
LOW-LATENCY PACKET DELIVERY IN SPACEWIRE NETWORKS

Session: Networks and Protocols

Long Paper

Dr Barry M Cook, C Paul H Walker

4Links Limited

E-mail: barry@4Links.co.uk paul@4Links.co.uk

ABSTRACT
This paper quantifies typical latency requirements and describes a simple technique
that uses virtualization and priorities with dynamic, on-demand segmentation, to
provide deterministic, low latency delivery of packets whilst allowing high utilisation
of the network. Segmentation is low-level and invisible to the user (and to the API).
Packets, of any size, will be delivered to the destination node as a contiguous whole,
without interleaving and with the contents in strict order. The technique offers the
ability to carry data with real-time and low-latency requirements, such as command
and control (including unscheduled events), at the same time as, and completely fire-
walled from, high-bandwidth data such as that from experiments and instruments.

1 INTRODUCTION
This paper brings together with SpaceWire the themes of Virtualization and Time
Triggering. Virtualization has proved to be a secure way to share resources on a
computer, such as virtual servers. Time Triggering has become a popular means of
providing deterministic (but often very high) latency over a bus.

SpaceWire, as defined in [1], offers very low latency for real-time control loops and
for housekeeping accesses, provided that such accesses are not contending with large
data transfers, or with blockage in the network.

We describe an enhancement to SpaceWire that provides Virtual SpaceWire
Networks [2, 3] and thus brings the benefits of protecting users from each other and of
isolating faults. Virtual SpaceWire Networks (VSNs) retain the exceptionally low
latency of current SpaceWire for deterministic real-time traffic. Meanwhile, the low
priority and bulk data transfer can use all the bandwidth that is not taken by the real-
time traffic.

We use priority within the Virtual SpaceWire Networks to ensure that latencies and
control loop times can be guaranteed. Each Virtual Network can have its own
individual priority, or several Virtual Networks can share the same priority.

In this paper, we acknowledge that many missions have control loops and
housekeeping accesses that repeat at 1 second, 100ms, 10ms or shorter periods. We
simply group the accesses in each of these sets of periods into separate Virtual
SpaceWire Networks.

mailto:barry@4Links.co.uk
mailto:paul@4Links.co.uk

2 AN EXAMPLE NETWORK AND CALCULATION OF AVAILABLE THROUGHPUT
Table 1 below shows an example set of traffic such as would be used on a satellite and
Figure 1 shows a subset of the activity of that traffic on several Virtual SpaceWire
Networks sharing a single physical SpaceWire link.

The table and figure include traffic for a couple of 5kHz control loops which need to
access data and process it within 200μs. We give this highest priority (priority 1).
Priorities 2 to 5 are used for slower control loops or for regular housekeeping updates,
at frequencies from 1kHz down to 1Hz (priorities 3 to 5 are omitted from the figure).
The lowest priority (6) is used for bulk data, such as image data from cameras.

3 ASSUMPTIONS
Any calculation of performance or guarantees needs to be based on assumptions.
We’ll make our assumptions explicit and then describe, in general terms, the way the
numbers in the table have been calculated and what performance can be guaranteed.

1. We assume a worst-case that all the traffic is shared on a single Virtual
SpaceWire Network link. In practice, performance scales with additional links.

2. We assume that the accesses are RMAP (Remote Memory Access Protocol)

Read requests and responses. RMAP has higher overheads than some other
protocols used on SpaceWire, so our use of RMAP here gives conservative
results, and this analysis is in no way confined to use of the RMAP protocol.

3. We assume a very worst case that all the RMAP initiators, with all the different

frequencies, start sending their requests at the same time and so will be queued.

 Frequency Number of requests in period Response Payload, Bytes

5kHz 2 20
1kHz 10 50

100Hz 25 200
10Hz 50 200
1Hz 100 200

Table 1: Set of real-time traffic used as an example

Responses

RequestsVSN 1
Priority 1
(highest)
VSN 2
Priority 2

VSNs 3 to 5, not shown

0 100 200 300 400 500 600 700 800 900 1000 μs

VSN 6, Priority 6 (lowest)

Responses interrupted or delayed by
higher-priority traffic

Requests delayed or interrupted
by higher priority traffic

Large, low-priority, packets, interrupted by higher priority traffic, utilize any spare bandwidth

Figure 1: An example of activity on a Virtual SpaceWire Network link over time

4. We assume that a node transmitting an RMAP request has adequate buffer
space to receive the full response that it has requested without stalling. And we
assume that a node transmitting a response is able to send the complete
response without stalling.

5. We assume that all the nodes are current SpaceWire standard nodes, so that a

node can only send requests or responses to one Virtual Network. (There can
be benefits in having nodes that support multiple Virtual Networks, which will
be described later).

6. We assume a link speed of 50Mbits/s. While this amply meets the

requirements, even with the worst case assumptions used here, faster link
speeds could be used to carry more data or to give even faster responses.

With these assumptions, we can now look at an algorithm for calculating whether the
latencies and processing times meet the requirements for completion within the
relevant Period at a particular priority.

4 ALGORITHM FOR CALCULATING REAL-TIME AND THROUGHPUT PERFORMANCE
1. For each VSN, add up the Network delay for requests on this VSN in this

period from the start of the first request being transmitted to the end of the last
request reaching its target. These delays include:

• Delay in the Initiator in transmitting the first packet
• The transmission time for the total number of Bytes, in all the requests for

this VSN, at the link speed of the SpaceWire link
• An overhead on the transmission time, to allow for flow control

characters, an occasional Time Code, and for the possible overhead of
switching between Virtual Networks

• The transmission time for any Nulls that the Initiator inserts into a request
(some designs may be unable to send contiguous packets)

• Total cable delay (although this is probably negligible)
• Total Routing-Switch latency

2. For each VSN, determine the Longest target latency of the various targets on this

Virtual SpaceWire Network. This is the time from the end of the request packet to
the start of the response packet. The latency should be determined from the
manufacturer’s data sheet and confirmed by characterization with test
equipment [4]

3. For each VSN, add up the Network delay for responses on this VSN in this

period between start of the first response being transmitted to the end of the last
response reaching its initiator. These delays are similar to the network delays for
requests and include:

• Delay in the Target transmitting the first packet
• The transmission time for the total number of Bytes, in all the responses,

at the link speed of the SpaceWire link; note that, while most of the
requests are the same length as each other (or very similar) the responses
may vary in length depending on the nodes being accessed.

• An overhead on the transmission time, to allow for flow control
characters, an occasional Time Code, and for the possible overhead of
switching between Virtual Networks

• The transmission time for any Nulls that the Target inserts into a
transmitted request (there should not be any but some designs may not be
able to send contiguous packets)

• Total cable delay (although this is probably negligible)
• Total Routing Switch latency

4. For each VSN, determine the Longest processing time of the various

controllers/initiators on this Virtual SpaceWire Network. The processing time is
the time from the end of the response packet arriving at the initiator to the end of
any action it needs to take as a result of the response.

5. For each VSN, add up the following:

• the Network delays for requests on all (higher or equal)-priority VSNs
in this Period. Note that if there is a single VSN at the highest priority,
this sum will be zero. Note also that the Network delays must account for
all the delays at equal or higher priority during the Period of this VSN.

• the Network delay for requests on this VSN in this Period
• the Longest target latency
• the Network delays for responses on all (higher or equal)-priority

VSNs in this Period. Note that if there is a single VSN at the highest
priority, this sum will be zero. Note also that the Network delays must
account for all the delays at equal or higher priority during the Period of
this VSN.

• the Network delay for responses on this VSN in this Period
• the Longest processing time 1

and if this total is less than the Period, then the set of accesses can be guaranteed
to take place within the Period.

1 It may be excessively conservative, on top of the worst case assumptions, to include the
longest target latency and the longest processing time in the calculation. An alternative would
be to sum the {target latency plus processing time} for each separate access, and then add the
longest of these sums to the request and response network delays to ensure that the total is
less than the Period.

5 A SPECIFIC EXAMPLE
We’ll consider, as an example, a small subset of the
activity shown in Figure 1, and check the behaviour
for the highest priority Virtual SpaceWire Network. Responses

Requests

0 100 200 μs

VSN 1
Priority 1
(highest)

For this there are two initiators and two targets with
the initiators and targets sharing a single link
between two routing switches. The numbers we use
are arbitrary, but are a reasonable estimate based on products that 4Links have
characterized. Note that the period of 200μs implies 5kHz control loops, and that
these have relaxed constraints on the end-nodes even with a link speed of 50Mbits.

Figure 2: Detail of activity for
an example 5KHz control loop

The Delay in both the Initiators in transmitting the first packet is 1μs.
The transmission time for an RMAP Read Request is around 24 Bytes, making a total
of 48 Bytes for the two Initiators. At 50Mbits/s, allowing for eight bits of data in ten
bits transmitted, and for the Ends of Packet, that takes a total of 9.8μs. We’ll allow a
10% overhead on the transmission time, to cover flow control characters and the
possible overhead of switching between Virtual Networks. This brings the total
transmission time to 10.8μs.
At 50Mbits/s, these Initiators do not insert Nulls into the data stream unless they are
starved of flow-control credit, which should not occur when the Target is waiting for a
Request.
Cable delay, at under 5ns per metre, and a total cable length of less than ten metres, is
sub 50ns and so will be ignored.
Routing Switch latency, for several switches that 4Links has measured, is around 1μs.
With two Routing Switches, the total delay in this direction is 2μs. This makes a total
Network delay for requests of (1+10.8+2) = 13.8μs.

The Longest target latency depends heavily on the devices used and whether the
protocol and response are handled in hardware or software. In this case we take, as an
example, an RMAP target that uses a processor and software dedicated to the one
target and that it responds in 50μs.

The Network delay for responses is a similar calculation to that for requests. In this
case any equivalent of the Initiator delay is included in the target latency. The
response payload is 20Bytes and the RMAP overhead is another 20Bytes. These
40Bytes for each of the two responses at 50Mbits/s, take 16.2μs. We again allow a
10% overhead on this to arrive at a transmission delay of 17.8μs. There should again
be no Nulls inserted because the initiator should not request a response that it can not
handle. Routing Switch Latency is as for Requests, at 2μs. This makes a total
Network delay for responses of (17.8+2) = 19.8μs

The Longest processing time needs to be measured by test equipment or calculated
from simulation of the software or, perhaps preferably, by both. In this example, the
sum of the two network delays, (13.8+19.8) = 34μs plus the target latency of 50μs, is
84μs. With the Period of 200μs, this leaves considerably more than 100μs available
for the processing time.

A more complete example of these calculations is given in [5] and is summarized in
Table 2.

Table 2: Calculations of latencies and bandwidth for the traffic shown in Table 1

Virtual
Space-
Wire

Network
(VSN)

Prio-
rity

Period,
μs

Freq-
uency

Number of
requests
in period

(n)

Response
Payload,

Bytes

Worst case
network
delay for
requests

on this VSN
in this

period, μs
(% of

period)

Worst case
network
delay for

responses
on this VSN

in this
period, μs (%

of period)

Shared link
Request
direction
utilization

Shared link
Response
direction
utilization

1 1 200 5kHz 2 20 13.8 (6.9%) 19.8 (9.9%) 5.4% 8.9%
2 2 1000 1kHz 10 50 57 (5.7%) 157 (15.7%) 5.4% 15.5%
3 3 10000 100Hz 25 200 138 (1.4%) 1214 (12.1%) 1.3% 12.1%
4 4 100000 10Hz 50 200 273 (0.3%) 2428 (2.4%) 0.3% 2.4%
5 5 1000000 1Hz 100 200 542 (0.1%) 4853 (0.5%) 0.1% 0.5%
 Real-Time utilization 12.5% 39.5%

6 6 Available bandwidth for (lowest priority) bulk data >80% >50%
 Total network utilization possible >90% >90%

6 MORE COMPLEX SPACEWIRE NETWORKS
The calculations above were done for a single
SpaceWire link, and obviously SpaceWire is used
for more complex topologies, such as the ring
shown at right. A conservative measure (again
worst-case) of both real-time and data throughput
performance could be gained by simply treating
the whole ring as a single SpaceWire link. If that
gives adequate performance, no further work is
necessary. If more performance is needed, each
link between routing switches can be considered
separately — which is still a much simpler
calculation than would be needed for a
conventional time-triggered network.

Figure 3: Ring network using
Virtual SpaceWire Networks

between routing switches

7 REDUCING POWER AND HARNESS MASS
Most current recommendations for SpaceWire are that all the SpaceWire links should
run at the same speed. Otherwise, for a current SpaceWire link multiplexing traffic
between many nodes (as in the main example above), the throughput on the shared
link drops to the throughput of the slowest link. Virtual SpaceWire Networks remove
this dependency, and so permit the peripheral links to nodes or end-points to run at the
appropriate speed for the node rather than for the whole network. Reducing link speed
at the periphery of the network can result in substantial savings of power (and cost).

The major saving in harness mass is from using a single (Virtual) SpaceWire network
instead of one (SpaceWire) network for data and another network/bus for control.
Significant additional savings in harness mass can be gained compared with current
SpaceWire by multiplexing several slow links over one faster link.

8 COMPATIBILITY WITH EXISTING NODES
All the examples shown have been with all the nodes being current SpaceWire. No
change to hardware or software is necessary to any well designed node connected to a
Virtual SpaceWire Network routing switch.

9 BENEFITS OF VSN NODES
Nodes that are accessed both for housekeeping and for large volumes of data could
benefit from having access both to high priority traffic for the housekeeping and to
low priority for the data. As described in [3, 4], such nodes could have a separate
SpaceWire link for each priority, or use an extended CODEC that supports two or
more priorities/VSNs. Nodes supporting multiple priorities must separate the two or
more priority levels to prevent priority inversion.

10 FAULT ISOLATION AND RECOVERY
It is possible for a SpaceWire node to block another, by continuously transmitting
(babbling idiot) or by failing to transmit for lack of flow-control credit or other error
such as software stalling. Virtual SpaceWire Networks provide isolation for such
faults:

1. From faults at lower priority: The highest priority Virtual SpaceWire Network
sees an empty network, and is completely isolated from faults in lower-priority
virtual networks. In general any VSN is isolated from faults in any VSN at lower
priority than itself.

2. From faults at the same or higher priority: It might appear from (1.) that faults

on higher priority VSNs are able to block everything at a lower priority. But, as in
our example above, it will be normal for the real-time traffic to take a small
proportion of the overall network bandwidth. VSN routing switches could police
that proportion and discard data from a node that is exceeding the permitted
percentage of bandwidth utilization for that priority level. This would leave up to
80% of the bandwidth available to lower priorities, even in the event of a fault at
the highest priority — bandwidth which could be used to recover from the fault.

3. From faults within a single Virtual SpaceWire Network: Several existing

routing switches perform a gatekeeper function by setting timeouts so that, if a
node is blocked for longer than the timeout, the blocked packet is discarded. It
can be difficult to calculate the appropriate timeout value if the minimum value to
meet one criterion is longer than the maximum value to meet another criterion.
This issue is much simpler to resolve when there is a separate VSN for each
frequency of access, and the timeouts can be set appropriately for each VSN.

11 CONCLUSIONS
We have presented here a simple solution for supporting real-time requirements on a
SpaceWire network. A link speed of 50Mbits/s is amply able to meet the requirements
of 5kHz control loops.

The solution can, at the same time and with conservative (worst case) assumptions,
offer well above 50% of the network bandwidth for volume data transfers, that may
use very large packets, while still providing microsecond response times to real-time
traffic.

One of the Virtual SpaceWire Networks could be used for a time triggered protocol.

By replacing only the routing switches in a SpaceWire network, Virtual SpaceWire
Networks provide the following benefits for missions:

• the simplicity in both concept and use of Virtual SpaceWire Networks, with a
corresponding reduction in mission complexity;

• use of a single physical network for both command/control and, separated by a
firewall, for volume data;

• reduction in power consumption, cable/harness mass, and thence cost
• complete compatibility with existing SpaceWire nodes;
• complete compatibility with (and transparency to) higher-level protocols

(including CCSDS, SOIS and PnP) running over SpaceWire;
• consistency with the layering of the SpaceWire standard so that no change is

required to the ECSS SpaceWire standard;
• greatly improved fault-isolation and recovery.

12 REFERENCES
1. ECSS Secretariat, “ECSS-E-ST-50-12C 31 July 2008, SpaceWire - Links, nodes,

routers and networks”, ESA-ESTEC, Requirements & Standards Division,
Noordwijk, The Netherlands

2. B M Cook (4Links) “Virtual Networks”, SpaceWire Working Group Meeting 13,
ESTEC, Noordwijk, The Netherlands, 2009-09-16

3. 4Links, “Virtual SpaceWire Networks”, White Paper, 4Links Limited, UK,
2009-09-03

4. 4Links, “Characterizing SpaceWire Devices and Networks”, White Paper, 4Links
Limited, UK

5. 4Links, “Virtual SpaceWire Networks: Example latency and throughput
calculations”, White Paper, 4Links Limited, UK

http://spacewire.esa.int/WG/SpaceWire/SpW%2DSnP%2DWG%2DMtg13%2DProceedings/Presentations%20PDF/4-Links-Virtual-SpaceWire-Networks-presentation-v1.pdf
http://www.4links.co.uk/bibliography/Virtual-SpaceWire-Networks-4Links-WG12-2008-paper.pdf
http://www.4links.co.uk/appnotes/Characterizing-SpaceWire-Devices-and-Networks.html
http://www.4links.co.uk/appnotes/Virtual-SpaceWire-Networks--Example-Latency-and-Throughput-Calculations.html
http://www.4links.co.uk/appnotes/Virtual-SpaceWire-Networks--Example-Latency-and-Throughput-Calculations.html

