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ABSTRACT 
This paper quantifies typical latency requirements and describes a simple technique 
that uses virtualization and priorities with dynamic, on-demand segmentation, to 
provide deterministic, low latency delivery of packets whilst allowing high utilisation 
of the network. Segmentation is low-level and invisible to the user (and to the API). 
Packets, of any size, will be delivered to the destination node as a contiguous whole, 
without interleaving and with the contents in strict order. The technique offers the 
ability to carry data with real-time and low-latency requirements, such as command 
and control (including unscheduled events), at the same time as, and completely fire-
walled from, high-bandwidth data such as that from experiments and instruments.  

1 INTRODUCTION 
This paper brings together with SpaceWire the themes of Virtualization and Time 
Triggering. Virtualization has proved to be a secure way to share resources on a 
computer, such as virtual servers. Time Triggering has become a popular means of 
providing deterministic (but often very high) latency over a bus.  

SpaceWire, as defined in [1], offers very low latency for real-time control loops and 
for housekeeping accesses, provided that such accesses are not contending with large 
data transfers, or with blockage in the network. 

We describe an enhancement to SpaceWire that provides Virtual SpaceWire 
Networks [2, 3] and thus brings the benefits of protecting users from each other and of 
isolating faults. Virtual SpaceWire Networks (VSNs) retain the exceptionally low 
latency of current SpaceWire for deterministic real-time traffic. Meanwhile, the low 
priority and bulk data transfer can use all the bandwidth that is not taken by the real-
time traffic. 

We use priority within the Virtual SpaceWire Networks to ensure that latencies and 
control loop times can be guaranteed. Each Virtual Network can have its own 
individual priority, or several Virtual Networks can share the same priority.  
 
In this paper, we acknowledge that many missions have control loops and 
housekeeping accesses that repeat at 1 second, 100ms, 10ms or shorter periods. We 
simply group the accesses in each of these sets of periods into separate Virtual 
SpaceWire Networks. 
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2 AN EXAMPLE NETWORK AND CALCULATION OF AVAILABLE THROUGHPUT 
Table 1 below shows an example set of traffic such as would be used on a satellite and 
Figure 1 shows a subset of the activity of that traffic on several Virtual SpaceWire 
Networks sharing a single physical SpaceWire link.  
 
The table and figure include traffic for a couple of 5kHz control loops which need to 
access data and process it within 200μs. We give this highest priority (priority 1). 
Priorities 2 to 5 are used for slower control loops or for regular housekeeping updates, 
at frequencies from 1kHz down to 1Hz (priorities 3 to 5 are omitted from the figure). 
The lowest priority (6) is used for bulk data, such as image data from cameras.  

3 ASSUMPTIONS 
Any calculation of performance or guarantees needs to be based on assumptions. 
We’ll make our assumptions explicit and then describe, in general terms, the way the 
numbers in the table have been calculated and what performance can be guaranteed. 
 

1. We assume a worst-case that all the traffic is shared on a single Virtual 
SpaceWire Network link. In practice, performance scales with additional links. 

 
2. We assume that the accesses are RMAP (Remote Memory Access Protocol) 

Read requests and responses. RMAP has higher overheads than some other 
protocols used on SpaceWire, so our use of RMAP here gives conservative 
results, and this analysis is in no way confined to use of the RMAP protocol. 

 
3. We assume a very worst case that all the RMAP initiators, with all the different 

frequencies, start sending their requests at the same time and so will be queued.  
 
 Frequency Number of requests in period Response Payload, Bytes 

5kHz 2 20 
1kHz 10 50 

100Hz 25 200 
10Hz 50 200 
1Hz 100 200 

 
 
 
 
 

Table 1: Set of real-time traffic used as an example 

Responses

RequestsVSN 1
Priority 1 
(highest)
VSN 2
Priority 2

VSNs 3 to 5, not shown

0 100 200 300 400 500 600 700 800 900 1000 μs

VSN 6, Priority 6 (lowest)

Responses interrupted or delayed by 
higher-priority traffic

Requests delayed or interrupted
by higher priority traffic

Large, low-priority, packets, interrupted by higher priority traffic, utilize any spare bandwidth 

Figure 1: An example of activity on a Virtual SpaceWire Network link over time 



4. We assume that a node transmitting an RMAP request has adequate buffer 
space to receive the full response that it has requested without stalling. And we 
assume that a node transmitting a response is able to send the complete 
response without stalling.  

 
5. We assume that all the nodes are current SpaceWire standard nodes, so that a 

node can only send requests or responses to one Virtual Network. (There can 
be benefits in having nodes that support multiple Virtual Networks, which will 
be described later). 

 
6. We assume a link speed of 50Mbits/s. While this amply meets the 

requirements, even with the worst case assumptions used here, faster link 
speeds could be used to carry more data or to give even faster responses. 

 
With these assumptions, we can now look at an algorithm for calculating whether the 
latencies and processing times meet the requirements for completion within the 
relevant Period at a particular priority.  

4 ALGORITHM FOR CALCULATING REAL-TIME AND THROUGHPUT PERFORMANCE 
1. For each VSN, add up the Network delay for requests on this VSN in this 

period from the start of the first request being transmitted to the end of the last 
request reaching its target. These delays include: 

• Delay in the Initiator in transmitting the first packet 
• The transmission time for the total number of Bytes, in all the requests for 

this VSN, at the link speed of the SpaceWire link  
• An overhead on the transmission time, to allow for flow control 

characters, an occasional Time Code, and for the possible overhead of 
switching between Virtual Networks 

• The transmission time for any Nulls that the Initiator inserts into a request 
(some designs may be unable to send contiguous packets) 

• Total cable delay (although this is probably negligible) 
• Total Routing-Switch latency 

 
2. For each VSN, determine the Longest target latency of the various targets on this 

Virtual SpaceWire Network. This is the time from the end of the request packet to 
the start of the response packet. The latency should be determined from the 
manufacturer’s data sheet and confirmed by characterization with test 
equipment [4] 

 
3. For each VSN, add up the Network delay for responses on this VSN in this 

period between start of the first response being transmitted to the end of the last 
response reaching its initiator. These delays are similar to the network delays for 
requests and include: 

• Delay in the Target transmitting the first packet 
• The transmission time for the total number of Bytes, in all the responses, 

at the link speed of the SpaceWire link; note that, while most of the 
requests are the same length as each other (or very similar) the responses 
may vary in length depending on the nodes being accessed. 



• An overhead on the transmission time, to allow for flow control 
characters, an occasional Time Code, and for the possible overhead of 
switching between Virtual Networks 

• The transmission time for any Nulls that the Target inserts into a 
transmitted request (there should not be any but some designs may not be 
able to send contiguous packets) 

• Total cable delay (although this is probably negligible) 
• Total Routing Switch latency 

 
4. For each VSN, determine the Longest processing time of the various 

controllers/initiators on this Virtual SpaceWire Network. The processing time is 
the time from the end of the response packet arriving at the initiator to the end of 
any action it needs to take as a result of the response.  

 
5. For each VSN, add up the following:  

• the Network delays for requests on all (higher or equal)-priority VSNs 
in this Period. Note that if there is a single VSN at the highest priority, 
this sum will be zero. Note also that the Network delays must account for 
all the delays at equal or higher priority during the Period of this VSN. 

• the Network delay for requests on this VSN in this Period 
• the Longest target latency 
• the Network delays for responses on all (higher or equal)-priority 

VSNs in this Period. Note that if there is a single VSN at the highest 
priority, this sum will be zero. Note also that the Network delays must 
account for all the delays at equal or higher priority during the Period of 
this VSN. 

• the Network delay for responses on this VSN in this Period  
• the Longest processing time 1 

and if this total is less than the Period, then the set of accesses can be guaranteed 
to take place within the Period.  
 

                                                 

1 It may be excessively conservative, on top of the worst case assumptions, to include the 
longest target latency and the longest processing time in the calculation. An alternative would 
be to sum the {target latency plus processing time} for each separate access, and then add the 
longest of these sums to the request and response network delays to ensure that the total is 
less than the Period. 



5 A SPECIFIC EXAMPLE 
We’ll consider, as an example, a small subset of the 
activity shown in Figure 1, and check the behaviour 
for the highest priority Virtual SpaceWire Network. Responses

Requests

0 100 200 μs

VSN 1
Priority 1 
(highest)

For this there are two initiators and two targets with 
the initiators and targets sharing a single link 
between two routing switches. The numbers we use 
are arbitrary, but are a reasonable estimate based on products that 4Links have 
characterized. Note that the period of 200μs implies 5kHz control loops, and that 
these have relaxed constraints on the end-nodes even with a link speed of 50Mbits. 

Figure 2: Detail of activity for 
an example 5KHz control loop 

The Delay in both the Initiators in transmitting the first packet is 1μs.  
The transmission time for an RMAP Read Request is around 24 Bytes, making a total 
of 48 Bytes for the two Initiators. At 50Mbits/s, allowing for eight bits of data in ten 
bits transmitted, and for the Ends of Packet, that takes a total of 9.8μs. We’ll allow a 
10% overhead on the transmission time, to cover flow control characters and the 
possible overhead of switching between Virtual Networks. This brings the total 
transmission time to 10.8μs. 
At 50Mbits/s, these Initiators do not insert Nulls into the data stream unless they are 
starved of flow-control credit, which should not occur when the Target is waiting for a 
Request. 
Cable delay, at under 5ns per metre, and a total cable length of less than ten metres, is 
sub 50ns and so will be ignored. 
Routing Switch latency, for several switches that 4Links has measured, is around 1μs. 
With two Routing Switches, the total delay in this direction is 2μs. This makes a total 
Network delay for requests of (1+10.8+2) = 13.8μs. 

The Longest target latency depends heavily on the devices used and whether the 
protocol and response are handled in hardware or software. In this case we take, as an 
example, an RMAP target that uses a processor and software dedicated to the one 
target and that it responds in 50μs.  

The Network delay for responses is a similar calculation to that for requests. In this 
case any equivalent of the Initiator delay is included in the target latency. The 
response payload is 20Bytes and the RMAP overhead is another 20Bytes. These 
40Bytes for each of the two responses at 50Mbits/s, take 16.2μs. We again allow a 
10% overhead on this to arrive at a transmission delay of 17.8μs. There should again 
be no Nulls inserted because the initiator should not request a response that it can not 
handle. Routing Switch Latency is as for Requests, at 2μs. This makes a total 
Network delay for responses of (17.8+2) = 19.8μs 

The Longest processing time needs to be measured by test equipment or calculated 
from simulation of the software or, perhaps preferably, by both. In this example, the 
sum of the two network delays, (13.8+19.8) = 34μs plus the target latency of 50μs, is 
84μs. With the Period of 200μs, this leaves considerably more than 100μs available 
for the processing time. 



A more complete example of these calculations is given in [5] and is summarized in 
Table 2. 

Table 2: Calculations of latencies and bandwidth for the traffic shown in Table 1 

Virtual 
Space-
Wire 

Network 
(VSN) 

Prio-
rity 

Period, 
μs 

Freq-
uency 

Number of 
requests 
in period 

(n) 

Response 
Payload, 

Bytes 

Worst case 
network 
delay for 
requests 

on this VSN 
in this 

period, μs 
(% of 

period) 

Worst case 
network 
delay for 

responses 
on this VSN 

in this 
period, μs (% 

of period) 

Shared link 
Request 
direction 
utilization 

Shared link 
Response 
direction 
utilization 

1 1 200 5kHz 2 20 13.8 (6.9%) 19.8 (9.9%) 5.4% 8.9%
2 2 1000 1kHz 10 50 57 (5.7%) 157 (15.7%) 5.4% 15.5%
3 3 10000 100Hz 25 200 138 (1.4%) 1214 (12.1%) 1.3% 12.1%
4 4 100000 10Hz 50 200 273 (0.3%) 2428 (2.4%) 0.3% 2.4%
5 5 1000000 1Hz 100 200 542 (0.1%) 4853 (0.5%) 0.1% 0.5%
    Real-Time utilization 12.5% 39.5%

6 6 Available bandwidth for (lowest priority) bulk data >80% >50%
  Total network utilization possible >90% >90%
    

6 MORE COMPLEX SPACEWIRE NETWORKS 
The calculations above were done for a single 
SpaceWire link, and obviously SpaceWire is used 
for more complex topologies, such as the ring 
shown at right. A conservative measure (again 
worst-case) of both real-time and data throughput 
performance could be gained by simply treating 
the whole ring as a single SpaceWire link. If that 
gives adequate performance, no further work is 
necessary. If more performance is needed, each 
link between routing switches can be considered 
separately — which is still a much simpler 
calculation than would be needed for a 
conventional time-triggered network. 
 

Figure 3: Ring network using 
Virtual SpaceWire Networks 

between routing switches 
 

7 REDUCING POWER AND HARNESS MASS  
Most current recommendations for SpaceWire are that all the SpaceWire links should 
run at the same speed. Otherwise, for a current SpaceWire link multiplexing traffic 
between many nodes (as in the main example above), the throughput on the shared 
link drops to the throughput of the slowest link. Virtual SpaceWire Networks remove 
this dependency, and so permit the peripheral links to nodes or end-points to run at the 
appropriate speed for the node rather than for the whole network. Reducing link speed 
at the periphery of the network can result in substantial savings of power (and cost). 

The major saving in harness mass is from using a single (Virtual) SpaceWire network 
instead of one (SpaceWire) network for data and another network/bus for control. 
Significant additional savings in harness mass can be gained compared with current 
SpaceWire by multiplexing several slow links over one faster link. 



8 COMPATIBILITY WITH EXISTING NODES 
All the examples shown have been with all the nodes being current SpaceWire. No 
change to hardware or software is necessary to any well designed node connected to a 
Virtual SpaceWire Network routing switch.  

9 BENEFITS OF VSN NODES 
Nodes that are accessed both for housekeeping and for large volumes of data could 
benefit from having access both to high priority traffic for the housekeeping and to 
low priority for the data. As described in [3, 4], such nodes could have a separate 
SpaceWire link for each priority, or use an extended CODEC that supports two or 
more priorities/VSNs. Nodes supporting multiple priorities must separate the two or 
more priority levels to prevent priority inversion. 

10 FAULT ISOLATION AND RECOVERY 
It is possible for a SpaceWire node to block another, by continuously transmitting 
(babbling idiot) or by failing to transmit for lack of flow-control credit or other error 
such as software stalling. Virtual SpaceWire Networks provide isolation for such 
faults: 

1. From faults at lower priority: The highest priority Virtual SpaceWire Network 
sees an empty network, and is completely isolated from faults in lower-priority 
virtual networks. In general any VSN is isolated from faults in any VSN at lower 
priority than itself. 

 
2. From faults at the same or higher priority: It might appear from (1.) that faults 

on higher priority VSNs are able to block everything at a lower priority. But, as in 
our example above, it will be normal for the real-time traffic to take a small 
proportion of the overall network bandwidth. VSN routing switches could police 
that proportion and discard data from a node that is exceeding the permitted 
percentage of bandwidth utilization for that priority level. This would leave up to 
80% of the bandwidth available to lower priorities, even in the event of a fault at 
the highest priority — bandwidth which could be used to recover from the fault. 

 
3. From faults within a single Virtual SpaceWire Network: Several existing 

routing switches perform a gatekeeper function by setting timeouts so that, if a 
node is blocked for longer than the timeout, the blocked packet is discarded. It 
can be difficult to calculate the appropriate timeout value if the minimum value to 
meet one criterion is longer than the maximum value to meet another criterion. 
This issue is much simpler to resolve when there is a separate VSN for each 
frequency of access, and the timeouts can be set appropriately for each VSN. 

 

11 CONCLUSIONS 
We have presented here a simple solution for supporting real-time requirements on a 
SpaceWire network. A link speed of 50Mbits/s is amply able to meet the requirements 
of 5kHz control loops. 



The solution can, at the same time and with conservative (worst case) assumptions, 
offer well above 50% of the network bandwidth for volume data transfers, that may 
use very large packets, while still providing microsecond response times to real-time 
traffic.  

One of the Virtual SpaceWire Networks could be used for a time triggered protocol. 

By replacing only the routing switches in a SpaceWire network, Virtual SpaceWire 
Networks provide the following benefits for missions: 

• the simplicity in both concept and use of Virtual SpaceWire Networks, with a 
corresponding reduction in mission complexity; 

• use of a single physical network for both command/control and, separated by a 
firewall, for volume data; 

• reduction in power consumption, cable/harness mass, and thence cost 
• complete compatibility with existing SpaceWire nodes; 
• complete compatibility with (and transparency to) higher-level protocols 

(including CCSDS, SOIS and PnP) running over SpaceWire;  
• consistency with the layering of the SpaceWire standard so that no change is 

required to the ECSS SpaceWire standard; 
• greatly improved fault-isolation and recovery. 
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