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1 Introduction 

Polarization based interferometers for single snap-shot measurements allow single 
frame, quantitative phase acquisition for vibration insensitive measurements of 
optical surfaces and have been successfully used on a variety of interferometer 
types. This technique generally involves the simultaneous acquisition of three or 
more images on the same camera or multiple cameras, which are phase shifted by 
polarization. Examples of these types of systems would include the multiple cam-
era system of Smythe and Moore [1], and more recently, systems utilizing a mi-
cro-polarizer phase mask [2] on a single camera. 

Application of these polarization based phase sensors requires the test and ref-
erence beams of the interferometer to be orthogonally polarized. As with all pola-
rization based interferometers, these systems can suffer from phase dependent  
errors resulting from systematic polarization aberrations; this is especially true in 
high numerical aperture systems. This type of measurement error presents a par-
ticular challenge because it varies in magnitude both spatially and temporally 
between each measurement. It typically manifests as “fringe print-through” where 
a small component of the intensity fringe pattern appears in the measured surface. 
In this paper, a general discussion of phase calculation error presented. We then 
present an algorithm that is capable of mitigating phase-dependent measurement 
error on-the-fly. The algorithm implementation is non-iterative providing sensor 
frame rate limited phase calculations. Finally, results are presented for both a high 
numerical aperture system, where the residual error is reduced to the shot noise 
limit, and a system with significant birefringence in the test arm. 

2 General Phase Calculation Errors 

Regardless of the technique, all phase calculation processes ultimately return a 
phase value which is computed as the arctangent of the ratio of two values. These 
two values will be referred to as the numerator, N, and the denominator, D, terms. 
Each of these terms is a function of the actual phase value, θ, being measured, and 
is generally calculated from a set of measured interferograms. The simple relation-
ship between the calculated phase, θ`, and N and D is shown in Eq. 1. 
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 ( ) ( ) ( )Tan N Dθ θ θ′ =  (1) 

A general expression for N and D is given in Eq. 2 and 3. 

 ( ) ( )o y yN y a Sinθ θ φ= + +  (2) 

 ( ) ( )o x xD x a Cosθ θ φ= + +  (3) 

Together, Eq. 2 and 3 are the parametric equations for a general ellipse where each 
{x, y} point on the ellipse is given by {D, N}. The phase calculation process is 
error free if the following condition holds for all values of calculated phase: 

 oθ θ θ′ = +  (4) 

where θo is a constant. In order for equation 4 to be true, the following conditions 
must be met: 

 
0 0, ,o o x y x yx and y a a φ φ= = = =

 (5) 

Simply put, the N and D terms must not have any offset, the amplitudes must be 
equal and the phase must be in quadrature. Associating the {D, N} values with  
{x, y} coordinate pairs, the conditions for error free phase calculation are seen to 
be the requirements that all {D, N} coordinate pairs fall on a circle centered at the 
origin, with amplitude r = ax = ay. In general, however, due to unavoidable errors 
in the phase calculation process, all {D, N} coordinate pairs will fall on an ellipse 
centered at {xo, yo}. The error in the phase calculation is equal to the difference 
between the parameterizing angle, θ, and the coordinate angle, θ`. The relationship 
between the parameterizing angle and the coordinate angle for a general ellipse is 
shown in figure 1. 

 

Fig. 1 General ellipse plot showing the parametric angle, θ, the coordinate angle, θ`, and 
the difference angle, ε  = θ`- θ, for a given point {D, N} 

The parameter angle is always equal to the coordinate angle in a circle centered 
at the origin; this is not the case for a non-centered circle or an ellipse, resulting in 
the well known single and double frequency print through errors. Lissajous curves 
are created by plotting the {D, N} coordinate pairs as defined in Eq. 2 and 3. 
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Equations 6 and 7 describe a general ellipse with offset {xo, yo}, and semi-major 
and minor amplitudes of {ax, ay}.  The ellipse orientation angle, α, referenced to 
the x-axis is given by: 

 
2 2

2 ( )
(2 ) x y

x y

a a Sin
Tan

a a

φ
α =

−
 (8) 

The parametric coefficients, {xo, yo, ax, ay, φ} may be determined through fitting 
the Lissajous curves shown in figure 2 to a general ellipse. Using the best fit el-
lipse parameters, the measurement {D, N} points are transformed to lie on a circle 
centered at the origin. In other words, the measured parameters are used to remove 
the offsets, equalize amplitudes and orthogonalize the N and D terms. This trans-
formation is shown in equation 9, where R is the rotation matrix. 

 { , } ( ) {1, } ( ) { , }x

y

a
t t o oaD N R R D x N yα α= − ⋅ ⋅ ⋅ − −  (9) 

A series of phase measurements, >5, are made where the average phase is dithered 
between 0 and 2pi radians. For each measurement field point, the series of {D, N} 
pairs are fit to a general ellipse, the parametric coefficients are determined, and 
finally, the quadrature points are transformed to lie on a circle centered at the ori-
gin.  These transformed {D, N} pairs are then use to calculate the error free phase. 

4 Measurement Results 

One advantage of using the pixelated polarization mask phase sensor is that the 
mechanisms leading to phase-dependent measurement error are static for a given 
test setup, and thus it is possible to correct for them. The dominate mechanism is 
polarization mixing between the test and reference beams which is caused by bire-
fringence in both the common and non-common path portions of the interferome-
ter. For a given test setup the polarization mixing is static, although it may not  
be spatially uniform, thus by using the procedure of section 3 it is possible to 
measure and correct for the error on a pixel by pixel basis.  

4.1 High Numerical Aperture System Measurement 

In terms of the discussion of section 1, polarization mixing primarily results in 
offset terms in the numerator and denominator of Eq. 1 and 2 giving single fre-
quency print-through in the phase measurement. There is also a change in the 
amplitude balance which results in a lower amplitude double frequency print-
through error. Figure 3 shows the results of a single phase measurement on a super 
smooth flat (surface roughness <0.1nm RMS). As can be seen, the standard mea-
surement procedure results in about 15nm (λ/50) of single frequency print 
through. If a flat field calibration procedure is used, which is roughly equivalent to 
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Use of this challenging arrangement resulted in significant polarization aberra-
tion in the beams returning to the interferometer. As a result, there was a signifi-
cant amount of print-through error in the uncorrected phase measurement. Fig. 4 
shows both the uncorrected and corrected residual phase maps resulting from the 
removal of a 32 term Zernike fit. As can be seen, print through error is no longer 
evident and the residual wavefront has gone from 0.051 to 0.041 waves RMS. 

5 Summary 

Polarization based instantaneous phase measurement systems can suffer from 
phase dependent errors resulting from systematic polarization aberrations. A gen-
eral discussion of phase shifting calculation errors has been provided along with a 
phase error correction methodology. Finally, two examples of phase measurement 
correction have been shown. 
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