‘0’
21:16 RsvdP, per the PCI Express specification

R 0b0000000000
000000000000

8 PM - PM Control/Status
(PMCSR) [8] PME Enable

SYS_EC08_AUXPOWER_AVAIL is inverted, then AND’ed with
DL_PGRESET to block the Cold Reset function for PCI Express
Devices that implement VAUX support.
See the PCI Express 1.0a specification and PCI Bus Power Man-
agement Interface 1.1 specification for special case Sticky Bit
behavior related to VAUX and PME Support
Register bit I/O signals:
• CFG_PM04_PME_ENABLE
• SYS_EC08_AUXPOWER_AVAIL

R/W 0b1

7:2 Reserved RsvdP, per the PCI Express specification R 0b000000

1:0 PM - PM Control/Status
(PMCSR) [1:0] Power State Register bit I/O signals: CFG_PM04_POWER_STATE[1:0] R/W 0b0

User Manual

CPC945 Bridge and Memory Controller Preliminary

Programmer’s Interface
Page 524 of 655 February 1, 2008

12.11.1.3 PCI Express Capability Structure

The PCI Express capability (EC) structure is as nine DWords (rootport devices) of configuration space. The
following section describes the EC registers used for communicating and controlling the PCI Express capabil-
ities.

Table 12-22. PCI Express Configuration Space

Register Name (Mnemonic) Address
DWord Offset Access Mode Page

EC - Capability ID Register 0x48 Read Only 525

EC - Next PTR Register 0x48 Read Only 525

EC - PCI Express Capabilities Register 0x48 Read Only 525

EC - Device Capabilities Register 0x4C Read Only 526

EC - Device Control Register 0x50 Mixed 526

EC - Device Status Register 0x50 Mixed 526

EC - Link Capabilities Register 0x54 Read Only 530

EC - Link Control Register 0x58 Mixed 531

EC - Link Status Register 0x58 Mixed 531

EC - Slot Capabilities Register 0x5C Read Only 533

EC - Slot Control Register 0x60 Mixed 534

EC - Slot Status Register 0x60 Mixed 534

EC - Root Control Register 0x60 Mixed 536

EC - Root Status Register 0x68 Mixed 537

User Manual

CPC945 Bridge and Memory Controller Preliminary

Programmer’s Interface
Page 525 of 655 February 1, 2008

EC – PCI Express Capability ID, Next PTR, and Capabilities Registers

The first two bytes of the PCI capability structures contain the:

• Read-only capability ID

• Next Pointer Register (which points to the next capability structure in the linked list, or all zeros to termi-
nate the capability structure linked list)

The PCI Express capability (EC) structure always has the PCI-SIG assigned value of 0x10 for this 8-bit
read-only capability ID register.

The PCI Express Capabilities Register is the 16-bit read-only register that describes the PCI Express device
hardware type and basic capabilities to the software.

Reset Value 0x00000000

Address Offset 0x48

Access Type Read, Read/Write

E
C

C
 R

eg
 [1

5:
14

]

E
C

C
 R

eg
 [1

3:
9]

E
C

C
 R

eg
 [8

]

E
C

C
 R

eg
 [7

:4
]

E
C

C
 R

eg
 [3

:0
]

EC - Next PTR Reg [7:0] EC - Capability ID Reg [7:0]

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits Field Name Description Access Reset

31:30 EC- Capabilities Register
[15:14] RsvdP, per the PCIe Specification. R 0b00

29:25 EC - Capabilities Register
[13:9] Interrupt Message

Number

The CPC945 implementation does not support multiple MSIs
Register bit I/O signals: AL_EC00_INTR_MSG_NUM [4:0]

R/W 0b00000

24 EC - Capabilities Register [8]
- Slot Implemented Register bit I/O signals: SYS_EC00_SLOT R 0b1

23:20 EC - Capabilities Register
[7:4] - Device/Port Type SYS_EC00_PORTTPE[3:0] R/W 0x1

19:16 EC - Capabilities Register
[3:0] - PCI Express Capability

Version

PCI Express Capability Version as defined in the PCIe Specification
1.0a. R 0b0001

15:8 EC - Next PTR Register [7:0] PCIEXCFG_EC_NEXT_CAP_PTR xxh - defines the register value R 0x00

7:0 EC - Capability ID Register
[7:0] R 0x10

User Manual

CPC945 Bridge and Memory Controller Preliminary

Programmer’s Interface
Page 526 of 655 February 1, 2008

EC – Device Capabilities Register

The Device Capabilities Register is the 32-bit read-only register that describes the PCI Express device
specific capabilities in detail to the software.

Reset Value 0x00000000

Address Offset 0x4C

Access Type Read

EC-Device Capabilities Register [31:3] E
C

-D
ev

ic
e

C
ap

ab
ili

tie
s

 R
eg

 [2
:0

]

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits Field Name Description Access Reset

31:3 EC-Device
Capabilities Register [31:3] Reserved, unused. R

0b0000000000
000000000000

0000000

2:0
EC- Device Capabilities
Register [2:0] Maximum
Payload Size Supported

Maximum payload size supported is128 bytes R 0b000

User Manual

CPC945 Bridge and Memory Controller Preliminary

Programmer’s Interface
Page 527 of 655 February 1, 2008

EC – Device Control and Device Status Registers

The Device Control Register is the 16-bit read/write register used by the software to control the PCI Express
device specific parameters.

The Device Status Register is the 16-bit read/write register that provides PCI Express device specific infor-
mation to the software.

Reset Value 0x01100000

Address Offset 0x50

Access Type Read, Read/Write

EC-DSRs[15:6] E
C

-D
S

R
 [5

]

E
C

-D
S

R
 [4

]

E
C

-D
S

R
 [3

]

E
C

-D
S

R
 [2

]

E
C

-D
S

R
 [1

]

E
C

-D
S

R
 [0

]

E
C

-D
C

R
 [1

5]

E
C

-D
C

R
 1

4:
12

]

E
C

-D
C

R
 [1

1]

E
C

-D
C

R
 [1

0]

R
es

er
ve

d

E
C

-D
C

R
 [7

:5
]

E
C

-D
C

R
 [4

]

E
C

-D
C

R
 [3

]

E
C

-D
C

R
 [2

]

E
C

-D
C

R
 [1

]

E
C

-D
C

R
 [0

]

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits Field Name Description Access Reset

31:22 EC - DSR [15:6]
RsvdZ. Per the PCI Express Specification, reserved and zero:
Reserved for future RW1C implementations; software must use 0
for writes to bits.

R 0b0000000000

21 EC - DSR [5]
Transactions Pending

Register bit I/O signals:
AL_EC08_TRANS_PENDING

R 0b0

20 EC - DSR [4]
AUX Power Detected Reserved R 0b0

19
EC - DSR [3]

Unsupported Request
Detected

Register bit I/O signals:
AL_EC08_UR

R/W 0b0

18 EC - DSR [2]
Fatal Error Detected

Register bit I/O signals:
DL_EC08_DLLPE
AL_PCI04_REC_POISONED_TLP
AL_PCI1C_REC_POISONED_TLP
TL_EC08_FCPE
AL_EC08_CMPL_TIMEOUT
AL_PCI04_SIG_CMPL_ABORT
AL_PCI1C_SIG_CMPL_ABORT
AL_EC08_UNEXPECTED_CMPL
AL_EC08_REC_OVERFLOW
AL_EC08_MALFORMED_TLP
AL_AER04_ECRC_ERROR
AL_EC08_UR

R/W 0b0

User Manual

CPC945 Bridge and Memory Controller Preliminary

Programmer’s Interface
Page 528 of 655 February 1, 2008

17 EC - DSR [1]
Nonfatal Error Detected

Register bit I/O signals:
DL_EC08_DLLPE
AL_PCI04_REC_POISONED_TLP
AL_PCI1C_REC_POISONED_TLP
TL_EC08_FCPE
AL_EC08_CMPL_TIMEOUT
AL_PCI04_SIG_CMPL_ABORT
AL_PCI1C_SIG_CMPL_ABORT
AL_EC08_UNEXPECTED_CMPL
AL_EC08_REC_OVERFLOW
AL_EC08_MALFORMED_TLP
AL_AER04_ECRC_ERROR
AL_EC08_UR

R/W 0b0

16
EC - Device Status

Register [0]
Correctable Error Detected

Register bit I/O signals:
DL_EC08_RECEIVERERROR
DL_EC08_BADTLP
DL_EC08_BADDLLP
DL_EC08_REPLAYROLLOVER
DL_EC08_REPLAYTIMEOUT

R/W 0b0

15 EC - DCR [15] RsvdP. R/ 0b0

14:12 EC - DCR [14:12]
Max_Read_Request_Size

Register bit I/O signals:
CFG_EC08_MAX_READ_REQ_SIZE [2:0]
CPC945 does not support and will not generate a Read Request
larger than 128 bytes. In accordance with the PCI Express specifi-
cation, this field is implemented as Read Only (R) with a value of
0b000.

R 0x000

11 EC - DCR [11]
Enable No Snoop

Register bit I/O signals:
 CFG_EC08_NOSNOOP_ENABLE

R/W 0b1

10
EC - DCR [10]

Auxiliary (AUX) Power PM
Enable

Register bit I/O signals:
CFG_EC08_AUXPOWER_PM_ENABLE
SYS_EC08_AUXPOWER_AVAIL

R 0b0

9 EC - DCR [9]
Phantom Function Enable

Not supported in CPC945
Register bit I/O signals: CFG_EC08_PHANTOM_FUNC_ENABLE

R 0b0

8 EC - DCR[8]
Extended Tag Field Enable

Not supported in CPC945
Register bit I/O signals: CFG_EC08_EXT_TAG_ENABLE

R 0b0

7:5
EC - DCR [7:5]

Max_Payload_Size=128
bytes

Register bit I/O signals: CFG_EC08_MAX_PAYLOAD_SIZE [2:0] R/W 0b000

4 EC - DCR [4]
Enable Relaxed Ordering

Register bit I/O signals:
CFG_EC08_RELAXED_ORDERING

R/W 0b1

3
EC - DCR [3]

Unsupported Request
Reporting Enable

R/W 0b0

2
EC - DCR [2]

Fatal Error Reporting
EnableDCR

Register bit I/O signals:
CFG_EC08_FATAL_ERROR

R/W 0b0

1
EC - DCR [1]

Nonfatal Error Reporting
Enable

Register bit I/O signals: CFG_EC08_NONFATAL_ERROR R/W 0b0

Bits Field Name Description Access Reset

User Manual

CPC945 Bridge and Memory Controller Preliminary

Programmer’s Interface
Page 529 of 655 February 1, 2008

0
EC - DCR [0]

Correctable Error Reporting
Enable

Register bit I/O signals: CFG_EC08_CORR_ERROR R/W 0b0

Bits Field Name Description Access Reset

User Manual

CPC945 Bridge and Memory Controller Preliminary

Programmer’s Interface
Page 530 of 655 February 1, 2008

EC – Link Capabilities Register

The Link Capabilities Register is the 32-bit read-only register that describes the PCI Express link specific
capabilities to the software.

Reset Value 0x0000 AD01

Address Offset 0x054

Access Type Read

EC-LCRs [31:18] E
C

-L
C

R
 1

7:
15

]

E
C

-L
C

R
 1

4:
12

]

E
C

-L
C

R
 [1

1:
10

]

E
C

-L
C

R
 [9

:4
]

E
C

-L
C

R
 [3

:0
]

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits Field Name Description Access Reset

31:18 EC - Link Capabilities
Registers [31:18]

31:24 Read only, always '0', always port 0
34:18 RsvdP

R 0b00000000
000000

17:15
EC - Link Capabilities

Register [17:15]
L1 Exit Latency

R 0b001

14:12
EC - Link Capabilities

Register [14:12]
L0 Exit Latency

R 0b010

11:10
EC - Link Capabilities

Register [11:10]
Active State Link PM Support

R 0b11

9:4
EC - Link Capabilities

Register [9:4]
Max_Link_Width

Register bit I/O signals:
SYS_EC0C_MAXLINKWIDTH R 0b010000

3:0
EC - Link Capabilities

Register [3:0]
Max_Link_Speed

R 0x1

User Manual

CPC945 Bridge and Memory Controller Preliminary

Programmer’s Interface
Page 531 of 655 February 1, 2008

EC – Link Control and Link Status Registers

The Link Control Register is the 16-bit read/write register used by the software to control the PCI Express link
specific parameters.

The Link Status Register is the 16-bit read-only register that provides PCI Express link specific information to
the software.

Reset Value 0x10010000

Address Offset 0x58

Access Type Read, Read/Write

E
C

-L
S

R
s[

15
:1

3]

E
C

-L
S

R
 [1

2]

E
C

-L
S

R
 [1

1]

E
C

-L
S

R
 [1

0]

EC-LSR [9:4] E
C

-L
S

R
 [3

:0
]

EC-LSR[15:8] E
C

-L
C

R
 [7

]

E
C

-L
C

R
 [6

]

E
C

-L
C

R
 [5

]

E
C

-L
C

R
 [4

]

E
C

-L
C

R
 [3

]

E
C

-L
C

R
 [2

]

E
C

-L
C

R
 [1

:0
]

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits Field Name Description Access Reset

31:29
EC - Link Status
Register [15:13]
Reserved Bits

RsvdZ. Per the PCI Express Specification. R 0b000

28
EC - Link Status

Register [12]
Slot Clock Configuration

Register bit I/O signals:
SYS_EC10_SLOTCLOCK

R 0b1

27
EC - Link Status

Register [11]
Link Training

Register bit I/O signals:
DL_EC10_LINKTRAINING

R 0b0

26 EC - Link Status
Register [10] Training Error

Reserved.
This bit field can not be used to detect the presence of training
errors and always returns '0' when read

R 0b0

25:20
EC - Link Status

Register [9:4]
Negotiated Link Width

Register bit I/O signals:
DL_EC10_NEGLINKWIDTH [5:0]

R 0b000000

19:16
EC - Link Status

Register [3:0]
Link Speed

Link speed R 0x1

15:8 EC - Link Control
Register [15:8]

RsvdP, per the PCI Express specification: reserved and pre-
served: reserved for future read/write implementations; software
must preserve the value read for writes to bits.

R 0x00

7 EC - Link Control Register [7]
Extended Synch

Register bit I/O signals:
CFG_EC10_EXTENDEDSYNCH

R/W 0b0

6 EC - Link Control Register [6]
Common Clock Configuration

Register bit I/O signals:
CFG_EC10_COMMONCLOCK

R/W 0b0

5 EC - Link Control Register [5]
Retrain Link

Register bit I/O signals:
CFG_EC10_RETRAINLINK

R/W 0b0

User Manual

CPC945 Bridge and Memory Controller Preliminary

Programmer’s Interface
Page 532 of 655 February 1, 2008

4 EC - Link Control Register [4]
Link Disable

Register bit I/O signals:
CFG_EC10_LINKDISABLE

R/W 0b0

3
EC - Link Control Register [3]
Read Completion Boundary

(RCB)

Boundary = 128bytes
Register bit I/O signals:
CFG_EC10_RCB128

R/W 0b0

2 EC - Link Control Register [2] RsvdP, per the PCI Express specification R 0b0

1:0
EC - Link Control

Register [1:0]
Active State Link PM Control

Register bit I/O signals:
CFG_EC10_LINKPMCONTROL [1:0]
SYS_EC10_LINKPMINIT [1:0]

R/W 0b00

Bits Field Name Description Access Reset

User Manual

CPC945 Bridge and Memory Controller Preliminary

Programmer’s Interface
Page 533 of 655 February 1, 2008

EC – Slot Capabilities Register

The Slot Capabilities Register is the 32-bit read-only register that describes the PCI Express slot specific
capabilities to the software.

Reset Value 0x00000000

Address Offset 0x5C

Access Type Read, Read/Write

EC-SCR[31:19] E
C

-S
C

R
 [1

8:
17

]

E
C

-S
C

R
 [1

5:
16

]

EC-SCR [14:7] E
C

-S
C

R
 [6

]

E
C

-S
C

R
 [5

]

E
C

-S
C

R
 [4

]

E
C

-S
C

R
 [3

]

E
C

-S
C

R
 [2

]

E
C

-S
C

R
 [1

]

E
C

-S
C

R
 [0

]

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits Field Name Description Access Reset

31:19 EC - Slot Capabilities
Register [31:19]

Physical Slot Number

Register Bit I/O Signals:
SYS_EC14_SLOT_NUMBER [12:0] R 0b00000000

00000

18:17 EC - Slot Capabilities
Register [18:17] RsvdP, per the PCI Express specification. R 0b00

16:15 EC - Slot Capabilities
Register [16:15]

Slot Power Limit Scale

Register Bit I/O Signals:
SYS_EC14_PWR_LIMIT_SCALE [1:0]
CFG_EC14_SLOT_PWR_SENDMSG

 R 0b00

14:7
EC - Slot Capabilities

Register [14:7]
Slot Power Limit Value

The CPC945 does not provide slot power.
Register Bit I/O Signals:
SYS_EC14_PWR_LIMIT_VALUE [7:0]
CFG_EC14_SLOT_PWR_SENDMSG T

 R 0x00

6 EC - Slot Capabilities
Register [6]

Hot-Plug Capable

Register Bit I/O Signals:
SYS_EC14_HOTPLUG_CAPABLE R 0b0

5 EC - Slot Capabilities
Register [5]

Hot-Plug Surprise

Register Bit I/O Signals:
SYS_EC14_HOTPLUG_SURPRISE R 0b0

4 EC - Slot Capabilities
Register [4]

Power Indicator Present

Register Bit I/O Signals:
SYS_EC14_PWR_IND_PRESENT R 0b0

3 EC - Slot Capabilities
Register [3]

Attention Indicator Present

Register Bit I/O Signals:
SYS_EC14_ATN_IND_PRESENT R 0b0

2 EC - Slot Capabilities
Register [2]

MRL Sensor Present

Register Bit I/O Signals:
SYS_EC14_MRL_PRESENT R 0b0

1 EC - Slot Capabilities
Register [1]

Power Controller Present

Register Bit I/O Signals:
SYS_EC14_PWR_CTL_PRESENT R 0b0

User Manual

CPC945 Bridge and Memory Controller Preliminary

Programmer’s Interface
Page 534 of 655 February 1, 2008

EC – Slot Control and Slot Status Registers

The Slot Control Register is the 16-bit read/write register used by the software to control the PCI Express slot
specific parameters.

The Slot Status Register is the 16-bit read/write register that provides PCI Express slot specific information to
the software.

0 EC - Slot Capabilities
Register [0]

Attention Button Present

Register Bit I/O Signals:
SYS_EC14_ATN_BTN_PRESENT R 0b0

Reset Value 0x0000000

Address Offset 0x60

Access Type Read, Read/Write

EC-SSRs[15:7] E
C

-S
S

R
 [6

]

E
C

-S
S

R
 [5

]

E
C

-S
S

R
 [4

]

E
C

-S
S

R
 [3

]

E
C

-S
S

R
 [2

]

E
C

-S
S

R
 [1

]

E
C

-S
S

R
 [0

]

EC - SCRs [15:11] E
C

-S
C

R
 [1

0]

E
C

-S
C

R
 [9

:8
]

E
C

-S
C

R
 [7

:6
]

E
C

-S
C

R
 [5

]

E
C

-S
C

R
 [4

]

E
C

-S
C

R
 [3

]

E
C

-S
C

R
 [2

]

E
C

-S
C

R
 [1

]

E
C

-S
C

R
 [0

]

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bitss Field Name Description Access Reset

31:23 EC - Slot Status Register
[15:7] RsvdZ, per the PCI Express specification R 0b0

22 EC - Slot Status Register [6]
Presence Detect State

Register bit I/O signals:
SYS_EC18_SLOT_DETECT_STATE R 0b0

21 EC - Slot Status Register [5]
MRL Sensor State

Register bit I/O signals:
SYS_EC18_MRL_SENSOR_STATE R 0b0

20 EC - Slot Status Register [4]
Command Completed

Register bit I/O signals:
SYS_EC18_PWR_CTL_CMD_CMPLT
CFG_EC18_SLOT_INTR

R/W 0b0

19 EC - Slot Status Register [3]
Presence Detect Changed

Register bit I/O signals:
SYS_EC18_SLOT_DETECT_CHANGED
CFG_EC18_SLOT_WAKE

R/W 0b0

18 EC - Slot Status Register [2]
MRL Sensor Changed

Register bit I/O signals:
SYS_EC18_MRL_SENSOR_CHANGED
CFG_EC18_SLOT_WAKE

R/W 0b0

17 EC - Slot Status Register [1]
Power Fault Detected

Register bit I/O signals:
SYS_EC18_PWR_FAULT_DETECTED
CFG_EC18_SLOT_WAKE

R/W 0b0

16 EC - Slot Status Register [0]
Attention Button Pressed

Register bit I/O signals:
SYS_EC18_ATN_BTN_PRESSED
CFG_EC18_SLOT_WAKE

R/W 0b0

Bits Field Name Description Access Reset

User Manual

CPC945 Bridge and Memory Controller Preliminary

Programmer’s Interface
Page 535 of 655 February 1, 2008

15:11 EC - Slot Control Register
[15:11]

RsvdP, per the PCI Express specification R 0b1

10 EC - Slot Control Register
[10] Power Controller Control

Register bit I/O signals:
CFG_EC18_PWR_CTL_CONTROL R/W 0x000

9:8 EC - Slot Control Register
[9:8] Power Indicator Control

Register bit I/O signals:
CFG_EC18_PWR_IND_CONTROL [1:0]
CFG_EC18_PWR_IND_SENDMSG

R/W 0b0

7:6
EC - Slot Control

Register [7:6]
Attention Indicator Control

Register bit I/O signals:
CFG_EC18_ATN_IND_CONTROL [1:0]
CFG_EC18_ATN_IND_SENDMSG

R/W 0b00

5 EC - Slot Control Register [5]
Hot-Plug Interrupt Enable

Register bit I/O signals:
CFG_EC18_SLOT_INTR R/W 0b0

4
EC - Slot Control Register [4]

Command Completed
Interrupt Enable

Register bit I/O signals:
CFG_EC18_SLOT_INTR R/W 0b0

3
EC - Slot Control Register [3]

Presence Detect Changed
Enable

Register bit I/O signals:
CFG_EC18_SLOT_WAKE R/W 0b0

2
EC - Slot Control Register [2]

MRL Sensor Changed
Enable

Register bit I/O signals:
CFG_EC18_SLOT_WAKE R/W 0b0

1 EC - Slot Control Register [1]
Power Fault Detected Enable

Register bit I/O signals:
CFG_EC18_SLOT_WAKE R/W 0b0

0
EC - Slot Control Register [0]

Attention Button Pressed
Enable

Register bit I/O signals:
CFG_EC18_SLOT_WAKE R/W 0b0

Bitss Field Name Description Access Reset

User Manual

CPC945 Bridge and Memory Controller Preliminary

Programmer’s Interface
Page 536 of 655 February 1, 2008

EC – Root Control Register

The 16-bit read/write Root Control Register is used by the system software to control PCI Express root
complex specific parameters. The remaining 16-bits of this Express capability structure DWord address is
defined as reserved for this version of the PCI Express specification (read-only zero).

Reset Value 0x0000000

Address Offset 0x64

Access Type Read, Read/Write

EC - Reserved Register [15:0] Root Control Reg [15:4] E
C

-R
C

R
 [3

]

E
C

-R
C

R
 [2

]

E
C

-R
C

R
 [1

]

E
C

-R
C

R
 [0

]

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits Field Name Description Access Reset

31:16 EC - Reserved Register
[15:0] Reserved R 0x0000

15:4 EC - Root Control Register
[15:4] RsvdP, per the PCI Express specification R 0x000

3 EC - Root Control Register
[3] PME Interrupt Enable

Register Bit I/O Signals:
CFG_EC1C_PME_INTR_EN

R/W 0b0

2
EC - Root Control Register
[2] System Error on Fatal

Error Enable

Register Bit I/O Signals:
CFG_EC1C_FATAL_SERR_EN

R/W 0b0

1
EC - Root Control Register

[1] System Error on Nonfatal
Error Enable

Register Bit I/O Signals:
CFG_EC1C_NONFATAL_SERR_EN

R/W 0b0

0
EC - Root Control

Register [0] System Error on
Correctable Error Enable

Register Bit I/O Signals:
CFG_EC1C_CORR_SERR_EN

R/W 0b0

User Manual

CPC945 Bridge and Memory Controller Preliminary

Programmer’s Interface
Page 537 of 655 February 1, 2008

EC – Root Status Register

The 32-bit read/write Root Status Register provides PCI Express root complex specific information to the soft-
ware.

Reset Value 0x00000000

Address Offset 0x68

Access Type Read Only, Read/Write

EC - Reserved Register [31:18 E
C

-R
S

R
 [1

7]

E
C

-R
S

R
 [1

6]

EC - Root Status Register [15:0]

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits Field Name Description Access Reset

31:18 EC - Reserved Register
[31:18] Reserved R 0b0000000000

0000

17
EC - Root Status

Register [17]
PME Pending

Register Bit I/O Signals:
AL_EC20_PME_PENDING R 0b0

16 EC - Root Status
Register [16]

Register Bit I/O Signals:
AL_EC20_PME_STATUS
CFG_EC20_PME_STATUS_CLR
PME Status:
- Set with Pulse on Input Pin
- Write1 to Clear will pulse Output Pin

R/W 0b0

15:0
EC - Root Status
Register [15:0]

PME Requestor ID

Register Bit I/O Signals:
AL_EC20_PME_REQUESTOR_ID R 0x00

User Manual

CPC945 Bridge and Memory Controller Preliminary

Programmer’s Interface
Page 538 of 655 February 1, 2008

12.11.1.4 Advanced Error Reporting Extended Capability Structure

The PCI Express advanced error reporting (AER) extended capability structure is defined for the CPC945,
but does not support end-to-end CRC (ECRC). It is 14 DWords in length and is used for communicating and
controlling the optional advanced error reporting capabilities of the CPC945.

Register Name (Mnemonic) Address DWord Offset Access
Mode

Relevant
PCI Specifications See Page

AER - PCI Express Enhanced Capability
Header (ID, version, next PTR) Registers 0x100 Read Only PCI Express Base Specification v1.0a 539

AER - Uncorrectable Error Status Regis-
ter 0x104 Mixed PCI Express Base Specification v1.0a 540

AER - Uncorrectable Error Mask Register 0x108 Mixed PCI Express Base Specification v1.0a 541

AER - Uncorrectable Error Severity Regis-
ter 0x10C Mixed PCI Express Base Specification v1.0a 542

AER - Correctable Error Status Register 0x110 Mixed PCI Express Base Specification v1.0a 543

AER - Correctable Error Mask Register 0x114 Mixed PCI Express Base Specification v1.0a 544

AER - Capabilities and Control Register 0x118 Mixed PCI Express Base Specification v1.0a 545

AER - Header Log Register #1 0x11C Read Only PCI Express Base Specification v1.0a 547

AER - Header Log Register #2 0x120 Read Only PCI Express Base Specification v1.0a 547

AER - Header Log Register #3 0x124 Read Only PCI Express Base Specification v1.0a 547

AER - Header Log Register #4 0x128 Read Only PCI Express Base Specification v1.0a 547

AER - Root Error Command Register
(only for rootports)

0x12C Mixed PCI Express Base Specification v1.0a 548

AER - Root Error Status Register
(only for rootports)

0x130 Mixed PCI Express Base Specification v1.0a 549

AER - Error Source Identification Register
(only for rootports)

0x134 Read Only PCI Express Base Specification v1.0a 550

User Manual

CPC945 Bridge and Memory Controller Preliminary

Programmer’s Interface
Page 539 of 655 February 1, 2008

AER – Advanced Error Reporting Enhanced Capability Header Registers: ID, Version, and Next PTR

The first DWord contains the read-only enhanced capability header. The enhanced capability header
contains a:

• PCI Express extended capability ID (a unique PCI-SIG defined ID code that identifies the type, size, and
format of the extended capability)

• Capability version (PCI-SIG defined version of the capability structure)

• Next capability offset register (which points to the next extended capability structure in the linked list, or all
zeros to terminate the extended capability structure linked list)

The AER extended capability structure always has the PCI-SIG assigned value of 0x0001 for the 16-bit read-
only extended capability ID register.

The AER extended capability structure always has the PCI-SIG assigned value of 0x1 for the 4-bit read-only
capability version register.

Reset Value 0x00010001

Address Offset 0x100

Access Type Read Only

AER - Next Capability Offset Register [11:0] A
ER

 -
C

ap
ab

ilit
y

V
er

si
on

 R
eg

is
te

r
 [3

:0
]

AER - Ext Capability ID Register [15:0]

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits Field Name Description Access Reset

31:20 AER - Next Capability Offset
Register [11:0] R 0x000

19:16 AER - Capability Version
Register [3:0] R 0x1

15:0 AER - Ext Capability ID
Register [15:0] R 0x0001

User Manual

CPC945 Bridge and Memory Controller Preliminary

Programmer’s Interface
Page 540 of 655 February 1, 2008

AER – Uncorrectable Error Status Register

The 32-bit read/write one-to-clear/sticky Uncorrectable Error Status Register reports error status of the indi-
vidual uncorrectable error sources (nonfatal and fatal) on a PCI Express device.

Reset Value 0x00000000

Address Offset 0x104

Access Type Read, Read/Write

Reserved U
ns

up
po

rte
d

R
eq

 E
rr

S
ta

tu
s

E
C

R
C

 E
rr

S
ta

tis

M
al

fo
rm

ed
 T

LP
st

at
us

R
ec

ei
ve

rO
flo

w
S

ta
tu

s

U
ne

xp
ec

te
dC

,o
m

pl
et

io
nS

ta
tu

s

C
om

pl
et

er
A

bo
rtS

ta
tu

s

C
om

pl
et

io
nT

im
eo

ut
S

ta
tu

s

Fl
ow

C
tlP

ro
to

co
lE

rr
S

ta
tu

s

P
oi

so
ne

dT
LP

st
at

us
s

Reserved D
Lp

ro
to

co
lE

rr
S

ta
tu

ss

R
es

er
ve

d

Ta
rin

in
gE

rr
S

ta
tu

s

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits Field Name Description Access Reset

31:21 Reserved RsvdZ, per the PCI Express specification R 0b00000000000

20 AER - Unsupported Request
Error Status

Register Bit I/O Signals:
AL_EC08_UR R/W 0b0

19 AER - ECRC Error Status

ECRC is not supported in CPC945.
Register Bit I/O Signals:
AL_AER04_ECRC_ERROR
SYS_AER18_ECRC_CHECK_AVAIL

R/W 0b0

18 AER - Malformed TLP Status Register Bit I/O Signals:
AL_EC08_MALFORMED_TLP R/W 0b0

17 AER - Receiver Overflow
Status

Register Bit I/O Signals:
AL_EC08_REC_OVERFLOW R/W 0b0

16 AER - Unexpected Comple-
tion Status

Register Bit I/O Signals:
AL_EC08_UNEXPECTED_CMPL R/W 0b0

15 AER - Completer Abort Sta-
tus

Register Bit I/O Signals:
AL_PCI04_SIG_CMPL_ABORT R/W 0b0

14 AER - Completion Timeout
Status

Register Bit I/O Signals:
AL_EC08_CMPL_TIMEOUT R/W 0b0

13 AER - Flow Control Protocol
Error Status

Register Bit I/O Signals:
TL_EC08_FCPE R/W 0b0

12 AER - Poisoned TLP Status
Register Bit I/O Signals:
AL_PCI04_REC_POISONED_TLP
AL_PCI1C_REC_POISONED_TLP

R 0b0

11:5 Reserved RsvdZ, per the PCI Express specification R 0b0000000

4 AER - Data Link Protocol
Error Status

Register Bit I/O Signals:
DL_EC08_DLLPE R/W 0b0

User Manual

CPC945 Bridge and Memory Controller Preliminary

Programmer’s Interface
Page 541 of 655 February 1, 2008

AER – Uncorrectable Error Mask Register

The 32-bit read/write/sticky Uncorrectable Error Mask Register controls reporting of the individual uncorrect-
able error sources (nonfatal and fatal) of a PCI Express device to the PCI Express root complex using the PCI
Express defined error messages.

3:1 Reserved RsvdZ, per the PCI Express specification R 0b000

0 AER - Training Error Status R 0b0

Reset Value 0x00000000

Address Offset 0x108

Access Type Read, Read/Write

Reserved U
ns

up
po

rte
d

R
eq

E
rr

M
sk

E
C

R
C

er
rM

sk

M
al

fo
rm

ed
TL

PM
as

k

R
ec

ei
ve

rO
flo

w
M

sk

U
ne

xp
ec

te
dC

om
pl

et
io

nM
sk

C
om

pl
et

er
A

bo
rtM

sk

C
om

pl
et

io
nT

im
eo

ut
M

as
k

Fl
ow

C
tlP

ro
to

co
lE

rrM
as

k

P
oi

so
ne

dT
LP

m
sk

Reserved D
Lp

ro
to

co
lE

rr
M

sk

Reserved

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits Field Name Description Access Reset

31:21 AER - Reserved Bits RsvdP, per the PCI Express specification R 0b00000000000

20 AER - Unsupported Request
Error Mask R/W 0b0

19 AER - ECRC Error Mask
Not available in CPC945.
Register bit I/O Signals:
SYS_AER18_ECRC_CHECK_AVAIL

R 0b0

18 AER - Malformed TLP Mask R/W 0b0

17 AER - Receiver Overflow
Mask R/W 0b0

16 AER - Unexpected Comple-
tion Mask R/W 0b0

15 AER - Completer Abort Mask R/W 0b0

14 AER - Completion Timeout
Mask R/W 0b0

13 AER - Flow Control Protocol
Error Mask R/W 0b0

12 AER - Poisoned TLP Mask R/W 0b0

11:5 AER - Reserved Bits RsvdP, per the PCI Express specification R 0b0000000

Bits Field Name Description Access Reset

User Manual

CPC945 Bridge and Memory Controller Preliminary

Programmer’s Interface
Page 542 of 655 February 1, 2008

AER – Uncorrectable Error Severity Register

The 32-bit read/write/sticky Uncorrectable Error Severity Register controls whether individual uncorrectable
errors are reported as nonfatal or fatal. Individual errors are reported as fatal when the severity bit is set equal
to ‘1’, nonfatal when the severity bit is set equal to ‘0’.

4 AER - Data Link Protocol
Error Mask R/W 0b0

3:1 AER - Reserved Bits RsvdP, per the PCI Express specification R 0b000

0 AER - Training Error Mask R 0b0

Reset Value 0x00062010

Address Offset 0x10C

Access Type Read, Read/Write

Reserved U
ns

up
po

rte
d

R
eq

E
rr

S
ev

E
C

R
C

er
rS

ev

M
al

fo
rm

ed
TL

P
se

v

R
ec

ei
ve

rO
flo

w
S

ev

U
ne

xp
ec

te
dC

om
pl

et
io

nS
ev

C
om

pl
et

er
Ab

or
tS

ev

C
om

pl
et

io
nT

im
eo

ut
S

ev

Fl
ow

C
tlP

ro
to

co
lE

rr
S

ev

P
oi

so
ne

dT
LP

se
v

Reserved D
Lp

ro
to

co
lE

rr
S

ev

Reserved

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits Field Name Description Access Reset

31:21 AER - Reserved Bits RsvdP, per the PCI Express specification R 0b0000000000
0

20 AER - Unsupported Request
Error Severity R/W 0b0

19 AER - ECRC Error Severity Not available in CPC945. R 0b0

18 AER - Malformed TLP Sever-
ity R/W 0b1

17 AER - Receiver Overflow
Severity R/W 0b1

16 AER - Unexpected Comple-
tion Severity R/W 0b0

15 AER - Completer Abort
Severity R/W 0b0

14 AER - Completion Timeout
Severity R/W 0b0

13 AER - Flow Control Protocol
Error Severity R/W 0b1

Bits Field Name Description Access Reset

User Manual

CPC945 Bridge and Memory Controller Preliminary

Programmer’s Interface
Page 543 of 655 February 1, 2008

AER – Correctable Error Status Register

The 32-bit read/write one to clear/sticky Correctable Error Status Register reports error status of the indi-
vidual correctable error sources on a PCI Express device.

12 AER - Poisoned TLP Severity R/W 0b0

11:5 AER - Reserved Bits RsvdP, per the PCI Express specification R 0b0000000

4 AER - Data Link Protocol
Error Severity R/W 0b1

3:1 AER - Reserved Bits RsvdP, per the PCI Express specification R 0b000

0 AER - Training Error Severity R 0b0

Reset Value 0x00000000

Address Offset 0x110

Access Type Read, Read/Write

Reserved R
ep

la
yT

im
er

Ti
m

eo
ut

S
ts

Reserved R
ep

la
yN

um
R

ol
lo

ve
rS

ts

B
ad

D
LL

P
S

ta
tu

s

B
ad

TL
P

st
at

us
s

Reserved R
ec

ei
ve

rE
rr

S
ta

tu
s

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits Field Name Description Access Reset

31:13 AER - Reserved Bits RsvdZ, per the PCI Express specification R 0b0000000000
000000000

12 AER - Replay Timer Timeout
Status Register Bit I/O Signals: DL_EC08_REPLAYTIMEOUT R/W 0b0

11:9 AER - Reserved Bits RsvdZ, per the PCI Express specification R 0b000

8 AER - REPLAY_NUM Roll-
over Status Register Bit I/O Signals: DL_EC08_REPLAYROLLOVER R/W 0b0

7 AER - Bad DLLP Status Register Bit I/O Signals: DL_EC08_BADDLLP R/W 0b0

6 AER - Bad TLP Status Register Bit I/O Signals: DL_EC08_BADTLP R/W 0b0

5:1 AER - Reserved Bits RsvdZ, per the PCI Express specification R 0b00000

0 AER - Receiver Error Status Register Bit I/O Signals: DL_EC08_RECEIVERERROR R/W 0b0

Bits Field Name Description Access Reset

User Manual

CPC945 Bridge and Memory Controller Preliminary

Programmer’s Interface
Page 544 of 655 February 1, 2008

AER – Correctable Error Mask Register

The 32-bit read/write/sticky Correctable Error Mask Register controls reporting of the individual correctable
error sources of a PCI Express device to the PCI Express root complex using the PCI Express defined error
messages.

Reset Value 0x00000000

Address Offset 0x114

Access Type Read, Read/Write

Reserved AER P
re

fe
tc

h
M

em
Lm

tR
eg

Reserved A
E

R
-R

ep
la

y_
N

U
M

 R
ol

lo
vr

 M
sk

A
E

R
-B

ad
 D

LL
P

 M
sk

A
E

R
-B

ad
 T

LP
 M

sk

Reserved AER A
E

R
-R

ec
ei

ve
r E

rr
M

sk

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits Field Name Description Access Reset

31:13 Reserved RsvdP, per the PCI Express specification R 0x00000

12 Prefetchable Memory Limit
Register [03:00] R/W 0b0

11:9 Reserved RsvdP, per the PCI Express specification R 0b000

8 AER-Replay_NUM
Rollovr Msk R/W 0b0

7 AER-Bad DLLP Msk R/W 0b0

6 AER-Bad TLP Msk R/W 0b0

5:1 Reserved RsvdP, per the PCI Express specification R 0b00000

0 AER - Receiver Error Mask R/W 0b0

User Manual

CPC945 Bridge and Memory Controller Preliminary

Programmer’s Interface
Page 545 of 655 February 1, 2008

AER – Capabilities and Control Register

The AER Capabilities and Control Register contains the First Error Pointer Register and also controls and
reports the state of the ECRC generation capabilities of the PCI Express device.

The First Error Pointer Register identifies the bit position of the first error reported in the uncorrectable error
status register. If multiple uncorrectable errors occur on the same PCLK250 clock cycle, the PCIEXCFG core
uses the following error priority for setting the first error pointer register value (listed from lowest to highest
priority):

DL_EC08_DLLPE
TL_EC08_FCPE
AL_EC08_CMPL_TIMEOUT
AL_EC08_REC_OVERFLOW
AL_EC08_UR
AL_PCI04_SIG_CMPL_ABORT
AL_PCI1C_SIG_CMPL_ABORT
AL_EC08_UNEXPECTED_CMPL
AL_PCI04_REC_POISONED_TLP
AL_PCI1C_REC_POISONED_TLP
AL_EC08_MALFORMED_TLP
AL_AER04_ECRC_ERROR

Reset Value 0x00000000

Address Offset 0x118

Access Type Read

Reserved A
E

R
-E

C
R

C
 C

hk
 E

na
bl

e

A
E

R
-E

C
R

C
 C

hk
 C

ap
ab

le

A
E

R
-E

C
R

C
 G

en
 E

na
bl

ed

A
E

R
-E

C
R

C
 G

en
 C

ap
ab

le

Reserved

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits Field Name Description Access Reset

31:9 Reserved RsvdP, per the PCI Express specification R 0b00000000000
000000000000

8 AER-ECRC Check Enable Not supported in the CPC945, always reads as ‘0’ R 0x0

7 AER-ECRC Check Capable Not supported in the CPC945, always reads as ‘0’ R 0x0

6 AER-ECRC Generation
Enable Not supported in the CPC945, always reads as ‘0’ R 0x0

5 AER-ECRC Generation
Capable Not supported in the CPC945, always reads as ‘0’ R 0x0

User Manual

CPC945 Bridge and Memory Controller Preliminary

Programmer’s Interface
Page 546 of 655 February 1, 2008

4:0 AER-First Error Pointer
Register

Points to the bit position of the error in uncorrectable status register
at offset 0x104. Register bit I/O signals:
DL_EC08_DLLPE
TL_EC08_FCPE
AL_EC08_CMPL_TIMEOUT
AL_EC08_REC_OVERFLOW
AL_EC08_UR
AL_PCI04_SIG_CMPL_ABORT
AL_PCI1C_SIG_CMPL_ABORT
AL_EC08_UNEXPECTED_CMPL
AL_PCI04_REC_POISONED_TLP
AL_PCI1C_REC_POISONED_TLP
AL_EC08_MALFORMED_TLP
AL_AER04_ECRC_ERROR

R 0b00000

Bits Field Name Description Access Reset

User Manual

CPC945 Bridge and Memory Controller Preliminary

Programmer’s Interface
Page 547 of 655 February 1, 2008

AER – Header Log Registers: 1 through 4

The AER Header Log Registers capture the TLP header of the packet corresponding to the first loggable
nonmasked uncorrectable error.

The TLP header is captured in the AER Header Log Registers (1–4) such that:
• Header Log Register #1 (AER1C) contains the TLP header bytes 0–3

– Where TLP header byte 3 is the least significant byte of the AER header log register
• Header Log Register #2 (AER20) contains the TLP header bytes 4–7

– Where TLP header byte 7 is the least significant byte of the AER header log register
• Header Log Register #3 (AER24) contains the TLP header bytes 8–11

– Where TLP header byte 11 is the least significant byte of the AER header log register
• Header Log Register #4 (AER28) contains the TLP header bytes 12–15

– Where TLP header byte 15 is the least significant byte of the AER header log register
– This value in this register is undefined for when 12-byte TLP headers are logged

Reset Value 0x000001000

Address Offset Header Log Register 1 of 4: 0x11C
Header Log Register 2 of 4: 0x120
Header Log Register 3 of 4: 0x124
Header Log Register 4 of 4: 0x128

Access Type Read/Write

Bits Register Description Access Reset

31:0 AER - (AER1C) Header Log
Register #1

TLP header bytes 0:3
Register Bit I/O Signals: AL_AER1C_HEADER_LOG[31:0]

R/W 0x00000000

31:0 AER - (AER20) Header Log
Register #2

TLP header bytes 4:7
Register Bit I/O Signals: AL_AER1C_HEADER_LOG[63:31]

R/W 0x00000000

31:0 AER - (AER24) Header Log
Register #3

TLP header bytes 8:11
Register Bit I/O Signals: AL_AER1C_HEADER_LOG[95:64]

R/W 0x00000000

31:0 AER - (AER28) Header Log
Register #4

TLP header bytes 12:15
Register Bit I/O Signals: AL_AER1C_HEADER_LOG[127:96]

R/W 0x00000000

User Manual

CPC945 Bridge and Memory Controller Preliminary

Programmer’s Interface
Page 548 of 655 February 1, 2008

AER – Root Error Control Register

The AER Root Error Control Register allows additional control of the root complex response to correctable,
nonfatal, and fatal error messages. This register enables and disables AER interrupt generation for each
error type.

Reset Value 0x0000 0000

Address Offset 0x012C

Access Type Read, Read/Write

Reserved (AER-RECR [31:3]) A
E

R
-R

E
C

R
 [2

]

A
E

R
-R

E
C

R
 [1

]

A
E

R
-R

E
C

R
 [0

]

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits Field Name Description Access Reset

31:3 Reserved. AER - Root Error
Control Registers [31:3] RsvdP, per the PCI Express specification R 0x0000000

2 AER - Root Error Control
Register [2]

Fatal Error Reporting Enable. Register Bit I/O Signals:
CFG_AER2C_FATAL_REPORT_EN

R/W 0b0

1 AER - Root Error Control
Register [1]

Nonfatal Error Reporting Enable. Register Bit I/O Signals:
CFG_AER2C_NONFATAL_REPORT_EN

R/W 0b0

0 AER - Root Error Control
Register [0]

Correctable Error Reporting Enable. Register Bit I/O Signals:
CFG_AER2C_CORR_REPORT_EN

R/W 0b0

User Manual

CPC945 Bridge and Memory Controller Preliminary

Programmer’s Interface
Page 549 of 655 February 1, 2008

AER – Root Error Status Register

The AER Root Error Status Register reports the status of all errors (correctable, nonfatal, fatal) in the PCI
Express hierarchy of the root port device (both internal rootport errors and upstream error messages). It also
contains the AER message signaled interrupt number associated with the AER reporting interrupt.

Reset Value 0x00000000

Address Offset 0x130

Access Type Mixed

AER-RESR [31:27] AER-RESR [26:7] A
E

R
-R

E
S

R
 [6

]

A
E

R
-R

E
S

R
 [5

]

A
E

R
-R

E
S

R
 [4

]

A
E

R
-R

E
S

R
 [3

]

A
E

R
-R

E
S

R
 [2

]

A
E

R
-R

E
S

R
 [1

]

A
E

R
-R

E
S

R
 [0

]

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits Field Name Description Access Reset

31:27 AER - Root Error Status
Register [31:27]

Advanced Error Interrupt Message Number
AL_AER30_MSI_NUMBER.
Note: The CPC945 does not support multiple MSIs.

R 0x0

26:7 AER - Root Error Status
Register [26:7] RsvdZ, per the PCI Express specification R 0x00000

6 AER - Root Error Status
Register [6]

Fatal Error Received. Register Bit I/O Signals:
CFG_EC08_FATAL_ERROR
AL_PCI1C_FATAL_ERROR_MSG

R/W 0b0

5 AER - Root Error Status
Register [5]

Nonfatal Error Received. Register Bit I/O Signals:
CFG_EC08_NONFATAL_ERROR
AL_PCI1C_NONFATAL_ERROR_MSG

R/W 0b0

4 AER - Root Error Status
Register [4]

First Uncorrectable Fatal. Register Bit I/O Signals:
CFG_EC08_FATAL_ERROR
AL_PCI1C_FATAL_ERROR_MSG

R/W 0b0

3 AER - Root Error Status
Register [3]

Multiple ERR_FATAL/NONFATAL Received. Register Bit I/O Sig-
nals:
CFG_EC08_FATAL_ERROR
CFG_EC08_NONFATAL_ERROR
AL_PCI1C_FATAL_ERROR_MSG
AL_PCI1C_NONFATAL_ERROR_MSG

R/W 0b0

2 AER - Root Error Status
Register [2]

ERR_FATAL/NONFATAL Received. Register Bit I/O Signals:
CFG_EC08_FATAL_ERROR
CFG_EC08_NONFATAL_ERROR
AL_PCI1C_FATAL_ERROR_MSG
AL_PCI1C_NONFATAL_ERROR_MSG

R/W 0b0

1 AER - Root Error Status
Register [1]

Multiple ERR_CORR Received. Register Bit I/O Signals:
CFG_EC08_CORR_ERROR
AL_AER30_CORR_ERROR_MSG

R/W 0b0

User Manual

CPC945 Bridge and Memory Controller Preliminary

Programmer’s Interface
Page 550 of 655 February 1, 2008

AER – Error Source Identification Register

The AER Error Source Identification Register reports the source (requestor ID) of the first correctable and
uncorrectable (nonfatal and fatal) errors reported in the AER root status register. There are two sets of source
ID signals feeding this register based on the origination of the error message:

• Source ID for internal rootport generated errors (AL_AER34_SOURCE_ID)
• Source ID from upstream error messages (AL_AER34_SOURCE_ID_MSG)

The PCIEXCFG core always gives the upstream message errors priority over internal rootport errors when
both errors occur on the same PCLK250 cycle (the assumption is that the upstream message based errors
must have occurred earlier in time).

0 AER - Root Error Status
Register [0]

ERR_CORR Received. Register Bit I/O Signals:
CFG_EC08_CORR_ERROR
AL_AER30_CORR_ERROR_MSG

R/W 0b0

Reset Value 0x00000000

Address Offset 0x134

Access Type Read Only

AER-ERR_FATAL/
NONFATAL_SOURCE_IDENTIFICATION_REGISTER AER-ERR_CORR_SOURCE_IDENTIFICATION_REGISTER

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits Field Name Description Access Reset

31:16
AER-ERR_FATAL/

NONFATAL_SOURCE_IDE
NTIFICATION_REGISTER

Register bit I/O signals:
 AL_AER34_SOURCE_ID
 AL_AER34_SOURCE_ID_MSG
Note that the PCIEXCFG core always gives upstream message
errors priority over internal rootport errors.

R 0x0000

15:0
AER-

ERR_CORR_SOURCE_IDE
NTIFICATION_REGISTER

Register bit I/O signals:
 AL_AER34_SOURCE_ID
 AL_AER34_SOURCE_ID_MSG
Note that the PCIEXCFG core always gives upstream message
errors priority over internal rootport errors.

R 0x0000

Bits Field Name Description Access Reset

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
Programmer’s Interface

Page 551 of 655

12.11.2 XBus PCI Express Configuration Registers

The XBus registers are essentially an extension of the IBM configuration registers, but are unique to the
CPC945. The majority, though not all, of these registers are used to program various parts of the PCI Express
Application Layer, providing a means to tweak performance. The rest of the registers record errors or unsup-
ported transactions. A complete list of the XBus configuration registers along with their corresponding
addresses is shown in Table 12-23. Remember that accessing these registers through I2C, SBUS or a
Limited Direct Configuration Access requires a different address. Each individual register description is
present in the following subsections. For each register there are two addresses listed. The first address is for
the classic configuration access method and the second address is for the SBUS or I2C.

There are 3 types of XBus registers: read only, read/write, and protected. Read only registers can be read
from but not written to, while read/write registers can be both read from and written to. Protected registers can
always be read from, but must be unlocked before being written to. For information on unlocking protected
registers, see “Unlock Protected Register” on page 575.

Table 12-23. XBus PCIe Configuration Registers

Address Register Name Type Initial Value Page

0xF0BF_F0F0 32-bit Legacy Interrupt Control Read Only,
Read/Write 0x0000_000F 553

0xF0BF_F0F4 32-bit Link Integrity Interrupt Control Read/Write 0x0000_000F 554

0xF0BF_F0F8 32-bit Link Down Interrupt Control Read/Write 0x0000_010F 555

0xF0BF_F0FC 32-bit PCI Express 0 Address Mask Read/Write 0x0000_0003 556

0xF0BF_FF00 32-bit Memory Read Completion Time-Out Protected 0x0026_25A0 558

0xF0BF_FF04 32-bit I/O Completion Time-Out Protected 0x0026_25A0 558

0xF0BF_FF08 32-bit Configuration Completion Time-Out Protected 0x0026_25A0 559

0xF0BF_FF0C 32-bit Local Completion Time-Out Protected 0x0000_30D4 559

0xF0BF_FF10 5-bit Maximum Advertised Posted Credits Read Only 0x10 560

0xF0BF_FF14 5-bit Maximum Advertised Nonposted Credits Read Only 0x10 560

0xF0BF_FF18 4-bit Number Of Reserved Posted Credits Protected 0x0 562

0xF0BF_FF1C 4-bit Number Of Reserved Nonposted Credits Protected 0x0 563

0xF0BF_FF20 5-bit Maximum Available Tags Protected 0x00 564

0xF0BF_FF24 4-bit Completion Arbiter Priority Read/Write 0x0 565

0xF0BF_FF28 8-bit Version Number Read Only 0x00 566

0xF0BF_FF2C 1-bit L1 Power Mode Request Response Protected 0x0 567

0xF0BF_FF30 32-bit Interrupt Filter (UNUSED) Read/Write 0x0000_0000 568

0xF0BF_FF34 11-bit Last NAK’d Write Address Read Only 0x000 568

0xF0BF_FF38 32-bit Transmission Error Count Read Only 0x0000_0000 569

0xF0BF_FF3C 1-bit Dispatch Read Mode Protected 0x0 569

0xF0BF_FF40 1-bit No Snoop Request Mode Protected 0x0 570

User Manual

CPC945 Bridge and Memory Controller Preliminary

Programmer’s Interface
Page 552 of 655 February 1, 2008

0xF0BF_FF44 1-bit Direct Access Mode Protected 0x0 571

0xF0BF_FF48 32-bit L23 Message Time-Out Protected 0xFFFF_FFFF 572

0xF0BF_FF4C 14-bit Invalid Transaction Read Only 0x0000 572

0xF0BF_FF50 1-bit Configuration 4 or 8 Protected 0x0 574

0xF0BF_FF54 1-bit Unlock Protected Read/Write 0x0 575

0xF0BF_FF58 2-bit Coherent Memory Write Tag Delay (UNUSED) Protected 0x3 576

0xF0BF_FF5C 1-bit Block Transactions During Configuration Reads Protected 0x1 577

0xF0BF_FF60 32-bit CRC Error Count Read Only 0x0000_0000 578

0xF0BF_FF64 1-bit Unsupported Request or Completer Abort Protected 0x0 578

0xF0BF_FF68 1-bit Enable TEA on Unsupported Request Completion Protected 0x0 579

0xF0BF_FF6C 1-bit Enable TEA on Completer Abort Completion Protected 0x0 580

0xF0BF_FF70 1-bit Enable TEA on Configuration Retry Time-Out Protected 0x0 581

0xF0BF_FF74 1-bit Enable TEA on Completion Time-Out Protected 0x0 582

0xF0BF_FF78 1-bit Set PCIE04 Received Completer Abort on Completer
Abort Protected 0x0 583

Table 12-23. XBus PCIe Configuration Registers (Continued)

Address Register Name Type Initial Value Page

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
Programmer’s Interface

Page 553 of 655

12.11.2.1 Legacy Interrupt Control Register

The Legacy Interrupt Control Register is a 32-bit register providing support for legacy PCI interrupts. Though
the register is listed as having 32 bits, this is not exactly true for several reasons. First of all, only 9 bits are
actually used. Secondly, of the 9 bits, only four are register bits. The other five are tied to various signals.

Extended Register Number 0b0000

Register Number 0b111100

Access Type Read, Read/Write

Address 0xF0BFF0F0, 0xF80903C0

Le
gI

nt
A

ct

Unused LegInt Unused LegIntEn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits Field Name Description Access Reset

31 Legacy Interrupt Active

This bit is tied to a signal that indicates when an interrupt is
detected. This signal is created by ANDing each interrupt signal
with its corresponding enable bit, and then ORing the results
together.

R 0b0

30:12 Unused Returns 0 on read. R 0x00000

11:8 Legacy Interrupt These bits are tied to the actual interrupt signals A (bit 8), B (bit 9),
C (bit 10), and D (bit 11). R 0x0

7:4 Unused Returns 0 on read. R 0x0

3:0 Legacy Interrupt Enable
Enable bits for interrupts A (bit 0), B (bit 1), C (bit 2), and D (bit 3).
Any assertion of an interrupt signal when its corresponding enable
bit is not set is ignored.

R/W 0xF

User Manual

CPC945 Bridge and Memory Controller Preliminary

Programmer’s Interface
Page 554 of 655 February 1, 2008

12.11.2.2 Link Integrity Interrupt Control Register

The Link Integrity Interrupt Control Register is a 32-bit register used to set characteristics of and to clear the
Link Integrity Interrupt signal. Thought the register is listed as having 32 bits, only 5 bits ([3:0] and [31]) actu-
ally exist.

Extended Register Number 0b0000

Register Number 0b111101

Access Type Read/Write

Address 0xF0BFF0F4, 0xF80903D0

Li
nk

In
te

gr
ity

In
tS

ta
t

Unused Li
nk

 In
te

gr
ity

In
tP

ul
se

W
id

th

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits Field Name Description Access Reset

31 LinkIntegrityIntStat

This bit serves two purposes, to check (via a read) and to clear
(using a write) the Link Integrity interrupt. A read returns the value
of the Link Integrity Interrupt signal itself, while writing 0b1 results in
a 1 PCI Express clock cycle wide pulse of the Clear Link Integrity
Interrupt signal. Note that writing 0b0 to this bit has no effect.

R/W 0b0

30:4 Unused Returns 0 on a read. R 0x0000000

3:0 Link IntegrityIntPulseWidth

Indicates the width (in PCI Express clock cycles) of both the Link
Integrity Interrupt signal and the Link Down Interrupt signal. A value
of 0b0001 corresponds to a width of 1 PCI Express clock cycle,
0b0010 corresponds to a width of 2 PCI Express clock cycles, etc.
A value of 0b0000 indicates that, instead of being pulsed, the Link
Integrity Interrupt signal is set until the interrupt is cleared.

R/W 0xF

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
Programmer’s Interface

Page 555 of 655

12.11.2.3 Link Down Interrupt Control Register

The Link Down Interrupt Control Register is a 32-bit register used to set characteristics of, to enable, and to
clear the Link Down Interrupt signal. Though this register is listed as having 32-bits, only 6 bits ([3:0], [8] and
[31]) actually exist.
.

Extended Register Number 0b0000

Register Number 0b111110

Access Type Read/Write

Address 0xF0BFF0F8, 0xF80903E0

Li
nk

D
ow

nI
nt

St
at

Unused Li
nk

D
ow

nI
nt

E
n

Unused IntPulseWidth

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits Field Name Description Access Reset

31 LinkDownIntStat

This bit serves two purposes, to check (via a read) and to clear
(using a write) the Link Down interrupt. A read of bit 31 returns the
values of the Link Down Interrupt signal itself, while writing 0b1 to
bit 31 results in a 1 PCI Express clock cycle wide pulse of the Clear
Link Down Interrupt signal.

Note: Writing 0b0 to this bit has no effect.

R/W 0b0

30:9 Unused Returns 0 on a read. R 0x000000

8 LinkDownIntEn This is the enable bit for the Link Down interrupt. If this bit is not set,
the Link Down Interrupt signal is ignored. R/W 0b1

7:4 Unused Returns 0 on a read. R 0x0

3:0 IntPulseWidth

Set the interrupt pulse width for PCIe interrupts
0x0 Infinite. Level sensitive, must be cleared

manually.
0x1-0xF Number of 250 MHz clock cycles an interrupt

signal is asserted.

R/W 0xF

User Manual

CPC945 Bridge and Memory Controller Preliminary

Programmer’s Interface
Page 556 of 655 February 1, 2008

12.11.2.4 PCI Express 0 Address Mask Register

The PCI Express 0 Address Mask Register is a 32-bit register used to indicate the address range within the
first 4 GB of system memory designated for PCI Express transactions. This is done by using two fields: the
Coarse Address Select field and the Fine Address Select field.

Extended Register Number 0b0000

Register Number 0b111111

Access Type Read/Write

Address 0xF0BFF0FC, 0xF80903F0

PCIEAddrMaskCAS PCIEAddrMaskFAS

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits Field Name Description Access Reset

31:16 Coarse Address Select

Each bit in this field represents a 256 MB region within the first 4 GB
of system memory (Table 12-24). If any bit within this field is set, its
corresponding region in system memory is designated as PCI
Express memory space. Note that bits 23:16 must always be 0 as
this region of memory is permanently assigned to system RAM.
Also note that bit 31 must always be 0, as this region of memory is
controlled by the Fine Address Select field. See Table 12-24.

R/W 0x0000

15:0 Fine Address Select

Each bit in this field represents a 16 MB region within the last 256
MB of the first 4 GB of system memory (Table 12-25 on page 557).
If any bit within this field is set, its corresponding region in system
memory is designated as PCI Express memory space. Note that
bits 1:0 are always set. See Table 12-25 on page 557.

R/W 0x0003

Table 12-24. Coarse Address Select Field

Bit Starting Address Ending Address

16 0x00000000 0x0FFFFFFF

17 0x10000000 0x1FFFFFFF

18 0x20000000 0x2FFFFFFF

19 0x30000000 0x3FFFFFFF

20 0x40000000 0x4FFFFFFF

21 0x50000000 0x5FFFFFFF

22 0x60000000 0x6FFFFFFF

23 0x70000000 0x7FFFFFFF

24 0x80000000 0x8FFFFFFF

25 0x90000000 0x9FFFFFFF

26 0xA0000000 0xAFFFFFFF

27 0xB0000000 0xBFFFFFFF

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
Programmer’s Interface

Page 557 of 655

28 0xC0000000 0xCFFFFFFF

29 0xD0000000 0xDFFFFFFF

30 0xE0000000 0xEFFFFFFF

31 0xF0000000 0xFFFFFFFF

Table 12-25. Fine Address Select Field

Bit Starting Address Ending Address

0 0xF0000000 0xF0FFFFFF

1 0xF1000000 0xF1FFFFFF

2 0xF2000000 0xF2FFFFFF

3 0xF3000000 0xF3FFFFFF

4 0xF4000000 0xF4FFFFFF

5 0xF5000000 0xF5FFFFFF

6 0xF6000000 0xF6FFFFFF

7 0xF7000000 0xF7FFFFFF

8 0xF8000000 0xF8FFFFFF

9 0xF9000000 0xF9FFFFFF

10 0xFA000000 0xFAFFFFFF

11 0xFB000000 0xFBFFFFFF

12 0xFC000000 0xFCFFFFFF

13 0xFD000000 0xFDFFFFFF

14 0xFE000000 0xFEFFFFFF

15 0xFF000000 0xFFFFFFFF

Table 12-24. Coarse Address Select Field (Continued)

Bit Starting Address Ending Address

User Manual

CPC945 Bridge and Memory Controller Preliminary

Programmer’s Interface
Page 558 of 655 February 1, 2008

12.11.2.5 Memory Read Completion Time-Out Register
.

12.11.2.6 I/O Completion Time-Out Register

Extended Register Number 0b1111

Register Number 0b000000

Access Type Protected

Address 0xF0BFFF00, 0xF8093C00

MemRdCmpltnTimeOut

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits Field Name Description Access Reset

31:0 MemRdCmpltnTimeOut

Sets the maximum amount of time (in PCI Express clock cycles)
that a read to memory is given to complete. A value of 0x00010000
corresponds to 216 PCI Express clock cycles, 0x00100000 corre-
sponds to 220 PCI Express clock cycles, etc. A value of
0x00000000 results in all memory reads immediately timing out.

Protected 0x002625A0

Extended Register Number 0b1111

Register Number 0b000001

Access Type Protected

Address 0xF0BFFF04, 0xF8093C10

IOCmpltnTimeOut

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits Field Name Description Access Reset

31:0 IOCmpltnTimeOut

Sets the maximum amount of time (in PCI Express clock cycles)
that an I/O transaction is given to complete. A value of 0x00010000
corresponds to 216 PCI Express clock cycles, 0x00100000 corre-
sponds to 220 PCI Express clock cycles, etc. A value of
0x00000000 results in all I/O transactions immediately timing out.

Protected 0x002625A0

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
Programmer’s Interface

Page 559 of 655

12.11.2.7 Configuration Completion Time-Out Register
.

12.11.2.8 Local Completion Time-Out Register

Extended Register Number 0b1111

Register Number 0b000010

Access Type Protected

Address 0xF0BFFF08, 0xF8093C20

ConfigCmpltnTimeOut

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits Field Name Description Access Reset

31:0 ConfigCmpltnTimeOut

Sets the maximum amount of time (in PCI Express clock cycles)
that a configuration transaction is given to complete. A value of
0x00010000 corresponds to 216 PCI Express clock cycles,
0x00100000 corresponds to 220 PCI Express clock cycles, etc. A
value of 0x00000000 results in all configuration transactions imme-
diately timing out.

Protected 0x002625A0

Extended Register Number 0b1111

Register Number 0b000011

Access Type Protected

Address 0xF0BFFF0C, 0xF8093C30

LocalCmpltnTimeOut

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits Field Name Description Access Reset

31:0 LocalCmpltnTimeOut

Sets the maximum amount of time (in PCI Express clock cycles)
that a local transaction is given to complete. A value of 0x00010000
corresponds to 216 PCI Express clock cycles, 0x00100000 corre-
sponds to 220 PCI Express clock cycles, etc. A value of
0x00000000 results in all local transactions immediately timing out.

Protected 0x000030D4

User Manual

CPC945 Bridge and Memory Controller Preliminary

Programmer’s Interface
Page 560 of 655 February 1, 2008

12.11.2.9 Maximum Advertised Posted Credits Register

Extended Register Number 0b1111

Register Number 0b000100

Access Type Read Only

Address 0xF0BFFF10, 0xF8093C40

Unused M
ax

A
dv

P
os

te
dC

re
di

ts

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits Field Name Description Access Reset

31:5 Unused Returns 0 on a read. R 0x0000000

4:0 MaxAdvPostedCredits Determines the maximum number of posted credits advertised over
the PCI Express link. R 0b10000

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
Programmer’s Interface

Page 561 of 655

12.11.2.10 Maximum Advertised Nonposted Credits Register

Extended Register Number 0b1111

Register Number 0b000101

Access Type Read Only

Address 0xF0BFFF14, 0xF8093C50

Unused M
ax

A
dv

N
on

P
os

te
dC

re
di

ts

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits Field Name Description Access Reset

31:5 Unused Returns 0 on a read. R 0x0000000

4:0 MaxAdvNonPostedCredits Determines the maximum number of nonposted credits advertised
over the PCI Express link. R 0b10000

User Manual

CPC945 Bridge and Memory Controller Preliminary

Programmer’s Interface
Page 562 of 655 February 1, 2008

12.11.2.11 Number of Reserved Posted Credits Register

Extended Register Number 0b1111

Register Number 0b000110

Access Type Protected

Address 0xF0BFFF18, 0xF8093C60

Unused R
sv

dP
os

te
dC

re
di

ts

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits Field Name Description Access Reset

31:4 Unused Returns 0 on a read. R 0x0000000

3:0 RsvdPostedCredits

Varies the number of posted credits the credit manager holds in
reserve. The actual number of advertised posted credits is calculated
by subtracting the value of this register from the value of the Maximum
Advertised Posted Credits Register. Anywhere from 0 (0b0000) to 15
(0b1111) credits can be held in reserve.

Protected 0x0

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
Programmer’s Interface

Page 563 of 655

12.11.2.12 Number of Reserved Nonposted Credits Register

Extended Register Number 0b1111

Register Number 0b000111

Access Type Protected

Address 0xF0BFFF1C, 0xF8093C70

Unused R
sv

dN
on

P
os

te
dC

re
di

ts

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits Field Name Description Access Reset

31:4 Unused Returns 0 on a read. R 0x0000000

3:0 RsvdNonPostedCredits

Varies the number of nonposted credits the credit manager holds in
reserve. The actual number of advertised nonposted credits is cal-
culated by subtracting the value of this register from the value of the
Maximum Advertised Nonposted Credits Register. Anywhere from 0
(0b0000) to 15 (0b1111) credits can be held in reserve.

Protected 0x0

User Manual

CPC945 Bridge and Memory Controller Preliminary

Programmer’s Interface
Page 564 of 655 February 1, 2008

12.11.2.13 Maximum Available Tags Register
.

Extended Register Number 0b1111

Register Number 0b001000

Access Type Protected

Address 0xF0BFFF20, 0xF8093C80

Unused M
ax

Av
ai

lT
ag

s

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits Field Name Description Access Reset

31:5 Unused Returns 0 on a read. R 0x0000000

4:0 MaxAvailTags

Sets the maximum number of 16-byte entries in the Completion
Data buffer located in the Inbound Completion Unit. A value of
0b00001 corresponds to 1 entry, 0b00010 corresponds to 2 entries,
etc. A value of 0b00000 corresponds to the maximum number of
entries, 32.

Protected 0x0

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
Programmer’s Interface

Page 565 of 655

12.11.2.14 Completion Arbiter Priority Register

The Completion Arbiter Priority Register is a 4-bit register used to allow the priority of the four outbound
completion interfaces to be increased. These interfaces are Registers (bit 3), HyperTransport (bit 2),
Coherent Memory (bit 1), and Noncoherent Memory (bit 0). Writing 0b1 to one of these bits promotes that
interface to high priority.

Arbitration between the various interfaces is done in a two-tiered round-robin system. The lower tier performs
round-robin arbitration on all four interfaces, while the upper tier performs round-robin arbitration on only
those interfaces that have been promoted to high priority. After one complete round-robin circuit has been
made of the upper tier, a single round-robin step is performed on the lower tier, followed by another complete
round-robin circuit of the upper tier, etc. For a more detailed description of the arbitration procedure, see
Section 7. DDR2 Memory Controller on page 129.

Extended Register Number 0b1111

Register Number 0b001001

Access Type Read/Write

Address 0xF0BFFF24, 0xF8093C90

Unused C
m

pl
tn

A
rb

P
rio

rit
y

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits Field Name Description Access Reset

31:4 Unused Returns 0 on a read. R 0x0000000

3:0 CmpltnArbPriority Sets priority of the four outbound completion interfaces. R/W 0x0

User Manual

CPC945 Bridge and Memory Controller Preliminary

Programmer’s Interface
Page 566 of 655 February 1, 2008

12.11.2.15 Version Number Register

Extended Register Number 0b1111

Register Number 0b001010

Access Type Read Only

Address 0xF0BFFF28, 0xF8093CA0

Unused M
aj

or
V

er
si

on
N

um

M
in

or
Ve

rs
io

nN
um

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits Field Name Description Access Reset

31:8 Unused Returns 0 on a read. R 0x000000

7:4 MajorVersionNum CPC945 PCIe root complex major version number. R 0x0

3:0 MinorVersionNum CPC945 PCIe root complex minor version number. R 0x0

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
Programmer’s Interface

Page 567 of 655

12.11.2.16 L1 Power Mode Request Response Register

Extended Register Number 0b1111

Register Number 0b001011

Access Type Protected

Address 0xF0BFFF2C, 0xF8093CB0

Unused L1
P

w
rM

od
eR

eq
R

es
p

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits Field Name Description Access Reset

31:1 Unused Returns 0 on a read. R 0x00000000

0 L1PwrModeReqResp

Sets the way in which the Outbound Transaction Layer Interface
responds to a request to enter the L1 power state (ASL1). A value
of 0b1 causes the request to be ACK’d at the next transaction
boundary, while a value of 0b0 causes the request to be ACK’d at
the next transaction boundary only if another transaction isn’t
pending. If another transaction is pending, the request is NAK’d.

Protected 0x0

User Manual

CPC945 Bridge and Memory Controller Preliminary

Programmer’s Interface
Page 568 of 655 February 1, 2008

12.11.2.17 Interrupt Filter Register (UNUSED)

The Interrupt Filter Register is not used.

12.11.2.18 Last NAK’d Write Address Register

Keeps track of the most recent unused address in configuration space (from 0xF0BFF000 to 0xF0BFFFFC)
targeted by a write. The address, if valid, is stored as the extended register number (bits 9:6) and the register
number (bits 5:0).

Extended Register Number 0b1111

Register Number 0b001100

Access Type Read/Write

Address 0xF0BFFF30, 0xF8093CC0

Unused

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits Field Name Description Access Reset

31:0 Unused Returns 0 on a read. R/W 0x00000000

Extended Register Number 0b1111

Register Number 0b001101

Access Type Read Only

Address 0xF0BFFF34, 0xF8093CD0

Unused Va
lid

 B
it

Extended Reg-
ister Number Register Number

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits Field Name Description Access Reset

31:11 Unused Returns 0 on a read. R 0x000000

10 Valid Bit
Valid bit. Indicates whether (0b1) or not (0b0) the address stored in
the rest of the register corresponds to a NAK’d write. After the first
NAK’d write occurs, the valid bit is always 0b1.

R 0b0

9:6 Extended Register Number Extended register number of the address if valid. R 0x0

5:0 Register Number Register number of the address if valid. R 0b000000

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
Programmer’s Interface

Page 569 of 655

12.11.2.19 Transmission Error Count Register

12.11.2.20 Dispatch Read Mode Register

The Dispatch Read Mode Register is a 1-bit register that is used to set when an inbound write is considered
issued. It is necessary to know when a given write is considered issued because any reads being blocked by
a write might not be released until after the write has been issued.

Extended Register Number 0b1111

Register Number 0b001110

Access Type Read Only

Address 0xF0BFFF38, 0xF8093CE0

TransmssnErrCount

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits Field Name Description Access Reset

31:0 TransmssnErrCount
Tracks the number of transmission errors that have occurred. Any
write to this register, regardless of the value written, resets the
count to 0.

R 0x00000000

Extended Register Number 0b1111

Register Number 0b001111

Access Type Protected

Address 0xF0BFFF3C, 0xF8093CF0

Unused D
is

pa
tc

hR
dM

od
e

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits Field Name Description Access Reset

31:1 Unused Returns 0 on a read. R 0x00000000

0 DispatchRdMode

Determines when an inbound write is considered issued. Writing
0b1 to this register results in an inbound write being considered
issued only after both the command and the data have been dis-
patched.
Writing 0b0 to this register results in an inbound write being consid-
ered issued after only the command has been dispatched.

Protected 0b0

User Manual

CPC945 Bridge and Memory Controller Preliminary

Programmer’s Interface
Page 570 of 655 February 1, 2008

12.11.2.21 No Snoop Request Mode Register

Extended Register Number 0b1111

Register Number 0b010000

Access Type Protected

Address 0xF0BFFF40, 0xF8093D00

Unused N
oS

no
op

R
eq

M
od

e

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits Field Name Description Access Reset

31:1 Unused Returns 0 on a read. R 0x00000000

0 No Snoop Request Mode

Determines whether or not the No Snoop bit in packet headers
should be ignored.
Writing a 0b1 to the register causes the No Snoop bit to be ignored,
resulting in every inbound transaction being snooped.
Writing a 0b0 to the register results in transactions marked as No
Snoop not being snooped.

Protected 0b0

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
Programmer’s Interface

Page 571 of 655

12.11.2.22 Direct Access Mode Register

Extended Register Number 0b1111

Register Number 0b010001

Access Type Protected

Address 0xF0BFFF44, 0xF8093D10

Unused D
ire

ct
A

cc
es

sM
od

e

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits Field Name Description Access Reset

31:1 Unused Returns 0 on a read. R 0x00000000

0 DirectAccessMode

Activates direct access mode for registers in configuration memory
space.
Writing 0b1 to this location allows type 0 configuration transactions
to be performed by directly reading or writing configuration regis-
ters, as opposed to using the Configuration Address Register and
the virtual Configuration Data Register to perform traditional type 0
configuration transactions.
Writing a 0b0 to this location disables direct configuration transac-
tions.

Protected 0b0

User Manual

CPC945 Bridge and Memory Controller Preliminary

Programmer’s Interface
Page 572 of 655 February 1, 2008

12.11.2.23 L23 Message Time-Out Register
.

12.11.2.24 Invalid Transaction Register

The Invalid Transaction Register is a 14-bit register that keeps track of the most recent write and read trans-
actions that have been deemed invalid. A transaction is deemed invalid if, for any reason, it must be master
aborted. It is important to note that not all invalid transactions are unexpected. While this register is techni-
cally read only, writing any value to this register causes it to be cleared. Table 12-26 lists the invalid transfer
types. Note that bit [0] will never be set, as there is no mechanism in the Outbound Posted Unit to flag this
event.

Extended Register Number 0b1111

Register Number 0b010010

Access Type Protected

Address 0xF0BFFF48, 0xF8093D20

L23MsgTimeOut

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits Field Name Description Access Reset

31:0 L23MsgTimeOut

Sets the maximum amount of time (in PCI Express clock cycles)
from when the Power Manager Turn Off message is issued that the
Outbound Transaction Layer Interface waits for the message to be
ACK’d. A value of 0x00010000 corresponds to 216 PCI Express
clock cycles, 0x00100000 corresponds to 220 PCI Express clock
cycles, etc. If the allotted time expires before an ACK is received, a
fatal error has occurred.

Protected 0xFFFFFFFF

Extended Register Number 0b1111

Register Number 0b010011

Access Type Read Only

Address 0xF0BFFF4C, 0xF8093D30

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
Programmer’s Interface

Page 573 of 655

Table 12-26. Invalid Transaction Types

Invalid Type Read Bit Write Bit

Unrecognized traditional configuration type. [12] [5]

Type 0 traditional configuration transaction has a nonzero Cycle bit. [11] [4]

Type 0 traditional configuration transaction has a nonzero Function Number. [10] [3]

Type 1 configuration transaction fails the outbound as type 0 or 1 checks. [9] [2]

I/O transaction without I/O transactions enabled. [8] [1]

Memory transaction without memory transactions enabled. [7] [0] (N/A)

Unused R
ea

d
Va

lid
 B

it

Invalid Read Type W
rit

e
Va

lid
 B

it

Invalid Write Type

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits Field Name Description Access Reset

31:14 Unused Returns 0 on a read. R 0x00000

13 Read Valid Bit Valid bit for the most recent invalid read transaction. A value of 0b1
indicates that an invalid read has occurred R 0b0

12:7 Invalid Read Type
If the Read Valid Bit is high, a value of 0b1 in any of the bits indi-
cates the type of invalid read. See Table 12-26 Invalid Transaction
Types.

R 0b000000

6 Write Valid Bit Valid bit for the most recent invalid write transaction. A value of 0b1
indicates that an invalid write has occurred. R 0b0

5:0 Invalid Write Type
If the Write Valid bit is high, a value of 0b1 in any of the bits indi-
cates the type of invalid write. (Bit 0 is never set. See Table 12-26
Invalid Transaction Types.)

R 0b000000

User Manual

CPC945 Bridge and Memory Controller Preliminary

Programmer’s Interface
Page 574 of 655 February 1, 2008

12.11.2.25 Configuration 4 Or 8 Register

Extended Register Number 0b1111

Register Number 0b010100

Access Type Protected

Address 0xF0BFFF50, 0xF8093D40

Unused C
on

fig
4o

r8

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits Field Name Description Access Reset

31:1 Unused Returns 0 on read. R 0x00000000

0 Config4or8

Sets the number and size of transactions accepted across the PI
interface. A value of 0b0 indicates that the maximum size of trans-
actions is 64 bytes and that the maximum number allowed is 8,
while a value of 0b1 indicates that the maximum size of transactions
is 128-bytes and that the maximum number allowed is 4.
In this implementation, the only valid value of this register is 0b0.

Protected 0b0

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
Programmer’s Interface

Page 575 of 655

12.11.2.26 Unlock Protected Register

The Unlock Protected Register is a 1-bit register used to allow registers designated as protected to be written.
Note that any attempt at writing a register, regardless of whether the register actually exists or is protected,
relocks all protected registers by causing 0b0 to be written to the Unlock Protected Register. In other words,
each write to a protected register must be preceded by a write of 0b1 to this register.

Extended Register Number 0b1111

Register Number 0b010101

Access Type Read/Write

Address 0xF0BFFF54, 0xF8093D50

Unused U
nl

oc
kP

ro
te

ct
ed

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits Field Name Description Access Reset

31:1 Unused Returns 0 on read. R 0x00000000

0 UnlockProtected

Allows registers designated as protected to be written. Writing 0b1
to this register “unlocks” all protected registers, allowing them to be
written. Any subsequent write to any XBus Configuration Register
causes this bit to revert to 0b0.

R/W 0b0

User Manual

CPC945 Bridge and Memory Controller Preliminary

Programmer’s Interface
Page 576 of 655 February 1, 2008

12.11.2.27 Coherent Memory Write Tag Delay Register (UNUSED)

Extended Register Number 0b1111

Register Number 0b010110

Access Type Protected

Address 0xF0BFFF58, 0xF8093D60

Unused C
oh

M
em

W
rT

ag
D

el
ay

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits Field Name Description Access Reset

31:2 Unused Returns 0 on read. R 0x00000000

1:0 CohMemWrTagDelay

Sets the number of PCI Express clock cycles the Inbound Write
Data Buffer Unit must wait after receiving a request from the
Inbound Request Unit before ACK’ing and supplying the write data
buffer tag. This delay can range from 0 (0b00) to 3 (0b11) clock
cycles.

Protected 0b0

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
Programmer’s Interface

Page 577 of 655

12.11.2.28 Block Transactions During Configuration Reads Register

The Block Transactions During Configuration Reads Register is a 1-bit register used to set whether or not any
additional transactions might be issued before a configuration read has completed. By definition, only one
configuration write might be outstanding at a time. Since any outstanding configuration transaction must be
buffered in case they need to be retried, limiting the number of outstanding configuration transactions
reduces the required buffer space.

Extended Register Number 0b1111

Register Number 0b010111

Access Type Protected

Address 0xF0BFFF5C, 0xF8093D70

Unused B
lk

Tr
ns

ct
nD

ur
in

gC
on

fig
R

d

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits Field Name Description Access Reset

31:1 Unused Returns 0 on read. R 0x00000000

0 BlkTrnsctnDuringConfigRd
Writing a 0b0 to this register allows additional transactions to be
issued, while writing a 0b1 prevents additional transactions from
being issued until the outstanding configuration read completes.

Protected 0b0

User Manual

CPC945 Bridge and Memory Controller Preliminary

Programmer’s Interface
Page 578 of 655 February 1, 2008

12.11.2.29 CRC Error Count Register

12.11.2.30 Unsupported Request Or Completer Abort Register

Extended Register Number 0b1111

Register Number 0b011000

Access Type Read Only

Address 0xF0BFFF60, 0xF8093D80

CRCErrCount

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits Field Name Description Access Reset

31:0 CRCErrCount Tracks the number of CRC errors that have occurred. Any write to
this register, regardless of the value written, resets the count to 0. R 0x00000000

Extended Register Number 0b1111

Register Number 0b011001

Access Type Protected

Address 0xF0BFFF64, 0xF8093D90

Unused U
ns

up
pR

eq
C

m
pl

trA
bo

rt

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits Field Name Description Access Reset

31:1 Unused Returns 0 on read. R 0x00000000

0 UnsuppReqCmpltrAbort
Sets the method of responding to an errant inbound TLP. The meth-
ods of response are either unsupported request (for a value of 0b0)
or completer abort (for a value of 0b1).

Protected 0b0

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
Programmer’s Interface

Page 579 of 655

12.11.2.31 Enable Transaction Error Acknowledge On Unsupported Request Completion Register

Extended Register Number 0b1111

Register Number 0b011010

Access Type Protected

Address 0xF0BFFF68, 0xF8093DA0

Unused En
TE

A
U

ns
up

pR
eq

C
m

pl
tn

A
bo

rt

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits Field Name Description Access Reset

31:1 Unused Returns 0 on read. R 0x00000000

0 EnTEAUnsuppReq
CmpltnAbort

Sets the way an Unsupported Request is completed on PI. A value
of 0b0 results in the completion being indicated by the assertion of
the Transaction Acknowledge signal, while a value of 0b1 results in
the completion being indicated by the assertion of the Transaction
Error Acknowledge signal.

Protected 0b0

User Manual

CPC945 Bridge and Memory Controller Preliminary

Programmer’s Interface
Page 580 of 655 February 1, 2008

12.11.2.32 Enable Transaction Error Acknowledge On Completer Abort Completion Register
.

Extended Register Number 0b1111

Register Number 0b011011

Access Type Protected

Address 0xF0BFFF6C, 0xF8093DB0

Unused E
nT

E
AC

m
pl

trA
bo

rtC
m

pl
tn

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits Field Name Description Access Reset

31:1 Unused Returns 0 on read. R 0x00000000

0 EnTEACmpltrAbortCmpltn

Sets the way a completer abort is completed on PI. A value of 0b0
results in the completion being indicated by the assertion of the
Transaction Acknowledge signal, while a value of 0b1 results in the
completion being indicated by the assertion of the Transaction Error
Acknowledge signal.

Protected 0b0

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
Programmer’s Interface

Page 581 of 655

12.11.2.33 Enable Transaction Error Acknowledge On Configuration Retry Time-Out Register

Extended Register Number 0b1111

Register Number 0b011100

Access Type Protected

Address 0xF0BFFF70, 0xF8093DC0

Unused En
TE

A
C

on
fig

R
et

ry
Ti

m
eO

ut

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits Field Name Description Access Reset

31:1 Unused Returns 0 on read. R 0x00000000

0 EnTEAConfigRetryTimeOut

Sets the way an configuration retry which has timed out is com-
pleted on PI. A value of 0b0 results in the completion being indi-
cated by the assertion of the Transaction Acknowledge signal, while
a value of 0b1 results in the completion being indicated by the
assertion of the Transaction Error Acknowledge signal.

Protected 0b0

User Manual

CPC945 Bridge and Memory Controller Preliminary

Programmer’s Interface
Page 582 of 655 February 1, 2008

12.11.2.34 Enable Transaction Error Acknowledge On Completion Time-Out Register

Extended Register Number 0b1111

Register Number 0b011101

Access Type Protected

Address 0xF0BFFF74, 0xF8093DD0

Unused E
nT

E
A

C
m

pl
tn

Ti
m

eO
ut

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits Field Name Description Access Reset

31:1 Unused Returns 0 on read. R 0x00000000

0 EnTEACmpltnTimeOut

Sets the way a completion that has timed out is completed on PI. A
value of 0b0 results in the completion being indicated by the asser-
tion of the Transaction Acknowledge signal, while a value of 0b1
results in the completion being indicated by the assertion of the
Transaction Error Acknowledge signal.

Protected 0b0

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
Programmer’s Interface

Page 583 of 655

12.11.2.35 Set PCIE04 Received Completer Abort On Completer Abort Register

Extended Register Number 0b1111

Register Number 0b011110

Access Type Protected

Address 0xF0BFFF78, 0xF8093DE0

Unused Se
tP

C
IE

04
R

cv
dC

m
pl

trA
bo

rt

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits Field Name Description Access Reset

31:1 Unused Returns 0 on read. R 0x00000000

0 SetPCIE04RcvdCmpltrAbort

Indicates whether to set the completer abort bit in the Primary Bus
Status Registers after a completer abort. A value of 0b0 indicates
that the completer abort bit is not set after a completer abort, while a
value of 0b1 indicates that it is.

Protected 0b0

User Manual

CPC945 Bridge and Memory Controller Preliminary

Programmer’s Interface
Page 584 of 655 February 1, 2008

12.11.3 PCI Express GCR Registers

Table 12-27. PCI Express GCR Registers

Address Register Name Description Page

0xF8080000 CORE_X PI Core Interface Parameter Register 586

0xF8080010 BEACON Beacon Support Register 587

0xF8080020 LOOPBACK Loopback Control and Status Register 588

0xF8080030 SCRAMBLE Data Scrambling Configuration Register 589

0xF8080040 SLOT Slot Management Register 590

0xF8080050 POWER Power Management Register 591

0xF8080060 VC_STAT Virtual Channel Status Register 592

0xF8080070 AL_CFG Application Layer Configuration Register 593

0xF8080080 IO_CFG I/O Configuration Register 594

0xF8080090 RX_LANE I/O Receive Configuration Register 594

0xF8080100 IO_LANE0 I/O Control and Status Register for Lane 0 595

0xF8080110 IO_LANE1 I/O Control and Status Register for Lane 1 595

0xF8080120 IO_LANE2 I/O Control and Status Register for Lane 2 595

0xF8080130 IO_LANE3 I/O Control and Status Register for Lane 3 595

0xF8080140 IO_LANE4 I/O Control and Status Register for Lane 4 595

0xF8080150 IO_LANE5 I/O Control and Status Register for Lane 5 595

0xF8080160 IO_LANE6 I/O Control and Status Register for Lane 6 595

0xF8080170 IO_LANE7 I/O Control and Status Register for Lane 7 595

0xF8080180 IO_LANE8 I/O Control and Status Register for Lane 8 595

0xF8080190 IO_LANE9 I/O Control and Status Register for Lane 9 595

0xF80801a0 IO_LANE10 I/O Control and Status Register for Lane 10 595

0xF80801b0 IO_LANE11 I/O Control and Status Register for Lane 11 595

0xF80801c0 IO_LANE12 I/O Control and Status Register for Lane 12 595

0xF80801d0 IO_LANE13 I/O Control and Status Register for Lane 13 595

0xF80801e0 IO_LANE14 I/O Control and Status Register for Lane 14 595

0xF80801f0 IO_LANE15 I/O Control and Status Register for Lane 15 595

0xF8081000 DIAG_IBCPL Diagnostic Register for Application Layer Inbound Completion (IbCpl). 597

0xF8081010 DIAG_IBCMGR Diagnostic Register for Application Layer Inbound Completion (IbCMgr). 598

0xF8081020 DIAG_IBRQ Diagnostic Register for Application Layer Inbound Request (IbRq). 599

0xF8081030 DIAG_IBTLIF Diagnostic Register for Application Layer Inbound Request (IbTLIf). 600

0xF8081040 DIAG_IBWD Diagnostic Register for Application Layer Inbound Request (IbWD). 601

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
Programmer’s Interface

Page 585 of 655

0xF8081080 DIAG_OBCPL Diagnostic Register for Application Layer Outbound Completion (ObCpl). 603

0xF8081090 DIAG_OBMSG Diagnostic Register for Application Layer Outbound Nonposted (ObMsg). 604

0xF80810a0 DIAG_OBNP Diagnostic Register for Application Layer Outbound Nonposted (ObNP). 605

0xF80810b0 DIAG_OBP Diagnostic Register for Application Layer Outbound Posted (ObP). 606

0xF80810c0 DIAG_OBTLIF Diagnostic Register for Application Layer Outbound Posted (ObTLIf). 607

0xF8081100 MASK_MPIC_IBCPL MPIC Masking for DIAG_IBCPL 608

0xF8081110 MASK_MPIC_IBCMGR MPIC Masking for DIAG_IBCMGR 608

0xF8081120 MASK_MPIC_IBRQ MPIC Masking for DIAG_IBRQ 609

0xF8081130 MASK_MPIC_IBTLIF MPIC Masking for DIAG_IBTLIF 609

0xF8081140 MASK_MPIC_IBWD MPIC Masking for DIAG_IBWD 610

0xF8081180 MASK_MPIC_OBCPL MPIC Masking for DIAG_OBCPL 611

0xF80811a0 MASK_MPIC_OBNP MPIC Masking for DIAG_OBNP 611

0xF80811b0 MASK_MPIC_OBP MPIC Masking for DIAG_OBP 612

0xF80811c0 MASK_MPIC_OBTLIF MPIC Masking for DIAG_OBTLIF 613

0xF8081800 DIAG_AUX0 Supplemental Diagnostic Register 0 597

0xF8081810 DIAG_AUX1 Supplemental Diagnostic Register 1 597

Table 12-27. PCI Express GCR Registers (Continued)

Address Register Name Description Page

User Manual

CPC945 Bridge and Memory Controller Preliminary

Programmer’s Interface
Page 586 of 655 February 1, 2008

12.11.3.1 CORE_X: PI Core Interface Parameters Register

Reset Value N/A

Address x’F8080000’

Access Type Read, Read/Write

Reserved

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Reserved PcMemDly R
es

er
ve

d

W
rT

A
D

ly
H

tP
c

R
es

er
ve

d

W
rT

A
D

ly
A

pi
P

c

Reserved Si
zR

eq
Q

P
cC

R

R
es

er
ve

d

Si
zR

eq
Q

P
cC

W

R
es

er
ve

d

Si
zR

eq
Q

P
cN

C

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits Field Name Description Access Reset

63:28 Reserved Always returns 0 on read; write operations have no effect. R 0x00000000

27:24 PcMemDly Delay between RdTgV and RdDt on PcDdrMRDI. R/W 0x6

23 Reserved Always returns 0 on read; write operations have no effect. R 0b0

22:20 WrTADlyHtPc Number of cycles for the WrTA to get Write Data on the HtPcWDI. R/W 0b1

19 Reserved Always returns 0 on read; write operations have no effect. R 0b0

18:16 WrTADlyApiPc Number of cycles for the WrTA to get Write Data on the ApiPcWDI. R/W 0b1

15:10 Reserved Always returns 0 on read; write operations have no effect. R 0x00

9:8 SizReqQPcCR

Size of request Queue at destination of Request Bus PcieCRRAI.
The effective value of this register is calculated using the following
table:
Programmed Value Effective Value
2’b00 3’b100
2’b01 3’b001
2’b10 3’b010
2’b11 3’b011

R/W 0b0

7:6 Reserved Always returns 0 on read; write operations have no effect. R 0b00

5:4 SizReqQPcCW
Size of request Queue at destination of Request Bus PcieCWRAI.
The effective value of this register is calculated similar to the above
table.

R/W 0b00

3:2 Reserved Always returns 0 on read; write operations have no effect. R 0b00

1:0 SizReqQPcNC
Size of request Queue at destination of Request Bus PcieNCRAI.
The effective value of this register is calculated similar to the above
table.

R/W 0b00

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
Programmer’s Interface

Page 587 of 655

12.11.3.2 BEACON: Beacon Support Register

Reset Value x’0000 0000 0000 0000’

Address x’F8080010’

Access Type Read

Reserved

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Reserved SYS_BEACONENABLE

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits Field Name Description Access Reset

63:16 Reserved Always returns 0 on read; write operations have no effect. R 0x00000000

15:0 SYS_BEACONENABLE Reserved for future implementation of beacon support. R 0x0000

User Manual

CPC945 Bridge and Memory Controller Preliminary

Programmer’s Interface
Page 588 of 655 February 1, 2008

12.11.3.3 LOOPBACK: Loopback Control and Status Register

Reset Value N/A

Address x’F8080020’

Access Type Read, Read/Write

Reserved LB
_E

rr
C

nt
_C

le
ar

R
es

er
ve

d

S
Y

S_
TC

TX
_L

O
O

P
B

A
C

K

D
L_

TC
R

X
_L

O
O

P
B

A
C

K

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

DL_LB_ACTIVE DL_LB_ERROR

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits Field Name Description Access Reset

63:37 Reserved Always returns 0 on read; write operations have no effect. R x0000000

36 LB_ErrCnt_Clear Always returns 0 on read. Writing a ‘1’ clears all LB error counters. R/W 0b0

35:34 Reserved Always returns 0 on read; write operations have no effect. R 0b00

33 SYS_TCTX_LOOPBACK Enter loopback mode. R/W 0b0

32 DL_TCRX_LOOPBACK Indicates transmit side of DLP is in loopback mode. R 0b0

31:16 DL_LB_ACTIVE Indicates lanes on which master mode loopback is active. R x0000

15:0 DL_LB_ERROR Indicates error detected on respective lane. R x0000

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
Programmer’s Interface

Page 589 of 655

12.11.3.4 SCRAMBLE: Data Scrambling Configuration Register

Reset Value x’0000 0000 0000 0000’

Address x’F8080030’

Access Type Read, Read/Write

Reserved

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Reserved S
Y

S
_T

C
TX

_S
C

R
A

M
B

LE
O

FF

D
L_

TC
R

X
_S

C
R

A
M

B
LE

O
FF

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits Field Name Description Access Reset

63:2 Reserved Always returns 0 on read; write operations have no effect. R 0x00000000

1 SYS_TCTX_
SCRAMBLEOFF Turns off data scrambling (for test purposes only). R/W 0b0

0 DL_TCRX_
SCRAMBLEOFF Indicates that scrambling is turned off. R 0b0

User Manual

CPC945 Bridge and Memory Controller Preliminary

Programmer’s Interface
Page 590 of 655 February 1, 2008

12.11.3.5 SLOT: Slot Management Register

Reset Value N/A

Address x’F8080040’

Access Type Read, Read/Write

Reserved

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

S
Y

S
_E

C
14

_A
TN

_B
TN

_
P

R
E

S
E

N
T

S
Y

S
_E

C
14

_P
W

R
_C

TL
_

PR
E

SE
N

T

S
Y

S
_E

C
14

_M
R

L_
P

R
E

S
E

N
T

S
Y

S
_E

C
14

_A
TN

_I
N

D
_

P
R

E
S

E
N

T

S
Y

S
_E

C
14

_P
W

R
_I

N
D

_P
R

E
S

E
N

T

S
Y

S
_E

C
14

_H
O

TP
LU

G
_

S
U

R
P

R
IS

E

S
Y

S
_E

C
14

_H
O

TP
LU

G
_

C
A

P
A

B
LE

SYS_EC14_SLOT_NUMBER S
Y

S
_E

C
14

_P
W

R
_L

IM
IT

_
V

A
LU

E

S
Y

S
_E

C
14

_P
W

R
_L

IM
IT

_
S

C
AL

E

S
YS

_E
C

18
_S

LO
T_

D
E

TE
C

T_
C

H
AN

G
E

D

S
Y

S
_E

C
18

_S
LO

T_
D

E
TE

C
T_

 S
TA

TE

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits Field Name Description Access Reset

63:32 Reserved Always returns 0 on read; write operations have no effect. R 0x00000000

31 SYS_EC14_ATN_
BTN_ PRESENT Attention Button Present to the Slot Capabilities Register. R/W 0b0

30 SYS_EC14_PWR_CTL_
PRESENT Power Controller Present to the Slot Capabilities Register. R/W 0b0

29 SYS_EC14_MRL_
PRESENT Mechanical Release Latch Present to the Slot Capabilities Register. R/W 0b0

28 SYS_EC14_ATN_
IND_ PRESENT Attention Indicator Present to the Slot Capabilities Register. R/W 0b0

27 SYS_EC14_PWR_
IND_PRESENT Power Indicator Present to the Slot Capabilities Register. R/W 0b0

26 SYS_EC14_HOTPLUG_
SURPRISE Hot-Plug Surprise to the Slot Capabilities Register. R/W 0b0

25 SYS_EC14_HOTPLUG_
CAPABLE Hot-Plug Capable to the Slot Capabilities Register. R/W 0b0

24:12 SYS_EC14_SLOT_
NUMBER Physical Slot Number to the Slot Capabilities Register. R/W 0x0000

11:4 SYS_EC14_PWR_LIMIT_
VALUE Slot Power Limit Value to the Slot Capabilities. R/W 0x00

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
Programmer’s Interface

Page 591 of 655

12.11.3.6 POWER: Power Management Register

3:2 SYS_EC14_PWR_LIMIT_
SCALE Slot power limit scale to the slot capabilities. R/W 0b00

1 SYS_EC18_SLOT_DETECT
_ CHANGED

Indicates state change on PCIE_PRESENTN. The change must be
stable for at least 219 PCLK250 cycles. This register reflects a sticky
version of the SYS_EC18_SLOT_DETECT_CHANGED single
cycle signal and is cleared when writing a ‘1’ to this bit.

R/W

0 SYS_EC18_SLOT_DETECT
_ STATE

Indicates the current state of PCIE_PRESENTN. The state changes
only when PCIE_PRESENTN has been stable for 219 PCLK250
cycles.

R

Reset Value N/A

Address x’F8080050’

Access Type Read, Read/Write

Reserved

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Reserved P
ci

E_
G

ot
o_

L2
3

P
ci

E_
In

L1

P
ci

E_
In

A
SL

1

P
ci

E_
In

L2
3

L2
3T

im
eo

ut

Reserved P
C

LK
25

0_
O

FF

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits Field Name Description Access Reset

63:21 Reserved Always returns 0 on read; write operations have no effect. R 0x000000

20 PciE_Goto_L23 Indicates that system software has initiated a shutdown of the link
and desires it to go into the L2/L3 ready state. R/W 0b0

19 PciE_InL1 Indicates that the link is in the L1 state R

18 PciE_InASL1 Indicates that the link is in the ASPM L1 state R

17 PciE_InL23 Indicates that the link is in the L2/L3 ready state R

16 L23Timeout Indicates that the link is forced in the L2/L3 ready state due to
PME_TO_Ack timeout counter expired. R

15:1 Reserved Always returns 0 on read; write operations have no effect. R 0x0000

0 PCLK250_OFF Indicates that the 250 MHz PCIe stack clock is not currently running
(that is, SERDES PLL’s are not locked). R

Bits Field Name Description Access Reset

User Manual

CPC945 Bridge and Memory Controller Preliminary

Programmer’s Interface
Page 592 of 655 February 1, 2008

12.11.3.7 VC_STAT: Virtual Channel Status Register

Reset Value N/A

Address x’F8080060’

Access Type Read

Reserved

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Reserved A
L_

TL
_V

C
0_

A
C

TI
V

E

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits Field Name Description Access Reset

63:1 Reserved Always returns 0 on read; write operations have no effect. R 0x00000000

0 AL_TL_VC0_ACTIVE Indicates that the PCIe stack is up and running and ready to begin
transmission of packets. R

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
Programmer’s Interface

Page 593 of 655

12.11.3.8 AL_CFG: Application Layer Configuration Register

Reset Value N/A

Address x’F8080070’

Access Type Read, Read/Write

Reserved

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Reserved N
C

M
em

W
r

Ta
gD

ly
[1

:0
]

C
M

em
W

r
Ta

gD
ly

[1
:0

]

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits Field Name Description Access Reset

63:4 Reserved Always returns 0 on read; write operations have no effect. R 0x0000000

3:2 NCMemWrTagDly[1:0]
Amount of delay (measured in PCLK250 cycles) to introduce before
releasing credits back to the PCI Express master when IbWD
responds to IbRq with a noncoherent Memory Write request.

R/W 0b00

1:0 CMemWrTagDly[1:0]

Amount of delay (measured in PCLK250 cycles) to introduce after
IbWD has accepted a IbRq_CMemWrRq and begun executing a
data push to the memory controller and before the signal
IbWD_CMemWrAck is asserted.

R/W 0b00

User Manual

CPC945 Bridge and Memory Controller Preliminary

Programmer’s Interface
Page 594 of 655 February 1, 2008

12.11.3.9 IO_CFG: I/O Configuration Register

12.11.3.10 RX_LANE: I/O Receive Configuration Register

Reset Value N/A

Address x’F8080080’

Access Type Read, Read/Write

Reserved

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Reserved
SYS_EC0C_MAXLINK

WIDTH[5:0]

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits Field Name Description Access Reset

63:6 Reserved Always returns 0 on read; write operations have no effect. R 0x0000000

5:0 SYS_EC0C_MAXLINKWIDT
H[5:0]

This register controls the maximum PCIe link width the PCIe stack
might negotiate at link initialization time. R/W 0x10

Reset Value N/A

Address x’F8080090’

Access Type Read, Read/Write

Reserved

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Reserved P
ci

E_
R

xS
ig

Le
v

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits Field Name Description Access Reset

63:1 Reserved Always returns 0 on read; write operations have no effect. R 0x0000000

0 PciE_RxSigLev Adjusts receiver sensitivity in the SERDES core. R/W 0b0

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
Programmer’s Interface

Page 595 of 655

12.11.3.11 I/O_LANEn: I/O Status and Control Register for Lane n (n ranges from 0..15)

Programmable Driver Power Levels (SERDES TX Drive Strength [34:32])

Control inputs are provided to allow adjustment of the transmit link driver output power. When driving an ideal
100 Ω terminated network, these output power settings effectively establish the differential voltage swings at
the driver output. The input signals PciE_TxDrvPwr_Lanen [2:0] (bits 34:32) are encoded inputs that allow the
selection of eight discrete power settings. These are adjustable on a per-link basis. Table 12-29 lists the
normalized driver power (NDP) setting of the transmit drivers as a function of the driver power control inputs.
The normalized current setting is 2 mA, which corresponds to the normalized power setting of 1.0. Values
listed in the normalized driver power setting column are multiples of 2 mA. For example, with inputs at ‘110’,
the driver power is 12x2 mA = 24 mA.

Reset Value N/A

Address x’F80801h0’ (Where h is the hexadecimal representation of n)

Access Type Read, Read/Write

Reserved P
ci

E
_T

XU
M

B
IT

_L
an

en

P
ci

E
_T

XC
A

_L
an

en
[3

:0
]

R
es

er
ve

d

P
ci

E
_T

xD
rv

P
w

r_
La

ne
n[

2:
0]

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Reserved PciE_LB_ErrCnt_Lanen[15:0]

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits Field Name Description Access Reset

63:41 Reserved Always returns 0 on read; write operations have no effect. R 0x000000

40 PciE_TXUMBIT_Lanen Controls amount of pre-emphasis R/W 0b0

39:36 PciE_TXCA_Lanen[3:0] Controls SERDES TX FIR coefficients R/W 0x1

35 Reserved Always returns 0 on read; write operations have no effect. R 0b0

34:32 PciE_TxDrvPwr_Lanen[2:0] Controls SERDES TX drive strength. R/W 0b000

31:16 Reserved Always returns 0 on read; write operations have no effect. R 0x0000

15:0 PciE_LB_ErrCnt_Lanen[15:0] Indicates number of loopback errors detected on lane n. R

User Manual

CPC945 Bridge and Memory Controller Preliminary

Programmer’s Interface
Page 596 of 655 February 1, 2008

FIR Pre-emphasis Coefficients

The transmitter employs a sophisticated pre-emphasis technique to reduce inter-symbol interference (ISI) at
the receiver. This pre-emphasis technique uses a finite impulse response (FIR) filter mechanism to compen-
sate for the high frequency roll-off of the transmission channel.

This equation computes the time dependent variation in the driver differential current, where NDP represents
normalized driver power. Coefficient C0 is automatically controlled, and coefficient C1 is alterable using
PciE_TXCA_Lanen[3:0]. These control inputs activate the C1 sub-coefficients (SeeTable 12-29). One of two
equations apply to the driver, dependent on the NDP setting.

Note: The value of C0 is reduced by C1 (C0 = 1 - C1) to maintain a constant output level.

As an example, a normalized power setting of 10 with TXCA[3:0]=”1111” would yield the transfer function:

Table 12-28. Driver Power Levels Control Encoding for Transmit Function

TXDRVPWR2x TXDRVPWR1x TXDRVPWR0x Normalized Driver Power
Setting

Normalized Driver Power
Current

0 0 0 5 10 mA

0 0 1 6 12 mA

0 1 0 7 14 mA

0 1 1 8 16 mA

1 0 0 10 20 mA

1 0 1 11 22 mA

1 1 0 12 24 mA

1 1 1 13 26 mA

Table 12-29. FIR Coefficient Table

CO A CA3x CA2x CA1x CA0x

1.000 - C1 1/15 1 8/15 4/15 2/15

H(z) = 2 mA × NDP(C0z0 - C1z-1)

For NDP < 10
Hx(z) = 2mA × NDPx × (C0xz-0 - [1/NDP × (A + CA0x + CA1x + CA2x + CA3x)]z-1)

For NDP > or = 10
Hx(z) = 2mA × NDPx × (C0xz-0 - [1/12 × (A + CA0x + CA1x + CA2x + CA3x+ 1)]z-1)

H(z) = 2 mA × 10 × (0.75z-0 - 0.25z-1)

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
Programmer’s Interface

Page 597 of 655

12.11.3.12 DIAG_IBCPL: Diagnostic Register for Application Layer Inbound Completion (IbCpl)

Reset Value N/A

Address x’F8081000’

Access Type Read

Reserved for IbCpl status

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Reserved for IbCpl errors D
bg

P_
C

D
Q

S
M

E
rr

or

D
bg

D
_H

TC
R

Q
dC

pl
A

ct
E

rr

D
bg

D
_H

TC
R

Q
dC

pl
A

ct
E

rr

D
bg

P_
C

D
Q

B
ad

TO
Q

R
qs

trI
D

D
bg

P_
C

D
Q

TL
P

R
qL

en
E

rr

D
bg

P
_T

A
AC

fg
R

dT
gO

ut
E

rr

D
bg

P_
TA

AW
rT

gO
ut

E
rr

D
bg

P_
TA

AW
rT

gR
tn

E
rr

D
bg

P_
TO

Q
TO

2L
at

eE
rr

D
bg

P_
TO

Q
TO

C
A

M
E

rr

D
bg

P_
C

D
Q

D
at

aC
ou

nt
E

rr

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits Field Name Description Access Reset

63:32 Reserved for IbCpl status Always returns 0 on read; write operations have no effect. R 0x00000000

31:11 Reserved for IbCpl errors Always returns 0 on read; write operations have no effect. R 0x000000

10 DbgP_CDQSMError
Indicates that the internal IbCpl_CDQ state machine tracking com-
pletions from the ALIbTLIf interface has detected an unexpected
state transition.

R 0b0

9 DbgD_APICRQdCplActErr
Indicates that the iMultiCycleCplActive flag internal to the PI instan-
tiation of the IbCpl_CRQddr module is attempting to be set and
reset on same clock cycle.

R 0b0

8 DbgD_HTCRQdCplActErr
Indicates that the iMultiCycleCplActive flag internal to the HT instan-
tiation of the IbCpl_CRQddr module is attempting to be set and
reset on same clock cycle.

R 0b0

7 DbgP_CDQBadTOQRqstrID Indicates that an illegal ObNP_RqstrID (2'b11) has been stored in
the IbCpl_TOQ module. R D0b

6 DbgP_CDQTLPRqLenErr
Indicates an error between the number of dwords indicated in the
Completion TLP Header and the number previously stored in the
IbCpl_TOQ module.

R 0b0

5 DbgP_TAACfgRdTgOutErr Indicates an error in the setting or clearing of the configuration read
flag. R 0b0

4 DbgP_TAAWrTgOutErr Indicates an error in the setting or clearing of the nonposted write
flag. R 0b0

3 DbgP_TAAWrTgRtnErr Indicates that an outstanding nonposted write Tag has been
returned that does not match the value previously stored. R 0b0

User Manual

CPC945 Bridge and Memory Controller Preliminary

Programmer’s Interface
Page 598 of 655 February 1, 2008

12.11.3.13 DIAG_IBCMGR: Diagnostic Register for Application Layer Inbound Completion Manager
(IbCMgr)

2 DbgP_TOQTO2LateErr

Indicates that a completion was received that had a valid tag, but
that had previously timed out (this would indicate a timeout value
that was too small or possibly an endpoint that got hung up and
reset itself prior to completing the outbound nonposted transaction.

R 0b0

1 DbgP_TOQTOCAMErr Indicates that there has been more than one transaction timeout
error occurring on the same clock. 0b0

0 DbgP_CDQDataCountErr
Indicates an error between the number of data beats returned in the
completion (from the ALIbTLIf interface) and the number previously
stored in the IbCpl_TOQ module.

R 0b0

Reset Value N/A

Address x’F8081010’

Access Type Read

Reserved

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Reserved

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits Field Name Description Access Reset

63:0 Reserved Reserved for future requirements. Always returns 0 on read; write
operations have no effect. R 0x0000000

Bits Field Name Description Access Reset

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
Programmer’s Interface

Page 599 of 655

12.11.3.14 DIAG_IBRQ: Diagnostic Register for Application Layer Inbound Request (IbRq)

Reset Value N/A

Address x’F8081020’

Access Type Read

Reserved for IbRq status

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Reserved for IbRq errors D
ba

A
_R

dC
m

d_
U

nd
rF

lw

D
bg

A
_W

rC
m

d_
U

nd
rF

lw

D
bg

D
_N

C
C

m
d_

U
nd

rF
lw

D
bg

D
_N

C
W

rT
g_

O
vr

Fl
w

D
bg

P
_R

qs
_O

vl
Fl

w

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits Field Name Description Access Reset

63:32 Reserved for IbRq status Always returns 0 on read; write operations have no effect. R 0x00000000

31:5 Reserved for IbRq errors Always returns 0 on read; write operations have no effect. R 0x0000000

4 DbgA_RdCmd_UndrFlw

When one, this signal indicates that the target interface has returned
more commands credits than the unit holds. This is an underflow
condition and is a fatal error. Once set, the signal is only released
upon a reset.

R 0b0

3 DbgA_WrCmd_UndrFlw

When one, this signal indicates that the target interface has returned
more commands credits than the unit holds. This is an underflow
condition and is a fatal error. Once set, the signal is only released
upon a reset.

R 0b0

2 DbgD_NCCmd_UndrFlw

When one, this signal indicates the target interface has returned
more commands credits than the unit holds. This is an underflow
condition and is a fatal error. Once set, the signal is only released
upon a reset.

R 0b0

1 DbgD_NCWrTg_OvrFlw

When one, this signal indicates the write tag FIFO has been
instructed to accept more tags than it has space. This is an overflow
condition and is a fatal error. Once set, the signal is only released
upon a reset.

R 0b0

0 DbgP_Rqs_OvlFlw
When one, this signals the detection of an incoming header when no
header buffer space is available. This condition is a fatal error. Once
set, this bit can only be cleared with a reset.

R 0b0

User Manual

CPC945 Bridge and Memory Controller Preliminary

Programmer’s Interface
Page 600 of 655 February 1, 2008

12.11.3.15 DIAG_IBTLIF: Diagnostic Register for Application Layer Inbound TL Interface (IbTLIf)

Reset Value N/A

Address x’F8081030’

Access Type Read, Read/Write

Reserved for IbTLIf status

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Reserved for IbTLIf errors D
bg

P
_C

pl
FS

M

D
bg

P
_N

P
FS

M

D
bg

P
_P

FS
M

D
bg

P
_S

eq
FS

M

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits Field Name Description Access Reset

63:32 Reserved for IbTLIf status Always returns 0 on read; write operations have no effect. R 0x00000000

31:4 Reserved for IbTLIf errors Always returns 0 on read; write operations have no effect. R 0x00000000

3 DbgP_CplFSM Assertion of this signal indicates that the completion FSM has
entered an undefined state. R 0b0

2 DbgP_NPFSM Assertion of this signal indicates that the nonposted FSM has
entered an undefined state. R 0b0

1 DbgP_PFSM Assertion of this signal indicates that the posted FSM has entered
an undefined state. R 0b0

0 DbgP_SeqFSM Assertion of this signal indicates that the sequence FSM has
entered an undefined state. R 0b0

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
Programmer’s Interface

Page 601 of 655

12.11.3.16 DIAG_IBWD: Diagnostic Register for Application Layer Inbound Request (IbWD)

Reset Value N/A

Address x’F8081040’

Access Type Read

Reserved for IbWD status D
bg

D
_S

TA
TC

P
en

d

D
bg

D
_S

TA
TH

TP
ul

lQ
E

m
pt

y

D
bg

D
_S

TA
TH

TP
ul

lQ
Fu

ll

D
bg

D
_S

TA
TN

C
P

en
d

D
bg

D
_S

TA
TR

eP
P

C
97

0l
Q

Em
pt

y

D
bg

D
_S

TA
TR

eP
P

C
97

0l
Q

Fu
ll

D
bg

P
_S

TA
TA

llo
c0

B
kt

D
bg

P
_S

TA
TA

llo
c1

6B
kt

D
bg

P
_S

TA
TW

db
Tg

Av
ai

l

D
bg

P
_S

TA
TW

db
Tg

P
en

d

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Reserved for IbWD errors D
bg

D
_E

R
R

B
kt

C
pl

D
bg

D
_E

R
R

H
TP

ul
lQ

Fl
ow

D
bg

D
_E

R
R

H
TW

rT
A

D
bg

D
_E

R
R

M
em

W
rT

A
In

fo

D
bg

D
_E

R
R

R
eP

P
C

97
0l

Q
Fl

ow

D
bg

D
_E

R
R

R
eg

W
rT

A

D
bg

D
_E

R
R

W
db

Tg
O

O
B

D
bg

P
_E

R
R

B
kt

A
llo

c

D
bg

P
_E

R
R

B
kt

P
ut

G
T8

D
bg

P
_E

R
R

B
kt

R
ls

D
bg

P
_E

R
R

W
db

Tg
R

ls

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits Field Name Description Access Reset

63:42 Reserved for IbWD status Always returns 0 on read; write operations have no effect. R 0x000000

41 DbgD_STATCPend When ‘1’, this signal indicates that a coherent write request to mem-
ory is pending in the push manager. R 0b0

40 DbgD_STATHTPullQEmpty When ‘1’, this signal indicates that the pull FIFO used to hold WrTA
Information for HyperTransport writes is empty. R 0b1

39 DbgD_STATHTPullQFull When ‘1’, this signal indicates that the pull FIFO used to hold WrTA
Information for HyperTransport writes is full. R 0b0

38 DbgD_STATNCPend When ‘1’, this signal indicates that a noncoherent write request to
memory is pending in the push manager. R 0b0

37 DbgD_STATRePPC970lQ
Empty

When ‘1’, this signal indicates that the pull FIFO used to hold WrTA
Information for register writes is empty. R 0b1

36 DbgD_STATRePPC970lQ
Full

When ‘1’, this signal indicates that the pull FIFO used to hold WrTA
Information for register writes is full. R 0b0

User Manual

CPC945 Bridge and Memory Controller Preliminary

Programmer’s Interface
Page 602 of 655 February 1, 2008

35 DbgP_STATAlloc0Bkt When ‘1’, this signal indicates that 0 outstanding buckets have been
allocated in the write data buffer. R 0b1

34 DbgP_STATAlloc16Bkt When ‘1’, this signal indicates that all 16 buckets have been allo-
cated in the write data buffer. R 0b0

33 DbgP_STATWdbTgAvail When ‘1’, this signal indicates that memory controller WDB tags are
available for allocation. R 0b1

32 DbgP_STATWdbTgPend When ‘1’, this signal indicates that IbWD is waiting for outstanding
WDB tags over the PI bus to be released by the memory controller. R 0b0

31:11 Reserved for IbWD errors Always returns 0 on read; write operations have no effect. R 0x000000

10 DbgD_ERRBktCpl
When ‘1’, this signal indicates that multiple agents are simulta-
neously attempting to retire same bucket. This is a fatal error. Once
set, the signal is only released upon a reset.

R 0b0

9 DbgD_ERRHTPullQFlow
When ‘1’, this signal indicates that the HT Pull FIFO has overflowed.
This is a fatal error. Once set, the signal is only released upon a
reset.

R 0b0

8 DbgD_ERRHTWrTA
When ‘1’, this signal indicates that an unexpected PcieHtWrTA
assertion was received. This is a fatal error. Once set, the signal is
only released upon a reset.

R 0b0

7 DbgD_ERRMemWrTAInfo
When ‘1’, this signal indicates that there was a parity mismatch on
the Write TA Info being passed from IbRq to the Push Arbiter. This
is a fatal error. Once set, the signal is only released upon a reset.

R 0b0

6 DbgD_ERRRePPC970lQFlo
w

When ‘1’, this signal indicates that the HT Pull FIFO has overflowed.
This is a fatal error. Once set, the signal is only released upon a
reset.

R 0b0

5 DbgD_ERRRegWrTA
When ‘1’, this signal indicates that an unexpected PcieHtWrTA
assertion was received. This is a fatal error. Once set, the signal is
only released upon a reset.

R 0b0

4 DbgD_ERRWdbTgOOB
When ‘1’, this signal indicates that an out-of-bounds tag was
released by the memory controller to PCI Express. This is a fatal
error. Once set, the signal is only released upon a reset.

R 0b0

3 DbgP_ERRBktAlloc
When ‘1’, this signal indicates that a bucket was taken by IbRq
when no buckets were available for allocation. This is a fatal error.
Once set, the signal is only released upon a reset.

R 0b0

2 DbgP_ERRBktPutGT8

When ‘1’, this signal indicates that the Inbound TL Interface has
attempted to put more than 8 quad-DWords of data into the write
data buffer and a bucket was taken. This is a fatal error. Once set,
the signal is only released upon a reset.

R 0b0

1 DbgP_ERRBktRls
When ‘1’, this signal indicates that the pull or push managers
returned a nonallocated bucket. This is a fatal error. Once set, the
signal is only released upon a reset.

R 0b0

0 DbgP_ERRWdbTgRls
When ‘1’, this signal indicates that the memory controller has
attempted to release an unallocated WDB tag. This is a fatal error.
Once set, the signal is only released upon a reset.

R 0b0

Bits Field Name Description Access Reset

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
Programmer’s Interface

Page 603 of 655

12.11.3.17 DIAG_OBCPL: Diagnostic Register for Application Layer Outbound Completion (ObCpl)

Reset Value N/A

Address x’F8081080’

Access Type Read

Reserved for ObCpl status

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Reserved for ObCp errors D
bg

D
_C

M
em

O
rd

er
Q

_O
F

D
bg

D
_H

TO
rd

er
Q

_O
F

D
bg

D
_N

C
M

em
O

rd
er

Q
_O

F

D
bg

D
_R

eg
B

uf
_O

F

D
bg

P
_H

TT
ag

FI
FO

_O
F

D
bg

P
_I

nt
er

na
lT

ag
A

rr
_O

F

D
bg

P
_N

S
R

FI
FO

_O
F

D
bg

P
_R

eg
Ta

gF
IF

O
_O

F

D
bg

P
_Z

ro
Ta

gF
IF

O
_O

F

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits Field Name Description Access Reset

63:32 Reserved for ObCpl status Always returns 0 on read; write operations have no effect. R 0x00000000

31:9 Reserved for ObCpl errors Always returns 0 on read; write operations have no effect. R 0x000000

8 DbgD_CMemOrderQ_OF
When asserted, this signal indicates that more Cmem completion
data have been received than the CMemOrderQ can hold (16
entries). Fatal Error. Level, reset by ObCpl_ddrRst.

R 0b0

7 DbgD_HTOrderQ_OF
When asserted, this signal indicates that more HT completion data
have been received than the HTOrderQ can hold (16 entries). Fatal
Error. Level, reset by ObCpl_ddrRst.

R 0b0

6 DbgD_NCMemOrderQ_OF
When asserted, this signal indicates that more NCmem completion
data have been received than the NCMemOrderQ can hold (16
entries). Fatal Error. Level, reset by ObCpl_ddrRst.

R 0b0

5 DbgD_RegBuf_OF
When asserted, this signal indicates that more Register Read Com-
pletion data have been received than the RegBuf can hold
(16 entries). Fatal Error. Level, reset by ObCpl_ddrRst.

R 0b0

4 DbgP_HTTagFIFO_OF
When asserted, this signal indicates that more HTTag entries have
been received than the HTTagFIFO can hold (16 entries). Fatal
Error. Level, reset by ObCpl_PciERst.

R 0b0

3 DbgP_InternalTagArr_OF
When asserted, this signal indicates that more Tags have been
returned than the TagArr can hold (16 entries). Fatal Error. Level,
reset byObCpl_PciERst.

R 0b0

2 DbgP_NSRFIFO_OF
When asserted, this signal indicates that more NSR headers have
been received than the NSRFIFO can hold (16 entries). Fatal Error.
Level, reset by ObCpl_PciERst.

R 0b0

1 DbgP_RegTagFIFO_OF
When asserted, this signal indicates that more RegTag entries have
been received than the RegTagFIFO can hold (16 entries). Fatal
Error. Level, reset by ObCpl_PciERst.

R 0b0

User Manual

CPC945 Bridge and Memory Controller Preliminary

Programmer’s Interface
Page 604 of 655 February 1, 2008

12.11.3.18 DIAG_OBMSG: Diagnostic Register for Application Layer Outbound Message (ObMsg)

0 DbgP_ZroTagFIFO_OF
When asserted, this signal indicates that more ZroTag entries have
been received than the ZroTagFIFO can hold (16 entries). Fatal
Error. Level, reset by ObCpl_PciERst.

R 0b0

Reset Value N/A

Address x’F8081090’

Access Type Read, Read/Write

Reserved

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Reserved Ill
eg

al
In

dC
trl

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits Field Name Description Access Reset

63:1 Reserved Always returns 0 on read; write operations have no effect. R 0x0000000

0

IllegalIndCtrl This bit, if set, indicates that the ObMsg has received a request to
send out either a Power_Indicator message or an
Attention_Indicator message with the corresponding control field set
to 2'b00. ObMsg has sent out either a Power_Indicator_Off or an
Attention_Indicator_Off in response to this request.

R/W 0b0

Bits Field Name Description Access Reset

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
Programmer’s Interface

Page 605 of 655

12.11.3.19 DIAG_OBNP: Diagnostic Register for AL Outbound Nonposted (ObNP)

Reset Value N/A

Address x’F80810A0’

Access Type Read

Reserved for ObNP status

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Reserved for ObNP errors DbgP_InvalidRdType DbgP_InvalidWrType DbgP_FatalRdType[5:0]

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits Field Name Description Access Reset

63:32 Reserved for ObNP status Always returns 0 on read; write operations have no effect. R 0x00000000

31:18 Reserved for ObNP errors Always returns 0 on read; write operations have no effect. R 0x000000

17:12 DbgP_InvalidRdType

An Invalid Read of Type specified in following bits has occurred:
17 A configuration transaction is of an invalid type.
16 A type 0 configuration transaction (not direct) has a 0 cycle

bit, in the case of limited direct type 0 configuration.
15 A type 0 configuration transaction (not direct) has a non-

zero function number.
14 A type 1 configuration transaction fails the outbound as

type 0 and outbound as type 1 checks.
13 An I/O transaction occurs when I/O transactions are not

enabled.
12 A memory transaction occurs when memory transactions

are not enabled.

R 0b000000

11:6 DbgP_InvalidWrType

An Invalid Write of Type specified in following bits has occurred:
11 A configuration transaction is of an invalid type.
10 A type 0 configuration transaction (not direct) has a 0 cycle

bit. In the case of limited direct type 0 Configuration.
9 A type 0 configuration transaction (not direct) has a non-

zero function number.
8 A type 1 configuration transaction fails the outbound as

type 0 and outbound as type 1 checks.
7 An I/O transaction occurs when I/O transactions are not

enabled.
6 A memory transaction occurs when Memory transactions

are not enabled.

R 0b000000

5:0 DbgP_FatalRdType[5:0]

A Fatal Read Type of Type specified in following bits has occurred:
5 The read has an unsupported Rid.
4 The read has an unsupported TSiz.
3 The read has no byte enables asserted.
2 The read is for more than 8 bytes or less and crosses an 8-

byte boundary.
1 The read targets configuration space and is for more than

4 bytes or crosses a 4-byte boundary.
0 The read targets I/O space and is for more than 4 bytes or

crosses a 4-byte boundary.

R 0b000000

User Manual

CPC945 Bridge and Memory Controller Preliminary

Programmer’s Interface
Page 606 of 655 February 1, 2008

12.11.3.20 DIAG_OBP: Diagnostic Register for Application Layer Outbound Posted (ObP)

Reset Value N/A

Address x’F80810B0’

Access Type Read

Reserved for ObP status

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Reserved for ObP errors D
bg

A
_1

28
BW

rIn
8m

od
e

D
bg

A
_I

llS
iz

D
bg

A
_I

llS
rc

Ta
g

D
bg

A
_T

oo
M

an
yR

eq

D
bg

A
_T

oo
M

an
yR

eq
4m

od
e

D
bg

D
_P

op
Ta

gQ
E

m
ty

D
bg

D
_P

us
hD

at
aW

hi
le

Fu
ll

D
bg

D
_P

us
hR

dp
trP

as
sT

A
pt

r

D
bg

P
_I

llB
E

D
bg

P
_I

llD
at

aF
ifo

P
op

D
bg

P
_I

llN
P

Po
p

D
bg

P
_I

llP
C

To
gg

le

D
bg

P
_I

llP
P

op

D
bg

P
_N

P
W

rIl
lS

iz
e

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits Field Name Description Access Reset

63:32 Reserved for ObP status Always returns 0 on read; write operations have no effect. R 0x00000000

31:14 Reserved for ObP errors Always returns 0 on read; write operations have no effect. R 0x00000

13 DbgA_128BWrIn8mode A 128 byte write has been issued in 8 entry, 64-byte write maximum
mode. R 0b0

12 DbgA_IllSiz An illegal size has been issued in a PI transaction. R 0b0

11 DbgA_IllSrcTag An illegal source tag has been encountered in a PI transaction. R 0b0

10 DbgA_TooManyReq Too many REQs have been issued on API without ACKs. R 0b0

9 DbgA_TooManyReq4mode There have been more than 4 REQs from Processor Interconnect
without any intervening ACKs, and ObP is in 4 mode. R 0b0

8 DbgD_PopTagQEmty The tag queue has been popped when it was empty. R 0b0

7 DbgD_PushDataWhileFull The data FIFO was pushed when it was full. R 0b0

6 DbgD_PushRdptrPassTAptr The push read pointer for the tag queue has passed the TA read
pointer. R 0b0

5 DbgP_IllBE Illegal byte enables have been issued in a TLP header. R 0b0

4 DbgP_IllDataFifoPop There has been an illegal data FIFO pop. R 0b0

3 DbgP_IllNPPop There has been an illegal nonposted write pop. R 0b0

2 DbgP_IllPCToggle There has been a ObNP_PendingChecked toggle without a previ-
ous ObP_CheckPending toggle. R 0b0

1 DbgP_IllPPop There has been an illegal posted write pop. R 0b0

0 DbgP_NPWrIllSize There has been an illegal nonposted write size. R 0b0

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
Programmer’s Interface

Page 607 of 655

12.11.3.21 DIAG_OBTLIF: Diagnostic Register for Application Layer Outbound Posted (ObTLIf)

Reset Value N/A

Address x’F80810C0’

Access Type Read

Reserved for ObTLIf status

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Reserved for ObTLIf errors D
bg

P
_A

rb
E

nF
S

M

D
bg

P
_D

at
aC

ns
m

FS
M

D
bg

P
_D

at
aT

xF
S

M

D
bg

P
_T

oA
ck

FS
M

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits Field Name Description Access Reset

63:32 Reserved for
ObTLIf status Always returns 0 on read; write operations have no effect. R 0x00000000

31:4 Reserved for
ObTLIf errors Always returns 0 on read; write operations have no effect. R 0x0000000

3 DbgP_ArbEnFSM Arbiter Enable FSM error indicated. R 0b0

2 DbgP_DataCnsmFSM Data Consume FSM error indicated. R 0b0

1 DbgP_DataTxFSM Data Transmit FSM error indicated. R 0b0

0 DbgP_ToAckFSM ToAck Timer Control FSM has error indicated. R 0b0

User Manual

CPC945 Bridge and Memory Controller Preliminary

Programmer’s Interface
Page 608 of 655 February 1, 2008

12.11.3.22 MASK_MPIC_IBCPL: MPIC Masking for DIAG_IBCPL

12.11.3.23 MASK_MPIC_IBCMGR: MPIC Masking for DIAG_IBCMGR

Reset Value N/A

Address x’F8081100’

Access Type Read

Reserved

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Reserved Mask_MPIC_IbCpl

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits Field Name Description Access Reset

63:11 Reserved Always returns 0 on read; write operations have no effect. R 0x00000000

10:0 Mask_MPIC_IbCpl
Enable IbCpl error signals to trigger an interrupt in the MPIC con-
troller. Each bit corresponds to the same position defined in
DIAG_IBCPL.

R 0x001

Reset Value N/A

Address x’F8081110’

Access Type Read

Reserved for Mask_MPIC_IbCMgr

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Reserved for Mask_MPIC_IbCMgr

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits Field Name Description Access Reset

63:0 Reserved for
Mask_MPIC_IbCMgr

Always returns 0 on read; write operations have no effect.
Enable IbCMGR error signal to trigger an interrupt in the MPIC con-
troller. These bits correspond to the same bit positions defined in
DIAG_IBCMgr.

R 0x00000000

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
Programmer’s Interface

Page 609 of 655

12.11.3.24 MASK_MPIC_IBRQ: MPIC Masking for DIAG_IBRQ

12.11.3.25 MASK_MPIC_IBTLIF: MPIC Masking for DIAG_IBTLIF

Reset Value N/A

Address x’F8081120’

Access Type Read

Reserved

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Reserved Mask_MPIC_IbRq

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits Field Name Description Access Reset

63:5 Reserved Always returns 0 on read; write operations have no effect. R 0x000000

4:0 Mask_MPIC_IbRq
Enable IbRq error signals to trigger an interrupt in the MPIC control-
ler. Each bit corresponds to the same position defined in
DIAG_IBRQ.

R 0b00001

Reset Value N/A

Address x’F8081130’

Access Type Read

Reserved

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Reserved M
as

k_
M

P
IC

_I
bT

LI
f

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits Field Name Description Access Reset

63:4 Reserved Always returns 0 on read; write operations have no effect. R 0x00000000

3:0 Mask_MPIC_IbTLIf
Enable IbTLIf error signals to trigger an interrupt in the MPIC con-
troller. Each bit corresponds to the same position defined in
DIAG_IBTLIF.

R 0b001

User Manual

CPC945 Bridge and Memory Controller Preliminary

Programmer’s Interface
Page 610 of 655 February 1, 2008

12.11.3.26 MASK_MPIC_IBWD: MPIC Masking for DIAG_IBWD

Reset Value N/A

Address x’F8081140’

Access Type Read

Reserved

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Reserved M
as

k_
M

PI
C

_I
bW

D

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits Field Name Description Access Reset

63:4 Reserved Always returns 0 on read; write operations have no effect. R 0x00000000

3:0 Mask_MPIC_IbWD
Enable IbWD error signals to trigger an interrupt in the MPIC con-
troller. Each bit corresponds to the same position defined in
DIAG_IBWD.

R 0b0001

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
Programmer’s Interface

Page 611 of 655

12.11.3.27 MASK_MPIC_OBCPL: MPIC Masking for DIAG_OBCPL

12.11.3.28 MASK_MPIC_OBNP: MPIC Masking for DIAG_OBNP

Reset Value N/A

Address x’F8081180’

Access Type Read

Reserved

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Reserved Mask_MPIC_ObCpl

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits Field Name Description Access Reset

63:9 Reserved Always returns 0 on read; write operations have no effect. R 0x00000000

8:0 Mask_MPIC_ObCpl
Enable ObCpl error signals to trigger an interrupt in the MPIC con-
troller. Each bit corresponds to the same position defined in
DIAG_OBCPL.

R 0x01

Reset Value N/A

Address x’F80811A0’

Access Type Read

Reserved

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Reserved Mask_MPIC_ObNP

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits Field Name Description Access Reset

63:6 Reserved Always returns 0 on read; write operations have no effect. R 0x00000000

5:0 Mask_MPIC_ObNP
Enable ObNP error signals to trigger an interrupt in the MPIC con-
troller. Each bit corresponds to the same position defined in
DIAG_OBNP.

R
0b000001

User Manual

CPC945 Bridge and Memory Controller Preliminary

Programmer’s Interface
Page 612 of 655 February 1, 2008

12.11.3.29 MASK_MPIC_OBP: MPIC Masking for DIAG_OBP

Reset Value N/A

Address x’F80811B0’

Access Type Read

Reserved

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Reserved Mask_MPIC_ObP

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits Field Name Description Access Reset

63:14 Reserved Always returns 0 on read; write operations have no effect. R 0x00000000

13:0 Mask_MPIC_ObP
Enable ObP error signals to trigger an interrupt in the MPIC control-
ler. Each bit corresponds to the same position defined in
DIAG_OBP.

R 0x0001

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
Programmer’s Interface

Page 613 of 655

12.11.3.30 MASK_MPIC_OBTLIF: MPIC Masking for DIAG_OBTLIF

Reset Value N/A

Address x’F80811C0’

Access Type Read

Reserved

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Reserved M
as

k_
M

P
IC

_O
bT

lIf

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits Field Name Description Access Reset

63:4 Reserved Always returns 0 on read; write operations have no effect. R 0x00000000

3:0 Mask_MPIC_ObTlIf
Enable ObTlIf error signals to trigger an interrupt in the MPIC con-
troller. Each bit corresponds to the same position defined in
DIAG_ObTlIf.

R 0x0001

User Manual

CPC945 Bridge and Memory Controller Preliminary

Programmer’s Interface
Page 614 of 655 February 1, 2008

Programmer’s Interface

12.12 HyperTransport Registers (HT1)

The registers listed in Table 12-34 control the HyperTransport Host bridge logic found in the CPC945 design.
The layout of HyperTransport registers is intended to comply as much as possible with the governing specifi-
cations (PCI Local Bus Specification, Revision 2.2 and HyperTransport I/O Link Specification, Revision 1.04).

HT is a superset of PCI and this block of registers is located in the CPC945 Control Register portion of the
address map instead of the PCI Configuration space. Therefore, all of the HyperTransport registers must be
spaced 0x10 bytes apart and accessed directly instead of using the indirect method used for PCI Configura-
tion registers. The address of any given register can be determined by left shifting the original configuration
index two places and adding 0xF8070000. For example, the Status/Command Register address is ((04h <<
2) + 0xF8070000) = F8070010.

The set of registers described here is composed of three subsets of registers, the HyperTransport Header,
the HyperTransport Interface Capabilities Block, and implementation specific registers. The header portion of
the register block is declared as a Device Header and is similar to the PCI Configuration blocks used in
CPC945. One required deviation from the Device header format is the addition of the “Bridge Control Register
(BrCtrl)” on page 636 at address 0xF8070300. The Bridge Control register is used to specify the error and
reset behavior of the HyperTransport link connected to the host (primary interface). The HyperTransport
Interface Capabilities section of the register block is used for configuration and status of the HyperTransport
specific portions of the interface. The final section of registers controls items that fall outside the scope of the
PCI and HyperTransport specifications. The top view of the HyperTransport register block is:

• 0xF8070000 - 0xF80700F3h: Device header

• 0xF8070100 - 0xF80701F3h: Capabilities blocks

• 0xF8070200 - 0xF80703F3h: CPC945 specific registers

• 0xF8070500 - 0xF80705F3h: Performance registers

Note: In the tables below, if there is no page number shown, the register is not supported.

Table 12-30. Device Header HyperTransport Register .

0xF8070000 - 0xF80700F3: Device Header

[0:7] [8:15] [16:23] [24:31] Address Page

Device ID Vendor ID 0xF8070000 619

Status Command 0xF8070010 620

Class Code Revision ID 0xF8070020 621

BIST Header Type Latency Timer Cache Line Size 0xF8070030 622

0xF8070040

0xF8070050

Base Address Registers 0xF8070060

(Not Supported) 0xF8070070

0xF8070080

0xF8070090

Cardbus CIS Pointer 0xF80700A0

Subsystem ID Subsystem Vendor ID 0xF80700B0

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
Programmer’s Interface

Page 615 of 655

Expansion ROM Base Address 0xF80700C0

Reserved Capabilities Pointer 0xF80700D0 623

Reserved 0xF80700E0

Max_Lat Min_Gnt Interrupt Pin Interrupt Line 0xF80700F0 624

Table 12-31. Capabilities Block HyperTransport Registers.

0xF8070100 - 0xF80701F3: Capabilities Block

[0:7] [8:15] [16:23] [24:31] Address Page

Command Capability Pointer Capability ID 0xF8070100 625

Link Config Link Control 0xF8070110 626

LinkFreqCap Link Error/Frequency HTRev 0xF8070120 628

Reserved Feature 0xF8070130 629

Error Handling Enumeration Scratchpad 0xF8070140 630

Reserved Mem Limit Upper MemBase Upper 0xF8070150

Table 12-32. CPC945-Specific HyperTransport Registers.

0xF8070200 - 0xF80703F3: CPC945-Specific Registers

[0:3] [4:7] [8:15] [16:23] [24:31] Address Page

HT1 Address Mask 0xF8070200 632

HT1/PI Interface Control 0xF8070210 633

HT1/PI Read Memory Delay 0xF8070220 633

HT1/PI Write Memory Delay 0xF8070230 634

HTG Configuration 0xF8070240 635

Bridge Control Reserved 0xF8070300 636

Reserved TxCtl/
BufRelSpace DataBufAlloc 0xF8070310 638

Reserved ImpedCtrl (not implemented) 0xF8070320

Reserved ImpedCtrlSWCal (not implemented) 0xF8070330

Reserved TxBufCountMax 0xF8070340 639

DiagRxCrcExpLane0 0xF8070350

640
DiagRxCrcRcvLane0 0xF8070360

DiagRxCrcExpLane1 0xF8070370

DiagRxCrcRcvLane1 0xF8070380

Table 12-30. Device Header HyperTransport Register (Continued).

0xF8070000 - 0xF80700F3: Device Header

[0:7] [8:15] [16:23] [24:31] Address Page

User Manual

CPC945 Bridge and Memory Controller Preliminary

Programmer’s Interface
Page 616 of 655 February 1, 2008

SriRxNumeratorLower 0xF8070390

641
SriRxNumeratorUpper 0xF80703A0

SriTxNumeratorLower 0xF80703B0

SriTxNumeratorUpper 0xF80703C0

SriOveride 0xF80703D0 643

HtPhyCtl 0xF80703E0 644

Table 12-33. HyperTransport Performance Monitor Counter Registers.

0xF8070500 - 0xF80705FFh: HT Performance Monitor

[0:7] [8:15] [16:23] [24:31] Address Page

PM HT Configuration Register 0 (Not Implemented) 0XF8070500

PM HT Configuration Register 1 (Not Implemented) 0XF8070510

PM HT Configuration Register 2 (Not Implemented) 0XF8070520

PM HT Configuration Register 3 (Not Implemented) 0XF8070530

Undefined (read as 0x00000000, writes have no effect) 0XF8070540-
0XF8070570

PM HT Data Register 0 (Not Implemented) 0XF8070580

PM HT Data Register 1 (Not Implemented) 0XF8070590

PM HT Data Register 2 (Not Implemented) 0XF80705A0

PM HT Data Register 3 (Not Implemented) 0XF80705B0

Undefined (read as 0x00000000, writes have no effect) 0XF80705C0-
0XF80705F0

Table 12-34. HyperTransport Registers.

System Bus
Address Register Name Bits Used Description Page

0xF8070000
Device ID
Vendor ID

[0:15]
[16:31]

Device Identification Register.
Vendor Identification Register.

619

0xF8070010
Status
Command

[0:15]
[16:31]

Provides status information about the interface.
Controls how the bridge responds on the HyperTransport
interface.

620

0xF8070020
Class Code
Revision ID

[0:23]
[24:31]

Class Code specifies device type.
Specifies revision level of the chip.

621

0xF8070030

BIST
Header Type
Latency Timer
Cache Line Size

[0:7]
[8:15]

[16:23]
[24:31]

BIST register.
Indicates the type of header block used.
Not implemented by HyperTransport.
Not implemented by HyperTransport.

622

0xF8070040-
0xF8070090

Base Address Registers [0:31]
(each) BAR’s are not implemented in this design.

Table 12-32. CPC945-Specific HyperTransport Registers.

0xF8070200 - 0xF80703F3: CPC945-Specific Registers

[0:3] [4:7] [8:15] [16:23] [24:31] Address Page

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
Programmer’s Interface

Page 617 of 655

0xF80700A0 Cardbus CIS Pointer [0:31] Not implemented by HyperTransport.

0xF80700B0
Subsystem ID
Subsystem Vendor ID

[0:15]
[16:31]

Not implemented in this design.
Not implemented in this design.

0xF80700C0 Expansion ROM Base Address [0:31] Not implemented in this design.

0xF80700D0
Reserved
Capabilities Pointer

[0:23]
[24:31]

Reserved.
This is the pointer to the first capability block.

623

0xF80700E0 Reserved [0:31] Reserved.

0xF80700F0

Max_Lat
Min_Gnt
Interrupt Pin
Interrupt Line

[0:7]
[7:15]

[16:23]
[24:31]

Not implemented in this design.
Not implemented in this design.
Not implemented in this design.
Scratchpad to track interrupt routing.

624

0xF8070100
Command
Capability Pointer
Capability ID

[0:15]
[16:23]
[24:31]

Host/Secondary Interface Command Register.
Pointer to the next capability block.
Capability ID.

625

0xF8070110
LinkConfig
LinkCtrl

[0:15]
[16:31]

Link Configuration Register.
Link Control.

626

0xF8070120

LinkFreqCap
LinkError
LinkFreq
HTRev

[0:15]
[16:19]
[20:23]
[24:31]

Link Frequency Capability Register.
Link Error Register.
Link Frequency Control Register.
HyperTransport Revision ID Register.
This device conforms to rev 1.03.

628

0xF8070130
Reserved
Feature

[0:15]
[16:31]

Reserved.
Feature Capability Register.

629

0xF8070140
Error Handling
Enumeration Scratchpad

[0:15]
[16:31]

Error Handling Register.
Enumeration Scratchpad Register.

630

0xF8070150
Reserved
Mem Limit Upper
MemBase Upper

[0:15]
[16:13]
[24:31]

Reserved.
Not implemented in this design.
Not implemented in this design.

0xF8070200 HT1 Address Mask [0:31] This register controls which addresses are passed to the
HT1 chain. 632

0xF8070210 HT1/PI Interface Control [0:31] This register specifies how many requests the PI is capa-
ble of receiving. 633

0xF8070220 HT1/PI Memory Read Delay [28:31] Memory Read Delay for Memory Read Data Interface. 633

0xF8070230 HT1/PI Memory Write Delay [26:31] Write TA delay for Write Data Interface. 634

0xF8070240 HTG Configuration [30:31] For fine-tune HTG options. 635

0xF8070300
Bridge Control
Reserved

[0:15]
[16:31]

Bridge Control Register.
Reserved.

636

Table 12-34. HyperTransport Registers.

System Bus
Address Register Name Bits Used Description Page

User Manual

CPC945 Bridge and Memory Controller Preliminary

Programmer’s Interface
Page 618 of 655 February 1, 2008

0xF8070310
Reserved
TxCtl
DataBufAlloc

[0:11]
[12:15]
[16:31]

Reserved.
Transmit Control. This register contains controls for the
HyperTransport transmitters.
Rx Data Buffer Allocation. Controls the allocation of the 8
receive data buffers in each link among the 3 virtual chan-
nels, allowing performance tuning. The “Need” fields indi-
cate the minimum allocation to each channel, minus one.
The “Want” fields indicate how many buffers the allocator
should try to have released and outstanding to each chan-
nel at all times, minus 1. The total number of buffers
“needed” must be less than or equal to the total number (8)
of data buffers available. If less, the allocator gets more
flexibility handing out buffers dynamically. In the default
(reset) case, there are 2 buffers in each category.

638

0xF8070320
Reserved
ImpedCtrl (not implemented)

[0:15]
[16:31]

Reserved.
Link Impedance Control Registers.

0xF8070330
Reserved
ImpedCtrlSWCal
(not implemented)

[0:15]
[16:31]

Reserved.
Software control of calibrator Device 1 Offset 19ch-19fh.

0xF8070340
Reserved
TxBufCountMax

[0:7]
[8:31]

Reserved.
Maximum threshold for the transmit buffer counters If
buffer releases are received in a particular channel which
exceed the threshold for that channel, the extras are dis-
carded. This allows a general way to throttle the traffic on
the link. The counter value can be lowered in a running
system, but the system must go through reset to make an
increase take effect.

639

0xF8070350 DiagRxCrcExpLane0 [0:31] Expected CRC value for Lane 0.

640
0xF8070360 DiagRxCrcRcvLane0 [0:31] Received CRC value for Lane 0.

0xF8070370 DiagRxCrcExpLane1 [0:31] Expected CRC value for Lane 1.

0xF8070380 DiagRxCrcRcvLane1 [0:31] Received CRC value for Lane 1.

0xF8070390 SriRxNumeratorLower [0:31] Numerator Values for HT Sync FIFOs.

641
0xF80703A0 SriRxNumeratorUpper [0:31] Numerator Values for HT Sync FIFOs.

0xF80703B0 SriTxNumeratorLower [0:31] Numerator Values for HT Sync FIFOs.

0xF80703C0 SriTxNumeratorUpper [0:31] Numerator Values for HT Sync FIFOs.

0xF80703D0 SriOveride [0:31] Override Values for HT Sync FIFOs. 643

0xF80703E0 HT/PI PHY Control [19:31] Control bit for fine tuning HT PHY. 644

0XF8070500 PMHC0 [0:27] PM HT Configuration Register 0.

0XF8070510 PMHC1 [0:27] PM HT Configuration Register 1.

0XF8070520 PMHC2 [0:27] PM HT Configuration Register 2.

0XF8070530 PMHC3 [0:27] PM HT Configuration Register 3.

0XF8070540-
0XF8070570 Undefined (read as 0x00000000, writes have no effect).

0XF8070580 PMHD0 [0:31] PM HT Data Register 0.

0XF8070590 PMHD1 [0:31] PM HT Data Register 1.

Table 12-34. HyperTransport Registers.

System Bus
Address Register Name Bits Used Description Page

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
Programmer’s Interface

Page 619 of 655

Note: Some registers have a specialized type of R/W:
 R/W (R/C) => a write of ’1’ clears the bit
 R/W (R/S) => a write of ’1’ sets the bit

12.12.1 HT Device ID/Vendor ID Register (Device ID/Vendor ID)

0XF80705A0 PMHD2 [0:31] PM HT Data Register 2.

0XF80705B0 PMHD3 [0:31] PM HT Data Register 3.

0XF80705C0-
0XF80705F0 Undefined (read as 0x00000000, writes have no effect).

Reset Value 0x0074106B
Offset 0xF8070000
Access Type Read Only

Device ID Vendor ID

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits Field Name Description Access Reset

0:15 Device ID
Device ID assigned to this chip by vendor.
CPC945 HT1 (1.0, 1.1, 2.0)= 0x004A

R 0x004A

16:31 Vendor ID CPC945 = 0x106B R 0x106B

Table 12-34. HyperTransport Registers.

System Bus
Address Register Name Bits Used Description Page

User Manual

CPC945 Bridge and Memory Controller Preliminary

Programmer’s Interface
Page 620 of 655 February 1, 2008

12.12.2 Status/Command Register (Status/Command)

Controls how the bridge responds on the HyperTransport interface. Only the bits that are used by the host are
listed in the Command Register Description.

Reset Value 0x00100006
Offset 0xF8070010 (Bits 0:15 Status Register)

0xF8070010 (Bits 16:23 Command Register)
Access Type Read/Write, Read Only

R
es

er
ve

d

S
ig

dS
er

r

R
cv

dM
st

rA
bo

rt

R
cv

dT
gt

A
bo

rt

S
ig

dT
gt

A
bo

rt

Reserved C
ap

Li
st

Reserved B
us

 M
as

te
r

M
em

or
y

S
pa

ce
 E

na
bl

e

I/O
 S

pa
ce

 E
na

bl
e

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits Field Name Description Access Reset

0 Reserved This field will read all 0’s. R 0b0

1 SigdSerr
Not implemented
This bit reports the assertion of a system error by a bridge on its primary inter-
face. Since CPC945 HT is a host bridge, there is not primary HT interface.

R 0b0

2 RcvdMstrAbort
This bit reports the detection of a master abort termination by the bridge, when it
is the master of a transaction on its primary interface. An equivalent error can
exist inside the host. It can be cleared by writing a 1 to it.

R/C 0b0

3 RcvdTgtAbort
This bit reports the detection of a target abort by the bridge when it is the master
of a transaction on its primary interface. It can be cleared by writing a 1 to it. An
equivalent error can exist inside the host.

R/C 0b0

4 SigdTgtAbort
This bit reports the signalling of a target abort termination by the bridge, when it
responds as the target of a transaction on its primary interface. An equivalent
error can exist inside the host bit set. It can be cleared by writing a 1 to it.

R/C 0b0

5:10 Reserved This field will read all 0’s. R 0x00

11 CapList Indicates that the bridge supports a capabilities list. R 0b1

12:28 Reserved This field will read all 0’s R 0x0000

29 Bus Master Controls the devices ability to issue requests onto HyperTransport chain. As a
Host Bridge, CPC945 is always able to act as a master. R 0b1

30 Memory Space
Enable CPC945 always accepts memory cycles. R 0b1

31 I/O Space Enable CPC945 never accepts I/O cycles. R 0b0

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
Programmer’s Interface

Page 621 of 655

12.12.3 Class Code/Revision Register (Class Code/Revision ID)

Specifies class code and revision level of the chip.

Reset Value 0x06000000
Offset 0xF8070020
Access Type Read Only

Base Sub Intfc Revision ID

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits Field Name Description Access Reset

0:7 Base Base class of the device – 0x06 indicates a host bridge. R 0x06

8:15 Sub Subclass of the device – 0x00 indicates a host bridge. R 0x00

16:23 Intfc Interface class of the device – 0x00 indicates a host bridge. R 0x00

24:31 Revision ID Revision ID assigned by vendor. R 0x00

User Manual

CPC945 Bridge and Memory Controller Preliminary

Programmer’s Interface
Page 622 of 655 February 1, 2008

12.12.4 BIST/Header Type Register (BIST/Header Type)

The BIST register is used for control and status of BIST logic. The Header Type register identifies the layout
of the second part of the configuration header.

Reset Value 0x00000000
Offset 0xF8070030
Access Type Read Only

BIST Header Type Reserved

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits Field Name Description Access Reset

0:7 BIST Not implemented in this design. R 0x00

8:15 Header Type A value of 0x0 indicates that this is a device header. R 0x00

16:31 Reserved This field will read all 0’s R 0x0000

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
Programmer’s Interface

Page 623 of 655

12.12.5 Capabilities Pointer Register (Capability1)

Reset Value 0x00000040
Offset 0xF80700D0
Access Type Read Only

Reserved Capability1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits Field Name Description Access Reset

0:23 Reserved This field will read all 0’s R 0x000000

24:31 Capability1
Register number (less the bottom two bits, which must be 0) of the base of
the first capabilities block. All HyperTransport devices have at least an
HyperTransport capability block.

R 0x40

User Manual

CPC945 Bridge and Memory Controller Preliminary

Programmer’s Interface
Page 624 of 655 February 1, 2008

12.12.6 Interrupt Line Register (IntrLine)

Reset Value 0x000000FF
Offset 0xF80700F0
Access Type Read/Write, Read Only

Reserved IntrLine

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits Field Name Description Access Reset

0:23 Reserved This field will read all 0’s. R 0x000000

24:31 IntrLine Used by software as a scratchpad to track interrupt routing. R/W 0xFF

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
Programmer’s Interface

Page 625 of 655

12.12.7 Command/Pointer/Capability ID Register (HTCapability00)

Reset Value 0X20010008
Offset 0xF8070100
Access Type Read/Write, Read Only

Command Register

CapType D
ro

pU
ni

ni
tia

liz
ed

Li
nk

Reserved DeviceNum D
ou

bl
eE

nd
ed

W
ar

m
R

es
et

Pointer Capability ID

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits Field Name Description Access Reset

0:2 CapType Indicates what type of HyperTransport capability block this is. For a secondary
block, it is always 001. R 0b001

3 DropUninitializedLink

Drop on Unitialized Link
This bit determines what will happen to packets issued by a device or forwarded
from a receiving link interface to a transmitting interface whose Initialization
Complete and End of Chain bits are clear. If both are deasserted for a given link,
packets to be transmitted on that link will be stalled until either Initialization Com-
plete sets (in which case they will be transmitted) or End Of Chain sets (in which
case they will be treated as End Of Chain packets; see Section 10.1.5 of HT
Specification 1.04). In the case where hardware is broken, it is possible that nei-
ther of these events occurs, in which case the packet can hang. If Drop on Unini-
tialized Link is set, a transmitter with its Initialization Complete bit clear will
always act as if the End of Chain bit were set. Hosts that use the initialization
sequence described in Section 12.3 of HT spec 1.04 are encouraged to imple-
ment a timeout counter to prevent a system-wide initialization error due to link-
level initialization problems on a non-default chain. Packet forwarding behavior is
described in Table 37 of the HT specification 1.04.

R/W 0b0

4:8 Reserved This field will read all 0’s R 0x00

9:13 DeviceNum
Device number that this host uses when responding to PCI type 0 configuration
cycles from the HyperTransport chain. Double-hosted chain not implemented in
this design.

R 0b0000

14 DoubleEnded
Set by a host on the other end of the chain during initialization to indicate that the
link has hosts on both ends. Double-hosted chain not implemented in this
design.

R 0b0

15 WarmReset

This bit controls whether a reset sequence initiated by writing the Secondary Bus
Reset bit of the Bridge Control register is cold or warm. (Cold means that PwrOk
is deasserted during the sequence.)
0 Cold
1 Warm

R/W 0b1

16:23 Pointer Register number (less the bottom two bits, which must be 0) of the base of the
next capabilities block. It is 0 if there are no other capabilities blocks. R 0x00

24:31 Capability ID Capability ID assigned by the PCI-SIG for HyperTransport. R 0x08

User Manual

CPC945 Bridge and Memory Controller Preliminary

Programmer’s Interface
Page 626 of 655 February 1, 2008

12.12.8 Link Config/Link Control Register (HTCapability04)

In the HyperTransport Interface capabilities block there are four register fields related to the width of the link.
They are LinkWidthOut, LinkWidthIn, MaxLinkWidthOut, and MaxLinkWidthIn. The first two register fields
describe the “utilized” width of the link. This is the result of the hardware based link-width negotiation that
occurs at cold reset. The latter two register fields (MaxLinkWidthOut and MaxLinkWidthIn) are supposed to
reflect the physical width present on the device.

The same encoding is used for all Link Configuration subfields:
000 - 8 bit
001 - 16 bit
011 - 32 bit
100 - 2 bit
101 - 4 bit
111 - disconnected (when applicable)

All other encodings are reserved.

Note: Some registers have a specialized type of R/W:
 R/W (R/C) => a write of ’1’ clears the bit
 R/W (R/S) => a write of ’1’ sets the bit

Reset Value 0x00110020
Offset 0xF8070110
Access Type Read/Write, Read Only

Link Configuration Register Link Control Register

D
w

Fc
O

ut
E

n

Out D
w

Fc
In

En

In D
w

Fc
O

ut

MaxOut D
w

Fc
In

MaxIn R
es

er
ve

d

E
xt

C
tl

LS
E

n

Is
oc

E
n

CrcErr TX
O

E
O

C
Init Li

nk
Fa

il

C
FE

C
S

T

C
FI

E

R
es

er
ve

d

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits Field Name Description Access Reset

0 DwFcOutEn
Doubleword Flow Control Out Enable
(This optional mode is not supported by CPC945's HyperTransport interface.)

R 0b0

1:3 Out

LinkWidthOut
This controls the width used of the outgoing link from this HT device. It must match
the used incoming width of the HT device on the other end of the link. A cold soft-
ware link reset using the SecBusReset bit in the Bridge Control Register resets this
bit.
Resets to zero, then set by hardware during Link Width Initialization.

R/W 0b000

4 DwFcInEn Doubleword flow control enable (not supported) R 0b0

5:7 In

LinkWidthIn
This controls the width used of the incoming HT link to this device. It must match
the used outgoing width of the HT device on the other end of the link. A cold soft-
ware link reset using the SecBusReset bit in the Bridge Control Register resets this
bit.
Resets to zero, then set by hardware during link width initialization.

R/W 0b000

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
Programmer’s Interface

Page 627 of 655

8 DwFcOut
Doubleword flow control out
(This optional mode is not supported by CPC945's HyperTransport interface.)

R 0b0

9:11 MaxOut Indicates the maximum width of the outgoing link supported by this device.
CPC945’s 16-bit bus uses an initial value of 0b001. R 0b001

12 DwFcIn
Doubleword flow control in
(This optional mode is not supported by CPC945's HyperTransport interface.)

R 0b0

13:15 MaxIn Indicates the maximum width of the incoming link supported by this device.
CPC945’s 16-bit bus uses an initial value of 0b001. R 0b001

16 Reserved This field will read all 0’s R 0b0

17 ExtCtl

Extended CTL time
If this bit is set, during the link initialization sequence in Section 12.2. HT Specifica-
tion 1.04, CTL will be asserted for 50us after the point where both the transmitting
device has asserted CTL and it has sampled CTL asserted from the other side of
the link. If this bit is clear, CTL need only be asserted at least 16 bit-times after
both sides assert CTL in 8-bit or larger links. (32 bit-times for 4-bit links, 64 bit-
times for 2-bit links)

R/W 0b0

18 LSEn LDTSTOP# tristate enable controls whether the link will be tristated during an LDT-
STOP# sequence. R/W 0b0

19 IsocEn
Enables Isochonous flow control mode for this link.
(This optional mode is not supported by CPC945's HyperTransport interface.)

R 0b0

20:23 CrcErr
Each bit is set whenever a CRC error is detected on the corresponding byte lane of
the link. Each bit can be cleared by writing a 1 to it. CPC945 only has 2 byte lanes,
so only bits 22 and 23 are set.

R/W
(R/C) 0b0000

24 TXO

TransmitterOff
This bit shuts off the link transmitter to reduce EMI and power. The EOC bit should
always be set prior to setting the XmitOff bit. It can only be set, not cleared. In the
case of both a cold and warm software link reset using the SecBusReset bit in the
Bridge Control Register this bit resets to zero.
0 Transmitter on
1 Transmitter off

R/W
(R/S) 0b0

25 EOC

End of chain
This bit indicates that this link is not part of the logical HyperTransport chain, and
that this device should be considered the end of the chain for packets coming from
the other direction. Packets directed towards this link are dropped or result in non-
existent address (NXA) responses. It can only be set, not cleared. In the case of
both a cold and warm software link reset using the SecBusReset bit in the Bridge
Control Register this bit resets to zero.

R/W
(R/S) 0b0

26 Init

Initialization complete
This read-only bit indicates that low-level link initialization has successfully com-
pleted on the link.
In the case of both a cold and warm software link reset using the SecBusReset bit
in the Bridge Control Register this bit resets to zero when the reset begins and
becomes one when the initialization is complete.

R 0b0

27 LinkFail This bit is set to indicate that a failure has been detected on a link and should not
be used. It is set by hardware and cleared by software.

R/W
(R/C) 0b0

28 CFE When this bit is a one, bad CRC is generated on all outgoing traffic on the link. R/W 0b0

29 CST Writing a 1 to this bit causes hardware to initiate a CRC test sequence on the link.
When the test sequence has completed, hardware will clear the bit.

R/W
(R/S) 0b0

30 CFIE
If set, this bit causes CRC errors to be treated as fatal errors. When detected, they
cause all HyperTransport links from this device to be flooded with synchronization
packets, and the LinkFail bit to be set.

R/W 0b0

31 Reserved This field will read all 0’s. R 0b0

Bits Field Name Description Access Reset

User Manual

CPC945 Bridge and Memory Controller Preliminary

Programmer’s Interface
Page 628 of 655 February 1, 2008

12.12.9 LinkFreqCap/Link Error/Link Freq/ Revision ID Register

The name for this register is HTCapability08.

Reset Value 0x003F0024
Offset 0xF8070120
Access Type Read/Write, Read Only

Link Frequency Capability Link Error Link Frequency Revision ID

LinkFreqCap C
TL

 T
im

eo
ut

E
O

C
 E

rr
or

O
V

F
E

rr
or

P
ro

to
co

l E
rr

or

Link Freq Major Minor

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits Field Name Description Access Reset

0:15 LinkFreqCap

Each bit in this mask corresponds to one of the 16 encodings in the
Link Frequency register. A set bit indicates that the transmitter sup-
ports that frequency. For example 0x1F means that frequencies of
200 - 600 MHz are supported.

R 0x001F

16 CTL Timeout

This bit indicates how long CTL can be low before a device indi-
cates a protocol error.
0 1 millisecond;
1 1 second.
Not implemented in CPC945, but the HT specification states this bit
must stay as a R/W.

R/W 0b0

17 EOC Error End of chain error R/C 0b0

18 OVF Error Overflow error R/C 0b0

19 Protocol Error Protocol error R/C 0b0

20:23 Link Freq

HyperTransport link frequency:
0000 200 MHz
0001 300 MHz
0010 400 MHz
0011 500 MHz
0100 600 MHz
0101 800 MHz
0110 1000 MHz
0111 - 1110 Reserved
1111 Vendor specific

R/W 0b0000

24:26 Major Major revision of the specification. (Revision 1.04) R 0b001

27:31 Minor Minor revision of the specification. (Revision 1.04) R 0b00100

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
Programmer’s Interface

Page 629 of 655

12.12.10 Feature Capability Register (Feature)

Reset Value 0x00000106
Offset 0xF8070130
Access Type Read Only

Reserved E
xt

en
de

dR
eg

Reserved E
xt

en
de

dC
TL

C
rc

Te
st

Ld
tS

to
p

Is
oc

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits Field Name Description Access Reset

0:22 Reserved This field will read all 0’s R 0x000000

23 ExtendedReg This device does include the Enumeration Scratchpad, Error Handling,
and Memory Base/Limit Upper registers. R 0b1

24:27 Reserved This field will read all 0’s R 0b0000

28 ExtendedCTL This device does not require CTL to be asserted for 50 μs during the
initialization sequence after an LDTSTOP# disconnect. R 0b0

29 CrcTest Indicates whether this device supports the CRC test mode. R 0b1

30 LdtStop Indicates whether this device supports the link disconnect (LDTSTOP)
protocol. R 0b1

31 Isoc Indicates whether this device supports isochronous flow control mode.
(Not supported) R 0b0

User Manual

CPC945 Bridge and Memory Controller Preliminary

Programmer’s Interface
Page 630 of 655 February 1, 2008

12.12.11 Error Handling/Enumeration Scratchpad Register (ErrCtrl/Enum)

This register contains routing enables from the various error log bits to the various error reporting mecha-
nisms, as well as the Chain Fail and Response Error status bits. For definitions of the reporting mechanisms,
see the HyperTransport Specification. Devices that do not check for one or more error conditions should
hardwire the log and enable bits for those conditions to 0.

Note: Some registers have a specialized type of R/W
 R/W (R/C) => a write of ’1’ will clear the bit
 R/W (R/S) => a write of ’1’ will set the bit

Reset Value 0x00000000
Offset 0xF8070140
Access Type Read/Write, Read Only

Error Handling Byte 1 Register
(NFE=Nonfatal Enable)

Error Handling Byte 1 Register
(FE=Fatal Enable) Enumeration Scratchpad Register

S
E

R
R

 N
on

Fa
ta

l E
na

bl
e

C
R

C
 N

on
Fa

ta
l E

na
bl

e

R
es

po
ns

e
N

on
Fa

ta
l E

na
bl

e

E
O

C
 N

on
Fa

ta
l E

na
bl

e

O
ve

rfl
ow

 N
on

Fa
ta

l E
na

bl
e

P
ro

to
co

l N
on

Fa
ta

l E
na

bl
e

R
es

po
ns

e
E

rr
or

C
ha

in
 F

ai
l

S
E

R
R

 F
at

al
 E

na
bl

e

C
R

C
 F

at
al

 E
na

bl
e

R
es

po
ns

e
Fa

ta
l E

na
bl

e

E
O

C
 F

at
al

 E
na

bl
e

O
ve

rfl
ow

 F
at

al
 E

na
bl

e

P
ro

to
co

l F
at

al
 E

na
bl

e

O
ve

rfl
ow

 F
lo

od
 E

na
bl

e

P
ro

to
co

l F
lo

od
 E

na
bl

e

Enumeration Scratchpad

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits Field Name Description Access Reset

0 SERR NonFatal
Enable

This bit is only implemented for host interfaces. For slave interfaces, it is hard-
wired to 0. R/W 0b0

1 CRC NonFatal
Enable

If asserted, this bit will cause the nonfatal error interrupt whenever any of the
CRC Error bits are asserted in (either of) the Link Control registers. If the non-
fatal error interrupt is not implemented, this bit is hardwired to 0.

R/W 0b0

2 Response NonFatal
Enable

If asserted, this bit will cause the nonfatal error interrupt whenever the
Response Error bit (9) is asserted. If the nonfatal error interrupt is not imple-
mented, this bit is hardwired to 0.

R/W 0b0

3 EOC NonFatal
Enable

If asserted, this bit will cause the nonfatal error interrupt to be asserted when-
ever the End Of Chain Error bit is asserted in (one of) the Link Error registers,
or the Inbound End Of Chain Error bit is set in the Host Command register. If
the nonfatal error interrupt is not implemented, this bit is hardwired to 0.

R/W 0b0

4 Overflow NonFatal
Enable

If asserted, this bit will cause the nonfatal error interrupt to be asserted when-
ever the Overflow Error bit is asserted in (one of) the Link Error registers. If the
nonfatal error interrupt is not implemented, this bit is hardwired to 0.

R/W 0b0

5 Protocol NonFatal
Enable

If asserted, this bit will cause the nonfatal error interrupt to be asserted when-
ever the Protocol Error bit is asserted in (one of) the Link Error registers. If the
nonfatal error interrupt is not implemented, this bit is hardwired to 0.

R/W 0b0

6 Response Error This bit indicates that the given interface has received a response error. R/W
(R/C) 0b0

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
Programmer’s Interface

Page 631 of 655

7 Chain Fail

ChainFail - This bit indicates that the chain has gone down. It is set whenever
a device detects sync flooding or a sync flood generating error. It is cleared by
a cold or warm software link reset using the SecBusReset bit in the Bridge
Control Register

R 0b0

8 SERR Fatal Enable
If asserted in a host, this bit will cause the fatal error interrupt whenever the
System Error Detected bit is asserted in the Secondary Status register. If the
fatal error interrupt is not implemented, this bit is hardwired to 0.

R/W 0b0

9 CRC Fatal Enable
If asserted, this bit will cause the fatal error interrupt whenever any of the CRC
Error bits are asserted in (either of) the Link Control registers. If the fatal error
interrupt is not implemented, this bit is hardwired to 0.

R/W 0b0

10 Response Fatal
Enable

If asserted, this bit will cause the fatal error interrupt whenever the Response
Error bit (9) is asserted. If the fatal error interrupt is not implemented, this bit is
hardwired to 0.

R/W 0b0

11 EOC Fatal Enable

If asserted, this bit will cause the fatal error interrupt to be asserted whenever
the End Of Chain Error bit is asserted in (one of) the Link Error registers, or the
Inbound End Of Chain Error bit is set in the Host Command register. If the fatal
error interrupt is not implemented, this bit is hardwired to 0.

R/W 0b0

12 Overflow Fatal
Enable

If asserted, this bit will cause the fatal error interrupt to be asserted whenever
the Overflow Error bit is asserted in (one of) the Link Error registers. If the fatal
error interrupt is not implemented, this bit is hardwired to 0.

R/W 0b0

13 Protocol Fatal Enable
If asserted, this bit will cause the fatal error interrupt to be asserted whenever
the Protocol Error bit is asserted in (one of) the Link Error registers. If the fatal
error interrupt is not implemented, this bit is hardwired to 0.

R/W 0b0

14 Overflow Flood
Enable

If asserted, this bit will cause the link to be sync flooded whenever the Over-
flow Error bit is asserted in (one of) the Link Error registers. R/W 0b0

15 Protocol Flood
Enable

If asserted, this bit will cause the link to be sync flooded whenever the Protocol
Error bit is asserted in (one of) the Link Error registers. R/W 0b0

16:31 Enumeration
 Scratchpad This register provides a scratchpad for enumeration software. R/W 0x0000

Bits Field Name Description Access Reset

User Manual

CPC945 Bridge and Memory Controller Preliminary

Programmer’s Interface
Page 632 of 655 February 1, 2008

12.12.12 HT Address Mask Register

Note: 0xFxxx_xxxx decoding: See Section 12.11.2.4 PCI Express 0 Address Mask Register on page 556, for
PCIe access to the 0xFxxx_xxxx space to make sure the two encodings do not conflict.

CPC945 does not allow software to clear the Address Space Select bits corresponding to its assigned HT bus
numbers (bits 2,3,4, 15 are always set for HT).

Reset Value 0x38010000
Offset 0xF8070200
Access Type Read/Write, Read Only

Fine Address Select Coarse Address Select

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits Field Name Description Access Reset

0:15
Fine

Address
Select

This field defines which fine (16 MB) regions of memory are mapped from the PI to
the HT Bus when PI address bits [0:3] = 0xF. If a given bit in this field is set,
addresses on the PI bus with the matching bits 4:7 are passed from the PI bus to
the HT Bus, while the same address values on the HT bus are not passed to the PI
bus. If an address on the HT bus matches a HT region of memory, then the access
is meant for a device on the HT bus and the access is forwarded to the correct
device. If a given bit in this field is not set, addresses on the PI with the matching
bits 4:7 are not passed from the PI to the HT bus while the same address values on
the HT bus are passed to the PI or PCIe. The decode function sets:
Bits 2:4, and 15 are read-only and are set to ‘1’.
Bits 0 and 1 should be set to ’0’ because the PCIe owns that space. The results of
setting these bits to ‘1’is unpredictable.

R [2:4,15]
R/W [0:1, 5:14] 0x3801

16:31
Coarse
Address
Select

This field defines which coarse (256 MB) regions of memory are passed from the PI
to the HT Bus. If a given bit in this field is set, Addresses on the PI with the match-
ing address bits [0:3] are passed from the PI bus to the HT Bus, while the equiva-
lent address values on the HT Bus, AD[31:28], are not passed to the PI bus. If a
given bit in this field is not set, addresses on PI with the matching address bits [0:3]
are not passed from the PI bus to the HT Bus, while the equivalent address values
on the HT Bus, AD[31:28], are passed to the PI bus. Bit 31 of this register is disre-
garded (but please set it to 0) because its position, representing Coarse Space $F,
is always used to decode into the Fine Address Select Field.
Bits 16:23, and 31 are read only and are always set to initial value as shown.
Bits 16:23 represent the first 2 GB of address space and must be set to ‘0’ to avoid
conflicts. Bit 31 represents 0xF8000000.

R [16:23,31]
R/W [24:30] 0x0000

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
Programmer’s Interface

Page 633 of 655

12.12.13 HT1/PI Interface Control Register

12.12.14 Memory Read Delay for Memory Read Data Interface (HtMemDly)

For upstream read requests from HyperTransport to memory, the read tag valid (RdTgV) signal is sent back
from the PI first. After a fixed number of cycles later, the read data is then available on the RdDt bus for the
number of consecutive cycles indicated by the RdDtCyc. This fixed number of cycles is specified by the
MemDly parameter.

Reset Value 0x00000088
Offset 0xF8070210
Access Type Read/Write, Read Only

Reserved SizReqQHtCR SizReqQHtCW

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits Field Name Description Access Reset

0:23 Reserved This field will read all 0’s R 0x000000

24:27 SizReqQHtCR
Size of PI read request queue.
Minimum: 1, Maximum: 8, default: 8

R/W 0x8

28:31 SizReqQHtCW
Size of PI write request queue.
Minimum: 1, Maximum: 8, default: 8

R/W 0x8

Reset Value 0x00000006
Offset 0xF8070220
Access Type Read/Write, Read Only

Reserved HtMemDly

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits Field Name Description Access Reset

0:27 Reserved This field will read all 0’s R 0x000000

28:31 HtMemDly Delay between RdTgV and RdDt. Min: 4, Max: 12, default: 6 R/W 0x6

User Manual

CPC945 Bridge and Memory Controller Preliminary

Programmer’s Interface
Page 634 of 655 February 1, 2008

12.12.15 Write TA delay for Write Data Interface (WrTADly)

For downstream write requests from PI or PCI Express to HyperTransport, it might take a number of cycles
for the WrTA to get to the requestor that is providing the write data. This delay is called the WrTADly and is a
configurable parameter. If it is necessary to fix timing problems late in the design due to the requestor and the
target being physically far apart, a register can be added to all the signals on this interface. If this happens, all
that needs to be changed is the parameter, WrTADly. Two independent parameters can be set for PI and PCI
Express.

Reset Value 0x0000000A
Offset 0xF8070230
Access Type Read/Write, Read Only

Reserved ApiHt PcHt

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits Field Name Description Access Reset

0:25 Reserved This field will read all 0’s R 0x000000

26:28 ApiHt PI to HT write TA delay. Min: 1, Max: 4, default: 1 R/W 0x1

29:31 PcHt PCIe to HT write TA delay. Min: 1, Max: 4, default: 2 R/W 0x2

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
Programmer’s Interface

Page 635 of 655

12.12.16 HTG Configuration (HTGCFG)

Configuration register to fine-tune HTG options.

Reset Value 0x00000089
Offset 0xF8070240
Access Type Read/Write, Read Only

Reserved U
pR

dD
tF

ifo
W

P
trD

ly

U
pR

dM
em

Fi
fo

E
m

pt
yL

ev
el

U
pR

dP
yC

hk
E

n

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits Field Name Description Access Reset

0:22 Reserved This field will read all 0’s R 0x000000

23:24 UpRdDtFifoWPtrDly
Number of delay cycles for the write pointer before passed
to the read side. 3 cycles is the safest setting. Fast DDR2
clocks might use only 1 or 2.

R/W 0x1

25:30 UpRdMemFifoEmptyLevel

Minimum number of available entries in the memory data
FIFO necessary before it is considered not full. The memory
data FIFO has 32 total entries. The default setting is 4,
meaning 4 entries need to be available for the FIFO to be
not full. This setting can range in value between 0 and 32.

R/W 0x4

31 UpRdPyChkEn Enable parity check on upstream memory read interface.
default: 1 (enabled) R/W 0b1

User Manual

CPC945 Bridge and Memory Controller Preliminary

Programmer’s Interface
Page 636 of 655 February 1, 2008

12.12.17 Bridge Control Register (BrCtrl)

Note: Some registers have a specialized type of R/W.
 R/W (R/C) => a write of ’1’ clears the bit
 R/W (R/S) => a write of ’1’ sets the bit

Reset Value 0x00000000
Offset 0xF8070300
Access Type Read/Write, Read Only

D
et

S
er

r

Reserved D
is

ca
rd

S
er

rE
n

D
is

ca
rd

S
ta

t

S
ec

D
is

ca
rd

P
rim

D
is

ca
rd

Fa
st

B
2B

E
n

S
ec

B
us

R
es

et

M
st

rA
bo

rtM
od

e

R
es

er
ve

d

V
ga

E
n

Is
aE

n

S
er

rE
n

P
ar

E
rr

R
es

pE
n

Reserved

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits Field Name Description Access Reset

0 DetSerr

This bit reports the detection of a system error by the bridge on its secondary inter-
face. This is indicated in HT by a HT device driving sync packets on the link after
the completion of the initialization sequence. This bit can be cleared by writing a 1
to it.
See discussion in Section 6.9.4 HyperTransport SERR# on page 125.

R/W
(R/C) 0b0

1:3 Reserved This field will read all 0’s. R 0b000

4 DiscardSerrEn Not meaningful for HT. R 0b0

5 DiscardStat Not meaningful for HT. R 0b0

6 SecDiscard Not meaningful for HT. R 0b0

7 PrimDiscard Not meaningful for HT. R 0b0

8 FastB2BEn Not meaningful for HT. R 0b0

9 SecBusReset

If a 1 is written, hardware performs a reset sequence on the secondary bus. Clear-
ing the bit brings the secondary bus out of reset. The setting of cold vs. warm link
reset is controlled by the WarmReset bit in the Command/Pointer/Capability ID
Description Register (Section 12.12.7 Command/Pointer/Capability ID Register
(HTCapability00)).
Warning: Though it is ok for reset to assert in the midst of active traffic, the busses
must be quiesced before coming back out of reset. If the busses are not quiesced,
data might be stuck in the data pipe upon awakening. Leaving write data in the
data pipe will cause all subsequent write data to be shifted. After the reset is
asserted, no more downstream requests should be issued until the bus is taken out
of reset.

R/W 0b0

10 MstrAbortMode

This bit controls the action taken when a transaction takes a Master Abort on the
destination bus. If this bit is clear, writes are allowed to complete normally on the
source bus, and reads have all 1's returned. If it is set, the Master Abort will be
treated as an error, returning a Target Abort Response (indicated on HyperTrans-
port by a set error bit) for nonposted requests, and causing system error assertion
(indicated by driving sync packets on the primary interface if enabled, or generat-
ing an NMI packet if enabled) for posted requests.

R/W 0b0

11 Reserved This field will read all 0’s. R 0b0

12 VgaEn Not supported by CPC945. R 0b0

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
Programmer’s Interface

Page 637 of 655

13 IsaEn Not supported by CPC945. R 0b0

14 SerrEn

Not implemented
If implemented, this bit controls forwarding of system errors from the secondary
interface to the primary interface. If it is set, system errors (indicated on HT by sync
packets after the initialization sequence has completed) will propagate, assuming
that the SERR enable bit is set for the primary interface in the command register.
See discussion in Section 6.9.4 HyperTransport SERR# on page 125.

R 0b0

15 ParErrRespEn Parity error response enable. This bit is reserved because HT does not have parity
errors. R 0b0

16:31 Reserved This field will read all 0’s. R 0x0000

Bits Field Name Description Access Reset

User Manual

CPC945 Bridge and Memory Controller Preliminary

Programmer’s Interface
Page 638 of 655 February 1, 2008

12.12.18 TxCtl/Rx Data Buffer Allocation Register (TxCtl/RxDataBufAlloc)

This register contains the default settings for HyperTransport buffer reservations and allows users to tune or
adjust the buffer release policy on the link. The TxCtl/BufRelSpace bits [4:7] are used to control how often a
"buffer free" message is sent out on the HyperTransport Link.

The TxCtl/Rx Data Buffer Allocation Register controls the allocation of the 8 receive data buffers in each link
among the 3 virtual channels, to allow performance tuning. The “Need” fields indicate the minimum allocation
at all times to each channel, minus one. That is, a value of 0 indicates a permanent minimum allocation of 1.
The “Want” fields indicate how many buffers the allocator should try to have released and outstanding to each
channel at all times, minus 1. The total number of buffers “needed” must be less than or equal to the total
number (8) of data buffers available. If less, it gives the allocator more flexibility to hand out buffers dynami-
cally. In the default (reset) case, there are 2 buffers in each category.

Reset Value 0x04301106
Offset 0xF8070310
Access Type Read/Write, Read Only

Reserved
TxCtl/

BufRelSpace WantPReq WantNpReq WantResp NeedPReq NeedNpReq NeedResp

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits Field Name Description Access Reset

0:3 Reserved This field will read all 0’s. R 0b0000

4:7 TxCtl/
BufRelSpace

This register controls throttling of buffer release messages on a busy bus. If the
bus is idle, buffer releases will always get issued immediately. When the bus is
busy, we will force buffer release messages into the packet stream. The field
gives the minimum number of cells that must be allowed to pass since a buffer
release before another one can be forced in, to prevent them from absorbing too
much bandwidth.

R/W 0b0100

8:11 WantPReq Number of buffers minus 1 to try to keep released in the posted request channel. R/W 0b0011

12:15 WantNpReq Number of buffers minus 1 to try to keep released in the nonposted request
channel. R/W 0b0000

16:19 WantResp Number of buffers minus 1 to try to keep released in the response channel. R/W 0b0001

20:23 NeedPReq Minimum data buffer allocation to the posted request channel. R/W 0b0001

24:27 NeedNpReq Minimum data buffer allocation to the nonposted request channel. R/W 0b0000

28:31 NeedResp Minimum data buffer allocation to the response channel. R/W 0b0110

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
Programmer’s Interface

Page 639 of 655

12.12.19 Maximum Transmit Buffer Counters Register (TxBufCountMax)

Maximum threshold for the transmit buffer counters If buffer releases are received in a particular channel
which exceed the threshold for that channel, the extras are discarded. This allows a general way to throttle
the traffic on the link. The counter value can be lowered in a running system, but the system must go through
reset to make an increase take effect.

Reset Value 0x00FFFFFF
Offset 0xF8070340
Access Type Read/Write, Read Only

Reserved RData RCmd NpData NpCmd PData PCmd

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits Field Name Description Access Reset

0:7 Reserved This field will read all 0’s R 0x00

8:11 RData Response data buffer threshold R/W 0xF

12:15 RCmd Response command buffer threshold R/W 0xF

16:19 NpData Nonposted data buffer threshold R/W 0xF

20:23 NpCmd Nonposted command buffer threshold R/W 0xF

24:27 PData Posted data buffer threshold R/W 0xF

28:31 PCmd Posted command buffer threshold R/W 0xF

User Manual

CPC945 Bridge and Memory Controller Preliminary

Programmer’s Interface
Page 640 of 655 February 1, 2008

12.12.20 Diagnostic CRC Registers (DiagRxCrc)

The diagnostic registers record the value of the expected and received CRC value whenever a CRC error is
detected. Once the error is latched, further CRC errors do not over-write the initial error value. These regis-
ters are not reset by warm or cold reset so that a system can reset the link and still retrieve the error state
from the previous run. Note that the CRC is 64 bits long so it is stored within two 32-bit registers.

0xF8070350 DiagRxCrcExpLane0: Diagnostic Expected CRC Register (Bits [0:31] of the CRC)
0xF8070360 DiagRxCrcRcvLane0: Diagnostic Expected CRC Description (Bits [0:31] of the CRC)
0xF8070370 DiagRxCrcExpLane1: Diagnostic Expected CRC Register (Bits [32:63] of the CRC)
0xF8070380 DiagRxCrcRcvLane1: Diagnostic Received CRC Register (Bits [32:63] of the CRC)

All registers have the same layout as 0xF8070350 (Table 12-36 DiagRxCrcExpLane0: Diagnostic
Expected CRC Description (Bits [0:31] of the CRC)) so the next three register descriptions have been
omitted.

DiagRxCrcExpLane0

DiagRxCrcRcvLane0

DiagRxCrcExpLane1

DiagRxCrcRcvLane1

Reset Value 0x00000000
Offset 0xF8070350 (DiagRxCrcExpLane0)

0xF8070360 (DiagRxCrcRcvLane0)
0xF8070370 (DiagRxCrcExpLane1)
0xF8070380 (DiagRxCrcRcvLane1)

Access Type Read Only

ExpLane0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

RcvLane0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

ExpLane1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

RcvpLane1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
Programmer’s Interface

Page 641 of 655

12.12.21 Receive and Transmit Synchronization FIFOs (Sri[Rx/Tx]Numerator)

The receive and transmit synchronization FIFOs require different parameters based on HT data rate and
core clock rate. The parameters are normally derived from an internal look up table (LUT), but can be
overridden using the values in the Serial Rom Interface (SRI) CSR range for nonstandard frequency
combinations, or to tweak margin/offset values to improve latency through the FIFO.
0xF8070390 SriRxNumeratorLower
0xF80703A0 SriRxNumeratorUpper
0xF80703B0 SriTxNumeratorLower
0xF80703C0 SriTxNumeratorUpper
0xF80703D0 SriOveride (SriRxNumeratorLower: Receive Synchronization FIFO Register
Description (Bits [0:31]))

Here is an example of how the numerator and denominator are calculated for the transmit and receive
FIFOs.

Clock Ratios
F1 = HT Clock Rate
F2 = Application Clock Rate (ht_clk)

Cad/Ctl F1 is DDR2 => 2Edges * 8Bits
Cad/Ctl F2 is 1Edge *64Bits

Ratio = 2*F1/8*F2 => F1/4*F2
Ratio = F1/4*F2, where the ratio must be <= 1

Example:
HT Data Rate = 1200 MHz
Application Clock Rate = 200 MHz

F1/4*F2 = 600MHz/4*200MHz = ?

This indicates that data should be “pushed” (tx) or ”popped” (rx) into/from the FIFO at a rate of ?. To do
this the numerator could be set as follows:

Numerator = 64’h000000000000000e

With denominator set to the denominator of the ratio:
Denominator = 7’b0000100

This causes the push/pop signals to come from the lower nibble of the numerator field, of which, 3 out
of the 4 bits are set.

Table 12-36.DiagRxCrcExpLane0: Diagnostic Expected CRC Description (Bits [0:31] of the CRC).

Bits Field Name Description Access Reset

0:31 ExpLane0 Expected CRC value used for diagnostic purposes (lower). R 0x00000000

User Manual

CPC945 Bridge and Memory Controller Preliminary

Programmer’s Interface
Page 642 of 655 February 1, 2008

12.12.21.1 SriRxNumeratorLower: Receive Synchronization FIFO Register Description (Bits [0:31])

All numerator registers have the same layout as 0xF8070390 (SriRxNumeratorUpper: Receive Synchroni-
zation FIFO Register (Bits [32:63])) so the next three register descriptions have been omitted.

SriRxNumeratorUpper: Receive Synchronization FIFO Register (Bits [32:63])

SriTxNumeratorLower: Transmit Synchronization FIFO Register (Bits [0:31])

SriTxNumeratorUpper: Transmit Synchronization FIFO Register (Bits [32:63])

Reset Value 0x00000000
Offset 0xF8070390 (SriRxNumeratorLower)

0xF80703A0 (SriRxNumeratorUpper)
0xF80703B0 (SriTxNumeratorLower)
0xF80703C0 (SriTxNumeratorUpper)

Access Type Read/Write

Lower

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits Field Name Description Access Reset

0:31 Lower Receive Synchronization FIFO Numerator Value R/W 0x00000000

Upper

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Lower

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Upper

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
Programmer’s Interface

Page 643 of 655

12.12.22 Receive and Transmit Synchronization Override Values Register (SriOveride)

See Section 12.12.21 on page 641.

Reset Value 0x04000000
Offset 0xF80703D0
Access Type Read/Write, Read Only

Reserved S
yn

cP
trC

tl

R
ed

uc
eS

yn
cZ

er
o

TxDenominator RxDenominator TxInitialOffset RxMargin U
se

S
riV

al
ue

s

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits Field Name Description Access Reset

0:4 Reserved This field will read all 0’s R 0b00000

5 SyncPtrCtl CPC945 only supports synchronized receive logic. R 0b1

6 ReduceSyncZero Reserved. R/W 0b0

7:13 TxDenominator The csrSriLdtTxDenominator field is used to index into the ldtTxNumerator
field, creating the loop point for a circular shift register. R/W 0b0000000

14:20 RxDenominator The csrSriLdtRxDenominator field is used to index into the csrSriLdtRxNu-
merator field, creating the loop point for a circular shift register. R/W 0b0000000

21:24 TxInitialOffset The csrSriLdtTxInitialOffset[2:0] signal is used to adjust the pointers at the
de-assertion of reset. R/W 0x0

25:30 RxMargin

Receive Margin. The Rx margin must include the reset synchronization time
as well as the desired margin between the pointers during operation. The
receive load and unload pointers are reset by the ldtRxSync signal which
indicates that a synchronization packet as been seen on the link. LdtRxSync
is synchronized to the application clock domain by a four stage synchronizer.

R/W 0b000000

31 UseSriValues Use SRI Values. When set the LUT is bypassed and the values in the SriLdt
CSR range are used. R/W 0b0

User Manual

CPC945 Bridge and Memory Controller Preliminary

Programmer’s Interface
Page 644 of 655 February 1, 2008

12.12.23 Control bits for the HT PHY (HtPHYCtl)

These pins are used to fine-tune the HT PHY module. Each version of PHY can only use a portion of
these pins.

Reset Value 0x00000B70
Offset 0xF80703E0
Access Type Read/Write, Read Only

Reserved R
xR

gE
na

bl
e

TxWindage RxWindage Im
pe

dE
na

bl
e

R
xL

oo
pb

ac
k

un
de

fin
ed

U
pp

er
H

TP
hy

sO
ff

un
de

fin
ed

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits Field Name Description Access Reset

0:19 Reserved This field will read all 0’s R 0b00000

20 RxRgEnable Disables the HyperTransport Receive PHYs test receivers for lower
power if desired. R/W 0b1

21:23 TxWindage

Transmit PHY windage pins settings. These settings change the relative
timing of the clock and data. The exact range of the windage has not
been decided, but the total range would be in the range of +/- 75ps. So a
value of 000 would move the clock early by about 75 ps, while a value of
111 would move it later by about 75 ps. A count of 011 will be the neutral
position.

R/W 0b011

24:26 RxWindage

Receive PHY windage pins settings. These settings change the relative
timing of the clock and data. The exact range of the windage has not
been decided, but the total range would be in the range of +/- 75ps. So a
value of 000 would move the clock early by about 75 ps, while a value of
111 would move it later by about 75 ps. A count of 011 will be the neutral
position.

R/W 0b011

27 ImpedEnable PHY Impedance Enable R/W 0b1

28 RxLoopback Enable PHY Loopback R/W 0b0

29 undefined Retains state, but unconnected R/W 0b0

30 UpperHTPhysOff Setting this bit active (0b1) forces the most significant byte (MSB) HT
PHYs to power down. R/W 0b0

31 undefined Retains state, but unconnected R/W 0b0

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
References

Page 645 of 655

13. References

HyperTransport Technology Consortium, “HyperTransport I/O Link Specification”, HTC2002104-0005-0001,
Revision 1.05, January 2003.

Philips Semiconductors I2C-Bus Specification Version 2.1, April 1995.

AMD, “HyperTransport Technology Electrical Specification”, 23890, Revision 1.08, August 2001.

AMD, “LDT I/O Link Protocol Specification”, Revision 1.03, 10/10/01.

Francis Chan and Steven Hsu, “(Cu-11) Hot Plug and Supply Sequencing”, IBM, 8/27/01.

IBM, “PCI Express Configuration Space”, SA15-5765-00 Preliminary Copy, IBM. 7/25/03.

IBM, “Phase-Locked Loop, ASIC Products Cu-11”, IBM, 01/20/2003.

IBM, “IBM PowerPC 970MP RISC Microprocessor User’s Manual", IBM. 7/31/06.

IBM, “Standard Cell Nontest I/Os”, IBM, 8/28/2002.

JEDEC STANDARD, “DDR2 SDRAM Specification”, JEDEC Standard JESD79-2B, January 2005.

JEDEC STANDARD, “Stub Series Terminated Logic for 1.8V (SSTL_18)," JEDEC Standard JESD8-15A,
September 2003.

PCI-SIG, "PCI Express Base Specification Revision 1.0a", PCI Express, April 15, 2003.

PCI-SIG, "PCI Express Card Electromechanical Specification Revision 1.0a", PCI Express, April 15, 2003.

Sandon, Peter, “Power Management Design Changes for PPC970-2”, November 5, 2002.“PCI Express
Configuration Space”, SA15-5765-00 Preliminary Copy, IBM. 7/25/03.

"The I2C-Bus Specification," Version 2.1, January 2000.

“The Open Programmable Interrupt Controller (PIC) Register Interface Specification, Revision 1.2,” Issue
Date: October 1995, Issued Jointly by Advanced Micro Devices and Cyrix Corporation.

User Manual

CPC945 Bridge and Memory Controller Preliminary

References
Page 646 of 655 February 1, 2008

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
Glossary

Page 647 of 655

14. Glossary

AD address and data

ADI address/data in

ADO address/data out

AGP accelerated graphics port

AL Application Layer. The functional layer that interfaces between the application logic
and the PCIe protocol stack.

API Advanced Processor Interface

BA bank address

BCM balance coding method

BIST built-in self test

BrCtrl Bridge Control Register

BUSCONF Processor-Interface-Bus Configuration Register

CA column address

CAS column address strobe

CBGA ceramic ball grid array

CDR Configuration Data Register

CFE CRC force error

CFMR Chip Fault Mask Register

CK DDR2 DRAM clock

CKE clock enable

CptEn capture enable bit

CPU/HT/PCI processor, HyperTransport, and PCI buses

DART DMA address relocation table

DDR2 Double data rate 2. A memory interface technology that provides a data transfer rate
that is twice the clock rate. DDR2 is the latest generation of DDR technology that pro-
vides a number of evolutionary improvements over DDR. Because of its potential for
increased operating frequency in high capacity systems, DDR2 provides higher band-
width than DDR. Despite its higher frequency, DDR2 operates with lower I/O and core
voltages (1.8 instead of 2.5 volts) providing significant power savings.

DERR data error

DIMM dual in-line memory module

DLL delay-locked loop

User Manual

CPC945 Bridge and Memory Controller Preliminary

Glossary
Page 648 of 655 February 1, 2008

DMA Direct Memory Access

DQSDataDelAdj DQS Data Delay Adjustment Registers

DQSDelAdj DQS Delay Adjustment Register

DRAM dynamic random-access memory

DWord (or DW) Double Word (4 bytes of data)

ECC error correction code

eciwx external control in word indexed

ecowx external control out word indexed

EDC error detection and correction

EEPROM electrically erasable programmable ROM

EI Elastic Interface. Former name for what is now called the PI, or Processor Intercon-
nect. (See PI definition)

EIEIO enforce in-order execution of I/O

EMI electromagnetic interference

EMRSRegCntl extended mode register set

En trigger enable bit

Endpoint A downstream component that is not a Switch

Enum Enumeration Scratch Pad

EOC end of chain

EOI end of interrupt

ErrCtrl Error Handling Register

EST elastic interface shorts test

FF full frequency

FIAP fast initial alignment procedure

FSM finite state machine

GART graphics address relocation table

HF half frequency

HSSide high-single-side

HT HyperTransport

I/O input and output

I2C inter-integrated circuit

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
Glossary

Page 649 of 655

IAP initial alignment procedure

IDSEL ID select

IER I2C Interrupt Enable Register

IKill instruction kill

IPI interprocessor interrupt

IRQ interrupt request

ISCA I2C data bus signal

ISCL I2C clock signal

ISR I2C Interrupt Status Register

LPN logical page number

LRU least recently used

LSSide low-single-side

LUT look-up table

Mbps megabits per second

MCCR Memory Check Control Register

MemProgCntl Memory Programming Control Register

MHz mega hertz

MODE I2C Mode Register

MPIC multiprocessor interrupt controller

MRSRegCntl mode register set

MTps million transfers per second

NC noncoherent

NMI nonmaskable interrupt

NOP no operation

North Bridge A generic term for the CPC945 as it connects to higher speed interfaces such as
DRAM or PCI Express.

NXA nonexistent address

OVF overflow

PAAM previous adjacent address match

P-Bit power-up bit

PCHG precharge

User Manual

CPC945 Bridge and Memory Controller Preliminary

Glossary
Page 650 of 655 February 1, 2008

PCI peripheral component interconnect

PCR Power Control Register

PI Processor Interconnect. The interface provided by the CPC945 Bridge and Memory
Controller’s processor interface bus that connects the system microprocessors to
memory and I/O devices. The interface consists of two parts:
The slave, which is used by the processor to access memory and I/O
The master, which is used to pass coherency information between the I/O devices
and the processor.

PLL phase-locked loop

PMU power management unit

PORTSEL port select

PPN physical page number

NORTH_BRIDGE_RESET_L power-up reset

QDWord (or QDW) Quad double word (16 bytes of data)

QF quarter frequency

QWord (or QW) Quad word (8 bytes of data)

R/C read and clear

R/S read and set

R/W read or write

RA row address

RAM random-access memory

RAS row address strobe

RDT random data test

REFWT waiting to reflect

RIAP receiver initial alignment procedure

RMW read-modify-write

RTC real-time clock

RWITM read with intent to modify

SBA side-band addressing

SBus service bus

SCL serial clock

SDA serial data

SDRAM synchronous DRAM

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
Glossary

Page 651 of 655

SERR system error

SIOInt MPIC Interrupt Source 0 Vector/Priority Register

SleepReq sleep request

SNOOPACC snoop accumulated response delay

SNOOPLAT snoop latency

southbridge A generic term for a device that connects the CPC945 to slower peripheral interfaces.
The CPC945’s HyperTransport tunnel connects to the southbridge.

SPD serial presence detect

SPU service processing unit

SR snoop response

SRI snoop response in

TA transfer acknowledge

tCL DDR2 CAS latency

TEA transfer error acknowledge

TH transfer handshake

THI transfer handshake in

TLB translation lookaside buffer

TLBIE translation lookaside buffer invalidate entry

TLBSYNC translation lookaside buffer synchronization instruction

TLP transaction layer packet

tRAS SDRAM row address strobe

tRCD RAS-to-CAS delay

tRFC refresh cycle time

tRP bank precharge time

TSC time-stamp counter

TT transfer type

tWR write recovery time

tWTR write-to-read command delay

TXO transmitter off

VGA video graphics array

WDB write data buffer

User Manual

CPC945 Bridge and Memory Controller Preliminary

Glossary
Page 652 of 655 February 1, 2008

WIAP transmit initial alignment procedure

WIMGRP The 4 bits that control the processor's accesses to cache and main storage. “W”
stands for write through, “I” for cache inhibit, “M” for memory coherence, “G” for
guarded storage, “R” for rerunning, and “P” for priority.

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
Revision Log

Page 653 of 655

Revision Log
Each release of this document supersedes all previously released versions. The revision log lists all signifi-
cant changes made to the document since its initial release. In the rest of the document, change bars in the
margin indicate that the adjacent text was modified from the previous release of this document.

Revision Date Details of Modification

February 1, 2008

A15-6010-02a
• Revised EMRSRegCntl Register (bit 20) noting that RDQS is not supported (see

Section 12.10.4 Mode Register Set (MRS) Register (MRSRegCntl) and Extended
Mode Register Set Register (EMRSRegCntl) on page 457).

• Removed DD level information in the description for HtPHYCtl[30] (see
Section 12.12.23 Control bits for the HT PHY (HtPHYCtl) on page 644).

December 21, 2007

A15-6010-02
• Changed PCIE to PCIe, PCI-Express to PCI Express throughout.
• Changed DDR to DDR2.
• MiscVernierC0-C3 changed to RstLdEnVerniersC0-C3 throughout.
• Added reference to 970MP to About This Manual on page 25.
• Added reference to 970FX to Section 1.1 Introduction on page 27.
• Added reference to 970FX to Section 1.2 Features on page 27.
• Updated Figure 1-1 CPC945 Bridge and Memory Controller Block Diagram on page 28

to include 970MP and 970FX processors.
• Revised description in Section 2.2.1.5 Power Manager Clock on page 32.
• Fixed page layout problem in Section 3 CPC945 Core Interface (API Interface) on

page 39.
• Added Section 4.1 Processor Interface Alignment Procedure on page 78 and

subsections.
• Removed Section 4.3 Interface Alignment Procedure.
• Added Section 6.2 Initializing HyperTransport Core in the CPC945 on page 115 and

subsections.
• Added Section 7.7.2 Memory Controller Bring-up Summary on page 136.
• Clarified Section 7.19.1 ECC Introduction on page 191.
• Revised Section 7.25.7.2 ODT Timing on page 226.
• Edited Section 10.1 Introduction on page 297
• Replaced Section 10.3 Reset with Section 10.3 Power-On Reset on page 298.
• Edited Table 12-5 PLL1 Clock Settings on page 347 highlighting reset default value.
• Edited Table 12-6 PLL2 DDR2 Core Speed on page 349 highlighting reset default

value.
• Edited register description in Section 12.5.7 PLL2 Control Register on page 350.
• Edited Table 12-8 PLL4 Control Register Default Values on page 355 highlighting reset

default value.
• Corrected description for 0xF8070200 Register bits 0:15 in Section 12.12.12 HT

Address Mask Register on page 632.
• Corrected HTCapability04[27] bit name to LinkFail (see Section 12.12.8 Link Con-

fig/Link Control Register (HTCapability04) on page 626).

User Manual

CPC945 Bridge and Memory Controller Preliminary

Revision Log
Page 654 of 655 February 1, 2008

October 31, 2006

A15-6010-01
• Rearranged PCI Express Registers.
• Replaced Table 12-11 PLL1 Clock Settings and Table 12-12 PLL1 Clock Settings 2 of

2, with combined table (Table 12-5 PLL1 Clock Settings).
• Fixed a problem (broken line) in Figure 7-3 Memory Controller Internals.
• Added Figure 7-4 Chip Select and Interleave Mode Addressing, Section 7.14.10 DIMM

Configuration Algorithm and Section 7.14.11 DIMM Configuration Examples for clarity
on programming the DIMM Configuration registers.

• Added Section 7.15.3 Timing Parameter Examples for clarity on programming the RAS
Timer 0/1 and CAS Timer 0/1 registers.

• Added a paragraph to Section 7.22.3 Relationship to Board Wiring which notes that
systems with x4 DIMMs should have good wiring length matching for nibble pairs
because the Calibration logic only measures results for the even nibble of a pair.

• Corrected 2 typos in the equation of WrExtMuxDly in Section 7.30.1 ExtMux Coarse
Timing.

• WrtExtMuxDly = WrtExtMuxDly - 2 becomes WrtExtMuxDly = RdExtMuxDly -2.
• CL + RegDIMM - 1 becomes CL + RegDIMM - 3
• Added missing section Section 7.31 DDR2 PHY Calibration Logic.
• Section 12.10.1 Memory Timing Parameter Registers added a bullet which notes that

RRMux, WRMux, WWWMux and RWMux have a minimum value of ‘1,’ which might
need to be increased if external data muxes are use. Also added a bullet referencing
the new Section 7.15 Timing Parameters and the new Section 7.15.3 Timing Parame-
ter Examples for additional information on programming the Memory Timing Parameter
Registers.

• Fixed an error in section Section 12.10.1.4 CAS Command Timer1 Register
(CASTimer1), for bits 25:29, TiRtWSy.
The equation is changed from BL/2 + RWMux - 2 to BL/2 + RWMux - 1.

• Section 12.10.7 DIMM Configuration Registers added cross references to new
Section 7.14.10 DIMM Configuration Algorithm and Section 7.14.11 DIMM Configura-
tion Examples for additional information on programming the DIMM Configuration reg-
isters.

• Several changes to the Calibration registers, for clarity and to match the new
Section 7.31 DDR2 PHY Calibration Logic.

• Renamed the four "MeasStatusCx" registers to "CalCntlDlyMeasCx".
• Renamed the four "CalCx" registers to "CalRsltCx".
• Moved the description of the "CalCntlDlyMeasCx" registers from after the description of

the IOPadCntl register to just before the description of the CalConfx registers. This
groups all of the Calibration registers together.

• For Calibration Mode Select = 11 (CalConf0 register, bits 27:28), changed this mode
from "Unload Pointer" to "Unload Clock Offset" because the unload monitor does not
actually calibrate the Unload Pointer. Instead it has its own Unlock Clock Offset.

• Numerous edits to descriptive text for clarity and to match Section 7.31 DDR2 PHY
Calibration Logic.

• Fixed CalConf0 bits 0:3 typo: changed "FieldCalibrationPassResult" to "Calibration-
PassResult."

• CPC945 Revision Register - added DD2.0 to RevNum, changed reset value for bits
24:27 to 0x4

• APIPhy I/O Control Register (APIPhyIOCTRL) bit 36 changed from 0b0 to 0b1.
• Correction to Figure 11-5 CPU Power Manager (2 of 2).
• Section 12.7.4.13 APIPhy PMR I/O Control Register (APIPhyPMRIOCTRL)-changed

90 ohms to 55 ohms (bits [4, 61].
• Section 12.10.22.2 MEAR1 Register (MEAR1) bits [29:31] changed from “unused” to

RA[0:2].
• Clarification of paragraph in Section 5.2.2 PI Versus TL Data Formatting Differences.
• Clarified Section 12.12.18 TxCtl/Rx Data Buffer Allocation Register (TxCtl/RxDataBu-

fAlloc).
• Correction to Table 12-34 HyperTransport Registers for definition of TxCtl/RxDataBu-

fAlloc Register.

August 15, 2006 A15-6010-00 - General release.

Revision Date Details of Modification

User Manual

Preliminary CPC945 Bridge and Memory Controller

February 1, 2008
Revision Log

Page 655 of 655

	Title Page
	Contents
	Copyright and Disclaimer
	List of Figures
	List of Tables
	About This Manual
	Who Should Read This Manual
	Related Publications
	Conventions Used in This Book

	1. Overview
	1.1 Introduction
	1.2 Features
	1.3 Block Diagrams

	2. Functional Description
	2.1 External Interfaces
	2.1.1 Processor Interconnect (PI)
	2.1.2 SDRAM Interface
	2.1.3 PCI Express Interface
	2.1.4 HyperTransport Host Bridge
	2.1.5 DRAM I2C Master Interface
	2.1.6 I2C Slave Configuration Register Interface
	2.1.7 Interrupt Controller

	2.2 Implementation
	2.2.1 CPC945 Clocking
	2.2.1.1 Processor Interconnect Clock
	2.2.1.2 DDRClk
	2.2.1.3 PCI Express Clocking
	2.2.1.4 HyperTransport Clock
	2.2.1.5 Power Manager Clock

	2.2.2 ROM Controller
	2.2.3 CPC945 Core Interface (API Interface)
	2.2.4 PCI Express and HyperTransport Bus Interfaces
	2.2.4.1 PCI Express and HyperTransport Transactions
	2.2.4.2 Processor Interconnect to PCI Express Transaction Mapping
	2.2.4.3 Processor Interconnect to HyperTransport Transaction Mapping
	2.2.4.4 PCIe/HT-to-Processor Interconnect Virtual Transaction Mapping
	2.2.4.5 PCIe Transaction Ordering
	2.2.4.6 Data Consistency/Memory Coherence
	2.2.4.7 Endianess

	2.2.5 Exceptions
	2.2.5.1 Invalid Addresses
	2.2.5.2 Invalid Burst Transactions
	2.2.5.3 Invalid Transaction Types

	2.2.6 Interrupts

	3. CPC945 Core Interface (API Interface)
	3.1 CPC945 Core Interface Overview
	3.1.1 General Description of the Request Interfaces
	3.1.1.1 CRRAI / CWRAI - Coherent Read/Write Request Address Interface
	3.1.1.2 NCRAI - Non-Coherent Request Address Interface
	3.1.1.3 TRAI / TWAI - Target Read/Write Address Interface
	3.1.1.4 TAI - Target Address Interface

	3.1.2 General Description of the Data Interfaces
	3.1.2.1 WDI - Write Data Interface
	3.1.2.2 RDI - Read Data Interface
	3.1.2.3 MWDI - Memory Write Data Interface
	3.1.2.4 MRDI - Memory Read Data Interface
	3.1.2.5 AMRDI - API from Memory Read Data Interface
	3.1.2.6 MWDBI - Memory Write Data Buffer Interface

	3.2 Illustration of Requests and Dataflow within PI
	3.2.1 HT Inbound Request
	3.2.2 PCIe Inbound Request
	3.2.3 PI Target Requests

	3.3 PI Bus Timing Parameters
	3.4 DMA Address Relocation Table (DART)
	3.4.1 DART Format in Main Memory
	3.4.2 DART Translation Process
	3.4.3 DART TLB Format
	3.4.4 DART TLB Translation

	3.5 Processor Interconnect Interface Microarchitecture
	3.5.1 System Overview
	3.5.2 ApiIf Operation
	3.5.2.1 Commands from Processor
	Processor Read [and read with intent to modify (RWITM)] Commands to Memory
	Processor Read (and RWITM) Commands to I/O
	Processor Write Commands to Memory
	Processor Write Commands to I/O
	Intervention Processing
	Operations from External Agents (PCIe, HT)
	I/O Read or Write Command Processing

	3.5.2.2 Resources
	3.5.2.3 Resource Descriptions
	Command Queue
	Write Data Buffer
	Read Data Buffer
	Intervention Buffer
	I/O Input Queues
	I/O Pending Queues
	Snoop Slots
	Sync and Target Request Queues
	Target Response Queues
	Target Read and Write Data Queues
	Bypass Queue
	Memory Request Queue
	Summary of Resources Needed to Reflect

	3.5.3 Ordering of Operations
	3.5.3.1 Processor Commands
	I/O Requests
	PAAM Window
	Ordering Deadlocks
	Snoop Bypass
	Snoop Bypass Conflict Detection

	4. Processor Interconnect Bus
	4.1 Processor Interface Alignment Procedure
	4.1.1 Determining PI Bus Parameters
	4.1.2 Error Register Information
	4.1.3 Additional Debug Information
	4.1.4 API Programming Procedure
	4.1.5 Configuring for Single PI Port Usage
	4.1.6 Internal versus External APSync

	4.2 Processor Interface Endian Order
	4.3 Processor Interface Balanced Encoding
	4.4 Bus Snoops and Coherency
	4.5 Processor Interface Slave Transactions
	4.6 Processor Interface Master Transactions
	4.7 TEA, DERR, Checkstop
	4.7.1 Transfer Error Acknowledge
	4.7.2 Data Error Signal and Checkstop
	4.7.3 Additional System Exceptions

	5. PCI Express
	5.1 Introduction
	5.1.1 PCIe Registers
	5.1.2 Addressing
	5.1.3 DART
	5.1.4 PCIe Bus I/O Space
	5.1.5 CPC945 PCIe Bus Address Decoding

	5.2 PCI Express Concepts
	5.2.1 Transmit Layer Packet
	5.2.2 PI Versus TL Data Formatting Differences
	5.2.3 Error Checking
	5.2.4 Message Decode

	5.3 Configuration Register Access
	5.3.1 Indirect Method
	The Virtual Configuration Data Register

	5.3.2 Limited Direct Access Method
	5.3.3 Direct Access Method
	5.3.4 SBus Direct Configuration Access Method
	5.3.5 I2C Direct Configuration Access Method

	6. HyperTransport
	6.1 Overview
	6.2 Initializing HyperTransport Core in the CPC945
	6.2.1 Programming the HyperTransport core
	6.2.1.1 HT1 Address Mask Register (0xF8070200)
	6.2.1.2 Link Config/Control Register (0xF8070110)
	6.2.1.3 LinkFreqCap/LinkError/Link Freq/RevisionID Register (0xF8070120)
	6.2.1.4 Error Handling/Enumeration Scratchpad Register (0xF807140)
	6.2.1.5 Example of Programming Sequence

	6.3 DART
	6.4 HyperTransport Read Size Restriction
	6.5 HyperTransport Address Space
	6.6 HyperTransport Bus Address Decoding
	6.7 HyperTransport Address Mapping
	6.7.1 Downstream Requests
	6.7.2 Upstream Requests

	6.8 Reset
	6.9 Exceptions to HT Specification 1.04
	6.9.1 Bridge Control Register
	6.9.2 Updating the PLL
	6.9.3 Ordering through CPC945’s Primary Interface
	6.9.4 HyperTransport SERR#

	6.10 HyperTransport Registers

	7. DDR2 Memory Controller
	7.1 Feature Summary
	7.2 Memory Controller Basics
	7.3 Memory Configurations
	7.4 Supported Memories
	7.4.1 Sizes
	7.4.2 Speeds
	7.4.3 DDR2 Features
	7.4.4 DIMMs

	7.5 Clocks
	7.6 Data Transfers
	7.7 Operational States
	7.7.1 Power On Reset
	7.7.2 Memory Controller Bring-up Summary
	7.7.3 Normal Operation
	7.7.3.1 Page Access
	7.7.3.2 Power Management During Normal Operation

	7.7.4 Self Refresh
	7.7.4.1 Self Refresh Entry
	7.7.4.2 Self Refresh Exit from Chip Sleep
	7.7.4.3 Self Refresh Exit from Chip Power On

	7.8 Internal Operation Overview
	7.8.1 Control
	7.8.2 Data
	7.8.2.1 Read-Modify-Writes

	7.8.3 DDR2 PHY

	7.9 Memory Programming Control
	7.9.1 MemInitReg Execution
	7.9.2 Looping
	7.9.3 Termination
	7.9.4 First Use
	7.9.5 Auto Refresh
	7.9.6 SDRAM Commands

	7.10 Memory Device Initialization
	7.10.1 MRS Settings
	7.10.2 EMRS Settings

	7.11 MRS Register
	7.12 Refresh
	7.13 Memory Request Arbiter
	7.14 Address Decode
	7.14.1 64/128 Cfg/Bus
	7.14.2 DIMMs/DIMM pairs
	7.14.3 Installed DIMMs
	7.14.4 Single-Sided/Double-Sided
	7.14.5 Chip Size and Organization
	7.14.6 Page Policy
	7.14.7 Interleave Mode
	7.14.8 Chip Select Mode
	7.14.9 Start Address, Add 2G/Sub 2G
	7.14.10 DIMM Configuration Algorithm
	7.14.11 DIMM Configuration Examples
	7.14.11.1 Example 1
	7.14.11.2 Example 2
	7.14.11.3 Example 3
	7.14.11.4 Example 4

	7.14.12 Address Mapping
	7.14.13 Address Mapping Exceptions

	7.15 Timing Parameters
	7.15.1 Data Bus Delay Greater than tCK
	7.15.2 Restrictions
	7.15.3 Timing Parameter Examples

	7.16 Page Table/Timers
	7.17 Reorder Queues
	7.17.1 Queue Sizes
	7.17.2 Queue Filling
	7.17.3 Queue Entries
	7.17.4 Queue Page Policy
	7.17.5 Queue Entry Aging
	7.17.6 Queue Write Conflicts
	7.17.7 Queue Write High Watermarks
	7.17.8 Queue Grant Mode

	7.18 Command Arbiter
	7.18.1 Queue to Queue Arbitration
	7.18.2 Fast Path
	7.18.3 Intra Queue Arbitration
	7.18.4 RW Arbitration Mode
	7.18.5 Two Cycle Addressing
	7.18.6 Multiple Commands
	7.18.6.1 RMW
	7.18.6.2 128 Byte Transfers

	7.18.7 Enforced Ordering

	7.19 ECC
	7.19.1 ECC Introduction
	7.19.2 Writes
	7.19.3 Reads
	7.19.4 Partial Writes
	7.19.5 Syndrome Decode
	7.19.5.1 Nibble in Error
	7.19.5.2 Bits in Error
	7.19.5.3 Single Bit Errors
	7.19.5.4 Address Parity and Special Uncorrectable Errors
	7.19.5.5 Syndrome Decode Summary

	7.19.6 Error Logging
	7.19.7 Error Reporting
	7.19.8 Error Injection
	7.19.9 Byte Lane Substitution

	7.20 Scrub
	7.20.1 General
	7.20.2 Scrub Arbitration
	7.20.3 Scrub Addresses
	7.20.4 Immediate with Fill Mode
	7.20.5 Background Mode
	7.20.6 Immediate Mode

	7.21 External Connections Overview
	7.21.1 Bus Configurations
	7.21.2 External Data Multiplexers
	7.21.3 Unused I/O

	7.22 DDR2 PHY
	7.22.1 Byte Lanes
	7.22.2 Clusters
	7.22.3 Relationship to Board Wiring
	7.22.4 Bus Driving
	7.22.5 Verniers
	7.22.6 1/2 Bit Time Averager
	7.22.7 DQS 1/2 Bit Time Offset

	7.23 I/O Pad Control
	7.23.1 I/O Pad Bit Settings
	7.23.2 Relationship to Memory Chip Settings

	7.24 Memory Clocks
	7.25 Memory Control Signals
	7.25.1 Adjustable Cycle Delay
	7.25.2 Command
	7.25.3 Address
	7.25.4 Chip Select
	7.25.5 CKE - Clock Enables
	7.25.6 Dynamic CKE
	7.25.7 ODT - On Die Termination
	7.25.7.1 ODT Operation
	7.25.7.2 ODT Timing
	7.25.7.3 Other ODT Considerations

	7.25.8 Control Signal Summary

	7.26 Data Timing Coarse Controls
	7.27 Write Data Timing
	7.27.1 Write Coarse Timing
	7.27.2 Write Vernier Timing

	7.28 Read Data Timing
	7.28.1 Read Timing Overview
	7.28.2 Read ResetLdEn Timing
	7.28.3 Read Unload Timing

	7.29 Output Enable Timing
	7.29.1 OE Coarse Timing
	7.29.2 OE Vernier Timing

	7.30 External Multiplexer Timing
	7.30.1 ExtMux Coarse Timing
	7.30.2 ExtMux Vernier Timing

	7.31 DDR2 PHY Calibration Logic
	7.31.1 Calibration Logic Overview
	7.31.2 Calibration Bit DQS Capture Latches
	7.31.3 Calibration Load Monitor
	7.31.3.1 Summary of Load Calibration in Pulsed Mode
	7.31.3.2 Summary of Load Calibration in Continuous Mode

	7.31.4 ResetLdEnable
	7.31.5 Calibration Unload Monitor
	7.31.6 Jitter Considerations
	7.31.7 Calibration Setup
	7.31.8 Single Step Mode
	7.31.8.1 Single Step Use Summary

	7.31.9 Autocalibration Mode
	7.31.9.1 Autocal Overview
	7.31.9.2 Bytelane Selection
	7.31.9.3 Calibration Mode Selection
	7.31.9.4 Generated Vernier Control Values
	7.31.9.5 FSM Pass/Fail Determination
	7.31.9.6 Control and Delay Measurement
	7.31.9.7 Autocalibration Use Summary

	8. I2C Interfaces
	8.1 Overview
	8.2 I2C Slave Interface
	8.2.1 I2C Slave Interface Transactions
	8.2.1.1 Control Register transaction types
	Control Register WRITE Transaction Detail
	Control Register READ Transaction Detail
	Examples of Control Register Addressing for I2C Slave Requests

	8.2.1.2 I2C Transactions to any Physical Memory Location
	WRITE Transaction to Memory Detail
	Read Transaction from Memory Details

	8.3 I2C Master Interface
	8.3.1 Overview
	8.3.2 I2C Master Control Registers
	8.3.2.1 MODE Register Usage
	8.3.2.2 CNTRL Register Usage
	8.3.2.3 STATUS Register Usage
	8.3.2.4 ISR & IER Register Usage
	8.3.2.5 ADDR, SUBADDR, & DATA Register Usage
	8.3.2.6 REV Register
	8.3.2.7 RISETIMECNT Register
	8.3.2.8 BITTIMECNT Register

	9. MPIC
	9.1 Feature Summary
	9.2 MPIC Organization
	9.3 Interrupt Inputs
	9.3.1 Interrupt 0, I2C Master
	9.3.2 Interrupt 1, PCIe Link Error
	9.3.3 Interrupt 2, HT Link
	9.3.4 Interrupt 3, PCIe Slot
	9.3.5 Interrupts 4:7, PM_Sleep[0:3]
	9.3.6 Interrupts 8:123, HT Posted Write Interrupts, and PCIe Message Signaled Interrupts
	9.3.6.1 HT Posted Write Interrupts
	9.3.6.2 PCIe Message Signaled Interrupts
	9.3.6.3 Merging of HT and PCIe Interrupts
	9.3.6.4 Generating Interrupts with Register Writes

	9.3.7 Interrupt Input Summary

	9.4 Interrupt Outputs
	9.5 Interrupt Controller
	9.5.1 Global Reset/Enable
	9.5.1.1 Toggle Register, MPICReset Bit
	9.5.1.2 MPIC Global Configuration Register, Reset Controller Bit
	9.5.1.3 MPIC Global Configuration Register, 8259 Pass Through Enable bit

	9.5.2 Global Enable Summary
	9.5.3 Registers
	9.5.3.1 OpenPIC
	9.5.3.2 OpenPIC Compliance
	9.5.3.3 Deviations from the OpenPIC Specification

	9.5.4 Interrupt Setup
	9.5.4.1 Mask Bits
	9.5.4.2 Sense Bits
	9.5.4.3 Vectors
	9.5.4.4 Priorities

	9.5.5 Changing the Interrupt Setup
	9.5.6 Interrupt Sequence
	9.5.7 Nesting of Interrupt Events
	9.5.8 Spurious Interrupts
	9.5.9 Delivery Modes
	9.5.9.1 Directed Mode
	9.5.9.2 Distributed Mode
	9.5.9.3 Exactly Once Delivery

	9.5.10 Processor Identification
	9.5.11 I/O Interrupts
	9.5.12 Interprocessor Interrupts
	9.5.12.1 IPI Priority Level Restrictions

	10. System Initialization Sequence
	10.1 Introduction
	10.2 Power Sequencing
	10.3 Power-On Reset
	10.3.1 Hardware Reset Sequence
	10.3.2 CPC945 Initialization
	10.3.3 CPC945 Clocking Initialization

	11. Power Management and Clocks
	11.1 Introduction
	11.2 System Power Management
	11.2.1 CPC945 and Processor State Definitions
	11.2.2 CPC945 Top Level Power Manager
	11.2.3 PLLs
	11.2.4 Clock Stoppers

	11.3 CPU Power Management
	11.3.1 CPU Power Manager
	11.3.2 Processor Interconnect Power Manager
	11.3.2.1 PLL1

	11.3.3 DDR2 Power Management (PLL2)
	11.3.4 PCI Express Power Management
	11.3.4.1 PLL3

	11.3.5 HyperTransport Power Management
	11.3.5.1 LDTReq and LDTStop Generation
	11.3.5.2 HyperTransport Power Manager
	11.3.5.3 PLL4

	11.4 Power Tuning
	11.5 PI Frequency Change Operation
	11.6 PLL Programming
	11.6.1 PLL1 and PLL2
	11.6.2 PLL3
	11.6.3 PLL4

	12. Programmer’s Interface
	12.1 Memory Map
	12.2 Memory-Like Space
	12.2.1 DRAM
	12.2.2 Noncoherent DRAM Access
	12.2.3 ROM
	12.2.4 Control Registers
	12.2.5 PCI Express Configuration Space

	12.3 Control Register Memory Map
	12.4 CPC945 Control Registers
	12.4.1 CPC945 Revision Register
	12.4.2 Who Am I Bus Master ID Register
	12.4.3 Processor Semaphore Register
	12.4.4 Hardware Initialization State Register
	12.4.5 CPC945 Toggle Register

	12.5 Clocks and Power Management Registers
	12.5.1 Clock Control Register
	12.5.2 System Power Management Register
	12.5.3 CPU Power Management Register
	12.5.4 CPU Quiesce Timing Register
	12.5.5 HyperTransport Power Management Register
	12.5.6 PLL1 Control Register
	12.5.7 PLL2 Control Register
	12.5.8 PLL3 Control Register
	12.5.9 PLL4 Control Register
	12.5.10 PLL/Clock Visibility and Test

	12.6 MPIC Registers
	12.6.1 MPIC Feature Reporting Register
	12.6.2 MPIC Global Configuration Register 0
	12.6.3 MPIC Vendor ID Register
	12.6.4 MPIC Processor Initialization Register
	12.6.5 MPIC IPI (0,1,2,3) Vector/Priority Registers
	12.6.6 MPIC Spurious Vector Register
	12.6.7 MPIC Interrupt Source 0-123 Vector/Priority Registers
	12.6.8 MPIC Interrupt Source 0-123 Destination Registers
	12.6.9 MPIC CPU(0-3) IPI(0-3) Dispatch Command Registers
	12.6.10 MPIC CPU(0-3) Current Task Priority Registers
	12.6.11 MPIC CPU(0-3) Interrupt Acknowledge Registers
	12.6.12 MPIC CPU(0-3) End-of-Interrupt Registers

	12.7 PI Physical Interface Registers
	12.7.1 APIPhy Command and Status Register Bus
	12.7.2 PI Physical Interface Registers
	12.7.3 APIPhy Configuration Registers
	12.7.3.1 APIPhy Driver IAP Pattern Mask (APIPhyDRVIAPPATMASK)
	12.7.3.2 APIPhy Receiver IAP Pattern Mask (APIPhyRCVIAPPATMASK)

	12.7.4 APIPhy Configuration 0 Register (APIPhyCONFIGREG0)
	12.7.4.1 APIPhy Configuration 1 Register (APIPhyCONFIGREG1)
	12.7.4.2 APIPhy Shorts Test Configuration Register (APIPhySTR)
	12.7.4.3 APIPhy Status 0 Register (APIPhySTAT0)
	12.7.4.4 APIPhy Receiver Mode and Command Register (APIPhyRcvModeCmd)
	12.7.4.5 APIPhy Receiver IAP State Register (APIPhyRIAPSTATE)
	12.7.4.6 APIPhy Data Error 0 Register (DATAERROR0)
	12.7.4.7 APIPhy Data Error 1 Register (DATAERROR1)
	12.7.4.8 APIPhy Data Error 2 Register (DATAERROR2)
	12.7.4.9 APIPhy Data Error 3 Register (APIPhyDATAERROR3)
	12.7.4.10 APIPhy Data Error 4 Register (APIPhyDATAERROR4)
	12.7.4.11 APIPhy Data Error 5 Register (APIPhyDATAERROR5)
	12.7.4.12 APIPhy I/O Control Register (APIPhyIOCTRL)
	12.7.4.13 APIPhy PMR I/O Control Register (APIPhyPMRIOCTRL)

	12.7.5 Related Registers
	12.7.5.1 Bus Encode Disable

	12.8 DRAM I2C Master Controller Registers
	12.8.1 I2C Controller MODE Register
	12.8.2 I2C Controller CNTRL Register
	12.8.3 I2C Controller STATUS Register
	12.8.4 I2C Controller Interrupt Status (ISR) Register
	12.8.5 I2C Controller Interrupt Enable (IER) Register
	12.8.6 I2C Controller ADDR Register
	12.8.7 I2C Controller SUBADDR Register
	12.8.8 I2C Controller Data Transmit/Receive Register
	12.8.9 I2C Controller Revision Register
	12.8.10 I2C Controller RISETIMECNT Register
	12.8.11 I2C Controller BITTIMECNT Register

	12.9 Advanced Processor Interconnect Registers
	12.9.1 API Proc Command Slot Configuration Register (APIProcCmd)
	12.9.2 API I/O Pending Queue Configuration Register (APIIOPnd)
	12.9.3 API Command Arbitration Register (APICmdArb)
	12.9.4 API Target Request Queue Configuration Register (APITRqCfg)
	12.9.5 API Target Response Queue Configuration Register (APITRspCfg)
	12.9.6 API Target Data Queue Configuration Register (APIDtQCfg)
	12.9.7 API Write Data Buffer (WDB) Configuration Register (APIWdbCfg)
	12.9.8 API Intervention Buffer Configuration Register (APIIntCfg)
	12.9.9 API Memory Request Configuration Register (APIMemReqCfg)
	12.9.10 API Memory Read Configuration Register (APIMemRdCfg)
	12.9.11 API Exception Register (APIExcp)
	12.9.12 API Exception Mask 0 Register (APIMask0)
	12.9.13 API Exception Mask 1 Register (APIMask1)
	12.9.14 API Target Request Queues Guarantees Register (APITRqGuar)
	12.9.15 API Snoop Slot Configuration Register (APISnpSltCfg)
	12.9.16 API Bus Configuration Registers
	12.9.16.1 PI PAAM Window (APIPaamWin)
	12.9.16.2 API Snoop Window (APISnoopWin)
	12.9.16.3 I/O Snoop Window (APIIOSnoopWin)
	12.9.16.4 API Handshake Status Latency (APIStatLat)
	12.9.16.5 API Snoop Latency Values (APISnoopLat)

	12.9.17 PSRO Register (PSRO)
	12.9.18 PI System Command Registers
	12.9.18.1 System Command Control [0:1] Registers (SysCmdCntl[0:1])
	SysCmdCntl0

	12.9.18.2 System Command Status Register (SysCmdStat)
	12.9.18.3 System Command Data0 Register (SysCmdDt0)
	12.9.18.4 System Command Data1 Register (SysCmdDt1)
	12.9.18.5 System Command Data2 Register (SysCmdDt2)
	12.9.18.6 System Command Data3 Register (SysCmdDt3)

	12.9.19 DART Control Register (DARTCNTL)
	12.9.20 DART Base Register (DARTBASE)
	12.9.21 DART Size Register (DARTSIZE)
	12.9.22 DART Exception Status Register (DARTEXCP)
	12.9.23 Entry in DART TLB Tag Array Register (DARTTAG)
	12.9.24 Entry in DART TLB Data Array Register (DARTDATA)

	12.10 Memory Control Registers
	12.10.1 Memory Timing Parameter Registers
	12.10.1.1 RAS Command Timer0 Register (RASTimer0)
	12.10.1.2 RAS Command Timer1 Register (RASTimer1)
	12.10.1.3 CAS Command Timer0 Register (CASTimer0)
	12.10.1.4 CAS Command Timer1 Register (CASTimer1)

	12.10.2 Memory Refresh Control Register (MemRfshCntl)
	12.10.3 Memory Programming Control Register (MemProgCntl)
	12.10.4 Mode Register Set (MRS) Register (MRSRegCntl) and Extended Mode Register Set Register (EMRSRegCntl)
	12.10.5 Memory Mapping Exception Registers
	12.10.5.1 Memory Mapping Exception Address Register (MemMapExcpAd)
	12.10.5.2 MemMapExcpCtl Register (MemMapExcpCtl)

	12.10.6 Memory Initialization Registers [0:15] (MemInitReg[0:15])
	12.10.7 DIMM Configuration Registers
	12.10.8 Memory Arbiter Weight Register (MemArbWt)
	12.10.9 Memory User Configuration Register (UsrCnfg)
	12.10.10 Memory Read Request Queue Configuration Register (MemRdQCnfg)
	12.10.11 Memory Write Request Queue Configuration Register (MemWrtQCnfg)
	12.10.12 Memory Reorder Queue Arbitration Register (MemQArb)
	12.10.13 Memory R/W Arbitration Register (MemRWArb)
	12.10.14 Memory Bus Configuration Register (MemBusConfig)
	12.10.15 Memory Bus Configuration Register 2
	12.10.16 ODT Control Register (ODTCntl)
	12.10.17 Memory Scrub Control Register (MSCR)
	12.10.18 Memory Scrub Range Start Register (MSRSR)
	12.10.19 Memory Scrub Range End Register (MSRER)
	12.10.20 Memory Scrub Pattern Register (MSPR)
	12.10.21 Memory Check Control Register (MCCR)
	12.10.22 Memory Error Address Registers
	12.10.22.1 MEAR0 Register (MEAR0)
	12.10.22.2 MEAR1 Register (MEAR1)

	12.10.23 Memory Error Syndrome Register (MESR)
	12.10.24 Memory Mode Control Register (MemModeCntl)
	12.10.25 Mem PHY Mode Control Register (MemPhyModeCntl)
	12.10.26 I/O Pad Control Register (IOPadCntl)
	12.10.27 Write Strobe Control Registers (ByteWrClkDelay)
	12.10.28 Read Data Strobe Control Registers (ReadStrobeDelay)
	12.10.29 CK Control Registers (CKDelay)
	12.10.30 Reset LdEn Offset Delay Registers (RstLdEnVerniersCn)
	12.10.31 External Data Multiplexer Delay Registers (ExtMuxVernier)
	12.10.32 Calibration Control and Delay Measurement Registers
	12.10.32.1 Half Bit Time Measurement Results
	Calibration Control and Delay Measurement Registers
	CntlDlyMeasC0 Register
	CntlDlyMeasC1, CntlDlyMeasC2, CntlDlyMeasC3 Registers

	12.10.33 Calibration Configuration Registers
	12.10.34 Calibration Read Margin Result Registers
	CalRsltC0 Register
	CalRsltC2 Register
	CalRsltC1 and CalRsltC3 Registers

	12.11 PCI Express Registers
	12.11.1 PCIe Configuration Registers
	12.11.1.1 PCI 2.3 Configuration Space Header
	PCI - Vendor ID and Device ID Registers
	PCI - Command and Status Registers
	PCI - Revision ID and Class Code Registers
	PCI - Header Type
	PCI - Base Address Register #0 (BAR0)
	PCI - Base Address Register #1 (BAR1)
	PCI - Primary, Secondary, and Subordinate Bus Number Registers, and Secondary Latency Timer Register
	PCI - I/O Base, I/O Limit, and Secondary Status Registers
	PCI - Memory Base and Memory Limit Registers
	PCI - Prefetchable Memory Base and Prefetchable Memory Limit Registers
	PCI - Prefetchable Memory Base Upper 32 Bits Register
	PCI - Prefetchable Memory Limit Upper 32 Bits Register
	PCI - I/O Base Upper 16 Bits and I/O Limit Upper 16 Bits Registers (Required for TYPE1)
	PCI - Capabilities Pointer Register
	PCI - Expansion ROM Base Address Register (Required for TYPE1)
	PCI - Interrupt Line, Interrupt Pin, Bridge Control Registers

	12.11.1.2 PCI Power Management Capability Structure
	PM - Power Management Capability ID, Next PTR, and Capabilities Registers
	PM - PM Control/Status (PMCSR), PM Control/Status Bridge Support Extensions (PMCSR_BSE), and PM Data Registers

	12.11.1.3 PCI Express Capability Structure
	EC - PCI Express Capability ID, Next PTR, and Capabilities Registers
	EC - Device Capabilities Register
	EC - Device Control and Device Status Registers
	EC - Link Capabilities Register
	EC - Link Control and Link Status Registers
	EC - Slot Capabilities Register
	EC - Slot Control and Slot Status Registers
	EC - Root Control Register
	EC - Root Status Register

	12.11.1.4 Advanced Error Reporting Extended Capability Structure
	AER - Advanced Error Reporting Enhanced Capability Header Registers: ID, Version, and Next PTR
	AER - Uncorrectable Error Status Register
	AER - Uncorrectable Error Mask Register
	AER - Uncorrectable Error Severity Register
	AER - Correctable Error Status Register
	AER - Correctable Error Mask Register
	AER - Capabilities and Control Register
	AER - Header Log Registers: 1 through 4
	AER - Root Error Control Register
	AER - Root Error Status Register
	AER - Error Source Identification Register

	12.11.2 XBus PCI Express Configuration Registers
	12.11.2.1 Legacy Interrupt Control Register
	12.11.2.2 Link Integrity Interrupt Control Register
	12.11.2.3 Link Down Interrupt Control Register
	12.11.2.4 PCI Express 0 Address Mask Register
	12.11.2.5 Memory Read Completion Time-Out Register
	12.11.2.6 I/O Completion Time-Out Register
	12.11.2.7 Configuration Completion Time-Out Register
	12.11.2.8 Local Completion Time-Out Register
	12.11.2.9 Maximum Advertised Posted Credits Register
	12.11.2.10 Maximum Advertised Nonposted Credits Register
	12.11.2.11 Number of Reserved Posted Credits Register
	12.11.2.12 Number of Reserved Nonposted Credits Register
	12.11.2.13 Maximum Available Tags Register
	12.11.2.14 Completion Arbiter Priority Register
	12.11.2.15 Version Number Register
	12.11.2.16 L1 Power Mode Request Response Register
	12.11.2.17 Interrupt Filter Register (UNUSED)
	12.11.2.18 Last NAK’d Write Address Register
	12.11.2.19 Transmission Error Count Register
	12.11.2.20 Dispatch Read Mode Register
	12.11.2.21 No Snoop Request Mode Register
	12.11.2.22 Direct Access Mode Register
	12.11.2.23 L23 Message Time-Out Register
	12.11.2.24 Invalid Transaction Register
	12.11.2.25 Configuration 4 Or 8 Register
	12.11.2.26 Unlock Protected Register
	12.11.2.27 Coherent Memory Write Tag Delay Register (UNUSED)
	12.11.2.28 Block Transactions During Configuration Reads Register
	12.11.2.29 CRC Error Count Register
	12.11.2.30 Unsupported Request Or Completer Abort Register
	12.11.2.31 Enable Transaction Error Acknowledge On Unsupported Request Completion Register
	12.11.2.32 Enable Transaction Error Acknowledge On Completer Abort Completion Register
	12.11.2.33 Enable Transaction Error Acknowledge On Configuration Retry Time-Out Register
	12.11.2.34 Enable Transaction Error Acknowledge On Completion Time-Out Register
	12.11.2.35 Set PCIE04 Received Completer Abort On Completer Abort Register

	12.11.3 PCI Express GCR Registers
	12.11.3.1 CORE_X: PI Core Interface Parameters Register
	12.11.3.2 BEACON: Beacon Support Register
	12.11.3.3 LOOPBACK: Loopback Control and Status Register
	12.11.3.4 SCRAMBLE: Data Scrambling Configuration Register
	12.11.3.5 SLOT: Slot Management Register
	12.11.3.6 POWER: Power Management Register
	12.11.3.7 VC_STAT: Virtual Channel Status Register
	12.11.3.8 AL_CFG: Application Layer Configuration Register
	12.11.3.9 IO_CFG: I/O Configuration Register
	12.11.3.10 RX_LANE: I/O Receive Configuration Register
	12.11.3.11 I/O_LANEn: I/O Status and Control Register for Lane n (n ranges from 0..15)
	Programmable Driver Power Levels (SERDES TX Drive Strength [34:32])
	FIR Pre-emphasis Coefficients

	12.11.3.12 DIAG_IBCPL: Diagnostic Register for Application Layer Inbound Completion (IbCpl)
	12.11.3.13 DIAG_IBCMGR: Diagnostic Register for Application Layer Inbound Completion Manager (IbCMgr)
	12.11.3.14 DIAG_IBRQ: Diagnostic Register for Application Layer Inbound Request (IbRq)
	12.11.3.15 DIAG_IBTLIF: Diagnostic Register for Application Layer Inbound TL Interface (IbTLIf)
	12.11.3.16 DIAG_IBWD: Diagnostic Register for Application Layer Inbound Request (IbWD)
	12.11.3.17 DIAG_OBCPL: Diagnostic Register for Application Layer Outbound Completion (ObCpl)
	12.11.3.18 DIAG_OBMSG: Diagnostic Register for Application Layer Outbound Message (ObMsg)
	12.11.3.19 DIAG_OBNP: Diagnostic Register for AL Outbound Nonposted (ObNP)
	12.11.3.20 DIAG_OBP: Diagnostic Register for Application Layer Outbound Posted (ObP)
	12.11.3.21 DIAG_OBTLIF: Diagnostic Register for Application Layer Outbound Posted (ObTLIf)
	12.11.3.22 MASK_MPIC_IBCPL: MPIC Masking for DIAG_IBCPL
	12.11.3.23 MASK_MPIC_IBCMGR: MPIC Masking for DIAG_IBCMGR
	12.11.3.24 MASK_MPIC_IBRQ: MPIC Masking for DIAG_IBRQ
	12.11.3.25 MASK_MPIC_IBTLIF: MPIC Masking for DIAG_IBTLIF
	12.11.3.26 MASK_MPIC_IBWD: MPIC Masking for DIAG_IBWD
	12.11.3.27 MASK_MPIC_OBCPL: MPIC Masking for DIAG_OBCPL
	12.11.3.28 MASK_MPIC_OBNP: MPIC Masking for DIAG_OBNP
	12.11.3.29 MASK_MPIC_OBP: MPIC Masking for DIAG_OBP
	12.11.3.30 MASK_MPIC_OBTLIF: MPIC Masking for DIAG_OBTLIF

	12.12 HyperTransport Registers (HT1)
	12.12.1 HT Device ID/Vendor ID Register (Device ID/Vendor ID)
	12.12.2 Status/Command Register (Status/Command)
	12.12.3 Class Code/Revision Register (Class Code/Revision ID)
	12.12.4 BIST/Header Type Register (BIST/Header Type)
	12.12.5 Capabilities Pointer Register (Capability1)
	12.12.6 Interrupt Line Register (IntrLine)
	12.12.7 Command/Pointer/Capability ID Register (HTCapability00)
	12.12.8 Link Config/Link Control Register (HTCapability04)
	12.12.9 LinkFreqCap/Link Error/Link Freq/ Revision ID Register
	12.12.10 Feature Capability Register (Feature)
	12.12.11 Error Handling/Enumeration Scratchpad Register (ErrCtrl/Enum)
	12.12.12 HT Address Mask Register
	12.12.13 HT1/PI Interface Control Register
	12.12.14 Memory Read Delay for Memory Read Data Interface (HtMemDly)
	12.12.15 Write TA delay for Write Data Interface (WrTADly)
	12.12.16 HTG Configuration (HTGCFG)
	12.12.17 Bridge Control Register (BrCtrl)
	12.12.18 TxCtl/Rx Data Buffer Allocation Register (TxCtl/RxDataBufAlloc)
	12.12.19 Maximum Transmit Buffer Counters Register (TxBufCountMax)
	12.12.20 Diagnostic CRC Registers (DiagRxCrc)
	DiagRxCrcExpLane0
	DiagRxCrcRcvLane0
	DiagRxCrcExpLane1
	DiagRxCrcRcvLane1

	12.12.21 Receive and Transmit Synchronization FIFOs (Sri[Rx/Tx]Numerator)
	12.12.21.1 SriRxNumeratorLower: Receive Synchronization FIFO Register Description (Bits [0:31])
	SriRxNumeratorUpper: Receive Synchronization FIFO Register (Bits [32:63])
	SriTxNumeratorLower: Transmit Synchronization FIFO Register (Bits [0:31])
	SriTxNumeratorUpper: Transmit Synchronization FIFO Register (Bits [32:63])

	12.12.22 Receive and Transmit Synchronization Override Values Register (SriOveride)
	12.12.23 Control bits for the HT PHY (HtPHYCtl)

	13. References
	14. Glossary
	Revision Log

