Pixelated mask spatial carrier phase shifting
interferometry algorithms and associated errors

Bradley T. Kimbrough

In both temporal and spatial carrier phase shifting interferometry, the primary source of phase calcu-
lation error results from an error in the relative phase shift between sample points. In spatial carrier
phase shifting interferometry, this phase shifting error is caused directly by the wavefront under test and
is unavoidable. In order to minimize the phase shifting error, a pixelated spatial carrier phase shifting
technique has been developed by 4D technologies. This new technique allows for the grouping of phase
shifted pixels together around a single point in two dimensions, minimizing the phase shift change due
to the spatial variation in the test wavefront. A formula for the phase calculation error in spatial carrier
phase shifting interferometry is derived. The error associated with the use of linear N-point averaging

algorithms is presented and compared with those of the pixelated spatial carrier technique.
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1. Introduction

Determination of the spatial variations of optical
phase is of primary importance in the fields of optical
testing and metrology, optical recording of wavefronts,
optical information processing, and adaptive optics.
There exist several techniques for the encoding of spa-
tial phase modulation in fringe patterns and the
subsequent analysis of these fringe patterns for a
quantitative determination of phase.! The two primary
groups of fringe pattern analysis techniques are tem-
poral phase measurement (sometimes known as the
phase shifting method) and spatial phase measure-
ment (which is also called the spatial carrier method).

Temporal phase measurement is a well-established
method for measuring the optical wavefront phase.2
In this technique, three or more interferogram inten-
sity profiles are recorded. For each recording, there is
a different relative phase between the test and the
reference beams. There are two major limitations to
temporal phase measurement. The first limitation is
its extreme sensitivity to vibration and turbulence.
The second limitation, which is the largest source of
error in vibration free environments, results from an
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inability to precisely control the relative phase shifts
between interferograms.? A majority of the scholar-
ship in temporal phase measurement has been fo-
cused on the analysis and development of algorithms
that are less sensitive to phase shifting errors.4—9

Spatial phase measurement utilizes a single inter-
ferogram to extract phase information.1? In this tech-
nique, a spatial carrier, typically in the form of high
frequency tilt fringes, is applied to the interferogram.
The intensity profile of the modulated spatial carrier
interferogram is recorded and then analyzed in one of
two spatial phase measurement techniques to deter-
mine the phase. In the first technique, the data are
processed in the Fourier domain.!* Fourier domain
processing will not be discussed in this paper, but it
should be mentioned that the Fourier domain ap-
proach is not sensitive to the phase shift errors de-
scribed here, because it makes no a priori assumptions
about the phase increment between pixels. In the sec-
ond technique, data are processed in the spatial do-
main. The primary advantage of the spatial phase
measurement technique over the temporal phase mea-
surement is that only one image is required. This al-
lows measurements to be taken in adverse conditions
or of dynamic events.

The spatial carrier phase shifting method is a spa-
tial domain processing technique and is a direct ap-
plication of temporal phase shifting algorithms to
spatial phase measurement.!2 This method assumes
that the phase difference between pixels remains con-
stant over a small interval, and is equal to the fringe



carrier frequency. The largest source of error in this
method results from the assumption of constant
phase shift between the pixels in an interval.l3 Be-
cause the phase shift between pixels is a result of
both the spatial carrier phase and the test wavefront
phase, the assumption of constant phase shift is valid
only for wavefronts with small deviations. The result-
ing error is analogous to the phase shift calibration
error in temporal phase shifting. Just as in temporal
phase shifting, application of algorithms less sensi-
tive to detuning can minimize this error. However,
these detuning insensitive algorithms generally in-
volve more sample points, making the assumption of
constant phase slope across the sample interval more
difficult to maintain.

In order to minimize phase calibration error, a pix-
elated spatial carrier phase shifting technique has
been developed by 4D technology.4 In this technique,
the relative phase between carrier and test wavefront
is modified on a pixel by pixel basis. The phase shifts
are produced with a wire grid polarizing array placed
at a point just prior to detection. This method allows
for the grouping of phase shifted pixels together
around a single point in two dimensions, minimizing
the phase shift change due to the spatial variation in
the test wavefront. An analysis of the wavefront in-
duced errors in the pixelated spatial carrier technique
along with a comparison to the performance of stan-
dard linear algorithms is the subject of this paper.

This paper begins with an analysis of the wavefront
induced errors in spatial carrier phase shifting inter-
ferometry. A general error formula is derived that is
valid for the N-point averaging algorithms, class A,
outlined by Schmit and Creath,” and contains no ap-
proximations. A simplification of this formula is then
derived for the case of a wavefront with tilt and com-
parisons made with results obtained from computer
simulations. The pixelated spatial carrier technique is
then introduced along with the circular-4, circular-9,
stacked-4, and stacked-9 algorithms. The general error
formula will be shown to be valid for use with these
new algorithms, and an analytic solution expressing
the error as a function of tilt will be derived. These
analytical results will also be compared with those
obtained through a computer simulation. Finally, a
comparison will be made between the circular and
stacked algorithms and the linear algorithms.

2. General Error Formula Derivation

In spatial carrier phase shifting, the wavefront being
measured (the test wavefront) modulates the spatial
carrier (the reference wavefront), altering the nomi-
nal phase shift between pixels and resulting in a
phase calculation error. This error is both wavefront
and algorithm dependent. In this section, a formula
for the wavefront dependent phase calculation error
is derived for the N-point averaging algorithms.

The N-point averaging algorithms used in this
analysis are a class of error compensating algorithms
based upon the conventional 4-point method.” The
conventional 4-point algorithm is

@) 64 e, 64| 65 | 6
Tan (65 +£)=(1,-1,) /(1;1,)
(b) 8, 6, 8, 85 | 6

Tan (0,-6")=(1, -1, ) /(1; ;)

Fig. 1. (Color online) Calculating 604 using shifted data sets.
I, -1, 1
tan(e) = m, ( )

where I, is the intensity at point n, and the phase
shift between points is w/2 radians. Derivation of the
5-point algorithm from the 4-point algorithm is
as follows: Figure 1(a) shows a row of six pixel
elements, where the phase at each element is 0, n
being the pixel number. In addition to this wavefront
phase, there is a carrier phase of nw/2 at each point.
Using the 4-point formula of Eq. (1) and the intensity
values corresponding to points 1-4, the phase at
n = 3 is determined by

tan(0; + &) = (I, — 1,)/(Is — I), (2)

where ¢ is the error in the phase calculation.

The phase at n = 3 can also be calculated by using
the intensity values at points 2-5 as shown in Fig.
1(b). The formula in this case is

tan(0; — &') = (I, — L)/ (Is — I), (3)

where ¢’ is the error in the phase calculation. Note
that in Eq. (2) ¢ is added to the phase, whereas in
Eq. (3) &' is subtracted. Both calculations have ap-
proximately the same error, but of opposite sign. An
average of the results of these two calculations
will then significantly reduce the error. Schwider
et al.? pointed out that, instead of taking two separate
measurements and averaging the results, one could
simply average the numerator and the denominators
in Eqgs. (2) and (3) resulting in the 5-point formula:

2[2 - 2[4

tan(e) = m (4)

This result follows from the following identity:

tan(a + b) B sin(a) + sin(b) 5)

2 ] cos(a) + cos(b)

By averaging two offset 5-point measurements, the
6-point algorithm is derived. This process can be ex-
tended to produce any number of N-point averaging
algorithms.” The 6-point and 7-point algorithms are
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tan(@) = m, (6)
. 4]2 - 8[4 + 4‘[6
tan(®) =7 —7r, 7, - I @

The N-point averaging formulas can be expressed as
follows:

- 21,:7: 1 Ian Sin(‘Pn,m)
ZnY=IIan COS(('Pn,m) ’

tan(0,, + ) = (8)

where

™
Crmn = @n = P = (" M) 5. 9)

In the above formula, 6,, is the phase being deter-
mined, and ¢ is the error in the calculation. IV is the
number of points in the algorithm, and I,,, W,, and
¢,.m are the measured intensity, algorithm weighting
coefficient, and relative spatial carrier phase at point
n, respectively. Solving Eq. (8) for tan(e) gives

num, g, cos(9,,) — den, sin(0,,)

tan(e) = den s, cos(6,,) + numsg, sin(6,,)’ (10)
where
N
numg, = — §1I"W" Sin(@, ), (11)
N
den s, = ; LW, cos(¢,)- (12)

Numg, and den, are the numerator and the denom-
inator of Eq. (8). The intensity of the measured inter-
ferogram can be expressed as

I,=1,,[1+~vcos(6,+¢,)] (13)

where I, and vy are the interferogram average inten-
sity and visibility, respectively. Let 6,, be expressed as

. (14)

where A, ,, is the difference between the phase at
point (n), 6,,, and the phase determined by the calcu-
lation, 6,,. Substituting the value of 6, from Eq. (14)
into Eq. (13) and setting I,,, and vy equal to 1 gives

I,=1+cos(0,+¢@ntA,,+oum). (15)
From Eq. (15), it should be evident that A, ,, repre-
sents a wavefront dependent phase shifting error.
Using this value for I, in Eq. (11) and expanding

trigonometric terms give
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num,g, = _gﬁ w, % cos(0,, + ¢, + A, ,)sIn(2¢, )
+ nﬁi W, sin(0,, + ¢,, + An,m)sin2(cpnym)
- ﬁ,l W, sin(¢,, ). (16)
Since ¢,,, is an integer multiple of w/2, then
sin(2¢,,,) = 0. 17

Equation (17) holds for all (n, m), and therefore the
first sum in Eq. (16) is zero. The third sum in Eq. (16)
is equal to either the sum of the odd weighting fac-
tors, or the even weighting factors, with the sign
of the factors alternating. For example, using the
7-point algorithm weighting factors, the (alternating
sign) odd factor sum is

4
2 (—1yWy ;=1-7+7-1=0. (18)
=1
The (alternating sign) even weighting factor sum is
3
j=1

The results of Egs. (18) and (19) apply to all the
N-point averaging algorithms and result from the
symmetrical nature of the weighting factors. There-
fore the third term in Eq. (16) is also zero giving

N
numg, = >, W, sin(0,, + ¢, + A, ,)sin’*(¢, ).
n=1
(20)

In a similar manner, Egs. (12) and (15) can be re-
duced to

N
den g, = rz,l W, co8(0,, + @ + A1) COS* (@)
(21)

Finally, combining Eqgs. (10), (20), and (21), and re-
ducing gives

tan(e,,) =

> —[Zs c0s(26,,) + X5 sin(26,,)]cos(2¢,,)
24 [ cos(26,,) — X sin(26,,)]cos(2¢,,)’

N
21 = 2 Wn Sin(An,m)7
n=1

N
22 = E Wn COS(2('Pn,m)Sin(An,m)’
n=1



N
23=2 W, cos(2¢,,,)cos(A, ),
n=1

Du= Izi W, cos(A, ). (22)

Equation (22), the general error equation, expresses
the phase calculation error in an N-point averaging
algorithm as a function of the wavefront phase, 6,,,
the carrier phase, ¢,,, the algorithm weighting fac-
tors, W,, and the wavefront phase deviation about the
point of calculation, A, ,,. This formula is also appli-
cable to temporal phase shifting. In this case, A, ,, is
the phase shifting error between steps n and m. The
general error formula is very similar to one derived
by Schwider et al.3 for use with the synchronous de-
tection algorithm. In his derivation, the assumption
that A,,, << 1 was made and cos(4,,,) and sin(4, )
were approximated to first order. Under these condi-
tions and with N = 4, the general error formula will
reduce to that of Schwider.

3. The 5-Point Algorithm: Wavefront with Tilt

As an example use of the general error formula, the
phase calculation error for the 5-point algorithm will
be determined for a wavefront with tilt. The results
will then be compared with those obtained from a
computer simulation. The first step is to evaluate the
sums given in Eqgs. (22). The weighting factors in
the 5-point formula are W,, = {1, 2, 2, 2, 1}. If the
phase is evaluated at the center point, m = 3, and
Cpm = {—m, /2,0, w/2, w}. Let the wavefront tilt
have a value of (¢) radians/pixel in the direction of the
spatial carrier. In this case, A, ,, = {—2¢, —t, 0, ¢, 2t}.
Using the values given above, the sum terms of Eq.
(22) are evaluated as follows:

N
Si=>W, sin(4,,,,) =0, (23)
n=1
N
>0 =2 W, cos(2¢,,,)sin(4,,,) =0, (24)
n=1

S>s= g}l W, cos(2¢,,,)cos(A,,,) = —8 cos(t)sin*(¢/2),
(25)

2= i W, cos(A, ) = 8 cos(t)cos’(t/2). (26)

Using the sums given in Eqs. (23)—(26), Eq. (22) be-
comes

sin’(¢/2)sin(26,,)cos(2¢,,)
cos®(¢/2) — sin®(¢/2)cos(26,,)c08(2¢,,)
(27)

tan(e,,) =

A plot of Eq. (20) with ¢ = w/64 radians/pixel is
shown in Fig. 2.
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Fig. 2. The 5-point algorithm theoretical phase calculation error for a
wavefront with tilt. £ = /64 rad/pix. Values calculated with Eq. (20).

As pointed out by several authors,”.9-15 the phase
dependence of the error envelope is proportional to
sin(26), with the error oscillating in sign at twice the
carrier frequency. Maximizing Eq. (27) with respect
to 0, the theoretical maximum error is found to be

sinz(t/2)

‘ . (28)
ycos(t)

tan(e),,,, =

Using Eq. (28) the peak-to-valley (Pk—v) error in
waves is

1 (sinz(t/2)) 29)

epry = — arctan| —
P yeos(t)

Using ¢t = w/64 in Eq. (29) gives a theoretical Pk—v
error of 1.91825 X 10~ * waves that corresponds with
the Pk—v error in Fig. 2. Several authors have noted
the relationship of the peak-to-valley error with the
square of a linear phase shift miscalibration for the
5-point algorithm.®15 This dependence is true for

small tilt angles and can be shown by approximating
Eq. (29) as

1 /t\2
Py = (2> . (30)

A computer simulation was also conducted. Phase
values were calculated on a 512 X 512 array for a
wavefront with ¢ = /64 rad/pixel in the x direction.
A spatial carrier phase of m/2 rad/pixel in the x di-
rection was added to the tilt phase, and the interfero-
gram intensity values at each point in the array were
calculated using Eq. (6) with I, and v set equal to
one. Using the generated intensity values, the 5-point
algorithm was then used to calculate the phase at
each point in the array. The actual phase was then
subtracted from the calculated phase to obtain the
phase calculation error. The results of the simulation
are shown in Fig. 3. As can be seen by comparing
Figs. 2 and 3, the two plots are visibly identical with
a maximum difference between corresponding points
of 10~8 waves.

4. N-Point Algorithm: Wavefront with Tilt

The general error formula, Eq. (15), can be reduced in
the case of a wavefront with tilt to the following form:
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Fig. 3. The 5-point algorithm phase calculation error for a wave-
front with tilt. £ = w/64 rad/pix. Values obtained through com-
puter simulation.

N even
sin(t/2)N-3 cos(260)cos(2¢)
tan(e) = cos(t/2)N-3 + sin(¢/2)N-3 sin(26)cos(2¢)’
N odd
sin(t/2)N-3 sin(26)cos(2¢)
tan(e) =

cos(t/2)N-3 + sin(t/2)N~3 cos(20)cos(2¢)’
(31)

The maximum error for both even and odd N is de-

termined by maximizing Eqgs. (31) with respect to 6.

The maximum error for both even and odd N is

given by

sin(t/2)N-3
Jcos(t/2)2V-3 — sin(t/2)20-5 "

(32)

tan(s)max =

Using Eq. (32) the peak-to-valley error in waves for a
wavefront with tilt is

1 sin(t/2)N-3
epry — — arctan| — = .
™ yeos(t/2)2V=3 — sin(t/2)2A-3

(33)

For small ¢, Eq. (33) may be approximated as
1
Epky = arctan[tan(z/2)N-3]. (34)

Using Eq. (33), the theoretical peak-to-valley error as
a function of tilt for N = 4, 5, 6, and 7 was plotted
and is shown as the solid curves in Fig. 4. Note that
0.25 wave per pixel corresponds to the sampling
Nyquist frequency. A computer simulation was also
conducted with the results shown as points along
the theoretical curves. Any discrepancies between
the theoretical values and those obtained through
simulation are due to the fact that the simulation
wavefront sample points may not fall at the exact
phase necessary for a maximum in the calculation
error. A general analytical formula for linear phase
shift errors valid for all phase shifting algorithms
without restriction to the phase increment has been
published by de Groot.1¢ His formula is elegantly
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Fig. 4. (Color online) Peak-to-valley phase calculation error as a func-
tion of wavefront tilt for the 4-, 5-, 6-, and 7-point algorithms. The solid
curves represent the theoretical values determined with Eq. (33). The
points indicate values obtained via computer simulation.

derived in terms of a windowed discrete Fourier
transform of the wavefront intensity. In the case of
a wavefront with tilt, the above results can be de-
rived from de Groot’s formula.

5. Pixelated Spatial Carrier

Tilt fringes are generally used to produce a linear
spatial carrier. When the carrier fringe spacing is 4
pixels wide, there is a relative phase shift of w/2
between pixels. A portion of a linear carrier is shown
in Fig. 5 (top) with the carrier phase at each pixel
given in degrees. Upon interference with the test
wavefront, this linear carrier will become modulated,;
that is, the relative phase shift between pixels will no
longer be 90°. To calculate the phase at the center
pixel, the 5-point formula can be used. The error in
this phase calculation results directly from the wave-

Linear Cammier

TN o [ o | o [ER

Pixdated Camier

‘

r -

2808 180

Fig. 5. (Color online) Linear versus pixelated spatial carrier. The
arrows represent the phase shift error associated with the wave-
front being measured. The pixelated spatial carrier groups four
phase shifted pixels about a center point in order to minimize
accumulative phase shift error.
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Fig. 6. Stacked and circular pixelated mask orientations.

front induced phase shift errors, A,, shown as arrows
in Fig. 5. One way to minimize these errors is to
minimize the distance between the point at which the
phase is being calculated and all other points in-
volved in the calculation. The pixelated spatial car-
rier shown in Fig. 5 (bottom) accomplishes this by
grouping the phase shifted pixels together around a
single point in two dimensions, minimizing the phase
shift change due to the spatial variation in the test
wavefront. Physical implementation of the pixelated
spatial carrier has been well covered by other au-
thors1417 and is not discussed in this paper. In the
remainder of this section, two different pixelated spa-
tial carrier orientations are introduced, each having
an associated 4-point and 9-point algorithm. The ap-
plicability of the generalized error formula, Eq. (22),
is shown, and a comparison of algorithm performance
for a wavefront with tilt is made.

The two orientations of the pixelated spatial carrier
are shown in Fig. 6. The first is called the stacked
orientation, since pixels phase shifted by 180° are
stacked one over the other. The second is called the
circular orientation, since the spatial carrier increases
in a right-hand circular fashion. The circular-4 and
stacked-4 algorithms are simply the standard 4-point
linear algorithm, Eq. (1), used with the circular and
stacked pixelated mask orientations.

The 9-point algorithms were developed by noting
that each pixel is contained within four separate
groupings of phase shifted pixels, and each grouping of
pixels can be used to determine the phase with the
appropriate 4-point algorithm. Figure 7 shows a 4
X 4 section of a circular pixelated mask spatial car-
rier, with the pixels in the lower right section labeled
1-9. The phase at the center pixel, 5, can be deter-
mined with the 4-point algorithm using points (1, 2,
5,4),(2,3,6,5),4,5,8,7),or (5, 6,9, 8). Since there
is a relative phase offset of /2 between each of these
phase calculations, an averaging of the results will
significantly reduce the calculation error. This is com-
pletely analogous to the technique for deriving the
N-point averaging algorithms from the 4-point algo-
rithm as discussed in Section 2. Additionally, as
was also pointed out in Section 2, instead of making
four separate measurements and then combining
the results, the numerators and the denominators
of each of 4-point calculations can be combined to
give a single 9-point formula. The same technique is

Circular Carrier
0 ’ 0 1
% 1 = 2 ; J .
o[z o[z
2 r /4 a z ’ /4

Fig. 7. (Color online) A 4 X 4 section of a circular pixelated mask
carrier. The phase at point-5 can be calculated using the intensity
values obtained at pixels 1-9 in the circular-9 algorithm.

used with the stacked carrier to derive the
stacked-9 algorithm. The circular-9 formula is

oIy +Is— I, — Iy)

tan[65] = I, —I,+4l,—I.—1I, (35)
The stacked-9 formula is
IL+1,—2I,— 2.+ I, +1
tan[05]= o7 g7 —or . (36)

_212 + 415 - 218

Since the circular-4 and stacked-4 algorithms are
both equal to the standard linear-4 algorithm given
in Eq. (1), the general error formula of Eq. (22) is
applicable. Note that the only difference among the
linear-4, circular-4, and stacked-4 algorithms is the
spatial orientation of the phase shifted pixels that
results in different set of A,’s, and therefore a differ-
ent calculation error for each algorithm. In Section 2,
the numerator, Eq. (16), of the general error formula
was significantly simplified due to the fact that the
first and third sums were shown to be equal to zero.
This is also true in the case of the circular-9 and
stacked-9 algorithms. A similar relation holds for
the denominator terms of the general error formula.
Therefore the general error formula is applicable to
both the circular-9 and stacked-9 algorithms.

Using the general error formula, the phase calcu-
lation error of the stack-4 algorithm for a wavefront
with tilt is given by

sin(t,/2)cos(20)cos(2¢)
cos(t,/2) + sin(t,/2)sin(20)cos(2¢)’
(37

tan(s) =

where ¢, is the component of tilt in the x direction. The
maximum error amplitude is given by
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_ sin(t,/2)
tan(e) = 7\s’cos(tx) . (38)

This is equivalent to the linear-4 algorithm error.
The circular-4 algorithm error is given by

tan(e) =

—sin(t,/2)sin(t,/2)sin(26)cos(2¢)
cos(t,/2)cos(t,/2) — sin(t,/2)sin(t,/2)cos(20)cos(2¢)’
(39)

The circular-4 error maximum amplitude is

an(ey L ZSnC/2)sn/2)
o = o) + cos(ty)

where ¢, and ¢, are the components of tilt in the x and
y directions, respectively. A tilt orientation of 45° will
produce the maximum error. In this case, the maxi-
mum error amplitude is given by

tan(e) = M (41)
( )max \SJCOS(tx) ’

which is equal to the maximum error in the linear-5
algorithm, Eq. (28). The stacked-9 algorithm error is
given by

tan(e) =

—sin®(¢,/2)cos(20)cos(2¢)
cos’(t,/2) + sin*(¢,/2)sin(26)cos(2¢)

(42)

This error is equal to the error in the linear-5 algo-
rithm and therefore has the same maximum error as
shown in Eq. (41). The circular-9 algorithm error is
given by

=
m_———
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Fig. 8. (Color online) Peak-to-valley phase calculation error as a
function of wavefront tilt for the circular-4, stacked-4, circular-9, and
stacked-9 algorithms. The solid curves represent theoretical values.
Points indicate values obtained via computer simulation. Tilt orien-
tation is at 0° and 45° for the stacked and circular algorithms,
respectively.

Similar to the circular-4 case, a tilt orientation of 45°
will produce the maximum error. Setting ¢, = ¢, in
Eq. (44) gives

sin*(¢,/2)
tan(g)max =7 8 . 8 ° (45)
ycos®(t,/2) — sin®(t,/2)

This error is equivalent to the linear-7 algorithm er-
ror for a wavefront with tilt at a 45° orientation.
The maximum peak-to-valley theoretical errors for
the circular and stacked (4- and 9-point) algorithms
as functions of wavefront tilt are plotted and shown
as the solid curves in Fig. 8. To make a comparison of
maximum error, the circular algorithms are shown
for a tilt orientation of 45°, and the stacked algo-
rithms are shown at a tilt orientation of zero. A com-
puter simulation was also conducted with the results

—sin®(t,/2)sin®(¢,/2)sin(260)cos(2¢)

tan(e) =

cosz(tx/2)cosz(ty/2) + sinz(tx/Z)sinZ(ty/Z)cos(26)cos(2cp)'

(43)

The circular-9 maximum error amplitude is

tan(s)max =

sin®(t,/2)sin®(¢,/2)
\cos*(t,/2)cos’(t,/2) — Sin4(tx/2)sm4(ty/2)‘

(44)
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shown as points along the theoretical curves. It is
obvious that the circular-9 formula has the best per-
formance. A concern with this comparison is that in
going from the 4-point to the 9-point formula, the
lateral resolution of the calculated phase map will
suffer. It is true that the lateral resolution of the
9-point formula will be less than that of the 4-point
formula, but it turns out that the differences are
insignificant when compared to the loss in resolution



Table 1. Spatial Carrier Phase Shifting Calculation Error for a Wavefront with Tilt

Algorithm Tan(e) Tan(e)p,.x Comment
Linear-N sin(z,/2)V 3 cos(20)cos(2¢) sin(¢,/2)N 3 N=4
N-even cos(t,/2)N 3 + sin(t,/2)" ® sin(260)cos(2¢) \““cos(tx/2)2‘N‘3) — sin(,/2)?N®
Linear-N sin(t,/2)V % sin(26)cos(2¢) sin(z,/2)V3 N4
N-odd cos(t,/2)Y " — sin(t,/2)" ° cos(26)cos(20) \““cos(tx/Q)Z'N%) — sin(t,/2)?N
Linear-4 sin(z./2)cos(26)cos(2¢) sin(t./2)
cos(t,/2) + sin(t,/2)sin(20)cos(2¢) \m
Linear-5 sin%(¢,/2)sin(20)cos(2¢) sin’(¢,/2)
cos?(t,/2) — sin®(t,/2)cos(260)cos(2¢) \cos(z,)
Linear-6 sin®(t,/2)cos(20)cos(2¢) sin®(t,/2)
cos’(t,/2) + sin’(t,/2)sin(26)cos(2¢) veos®(z,/2) — sin®(z,/2)
Linear-7 sin*(¢,/2)sin(20)cos(2¢) sin*(¢,/2)
cos*(t,/2) — sin*(t,/2)cos(26)cos(2¢) Jeos®(£,/2) — sin®(¢,/2)
Stacked-4 sin(t,/2)cos(26)cos(2¢) sin(t,/2) Equal to linear-4
cos(t,/2) + sin(t,/2)sin(20)cos(2¢) \m
Circular-4 —sin(¢,/2)sin(t,/2)sin(26)cos(2¢) \2 sin(t,/ 2)sin(z,/2) Equal to linear-5 for
cos(t,/2)cos(t,/2) — sin(t,/2)sin(t,/2)cos(26)cos(2¢) m tilt orientation of 45°
Stacked-9 —sin(t,/2)cos(26)cos(2¢) sin’(t,/2) Equal to linear-5
cos(t,/2) — sin(t,/2)sin(260)cos(2¢) \cos(t,)
Circular-9 —sin(t,/2)sin(t,/2)sin(26)cos(2¢) sin’(¢./2)sin’(t,/2) Equal to linear-7 for

cos(t,/2)cos(t,/2) + sin(t,/2)sin(t,/2)cos(26)cos(2¢)

\eos'(t,/2)cost(t,/2) + sin’(t,/2)sin’(,/2)

tilt orientation of 45°

resulting from the limiting aperture of the inter-
ferometers imaging system. An additional concern
with the use of the circular-9 algorithm relates to the
issue of camera smear.'® When using a sensor with
50% smear, the stacked algorithm outperforms the
circular algorithm for low values of tilt. However,
since the circular algorithm’s performance is so much
better than that of the stacked algorithm, it is better
to simply eliminate the smear through shuttering the
laser than to use the lower performing algorithm. A
summary of the error formula for both the linear and
the pixelated spatial carrier algorithms is provided in
Table 1.

6. Summary

The pixelated mask spatial carrier technique has
been introduced, and the circular-4, stacked-4,
circular-9, and stacked-9 algorithms presented. To
allow comparisons of algorithm performance, a gen-
eralized error formula was derived for the wavefront
induced phase calculation error. The generalized er-
ror formula was derived for the linear averaging al-
gorithms and was then shown to be applicable to the
spatial carrier algorithms. The generalized error for-
mula was simplified for the case of a wavefront with
tilt, and the results for both the linear and the pix-
elated spatial carrier algorithms were compared with
those obtained through computer simulation. The
performances of the stacked-4 and the stacked-9 al-

gorithms, when measuring a wavefront with tilt,
were found to be equivalent to those of the linear-4
and linear-5 algorithms, respectively. The maximum
error for the circular-4 algorithm is approximately %
that of the linear-5 algorithm, and the maximum
error in the circular-9 algorithm is approximately %4
that of the linear-7 algorithm. In all cases, the phase
calculation error when measuring a wavefront with
tilt is strictly phase dependent; that is, the first sum
of the general error equation is zero and the numer-
ator of the general error equation contains a sin(260)
or cos(20) term. Due to vibration, the absolute phase
of the wavefront under test may move around by as
much as a few waves, which results in the phase of
the error moving around due to the 26 dependence. In
this case, if several measurements are made and then
averaged, the resulting error can be averaged to near
zero. This error averaging technique is successfully
employed in 4D technology interferometers.4 On a
final note, for nonlinear wavefronts, analytic solu-
tions to the general error formula have proved illu-
sive; however, assuming wavefronts with small
deviations, good approximations can be derived. The
most significant difference between wavefronts with
tilt and those with nonlinear deviations results from
the fact that the first term in the general error equa-
tion is no longer zero. The error in the phase calcu-
lation for nonlinear wavefronts contains a nonphase
dependent offset that is proportional to the local slope
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of the wavefront being measured for the linear and
pixelated 4-point algorithms. The offset is propor-
tional to the curvature of the wavefront for the linear
algorithms with N > 4, and the stacked-9 and
circular-9 algorithms.
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