
SSC06-III-4
SpaceWire:

Key principles brought out from 40 year history

Paul Walker, Barry Cook
4Links Limited

Bletchley Park, Milton Keynes, England MK3 6ZP; +44 1908 642001
paul, barry,@4Links.co.uk

ABSTRACT: SpaceWire was mentioned many times at SmallSat 2005, particularly in the sessions on standards and
modularity. But there was no paper describing what SpaceWire is or the concepts behind it. This paper uses the
evolution of SpaceWire over the last 40 years to describe the concepts and where they are being used, and from these
suggest the opportunity that SpaceWire provides for the future.

INTRODUCTION

SpaceWire is a recent technology for space, having
been standardized by ECSS (European Cooperation for
Space Standardization) in January 20031. Early versions
of it are flying on several missions, and it is planned for
use on many missions worldwide. As a simple interface
that can be used for a wide variety of different purposes,
SpaceWire appears to offer an enabling technology for
the “Building Block Architecture” of the Vision For
Space Exploration2. While recently standardized,
SpaceWire has evolved over many years, following a
few key principles and concepts that are the foundation
of its wide application and use.

1960+ A MODULAR COMPUTER

In the 1960s, a computer would be built from several
different boxes, such as processor, memory, disc
controller and communications controller. One way to
connect the boxes together was to use a simple standard
interface between any of these boxes, so that they could
each access the others independently of each other.

Figure 1. Standard Interface on Modular One Computer

The key concepts of this standard interface were:

 Keep the bus inside each box, so that the whole

system is not sharing a single bus;
 Use an asynchronous interface, so that each box

can run at its optimum speed and there is no need
for global synchronization;

 Use a symmetrical interface, so that any box can be
connected to any box;

 Have flow-control across the interface so that data
is not lost even if buffers are full (but this may
result in reduced performance if a communication
is blocked).

These key principles resulted in a number of benefits:

 The system was scalable, so that systems could be

built with any number of processors, memories,
and peripherals;

 There were few constraints on the topology of the
system, so that systems could be built with any
shape as well as any size;

 Multiple units could be configured for redundancy
and fault-tolerance;

 The system was truly modular, in that a huge
variety of systems could be built from a
comparatively small number of building blocks.

While the Modular One computer systems built with
these interfaces were never used in space, they were
used by the European Space Agency for Ground
Support and Operations. The chips described in the next
section were flown in space, on a number of missions.

1980+ SYSTEM ON CHIP, SERIAL INTERFACES

During the 1980s, it became clear that it would be
possible to put a complete computer on a single silicon
chip, including processor, memory, and interfaces. One

Walker 1 20th Annual AIAA/USU
 Conference on Small Satellites

Walker 2 20th Annual AIAA/USU
 Conference on Small Satellites

of the first examples of this was the INMOS transputer3.
This had the conventional external memory bus similar
to other microprocessors, but it also had four serial
interfaces or “links” that inherited the key principles of
the Modular One interfaces.

The block diagram in Fig. 2 is taken from early
publicity material that INMOS produced for the
transputer (the IMS T424), clearly showing the
significance of the four serial links. Fig. 3 shows a
packaged die of the later T800 floating-point transputer,
with the four links on the left towards the top.

Figure 2: Block diagram of the transputer,

with its four serial interfaces

Figure 3: Chip photo of the T800 transputer,

showing the area taken by the serial links

The cost benefits are clearly visible from Fig. 3.
Overall, the four links, including the physical layer
interface, all the serializing and de-serializing
(SERDES) and DMA logic for each direction for each
link, take up about the same space as the fixed-point
processor. By comparison the on-chip RAM, the
floating-point processor and the memory interface

(including all its pins) each take up significantly more
chip area.

At the time the transputer was introduced, a 10Mb/s
Ethernet interface needed a chip-set of three chips,
whereas a serial link needed around 2% of a single chip
on the transputer and its DMA engine another 2%.

Performance of the early transputer links was modest,
but at 20Mbits/s in each direction (full-duplex) a single
link was well over twice the performance of an Ethernet
connection. With the four links per transputer running
full-duplex at 20Mbits/s, total serial throughput was
160Mbits/s per transputer.

As well as keeping the key principles of the Modular
One interfaces, the transputer links added the following:

 They were serial interfaces, to reduce pin count and

to simplify connections between chips;
 They used DMA to access the transputer’s

memory, with very low processor overhead per
packet.

TRANSPUTER SERIAL LINKS IN SPACE

The space industry recognized the potential of the
transputer and its links for building fault-tolerant
networks on-board spacecraft.

Missions included the Cluster group4 from ESA, many
satellites from SSTL5, and the SOHO6 collaboration
between ESA and NASA. In fact the transputers used in
these missions were not specifically designed as Rad-
Hard, but they were from batches selected for radiation
tolerance and designed into fault-tolerant networks.

The SOHO satellite continues to send back images of
solar corona discharges, such as the image in Figure 4.

Figure 4: Image taken by the

EIT instrument on SOHO

four
links

link
DMA

engines

MODULARITY

In the early days of the development of the transputer, it
was found that a useful way to explain the ideas was to
compare the transputer with toy building blocks such as
Lego™ and K’Nex™ 7. These use a very simple
standard interface that can be used to connect a wide
variety of different building blocks, in order to build an
even wider variety of constructions. The serial links of
the transputer were such a simple and easily usable
interface, and they encourage modularity.

The opportunity was taken to propose a standard
transputer module, or TRAM, which used the serial
links as their interface. These were printed circuit
boards about half the size of a credit card, with just
sixteen pins. In effect they were 16-pin Dual-Inline-
Packages (DIPs) with 3.3” between the pins instead of
the conventional 0.3” between the pins. These modules
were very popular and were made by INMOS and by a
number of other companies.

1990+ TRANSPUTER LINKS TO IEEE 1355

Towards the end of the 1980s, a new generation of the
transputer was planned, taking the links to 200Mbits/s
and adding some important new principles:

 Adding a minimalist packet protocol, consistent

with the general move towards packet
communication and switching;

 Adding a network protocol so that the packets
could be routed through a network of routing
switches;

 Adding virtual channels, so that a variety of
different communications can share the same
physical links.

The TRAM standard had been popular as a way to
construct systems inside a box. The new 200Mb/s links
provided the opportunity to create a standard for
connections between boxes, and the author proposed
what was initially an internal standard in the late 1980s.
Colleagues at INMOS, together with other contributors
in Europe, took this forward to create the IEEE 1355
standard. To keep the standard simple, we left out the
network and virtual channel protocols, but all the
previous principles that have been outlined were
included in IEEE 1355.

Notable among the contributors were CERN, who built
a large test system with 1024 links, over which they ran
a soak test for three months, logging 1017 bits
transferred without a data error on a link (At one point
during the test, a thunderstorm upset the computer and

network that were controlling the test, but there was no
failure on the links.)8.

Also among the contributors, even in the early 1990s,
was Dornier SatellitenSysteme (DSS, subsequently
EADS-Astrium, in Munich).

The IEEE 1355 standard was confirmed in 1995, after
which the European Space Agency and a number of
other organizations in the space industry joined the
activity.

For what at the time were probably correct commercial
and political decisions, the new transputer and the 1355
standard were abandoned by the company that had
taken over INMOS. The standard was used by Canon,
who needed to adapt some aspects of the standard for a
networking application, and the original standard had
not been designed for space and so a new
standardization activity was launched by the European
Space Agency. This activity became SpaceWire.

IEEE 1355 AND EARLY SPACEWIRE IN SPACE

During the development of the SpaceWire standard,
there was clearly an interest in using the 1355 standard,
or drafts of the SpaceWire standard, for space
applications. EADS-Astrium Munich commissioned a
chip that was available in a RAD-Hard version, and this
chip is flying on Rosetta9, on Mars Express10 and on
Venus Express11. Early versions of SpaceWire are also
flying on SWIFT12 and on other missions classified for
commercial or other reasons.

2000+ SPACEWIRE

Compared with IEEE 1355, the SpaceWire standard:

 Uses LVDS rather than PECL, for low power
 Uses space qualified connectors and cable
 Corrects an initialization bug in 1355
 Removes some ambiguities in 1355
 Includes a simple Network Layer protocol
 Adds Time Code distribution

Apart from these changes, the SpaceWire standard
embodies the key principles that have been outlined:

 Bus kept inside each unit, not over entire system;
 Serial interface;
 Asynchronous interface;
 Symmetrical interface;
 Flow-control across the interface;
 Minimalist packet protocol;

Walker 3 20th Annual AIAA/USU
 Conference on Small Satellites

And these qualities, as before, bring the benefits of
scalability, topological flexibility, fault-tolerance and
modularity

The standard is cleanly layered, with minimal overlap
or interaction between the levels. The levels defined
are:

 Physical level: two signal pairs in each direction,

PCB traces, connector and cable;
 Signal level: LVDS including failsafe, terminations,

Data-Strobe signal encoding on the two pairs,
signalling rate, skew and jitter;

 Character level: Data characters, Control characters,
Time Codes, parity, character(s) to be sent at
initialization or after error, host interface encoding;

 Exchange level: Normal Characters (that are passed
through the network) and Link Characters (that are
local to a single physical connection), flow control,
clock recovery, initialization state machine, errors
and error recovery, Time Code distribution;

 Packet level: destination address, cargo, end-of-
packet markers;

 Network level: Wormhole routing, path addressing,
logical addressing, header deletion, group adaptive
routing, how to do broadcast or multicast, network
errors and recovery

This paper will summarise a few of the main
characteristics, particularly those that are different from
some other networking standards:

 Data-Strobe encoding
 Low-level flow-control
 Packets
 Packet routing
 Time Codes and their distribution

Data-Strobe encoding

There is a need in any communication system for a
means of recovering the clock from the received signals.
In long-distance communication, this tends to be with a
phase-locked loop per channel, which would be
possible for space but which needs analog circuitry that
is undesirable in space electronics. An alternative is to
send a clock signal on a separate wire, but this has tight
demands on skew between the signals. SpaceWire uses
a Strobe signal on a separate wire, which is Gray-coded
with the signal wire so that for each bit transmitted,
there is a transition on either the Data or the Strobe
signal. This still needs the skew to be controlled, but is
more relaxed in this respect than separate clock and data.
The technique was originated in IEEE 1355 and was
subsequently adopted by IEEE 1394/FireWire. It is one

of the contributing factors in SpaceWire being a simple,
digital, circuit, without needing analog electronics.

Low-level flow-control

Flow-control is often seen as a high-level protocol, and
indeed for long-distance communication needs to be so.
The lack of flow-control at a low level, however,
requires buffers large enough that they (almost) never
overflow. SpaceWire permits low-cost circuits with
small buffers, and the flow-control ensures that data is
preserved and that the buffers never overflow. Having
larger buffers than the minimum permitted improves
overall network performance, but the flow-control
allows implementations of SpaceWire that can have less
logic and less buffering than conventional RS232/422
UARTs, even though SpaceWire runs orders of
magnitude faster than these UARTs.

Packets

SpaceWire uses minimalist packet format, with header,
cargo, and packet termination. For a point-to-point
connection not via a routing switch the header can be
zero length; for a routed packet, the header is a
destination address that can be as long as necessary.
The cargo can similarly be as long as necessary, and no
limit is defined in the standard. In practice, most
systems will benefit from imposing a form of Maximum
Transfer Unit (MTU) to prevent a long packet blocking
other traffic in the network. The packet termination is a
single control character, either End-of-Packet (EoP) or
Error-End-of-Packet (EEP).

After the standard was issued, it was agreed to include a
protocol identifier (PID) as part of the header, between
the destination address and the cargo. As in other
standards such as Ethernet and Internet Protocol, the
PID allows a variety of different higher-level protocols
to interoperate on the SpaceWire network without
interfering with each other.

The minimalist packet protocol of SpaceWire provides
what is absolutely necessary and no more. If extra
information is required in a header, such as the source
of the packet, a checksum, or a protocol to be
encapsulated on SpaceWire, these can all be added. All
that is added, however, needs to be generated and
checked for each packet, which can impose substantial
delays in processing each packet. The simple raw
SpaceWire packets provides a very efficient
communication system with very low processing
overheads as well as low overheads on packets.

Walker 4 20th Annual AIAA/USU
 Conference on Small Satellites

Packet routing

SpaceWire can be used with or without routing switches,
and satellites can include point-to-point connections as
well as a network with routing-switches.

When using routing switches, SpaceWire packet
switching uses “Wormhole Routing” so that the front of
a packet can have left the routing switch before the end
of the packet has arrived.

The SpaceWire standard requires that routing switches
provide what the standard calls Path Addressing, and
permits them to provide what it calls Logical
Addressing. In each case, the first data character of a
packet seen by the routing switch is used as a routing
header to determine which output port of the routing
switch the packet is routed to.

In Path Addressing, values of the first data character
from 1 to 31 result in the packet being output to port 1
to 31 respectively. The special value of zero results in
the packet being used internally by the
configuration/management port of the routing switch.
After the character has been used to address a particular
output port, the character is no longer required and so is
deleted.

In Logical Addressing, values of the first data character
of a packet are used to index a look-up table to
determine the output port. In this case the character is
not normally deleted, as the same character can be used
in several routing switches to steer a route through the
network. For small networks such as tend to be used on
satellites, logical addressing can provide an
exceptionally low overhead for routing the packets.

Time Codes and their distribution

It is useful for all the subsystems on a satellite to have a
reasonably consistent view of time, and SpaceWire
provides a means of distributing such a consistent view.
Time Codes are special sequences of characters which
take priority over the normal data in a packet and are
distributed to all nodes in the SpaceWire network. A
small amount of jitter is normally introduced, both in
the generation and distribution of Time Codes, resulting
in a few microseconds variation in the view of time
from different nodes in the network. A scheme has been
proposed13 that is completely compatible and
interoperable with the standard, where the jitter in Time
Code generation and distribution can be reduced to a
few tens of nanoseconds5.

WHERE SPACEWIRE IS BEING USED

SpaceWire is planned for use on a wide variety of
different missions, throughout the world. The European
Space Agency plans to use SpaceWire for most, if not
all, of its future missions. A number of national
missions, such as Taiwan’s Argos satellite, are using
SpaceWire. Key US missions are the James Webb
Space Telescope14, the Lunar Reconnaissance Orbiter15,
and GOES-R16.

At last year’s Small Satellite conference, AFRL
reported interest in SpaceWire, because they saw it as
an enabling technology for the modularity, scalability
and reconfigurability required for Responsive Space.

THE FUTURE, 1:
HOW SPACEWIRE WILL DEVELOP

The SpaceWire Working Group has already defined the
Protocol Identifier so that multiple protocols can
interoperate on a SpaceWire network, and has defined a
Remote Memory Access Protocol (RMAP). A number
of other protocols are being defined, particularly to
encapsulate CCSDS and IP packets in SpaceWire, and
we can expect to see more such encapsulation. A new
protocol for SpaceWire has been developed in the US
for reliable data transfer, like TCP but much simpler
than TCP because it does not have to run over a global
network with billions of nodes.

Last year’s Small Satellite exhibition included two
examples of SpaceWire running at 400Mbits/s or faster,
whereas must current uses are between 10Mbits/s and
200Mbits/s. The current RAD-Hard silicon imposes
limits on the speeds that can be used but new ASIC
chips, and PHY chips which handle just the high-speed
front end, will make it easier to use SpaceWire at higher
speeds.

A current ESA project is SpaceFibre, which aims to
take the SpaceWire protocols up to between 1Gb/s and
10Gb/s, using a different physical layer that might
include versions for both fibre and copper.

New capabilities will evolve. NASA have suggested
extending the use of Time Codes such as to include, for
example, a 1pps signal for time and a trigger signal for
a number of instruments. Such suggestions provide
enhanced capability but there is concern in some
quarters if they would not be interoperable with chips
and instruments that have been built to the standard. It
is clear that improvements will be more welcomed if,
like the low-jitter Time Code proposal, they are fully
interoperable with all existing devices.

Walker 5 20th Annual AIAA/USU
 Conference on Small Satellites

Some years ago, the author’s company demonstrated a
Plug and Play system over SpaceWire17, which was
well received. It was argued at the time that satellites
are fixed configurations with no need for Plug and Play.
Once such a plug-and-play capability is used, however,
it can be used for the unexpected changes in system
configuration and hence can assist Fault Detection
Isolation and Recovery (FDIR). There may also be
benefits from plug-and-play for the manned space
program, where configurations are expected to change
over time. And for Responsive Space, launching a
satellite in a few days from mission definition means
there is no time for system configuration or software
development. The system must just plug together and
work, so plug and play is necessary and AFRL together
with NRL are proposing a plug-and-play system using
SpaceWire (with USB)18.

THE FUTURE, 2:
HOW USE OF SPACEWIRE WILL EVOLVE

Most of the early uses of SpaceWire have been as
medium- to high-speed replacements of point-to-point
links such as RS422. A typical configuration would be
to connect an imaging instrument to a DSP processor,
or to cross-connect a pair of instruments to a pair of
processors.

To some extent, this use of point-to-point links without
routing switches has been because there have not been
Rad-Hard routing switches available. These are being
developed, however, by ESA, by NASA, and by a
number of companies, and we can expect to see them
used to construct simple networks.

NASA’s James Webb Space Telescope is using routing
switches to build quite a large but simple network.

Routing switches can impact fault-tolerance, allowing
different parts of the system to tolerate different
numbers of faults. For example a daisy-chain (without
the ends joined together or any cross-connections) does
not tolerate some single faults. Connecting the two ends
of the daisy-chain so that there is a ring is a simple way
to provide tolerance of a single failure, whether the
failure is in a node or a link. With three links per node,
networks can be constructed which tolerate two failures,
and in general, for n links per node, networks can be
constructed to tolerate n-1 failures.

Many of the SpaceWire systems being built are
modelling earlier systems based on a bus and on a
global memory access model. Hence the first protocol
to be defined is the memory mapping protocol, RMAP.
For many applications this model is appropriate and
minimal cost. For other applications, a network model

such as Ethernet or the Internet is appropriate. These
different models and their protocols can happily co-
exist over a SpaceWire network, just as private
Microsoft and other protocols co-exist with TCP/IP
over Ethernet.

So far, apart from the work led by AFRL, the full
benefits of modularity offered by SpaceWire are not
being realized. There is a growing consensus that
SpaceWire is the one interface standard that seems to
come closest to meeting the widest variety of
application needs for the space industry, and so it must
be seen as a prime candidate as the interface for
NASA’s Building Block strategy. To what extent the
details of modularity will be internationally agreed or
will be private within national organizations is yet to be
seen.

CONCLUSIONS

SpaceWire has been an outstanding success in
international collaboration, which has resulted in its use
worldwide.

While apparently new technology, SpaceWire has a
legacy going back 40 years, and a significant element of
that legacy has proved itself in space missions that have
been flying for many years.

The legacy of a simple interface that can be used for
almost anything has been retained by preserving a
number of key principles. These key principles provide
modularity, scalability, and reconfigurability, and are
far more important than the implementation details.

Early uses of SpaceWire have been evolutionary and
have not therefore exploited the full benefits that might
be available from using SpaceWire. As more experience
and confidence is gained, we can expect more of the
benefits to be realized.

Benefits will be realized from evolution of SpaceWire
itself, and also from evolution in the uses of SpaceWire.

This paper has suggested some possible directions for
such evolution — it will be interesting to see if the
predictions come to pass.

REFERENCES

1. European Cooperation on Space Standardization,

ECSS-E-50-12A SpaceWire - Links, nodes, routers
and networks, 24 January 2003

2. NASA, The Vision for Space Exploration,
February 2004

Walker 6 20th Annual AIAA/USU
 Conference on Small Satellites

Walker 7 20th Annual AIAA/USU
 Conference on Small Satellites

3. INMOS Limited, IMS T424 Transputer Reference
Manual, Bristol, England, 1985

4. http://www.sussex.ac.uk/space-
science/missions.html#CLUSTER%20II

5. http://www.ee.surrey.ac.uk/SSC/CSER/UOSAT/
missions/posat1.html

6. http://sohowww.nascom.nasa.gov/
7. Paul Walker The Transputer: a Building Block for

Parallel Processing. Byte Magazine, Volume 10,
Number 5, May, 1985.

8. S Haas, D A Thornly, y Zhu, R W Dobinson and B
Martin, The Macramé 1024-Node Switching
Network Microprocessors and Microsystems, IEEE
1355 Special Issue, V21, Nos 7,8, 30 March 1998

9. http://sci.esa.int/rosetta/
10. http://mars.esa.int/
11. http://sci.esa.int/venusexpress/
12. http://swift.gsfc.nasa.gov/docs/swift/swiftsc.html
13. Barry Cook, Reducing time code jitter,

International SpaceWire Seminar, ESTEC,
November 2003, available at http://
www.4Links.co.uk/reducing-time-code-jitter.pdf

14. http://www.jwst.nasa.gov/
15. http://lunar.gsfc.nasa.gov/missions/
16. http://science.hq.nasa.gov/missions/satellite_67.htm
17. Paul Walker, Barry Cook, The 4Links Plug and

Play SpaceWire Demonstration, from http://
www.4Links.co.uk/4L-PnP-SpaceWire-Demo.pdf

18. Jim Lyke, Scott Cannon, A Plug and Play system
based on USB for spacecraft components, 19th
AIAA/USU Small Satellite Conference, Logan UT,
August 2005

