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ABSTRACT: SpaceWire was mentioned many times at SmallSat 2005, particularly in the sessions on standards and 
modularity. But there was no paper describing what SpaceWire is or the concepts behind it. This paper uses the 
evolution of SpaceWire over the last 40 years to describe the concepts and where they are being used, and from these 
suggest the opportunity that SpaceWire provides for the future. 
 

 
INTRODUCTION 
 
SpaceWire is a recent technology for space, having 
been standardized by ECSS (European Cooperation for 
Space Standardization) in January 20031. Early versions 
of it are flying on several missions, and it is planned for 
use on many missions worldwide. As a simple interface 
that can be used for a wide variety of different purposes, 
SpaceWire appears to offer an enabling technology for 
the “Building Block Architecture” of the Vision For 
Space Exploration2. While recently standardized, 
SpaceWire has evolved over many years, following a 
few key principles and concepts that are the foundation 
of its wide application and use. 
 
1960+ A MODULAR COMPUTER 
 
In the 1960s, a computer would be built from several 
different boxes, such as processor, memory, disc 
controller and communications controller. One way to 
connect the boxes together was to use a simple standard 
interface between any of these boxes, so that they could 
each access the others independently of each other.  
 

 
 

Figure 1. Standard Interface on Modular One Computer 

The key concepts of this standard interface were: 
 
 Keep the bus inside each box, so that the whole 

system is not sharing a single bus; 
 Use an asynchronous interface, so that each box 

can run at its optimum speed and there is no need 
for global synchronization; 

 Use a symmetrical interface, so that any box can be 
connected to any box; 

 Have flow-control across the interface so that data 
is not lost even if buffers are full (but this may 
result in reduced performance if a communication 
is blocked). 

 
These key principles resulted in a number of benefits: 
 
 The system was scalable, so that systems could be 

built with any number of processors, memories, 
and peripherals; 

 There were few constraints on the topology of the 
system, so that systems could be built with any 
shape as well as any size; 

 Multiple units could be configured for redundancy 
and fault-tolerance; 

 The system was truly modular, in that a huge 
variety of systems could be built from a 
comparatively small number of building blocks. 

 
While the Modular One computer systems built with 
these interfaces were never used in space, they were 
used by the European Space Agency for Ground 
Support and Operations. The chips described in the next 
section were flown in space, on a number of missions. 
 
1980+ SYSTEM ON CHIP, SERIAL INTERFACES 
 
During the 1980s, it became clear that it would be 
possible to put a complete computer on a single silicon 
chip, including processor, memory, and interfaces. One 
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of the first examples of this was the INMOS transputer3. 
This had the conventional external memory bus similar 
to other microprocessors, but it also had four serial 
interfaces or “links” that inherited the key principles of 
the Modular One interfaces. 
 
The block diagram in Fig. 2 is taken from early 
publicity material that INMOS produced for the 
transputer (the IMS T424), clearly showing the 
significance of the four serial links. Fig. 3 shows a 
packaged die of the later T800 floating-point transputer, 
with the four links on the left towards the top. 
 

 
Figure 2: Block diagram of the transputer,  

with its four serial interfaces 
 

 
Figure 3: Chip photo of the T800 transputer,  

showing the area taken by the serial links 
 
The cost benefits are clearly visible from Fig. 3. 
Overall, the four links, including the physical layer 
interface, all the serializing and de-serializing 
(SERDES) and DMA logic for each direction for each 
link, take up about the same space as the fixed-point 
processor. By comparison the on-chip RAM, the 
floating-point processor and the memory interface 

(including all its pins) each take up significantly more 
chip area. 
 
At the time the transputer was introduced, a 10Mb/s 
Ethernet interface needed a chip-set of three chips, 
whereas a serial link needed around 2% of a single chip 
on the transputer and its DMA engine another 2%.  
  
Performance of the early transputer links was modest, 
but at 20Mbits/s in each direction (full-duplex) a single 
link was well over twice the performance of an Ethernet 
connection. With the four links per transputer running 
full-duplex at 20Mbits/s, total serial throughput was 
160Mbits/s per transputer. 
 
As well as keeping the key principles of the Modular 
One interfaces, the transputer links added the following: 
 
 They were serial interfaces, to reduce pin count and 

to simplify connections between chips; 
 They used DMA to access the transputer’s 

memory, with very low processor overhead per 
packet. 

 
TRANSPUTER SERIAL LINKS IN SPACE 
 
The space industry recognized the potential of the 
transputer and its links for building fault-tolerant 
networks on-board spacecraft. 
 
Missions included the Cluster group4 from ESA, many 
satellites from SSTL5, and the SOHO6 collaboration 
between ESA and NASA. In fact the transputers used in 
these missions were not specifically designed as Rad-
Hard, but they were from batches selected for radiation 
tolerance and designed into fault-tolerant networks.  
 
The SOHO satellite continues to send back images of 
solar corona discharges, such as the image in Figure 4. 

 
Figure 4: Image taken by the  

EIT instrument on SOHO 
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MODULARITY 
 
In the early days of the development of the transputer, it 
was found that a useful way to explain the ideas was to 
compare the transputer with toy building blocks such as 
Lego™ and K’Nex™ 7. These use a very simple 
standard interface that can be used to connect a wide 
variety of different building blocks, in order to build an 
even wider variety of constructions. The serial links of 
the transputer were such a simple and easily usable 
interface, and they encourage modularity. 
 
The opportunity was taken to propose a standard 
transputer module, or TRAM, which used the serial 
links as their interface. These were printed circuit 
boards about half the size of a credit card, with just 
sixteen pins. In effect they were 16-pin Dual-Inline-
Packages (DIPs) with 3.3” between the pins instead of 
the conventional 0.3” between the pins. These modules 
were very popular and were made by INMOS and by a 
number of other companies. 
 
1990+ TRANSPUTER LINKS TO IEEE 1355 
 
Towards the end of the 1980s, a new generation of the 
transputer was planned, taking the links to 200Mbits/s 
and adding some important new principles: 
 
 Adding a minimalist packet protocol, consistent 

with the general move towards packet 
communication and switching; 

 Adding a network protocol so that the packets 
could be routed through a network of routing 
switches; 

 Adding virtual channels, so that a variety of 
different communications can share the same 
physical links. 

 
The TRAM standard had been popular as a way to 
construct systems inside a box. The new 200Mb/s links 
provided the opportunity to create a standard for 
connections between boxes, and the author proposed 
what was initially an internal standard in the late 1980s. 
Colleagues at INMOS, together with other contributors 
in Europe, took this forward to create the IEEE 1355 
standard. To keep the standard simple, we left out the 
network and virtual channel protocols, but all the 
previous principles that have been outlined were 
included in IEEE 1355. 
 
Notable among the contributors were CERN, who built 
a large test system with 1024 links, over which they ran 
a soak test for three months, logging 1017 bits 
transferred without a data error on a link (At one point 
during the test, a thunderstorm upset the computer and 

network that were controlling the test, but there was no 
failure on the links.)8. 
 
Also among the contributors, even in the early 1990s, 
was Dornier SatellitenSysteme (DSS, subsequently 
EADS-Astrium, in Munich). 
 
The IEEE 1355 standard was confirmed in 1995, after 
which the European Space Agency and a number of 
other organizations in the space industry joined the 
activity. 
 
For what at the time were probably correct commercial 
and political decisions, the new transputer and the 1355 
standard were abandoned by the company that had 
taken over INMOS. The standard was used by Canon, 
who needed to adapt some aspects of the standard for a 
networking application, and the original standard had 
not been designed for space and so a new 
standardization activity was launched by the European 
Space Agency. This activity became SpaceWire. 
 
IEEE 1355 AND EARLY SPACEWIRE IN SPACE 
 
During the development of the SpaceWire standard, 
there was clearly an interest in using the 1355 standard, 
or drafts of the SpaceWire standard, for space 
applications. EADS-Astrium Munich commissioned a 
chip that was available in a RAD-Hard version, and this 
chip is flying on Rosetta9, on Mars Express10 and on 
Venus Express11. Early versions of SpaceWire are also 
flying on SWIFT12 and on other missions classified for 
commercial or other reasons. 
 
2000+ SPACEWIRE 
 
Compared with IEEE 1355, the SpaceWire standard: 
 
 Uses LVDS rather than PECL, for low power 
 Uses space qualified connectors and cable 
 Corrects an initialization bug in 1355 
 Removes some ambiguities in 1355 
 Includes a simple Network Layer protocol 
 Adds Time Code distribution 

 
Apart from these changes, the SpaceWire standard 
embodies the key principles that have been outlined: 
 
 Bus kept inside each unit, not over entire system; 
 Serial interface; 
 Asynchronous interface; 
 Symmetrical interface; 
 Flow-control across the interface; 
 Minimalist packet protocol; 
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And these qualities, as before, bring the benefits of 
scalability, topological flexibility, fault-tolerance and 
modularity 
 
The standard is cleanly layered, with minimal overlap 
or interaction between the levels. The levels defined 
are: 
 
 Physical level: two signal pairs in each direction, 

PCB traces, connector and cable; 
 Signal level: LVDS including failsafe, terminations, 

Data-Strobe signal encoding on the two pairs, 
signalling rate, skew and jitter; 

 Character level: Data characters, Control characters, 
Time Codes, parity, character(s) to be sent at 
initialization or after error, host interface encoding; 

 Exchange level: Normal Characters (that are passed 
through the network) and Link Characters (that are 
local to a single physical connection), flow control, 
clock recovery, initialization state machine, errors 
and error recovery, Time Code distribution; 

 Packet level: destination address, cargo, end-of-
packet markers; 

 Network level: Wormhole routing, path addressing, 
logical addressing, header deletion, group adaptive 
routing, how to do broadcast or multicast, network 
errors and recovery 

 
This paper will summarise a few of the main 
characteristics, particularly those that are different from 
some other networking standards: 
 
 Data-Strobe encoding 
 Low-level flow-control 
 Packets 
 Packet routing 
 Time Codes and their distribution 

 
Data-Strobe encoding 
 
There is a need in any communication system for a 
means of recovering the clock from the received signals. 
In long-distance communication, this tends to be with a 
phase-locked loop per channel, which would be 
possible for space but which needs analog circuitry that 
is undesirable in space electronics. An alternative is to 
send a clock signal on a separate wire, but this has tight 
demands on skew between the signals. SpaceWire uses 
a Strobe signal on a separate wire, which is Gray-coded 
with the signal wire so that for each bit transmitted, 
there is a transition on either the Data or the Strobe 
signal. This still needs the skew to be controlled, but is 
more relaxed in this respect than separate clock and data. 
The technique was originated in IEEE 1355 and was 
subsequently adopted by IEEE 1394/FireWire. It is one 

of the contributing factors in SpaceWire being a simple, 
digital, circuit, without needing analog electronics. 
 
Low-level flow-control 
 
Flow-control is often seen as a high-level protocol, and 
indeed for long-distance communication needs to be so. 
The lack of flow-control at a low level, however, 
requires buffers large enough that they (almost) never 
overflow. SpaceWire permits low-cost circuits with 
small buffers, and the flow-control ensures that data is 
preserved and that the buffers never overflow. Having 
larger buffers than the minimum permitted improves 
overall network performance, but the flow-control 
allows implementations of SpaceWire that can have less 
logic and less buffering than conventional RS232/422 
UARTs, even though SpaceWire runs orders of 
magnitude faster than these UARTs. 
 
Packets 
 
SpaceWire uses minimalist packet format, with header, 
cargo, and packet termination. For a point-to-point 
connection not via a routing switch the header can be 
zero length; for a routed packet, the header is a 
destination address that can be as long as necessary. 
The cargo can similarly be as long as necessary, and no 
limit is defined in the standard. In practice, most 
systems will benefit from imposing a form of Maximum 
Transfer Unit (MTU) to prevent a long packet blocking 
other traffic in the network. The packet termination is a 
single control character, either End-of-Packet (EoP) or 
Error-End-of-Packet (EEP).  
 
After the standard was issued, it was agreed to include a 
protocol identifier (PID) as part of the header, between 
the destination address and the cargo. As in other 
standards such as Ethernet and Internet Protocol, the 
PID allows a variety of different higher-level protocols 
to interoperate on the SpaceWire network without 
interfering with each other. 
 
The minimalist packet protocol of SpaceWire provides 
what is absolutely necessary and no more. If extra 
information is required in a header, such as the source 
of the packet, a checksum, or a protocol to be 
encapsulated on SpaceWire, these can all be added. All 
that is added, however, needs to be generated and 
checked for each packet, which can impose substantial 
delays in processing each packet. The simple raw 
SpaceWire packets provides a very efficient 
communication system with very low processing 
overheads as well as low overheads on packets. 
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Packet routing 
 
SpaceWire can be used with or without routing switches, 
and satellites can include point-to-point connections as 
well as a network with routing-switches.  
 
When using routing switches, SpaceWire packet 
switching uses “Wormhole Routing” so that the front of 
a packet can have left the routing switch before the end 
of the packet has arrived.  
 
The SpaceWire standard requires that routing switches 
provide what the standard calls Path Addressing, and 
permits them to provide what it calls Logical 
Addressing. In each case, the first data character of a 
packet seen by the routing switch is used as a routing 
header to determine which output port of the routing 
switch the packet is routed to. 
 
In Path Addressing, values of the first data character 
from 1 to 31 result in the packet being output to port 1 
to 31 respectively. The special value of zero results in 
the packet being used internally by the 
configuration/management port of the routing switch. 
After the character has been used to address a particular 
output port, the character is no longer required and so is 
deleted. 
 
In Logical Addressing, values of the first data character 
of a packet are used to index a look-up table to 
determine the output port. In this case the character is 
not normally deleted, as the same character can be used 
in several routing switches to steer a route through the 
network. For small networks such as tend to be used on 
satellites, logical addressing can provide an 
exceptionally low overhead for routing the packets. 
 
Time Codes and their distribution 
 
It is useful for all the subsystems on a satellite to have a 
reasonably consistent view of time, and SpaceWire 
provides a means of distributing such a consistent view. 
Time Codes are special sequences of characters which 
take priority over the normal data in a packet and are 
distributed to all nodes in the SpaceWire network. A 
small amount of jitter is normally introduced, both in 
the generation and distribution of Time Codes, resulting 
in a few microseconds variation in the view of time 
from different nodes in the network. A scheme has been 
proposed13 that is completely compatible and 
interoperable with the standard, where the jitter in Time 
Code generation and distribution can be reduced to a 
few tens of nanoseconds5. 
 

WHERE SPACEWIRE IS BEING USED 
 
SpaceWire is planned for use on a wide variety of 
different missions, throughout the world. The European 
Space Agency plans to use SpaceWire for most, if not 
all, of its future missions. A number of national 
missions, such as Taiwan’s Argos satellite, are using 
SpaceWire. Key US missions are the James Webb 
Space Telescope14, the Lunar Reconnaissance Orbiter15, 
and GOES-R16.  
 
At last year’s Small Satellite conference, AFRL 
reported interest in SpaceWire, because they saw it as 
an enabling technology for the modularity, scalability 
and reconfigurability required for Responsive Space. 
 
THE FUTURE, 1:   
HOW SPACEWIRE WILL DEVELOP 
 
The SpaceWire Working Group has already defined the 
Protocol Identifier so that multiple protocols can 
interoperate on a SpaceWire network, and has defined a 
Remote Memory Access Protocol (RMAP). A number 
of other protocols are being defined, particularly to 
encapsulate CCSDS and IP packets in SpaceWire, and 
we can expect to see more such encapsulation. A new 
protocol for SpaceWire has been developed in the US 
for reliable data transfer, like TCP but much simpler 
than TCP because it does not have to run over a global 
network with billions of nodes. 
 
Last year’s Small Satellite exhibition included two 
examples of SpaceWire running at 400Mbits/s or faster, 
whereas must current uses are between 10Mbits/s and 
200Mbits/s. The current RAD-Hard silicon imposes 
limits on the speeds that can be used but new ASIC 
chips, and PHY chips which handle just the high-speed 
front end, will make it easier to use SpaceWire at higher 
speeds. 
 
A current ESA project is SpaceFibre, which aims to 
take the SpaceWire protocols up to between 1Gb/s and 
10Gb/s, using a different physical layer that might 
include versions for both fibre and copper. 
 
New capabilities will evolve. NASA have suggested 
extending the use of Time Codes such as to include, for 
example, a 1pps signal for time and a trigger signal for 
a number of instruments. Such suggestions provide 
enhanced capability but there is concern in some 
quarters if they would not be interoperable with chips 
and instruments that have been built to the standard. It 
is clear that improvements will be more welcomed if, 
like the low-jitter Time Code proposal, they are fully 
interoperable with all existing devices. 
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Some years ago, the author’s company demonstrated a 
Plug and Play system over SpaceWire17, which was 
well received. It was argued at the time that satellites 
are fixed configurations with no need for Plug and Play. 
Once such a plug-and-play capability is used, however, 
it can be used for the unexpected changes in system 
configuration and hence can assist Fault Detection 
Isolation and Recovery (FDIR). There may also be 
benefits from plug-and-play for the manned space 
program, where configurations are expected to change 
over time. And for Responsive Space, launching a 
satellite in a few days from mission definition means 
there is no time for system configuration or software 
development. The system must just plug together and 
work, so plug and play is necessary and AFRL together 
with NRL are proposing a plug-and-play system using 
SpaceWire (with USB)18. 
 
THE FUTURE, 2:   
HOW USE OF SPACEWIRE WILL EVOLVE 
 
Most of the early uses of SpaceWire have been as 
medium- to high-speed replacements of point-to-point 
links such as RS422. A typical configuration would be 
to connect an imaging instrument to a DSP processor, 
or to cross-connect a pair of instruments to a pair of 
processors. 
 
To some extent, this use of point-to-point links without 
routing switches has been because there have not been 
Rad-Hard routing switches available. These are being 
developed, however, by ESA, by NASA, and by a 
number of companies, and we can expect to see them 
used to construct simple networks. 
 
NASA’s James Webb Space Telescope is using routing 
switches to build quite a large but simple network. 
 
Routing switches can impact fault-tolerance, allowing 
different parts of the system to tolerate different 
numbers of faults. For example a daisy-chain (without 
the ends joined together or any cross-connections) does 
not tolerate some single faults. Connecting the two ends 
of the daisy-chain so that there is a ring is a simple way 
to provide tolerance of a single failure, whether the 
failure is in a node or a link. With three links per node, 
networks can be constructed which tolerate two failures, 
and in general, for n links per node, networks can be 
constructed to tolerate n-1 failures. 
 
Many of the SpaceWire systems being built are 
modelling earlier systems based on a bus and on a 
global memory access model. Hence the first protocol 
to be defined is the memory mapping protocol, RMAP. 
For many applications this model is appropriate and 
minimal cost. For other applications, a network model 

such as Ethernet or the Internet is appropriate. These 
different models and their protocols can happily co-
exist over a SpaceWire network, just as private 
Microsoft and other protocols co-exist with TCP/IP 
over Ethernet. 
 
So far, apart from the work led by AFRL, the full 
benefits of modularity offered by SpaceWire are not 
being realized. There is a growing consensus that 
SpaceWire is the one interface standard that seems to 
come closest to meeting the widest variety of 
application needs for the space industry, and so it must 
be seen as a prime candidate as the interface for 
NASA’s Building Block strategy. To what extent the 
details of modularity will be internationally agreed or 
will be private within national organizations is yet to be 
seen. 
 
CONCLUSIONS 
 
SpaceWire has been an outstanding success in 
international collaboration, which has resulted in its use 
worldwide. 
 
While apparently new technology, SpaceWire has a 
legacy going back 40 years, and a significant element of 
that legacy has proved itself in space missions that have 
been flying for many years. 
 
The legacy of a simple interface that can be used for 
almost anything has been retained by preserving a 
number of key principles. These key principles provide 
modularity, scalability, and reconfigurability, and are 
far more important than the implementation details. 
 
Early uses of SpaceWire have been evolutionary and 
have not therefore exploited the full benefits that might 
be available from using SpaceWire. As more experience 
and confidence is gained, we can expect more of the 
benefits to be realized. 
 
Benefits will be realized from evolution of SpaceWire 
itself, and also from evolution in the uses of SpaceWire.  
 
This paper has suggested some possible directions for 
such evolution — it will be interesting to see if the 
predictions come to pass. 
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