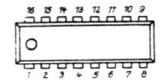

Integrierte AM-Empfängerschaltung für AM - Empfänger bis 30 MHz. Der Schaltkreis beinhaltet neben Vor-, Misch- und Oszillatorstufe einen vierstufigen ZF - Verstärker und zwei unabhängige Regelkreise. Neben der Regelung von drei Stufen des ZF - Verstärkers wird die Vorstufe geregelt, wodurch eine sehr gute Großsignalfestigkeit erreicht wird.


Ourch eine interne Spannungsstabilisierung ist es möglich, die AM - Empfängerschaltung mit Betriebsspannungen von 4,5 V bis 15 V zu betreiben.

Der Mischer arbeitet multiplikativ, wodurch besonders wenig Oberwellenmischprodukte und Pfeifstellen entstehen. Der vom Mischer getrennte Oszillator ist für den KW - Bereich geeignet. Der symmetrische Aufbau des A 244 erlaubt eine hohe Stabilität und gleichzeitig einen Regelumfang von ca. 100 dB.

Abmessungen in mm und Anschlußbelegung:

1.2 - Eingangskreis

3 - Eingang HF-Regelung

4.5.6 - Oszillatorkreis

7 - ZF - Ausgang

8 - Masse

9 - Eingang ZF - Regelung

10 - Ausgang Indikator

11,12 - ZF - Eingänge

13 - Anschluß C

14 - Betriebsspannung

15.16 - Mischerausgänge

Gehäuse

: DIL - Plastgehäuse

Masse

: ca. 1 g

Bauform

: K 21. D2. 1.16 nach TGL 26713

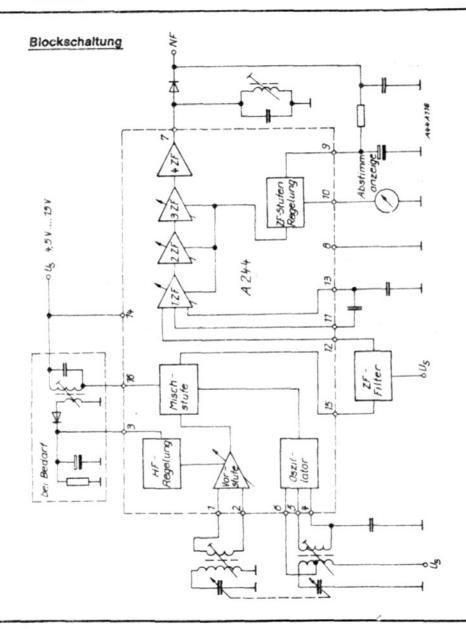
Typstandard: TGL 32650

Grenzwerte:	min	max	
Betriebsspannung U	s 4,5	15	٧
Betriebstemperaturbereich &	-10	+ 70	°C
Lagerungstemperaturbereich	_{stq} -40	+125	°C

Elektrische Kennwerte ($\vartheta_a = 25^{\circ}C - 5 \text{ grd}$, U_S = 9 V, f_i = 1 MHz,

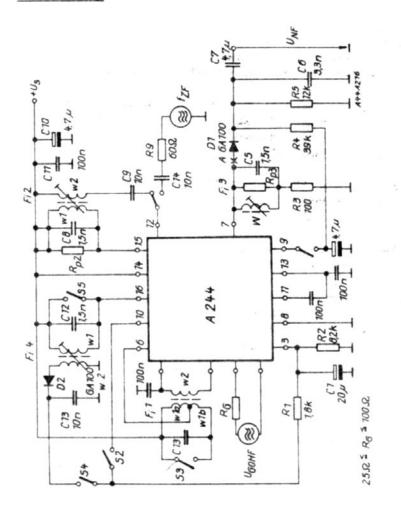
$$\frac{\Delta f_i}{f_i}$$
 = 10⁻⁴, f_{ZF} = 455 kHz, f_m = 1 kHz, m = 0,8)

HF - Teil:		min	typ	max	
Eingangswiderstand					
$U_3 = 0 V$	RiHF		3,1		kΩ
$U_3 = 0.4 \text{ V}$	RiHF		3,9		ks
Mischer-Ausgangsimpedanz					
	Z _{OHF}		420		kΩ
ZF - Teil:			4,5		pF
Regeleinsatzpunkt1)	UiReZF		80		μV
Regelumfang					
△ U _{NF} = 10 dB	ΔV_{uZF}		60		dB
max. ZF-Eingangsspannung					
k = 10 %	UiZFmax		300		mV
ZF-Eingangswiderstand					
$U_9 = 0 V$	Rize		2,2		kΩ
$U_9 = 0.4 \text{ V}$	RIZE		2,8		kΩ
	_				
Ausgangsimpedanz	Zoze		160		kΩ
			9,0		pF



		min	typ	max	
Gesamtempfänger: Stromaufnahme					
U _{GOHF} = 0 V	Is		12,4	16	mA
Regeleinsatzpunkt ¹⁾	UiRelf		4		μV
Regelumfang					100.200
ΔU _{NF} = 10 dB	ΔVu		84		dB
Signal-Rauschabstand					
$U_{GOHF} = 20 \mu V$	S/N	22	31,3		dB
NF-Ausgangsspannung					
UgoHF = 20 AV	UNF	60	130		m۷
$U_{GOHF} = 500 \text{ mV}$	UNF		330	560	mV
Klirrfaktor					
U _{GOHF} = 30 mV	k		2,8	9	%
$U_{GOHF} = 500 \text{ mV}$	k		4	10	%
Eingangsspannung für					
S/N = 20 dB					
$R_g = 300\Omega, m = 0.3$	U _{GOHF}		12,5		μV
max. Eingangsspannung					
k = 10 %	U _{GOHFI}	max	1,5		٧
100 (400) (400)		37.030			

 $^{^{1)}}$ Als Regeleinsatzpunkt gilt die Eingangsspannung U_i, bei der $\frac{U_i}{U_{NF}} = \frac{10~dB}{3~dB}$ ist.



Meßschaltung

Anmerkungen zur Meßschaltung:

1. Wickeldaten:

Filter: Standardfilter Meuselwitz, Einzelfluß,
Wickellänge 7,5 mm, 2 Kammern;
alle Wicklungen symmetrisch auf beide Kammern verteilt.

Oszillatorkreis - Filter 1: fosz = 1,455 MHz, Kern orange

w_{1a} = 47 Wdg. 0,15 Culs

W1b = 18 Wdg. 0,15 CuLs

 $w_2 = 8 \text{ Wdg. } 0,25 \text{ CuLs}$

ZF - Auskopplung - Filter 2: fz = 455 kHz, Kern rot, Ferrithülse

w, = 65 Wdg. 0,15 Culs

 $w_2 = 8 \text{ Wdg. } 0,25 \text{ CuLs}$

ZF - Demodulatorkreis - Filter 3: f_{ZF} = 455 kHz, Kern rot, Ferrithülse w = 65 Wdg. 0,15 CuLs

Regelspannungsauskopplung für Eigenregelung der Vorstufe - Filter 4:

f_{ZF} = 455 kHz, Kern rot, Ferrithülse

w₁ = 65 Wdg. 0,15 CuLs

 $w_2 = 32 \text{ Wdg. } 0.15 \text{ CuLs}$

2. Dynamische Daten der Filter (ohne Prüfling):

Filter 2: Mit R_{p2} wird ein Leerlaufresonanzwiderstand R_{p0} von 7 kΩ eingestellt. w₂ wird so angekoppelt, daß bei Belastung von w₂ mit 3 kΩ ein Übersetzungsverhältnis von Anschluß 15 zu Anschluß 12 von (-18 dB) erreicht wird.

Filter 3: Mit R_{p3} wird ein Leerlaufresonanzwiderstand R_{p0} von 10 k Ω eingestellt (Punkt A aufgetrennt).

Bestellbeispiel: Schaltkreis A 244 D TGL 32650 Änderungen vorbehalten!

