

2 Product concept

Designed for global market, SIM300DZ is tri-band GSM/GPRS engine that works on frequencies, GSM 900 MHz, DCS 1800 MHz and PCS1900 MHz. SIM300DZ features GPRS multi-slot class 10 /Class 8 $^{(1)}$ capability and supports the GPRS coding schemes CS-1, CS-2, CS-3 and CS-4.

⁽¹⁾ SIM300DZ also provides GPRS multi-slot class 8 and the default is class 10.

With a tiny configuration of 33mm x 33mm x 3 mm, SIM300DZ can fit almost all the space requirement in your application, such as smart phone, PDA phone, Car Phone, Wireless PSTN, and other mobile device.

The hardware package of 48 pins

- 9 GND PINS and 2 VBAT pins
- 1 pin is programmable as General Purpose I/O . This gives you the flexibility to develop customized applications.
- Serial port and Debug port can help you easily develop your applications. But they can not work at the same time.
- Two audio channels include two microphone inputs and two speaker outputs. This can be easily configured by AT command.

With the charge circuit integrated inside the SIM300DZ, it is very suitable for the battery power application.

The SIM300DZ provides RF antenna interface. And customer's antenna should be located in the customer's mainboard and connect to module's antenna pad through micro strip line or other type RF traces whose impendence must be controlled in 50Ω .

The SIM300DZ is designed with power saving technique, the current consumption is as low as 2.5mA in SLEEP mode (BS-PA-MFRMS=5).

The SIM300DZ is integrated with the TCP/IP protocol, Extended TCP/IP AT commands are developed for customers to use the TCP/IP protocol easily, which is useful for those data transfer applications.

2.1 SIM300DZ key features at a glance

Table 3: SIM300DZ key features

Feature	Implementation		
Power supply	Single supply voltage 3.4V – 4.5V		
Power saving	Typical power consumption in SLEEP mode to 2.5mA		
	(BS-PA-MFRMS=5)		
Charging	Supports charging control for Li-Ion battery		
Frequency bands	• SIM300DZ tri-band: GSM 900, DCS 1800, PCS 1900. The SIM300DZ compared the 2 for supervise hands outcomptionly		
	SIM300DZ can search the 3 frequency bands automatically. The frequency bands also can be set by AT command.		
	 Compliant to GSM Phase 2/2+ 		
GSM class	Small MS		
Transmit power	 Class 4 (2W) at EGSM900 Class 1 (1W) at DCS1800 and PCS 1900 		
CDDC compositivity			
GPRS connectivity	 GPRS multi-slot class 8 (optional) GPRS multi-slot class 10 (default) 		
	 GPRS multi-slot class 10 (default) GPRS mobile station class B 		
T			
Temperature range	 Normal operation: -20°C to +55°C Restricted operation: -30°C to -20°C and +55°C to +80°C 		
	 Storage temperature -40°C to +80°C 		
DATA GPRS:			
DATA GPKS:	 GPRS data downlink transfer: max. 85.6 kbps GPRS data uplink transfer: max. 42.8 kbps 		
	 Coding scheme: CS-1, CS-2, CS-3 and CS-4 		
	 SIM300DZ supports the protocols PAP (Password 		
	Authentication Protocol) usually used for PPP connections.		
	• The SIM300DZ integrates the TCP/IP protocol.		
	• Support Packet Switched Broadcast Control Channel (PBCCH)		
CSD:	• CSD transmission rates: 2.4, 4.8, 9.6, 14.4 kbps,		
	non-transparent		
	• Unstructured Supplementary Services Data (USSD) support		
SMS	• MT, MO, CB, Text and PDU mode		
	• SMS storage: SIM card		
FAX	Group 3 Class 1		
SIM interface	Support SIM card: 1.8V ,3V		
External antenna	Connected via 50 Ohm antenna connector or antenna pad		
Audio features	Speech codec modes:		
	• Half Rate (ETS 06.20)		
	• Full Rate (ETS 06.10)		
	• Enhanced Full Rate (ETS 06.50 / 06.60 / 06.80)		

	• Echo suppression		
Serial interface and Debug interface	 Serial Port: Seven lines on Serial Port Interface Serial Port can be used for CSD FAX, GPRS service and sending AT command of controlling module. Autobauding supports baud rates from 1200 bps to 115200bps. Debug port : provide two lines on Serial Port Interface /TXD and /RXD Debug port is only used for transmitting AT command. 		
Phonebook management	Support phonebook types: SM, FD, LD, MC, RC, ON, ME,BN,VM,LA,DC,SD		
SIM Application Toolkit	Support SAT class 3, GSM 11.14 Release 99		
Real time clock	Implemented		
Timer function	Programmable via AT command		
Physical characteristics	Size: 33±0.15 x 33±0.15 x 3±0.3 mm Weight: 8g		
Firmware upgrade	Firmware upgrade over serial interface		

Table 4: Coding schemes and maximum net data rates over air interface

Coding scheme	1 Timeslot	2 Timeslot	4 Timeslot
CS-1:	9.05kbps	18.1kbps	36.2kbps
CS-2:	13.4kbps	26.8kbps	53.6kbps
CS-3:	15.6kbps	31.2kbps	62.4kbps
CS-4:	21.4kbps	42.8kbps	85.6kbps

CS-4:

3 Application interface

All hardware interfaces are described in detail in following chapters:

- Power supply and charging control (see Chapters 3.3 and 3.5)
- Provide serial interface and Debug interface (*see chapter3.9*)
- Two analog audio interfaces (see chapter 3.10)
- SIM interface (*see chapter 3.11*)

3.1 SIM300DZ pin description

Table 5: Pin description

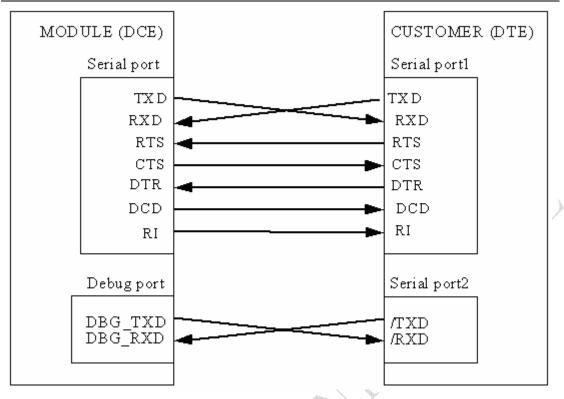
Power Supply					
PIN NAME	I/O	DESCRIPTION			
VBAT		2 VBAT pins are dedicated to connect the supply voltage. The power supply of SIM300DZ has to be a single voltage source of VBAT= 3.4V4.5V. It must be able to provide sufficient current in a transmit burst which typically rises to 2A.mostly, these 2 pins are voltage input, however ,when use the charge circuit to charge the battery ,these pins become the current output, select one of these pins as the charge current output pin	Vmax= 4.5V Vmin=3.4V Vnorm=4.0V		
VRTC	I/O	Current input for RTC when the battery is not supplied for the system. Current output for backup battery when the main battery is present and the backup battery is in low voltage state.	Vmax=2.0V Vmin=1.2V Vnorm=1.8V I norm= 20uA		
VCHG	Ι	Voltage input for the charge circuit, as the signal for detecting the charger connecting	Vmax=5.25V Vmin=1.1 * VBAT Vnorm=5.1V Imin=650mA		

SIM300DZ Hardware Des	Ign		A company of SIM Tech			
GND		Digital ground				
Power on or power off						
PIN NAME	I/O	DESCRIPTION				
PWRKEY	I	Voltage input for power on key. Press the key , the PWRKEY get a low level voltage for user to power on or power off the system, the user should keep pressing the key for a moment when power on or power off the system. Because the system need margin time assert the software.	VILmax=0.2*VBAT VIHmin=0.6*VBAT VImax=VBAT			
Audio interfaces						
PIN NAME	I/O	DESCRIPTION				
MIC1P MIC1N	Ι	Positive and negative voiceband input	Audio DC Characteristics refer to chapter 3.10			
MIC2P MIC2N	Ι	Auxiliary positive and negative voiceband input				
SPK1P SPK1N	0	Positive and negative voiceband output				
SPK2P SPK2N	0	Auxiliary positive and negative voiceband output				
AGND		Analog ground				
GERNERAL PURPOS	SE input/o	utput				
PIN NAME	I/O	DESCRIPTION				
STATUS	0	Indicate work status	VILmin=0V			
GPO1	0	Normal Output Port	VILmax=0.3 *VDD_EXT			
DISP_DATA	I/O	Display interface	VIHmin=0.7*VDD_EXT			
DISP_CLK	0		VIHmax= VDD_EXT+0.3 VOLmin=GND			
DISP_CS	0		VOLmax=0.2V			
DISP_D/C	0		VOHmin= VDD_EXT-0.2			
DISP_RST	0		VOHmax= VDD_EXT			
KBR0	Ι					
Serial interface						
PIN NAME	I/O	DESCRIPTION				
RXD	Ι	Receive data	VILmin=0V			
DTR	Ι	Data terminal Ready	VILmax=0.3*VDD_EXT			
TXD	Ο	Transmit data	VIHmin=0.7*VDD_EXT			
RTS	Ι	Request to send VIHmax= VDD_I				

SIM300DZ Hardware Desi	gn		A company of SIM Tech
CTS	0	Clear to send	VOLmin=GND
RI	0	Ring indicator	VOLmax=0.2V
			VOHmin= VDD_EXT-0.2 VOHmax= VDD_EXT
Debug interface			
DBG_TXD	0	Serial interface for debugging and communication	
DBG_RXD	Ι		
SIM interface			
PIN NAME	I/O	DESCRIPTION	
SIM_VDD	0	Voltage supply for SIM card	The voltage can be select by software either 1.8v or 3V
SIM_DATA	I/O	SIM data output	VILmin=0V
SIM_CLK	0	SIM clock	VILmax=0.3*SIM_VDD
SIM_RST	0	SIM reset	VIHmin=0.7*SIM_VDD
			VIHmax= SIM_VDD+0.3 VOLmin=GND
			VOLmax=0.2V
			VOHmin= SIM VDD-0.2
			VOHmax= SIM_VDD
ADC	_		
PIN NAME	I/O	DESCRIPTION	
ADC0	Ι	General purpose analog to digital	Input voltage value scope
		converter.	0V to 2.4V
TEMP_BAT	Ι	For measure the battery temperature	
<u>(</u>			

3.2 Operating modes

The table below briefly summarizes the various operating modes referred to in the following chapters.


Table 6: Overview of operation	ting modes
--------------------------------	------------

Mode	Function	
Normal operation	GSM/GPRS	Module will automatically go into SLEEP mode if DTR is set
	SLEEP	to high level and there is no on air or audio activity is required
		and no hardware interrupt (such as GPIO interrupt or data on
		serial port).
		In this case, the current consumption of module will reduce to
		the minimal level.
		During sleep mode, the module can still receive paging

SINISUUDZ Hardwar	e Design		
		message and SMS from the system normally.	
	GSM IDLE	Software is active. Module has registered to the GSM network, and the module is ready to send and receive.	
	GSM TALK	Connection is going on between two subscribers. In this case, the power consumption depends on network settings such as DTX off/on, FR/EFR/HR, hopping sequences, antenna.	
	GPRS STANDBY	Module is ready for GPRS data transfer, but no data is currently sent or received. In this case, power consumption depends on network settings and GPRS configuration (e.g. multi-slot settings).	
	GPRS DATA	There is GPRS data in transfer (PPP or TCP or UDP). In this case, power consumption is related with network settings (e.g. power control level), uplink / downlink data rates and GPRS configuration (e.g. used multi-slot settings).	
POWER DOWN	Normal shutdown by sending the "AT+CPOWD" command or using the PWRKEY. The power management ASIC disconnects the power supply from the baseband part of the module, only the power supply for the RTC is remained. Software is not active. The serial interfaces are not accessible. Operating voltage (connected to BATT+) remains applied.		
Minimum functionality mode (without remove power supply)	Use the "AT+CFUN" command can set the module to a minimum functionality mode without remove the power supply. In this case, the RF part of the module will not work or the SIM card will not be accessible, or RF part and SIM card will be closed all, the serial interfaces is still accessible. The power consumption in this case is very low.		
Alarm mode	RTC alert function launches this restricted operation while the module is in POWER DOWN mode. SIM300DZ will not be registered to GSM network and only parts of AT commands can be available.		
GHOST Mode (Charge-only mode)	 be registered to accessible, the f From POW and VBAT From Norm 	neans off and charging mode. In this mode, the module can not GSM network and only limited AT commands can be following way will launch GHOST mode: /ER DOWN mode: Connect charger to the module's VCHG pin pin while SIM300DZ is power down. nal mode: Connect charger to the module's VCHG pin and , then power down the module by "AT+CPOWD"	
Charge mode during normal operation	Start charging while the module is in normal mode including: SLEEP, IDLE, TALK, GPRS IDLE and GPRS DATA)		

Figure 13: Interface of serial ports

3.9.1 Function of Serial port and Debug port supporting

Serial port

- Seven lines on Serial Port Interface
- Contains Data lines TXD and RXD, State lines RTS and CTS, Control lines DTR, DCD and RING;
- Serial Port can be used for CSD FAX, GPRS service and send AT command of controlling module. Serial Port can use multiplexing function;
- Serial Port supports the communication rate as following:
 - 300, 1200, 2400, 4800, 9600, 19200, 38400, 57600, 115200 Default as 115200bps.
- Autobauding supports the communication rate as following:
 1200, 2400, 4800, 9600, 19200, 38400, 57600, and115200bps.

Autobauding allows the GSM engine to automatically detect the baud rate configured in the host application. The serial interface of the GSM engine supports autobauding for the following baud rates: 1200, 2400, 4800, 9600, 19200, 38400, 57600, 115200. Factory setting is autobauding enabled. This gives you the flexibility to put the GSM engine into operation no matter what bit rate your host application is configured to. To take advantage of autobaud mode specific attention must be paid to the following requirements:

Synchronization between DTE and DCE

When DCE powers on with the autobauding enabled, it is recommended to wait 2 to 3 seconds before sending the first AT character. After receiving the "OK" response, DTE and DCE are correctly synchronized.

Restrictions on autobauding operation

- The serial interface has to be operated at 8 data bits, no parity checkouting and 1 stop bit (factory setting).
- The Unsolicited Result Codes like "RDY", "+CFUN: 1" and "+CPIN: READY" are not indicated when you start up the ME while autobauding is enabled. This is due to the fact that the new baud rate is not detected unless DTE and DCE are correctly synchronized as described above.

Debug port

- Two lines on Serial Port Interface
- Only contains Data lines /TXD and /RXD
- Debug Port only used for debugging. It cannot be used for CSD call, FAX call. And the Debug port can not use multiplexing function;
- Debug port supports the communication rate as following: 9600, 19200, 38400, 57600, 115200bps

Note: You can use AT+IPR=x;&W to set a fixed baud rate and save the configuration to non-volatile flash memory. After the configuration was saved as fixed baud rate, the Unsolicited Result Codes like "RDY" should be received from the serial port all the time when the SIM300 was power on.

3.9.2 Software upgrade and serial Port

The TXD, RXD, DBG_TXD, DBG_RXD, GND must be connected to the IO connector when user need to upgrade software and debug software, the TXD, RXD should be used for software upgrade and the DBG_TXD, DBG_RXD for software debug. The PWRKEY pin is recommended to connect to the IO connector. The user also can add a switch between the PWRKEY and the GND. The PWRKEY should be connected to the GND when SIM300DZ is upgrading software. Please refer to the following figure.

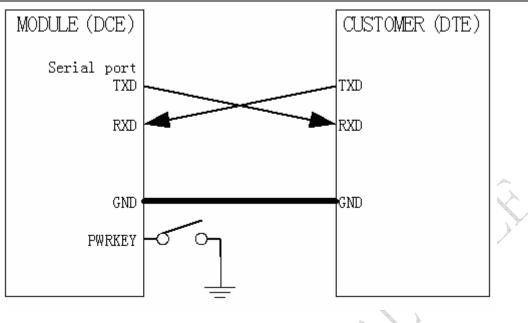
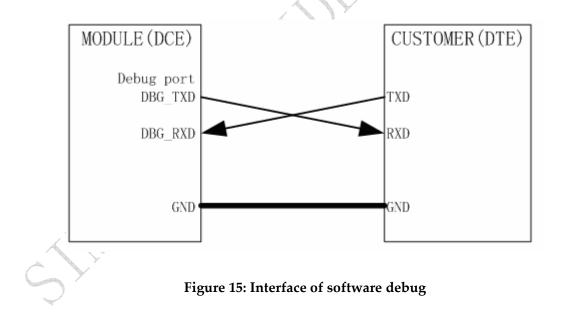



Figure 14: Interface of software upgrade

Note: The RTS PIN must be connected to the GND in the customer circuit when only the TXD and RXD used in the Serial Port communication.

Note: The serial port doesn't support the RS_232 level, it only supports the TTL level. You should add the level converter IC between the DCE and DTE, if you connect it to the PC.

		Ref level		1.0954 -6.02	Vpp dBm
Auxiliary Output(SPK2)	Single Ended	load Resistance	27	32	Ohm
		Ref level		0.5477 -12.04	Vpp dBm
	Differential	load Resistance	27	32	Ohm
		Ref level		1.0954 -6.02	Vpp dBm

3.11 SIM interface

3.11.1 SIM card application

You can use AT Command to get information in SIM card. For more information, please refer to *document* [1].

The SIM interface supports the functionality of the GSM Phase 1 specification and also supports the functionality of the new GSM Phase 2+ specification for FAST 64 kbps SIM (intended for use with a SIM application Tool-kit).

Both 1.8V and 3.0V SIM Cards are supported.

The SIM interface is powered from an internal regulator in the module having normal voltage 3V. All pins reset as outputs driving low. Logic levels are as described in table

Table 16: Signal of SIM interface

Dim	Signal	Description
Pin	Signal	Description
65	SIM_VDD	SIM Card Power supply, it can identify automatically the SIM
		Card power mode, one is $3.0V\pm10\%$, another is $1.8V\pm10\%$.
		Current is about 10mA.
62	SIM_DATA	SIM Card data I/O
63	SIM_CLK	SIM Card Clock
64	SIM_RST	SIM Card Reset

Following is the reference circuit about SIM interface. We recommend an Electro-Static discharge device ST (<u>www.st.com</u>) ESDA6V1W5 or ON SEMI (<u>www.onsemi.com</u>) SMF05C for "ESD ANTI". The 22 Ω resistors showed in the following figure should be added in series on the IO line between the module and the SIM card for protecting the SIM I/O port. The pull up resistor (about

10K Ω) must be added on the SIM_DATA line. Note that the SIM peripheral circuit should be placed close to the SIM card socket.

3.11.2 Design considerations for SIM card holder

The reference circuit about 6 pins SIM card illustrates as following figure.

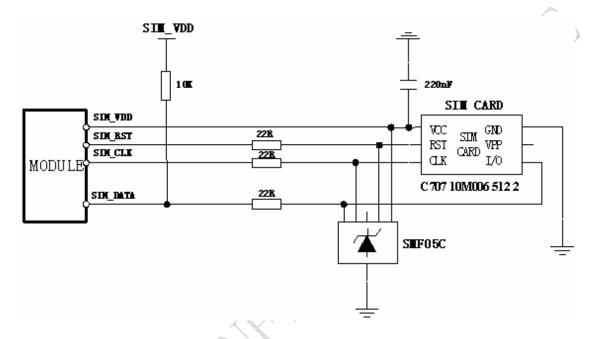


Figure 20: SIM interface reference circuit with 6 pins SIM card

3.12.2 Design considerations for SIM card holder

For 6 pins SIM card, we recommend to use Amphenol C707-10M006 512 2 .You can visit <u>http://www.amphenol.com</u> for more information about the holder.

4.2 Module RF output power

Table 23: SIM300DZ conducted RF output power

Frequency	Max	Min
EGSM900	33dBm ±2db	5dBm±5db
DCS1800	30 dBm ± 2 db	0dBm±5db
PCS1900	30 dBm ± 2 db	0dBm±5db

4.3 Module RF receive sensitivity

Table 24: SIM300DZ conducted RF receive sensitivity

Frequency	Receive sensitivity
EGSM900	<-106dBm
DCS1800	<-106dBm
PCS1900	<-106dBm

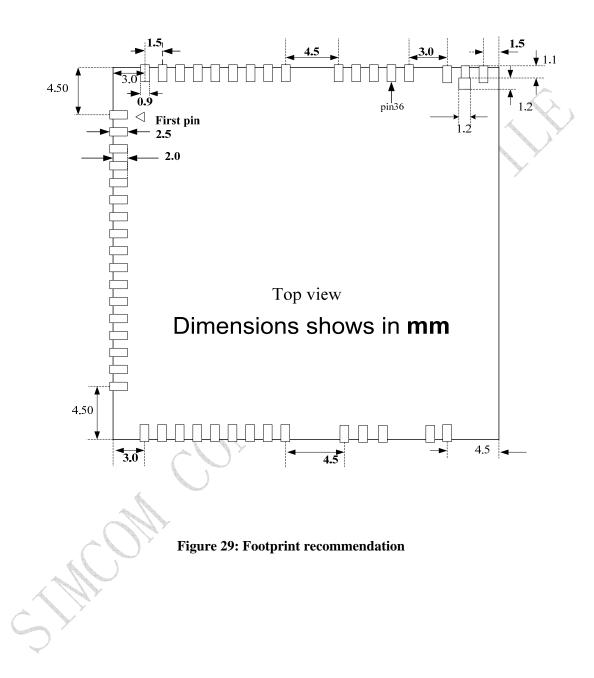

4.4 Module operating frequencies

Table 25: SIM300DZ operating frequencies

Frequency	Receive	Transmit
EGSM900	925 ~ 960MHz	880 ~ 915MHz
DCS1800	$1805 \sim 1880 \mathrm{MHz}$	$1710 \sim 1785 \mathrm{MHz}$
PCS1900	1930 \sim 1990MHz	$1850 \sim 1910 \mathrm{MHz}$

FOOT PRINT RECOMMENDATION

6.2 PIN assignment of SIM300DZ

Table 29: PIN assignment

Pin NUM	NAME	Pin NUM	NAME
1	DBG_RXD	36	GND
2	DBG_TXD	37	GND
3	RXD	38	VBAT
4	TXD	39	VBAT
5	STATUS	40	GPO1
6	SIM_DATA	41	NETLIGHT
7	SIM_CLK	42	DCD
8	SIM_RST	43	DTR
9	SIM_VDD	44	RTS
10	KBR0	45	CTS
11	RI	46	DISP_CS
12	PWRKEY	47	NC
13	DISP_CLK	48	GND
14	DISP_DATA		
15	VRTC		
16	DISP_D/C		
17	GND		
18	MIC2P		
19	MIC2N		
20	MIC1N		
21	MIC1P		
22	AGND		
23	SPK1P		
24	SPK1N		
25	SPK2N		
26	SPK2P		
27	TEMP_BAT		
28	VCHG		
29	ADC0		
30	GND		
31	GND		
32	GND		
33	ANTENNA		
34	GND		

			••	•
				•
				•
\mathbf{SI}	Μ	C	0	m
A com	nany	of S	MA 1	inch

SIM300DZ H	ardware Design	A company of SIM Tech
35	GND	

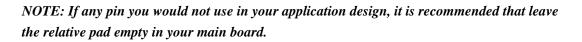


Figure 30: Physical SIM300DZ

Figure 31: Bottom view of SIM300DZ