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ABSTRACT 

 
We consider the software issues involved in combining the best of SpaceWire, such as 
modularity, high speed, low latency, fault-tolerance, and ease of implementation, with the vast 
experience of protocol design that has been implemented on Ethernet. We consider how existing 
Ethernet-based designs can be implemented on SpaceWire networks. 
Both technologies can be used to create networks that route packets from source to destination. 
SpaceWire, however, has a physical layer that has proven easier to build into a Radiation-Hard 
environment. Ethernet is based on the legacy of a bus and so relies on broadcast with packets 
visible to all nodes, whereas SpaceWire is entirely point-to-point and allows multiple connections 
for redundancy which raises issues for broadcast. 
Issues that will be addressed here, to allow Ethernet to work over SpaceWire, include: converting 
Ethernet addressing into SpaceWire routing; behavior in the event of faults (which may create a 
need to re-route); handling broadcast; and considering whether the network topology is static (as 
in conventional large spacecraft) or dynamic with plug and play (as suggested for responsive 
space on small satellites, or for the Shuttle/CEV). 

 

FULL TEXT

 
INTRODUCTION 

Ethernet is a long established technology 
which has progressed through several 
generations and implementations. It is the 
basis for a very significant proportion of data 
transfers within ‘local’ area networks – where 
local can easily encompass thousands of 
users over campus- or small-town-sized 
facilities. Take-up is extensive and it is 
probably the best-known networking 
technology in the world. 
Success for Ethernet is, at least in part, due 
to the very wide range of protocols that are 

supported, and have been developed by this 
ubiquitous data transfer technology. There is 
a protocol for high-speed transfers, 
guaranteed delivery, real-time data such as 
streaming audio and video and dozens more. 
Protocol development continues as new 
applications make their demands known and 
the underlying implementation improves. 
Networks with data rates of 10Mb/s, 100Mb/s 
and 1Gb/s are now commonly deployed with 
higher rates appearing [1]. 
SpaceWire is a relative newcomer. Its roots 
go back to a 1995 standard [2] but recent 
(relatively minor) changes resulted in 
SpaceWire being standardized by the 
European Space Agency in 2003 [3]. 
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Although new, world take-up has been 
extensive in the Space industry with many 
missions committed to its use. 
One reason for SpaceWire being adopted is 
its demonstrated ability to be used to build 
highly fault-tolerant networks and systems. 
As yet, SpaceWire protocols are very thin on 
the ground and there is no legacy protocol 
code for anything like the range of 
applications that Ethernet offers. 
Naturally, the question that has occurred to 
some is – What if SpaceWire networks could 
offer Ethernet services as well as supporting 
the new Space-related SpaceWire, and other, 
protocols? Such a combination would provide 
a rich set of protocols for a wide variety of 
applications – and allow re-use of existing, 
proven, software. 
We have established that this is indeed 
possible by implementing a proof-of-concept 
SpaceWire network running native Ethernet 
protocols. It was achieved by writing a Linux 
network driver for a SpaceWire interface – no 
other change being required in the operating 
system. 
A companion paper [4] compares Ethernet 
and SpaceWire at the hardware level to 
reveal why SpaceWire is attractive and 
discusses the, few, issues that have to be 
considered in implementing the network. This 
paper concerns the software required to 
complement SpaceWire hardware to provide 
an Ethernet network. 
The software requirements described here 
can easily be implemented in a SpaceWire 
device driver which appears, to the operating 
system, to be a standard Ethernet driver. All 
the interfacing can be hidden so that the 
SpaceWire network appears to the operating 
system, and hence the user, as a standard 
Ethernet network. 
The first requirement is to route Ethernet data 
from source to destination, using information 
normally used for an Ethernet 
implementation. This can be within a network 
that is assumed never to change or in a 
dynamic network. We will see that the latter is 
a more useful model since faults do change 
the network and this approach can recover 
from a wider range of faults than a static 
configuration will allow. 
Data multicast and broadcast  is not directly 
supported by SpaceWire but is a basic 
assumption for Ethernet. Software must be 
used to emulate Ethernet’s assumptions in a 
SpaceWire network. 
 

A NOTE FOR THE PURISTS 
The formal definition of Ethernet, as 
contained in IEEE802.3, uses precise terms 
for aspects of the standard. These terms are 
not always used by the world at large and 
other, not formally specified, words commonly 
substituted. SpaceWire does not share 
exactly the same terms of Ethernet’s formal 
definition – but has much in common with 
Ethernet’s informally used terminology. In 
order to avoid much tedious explanation, we 
have used the common set of terms in this 
paper and hereby apologize to the Ethernet 
community for our informality. 
 

ETHERNET PACKET STRUCTURE AND 
ROUTING 

Each Ethernet packet is defined to consist of 
• A destination address – the address 

of the node to which the packet must 
be directed; 

• A source address – where the packet 
came from; 

• An indicator of either the length of the 
packet or of the protocol used; 

• Data; 
• A Cyclic Redundancy Check over the 

packet. 
Only the destination address is important to 
us for the purpose of routing. A unique 48-bit 
value is used so that no two devices (in the 
whole world) have the same address. It is 
possible to attach any two or more devices to 
a network and be sure they do not have the 
same address. 
One bit of the address is used to indicate 
whether the packet is intended to be received 
by a single destination (unicast) or by many 
destinations (multicast and broadcast). A 
unicast packet may be broadcast to all 
destinations – the decision as to whether to 
accept a packet rests with the receiver. It is 
not possible to rely on the routing network 
only to deliver packets addressed to a 
receiver. 
The routing network starts by not knowing 
where any packet is to be directed. A packet 
with an unknown destination address is 
broadcast to all nodes. As nodes respond, 
their source addresses are noted by the 
network and routes to them become known. 
This knowledge soon results in a packet 
being sent only along the required path to its 
destination. 
Dynamic networks, where nodes move 
between ports, are often not well supported 
as the mechanism for changing internal 
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tables of locations can take too long to drop a 
route and re-discover the new location when 
a node moves. 
 

SPACEWIRE PACKET STRUCTURE 
Each SpaceWire packet is defined to consist 
of 

• Data. 
SpaceWire does not specify any structure on 
the data in a packet but leaves it to the node 
receiving the data to interpret it. 
There are extensions to the standard that 
suggest some structure. One example is the 
‘Protocol Identification’ [5] which corresponds 
to Ethernet’s Type/Length field in indicating 
how the rest of the data in the packet should 
be interpreted. 
 

SPACEWIRE ROUTING 
There is no specified addressing in the 
packet. Instead, each switch interprets the 
first byte of the packet for routing purposes. 
The first byte is interpreted in different ways, 
depending on its value 

• 0: direct the packet to the switch 
• 1-31: direct the packet to the physical 

port indicated 
• 32-255: use the value as an index into 

a routing table that indicates what to 
do with the packet. 

Address 0 is used to control / communicate 
with the switch, for example to set the routing 
table entries. 
Addresses 1 to 31 constitute ‘physical routing’ 
and the packet is forwarded after deleting the 
first byte. This exposes the second byte of 
the original packet to the next router. A 
complete path through the network may be 
explicitly specified by the packet sender – 
‘source routing’. 
Addresses 32 to 255 constitute ‘logical 
routing’ where a table in the switch is used to 
determine how the packet is to be forwarded. 
This allows the output port or group of ports 
to be specified and also determines whether 
the first byte is to be deleted or retained. 
Logical routing retaining the first byte allows a 
packet to be directed through several 
switches to the destination with only a single 
addressing byte. 
A mix of physical and logical routing may be 
used. 
 

ETHERNET OVER SPACEWIRE 
Two situations may be identified, routing a 
unicast packet to its destination and routing 
multicast / broadcast packets to all 

destinations. We will identify here the 
principles of what we need to achieve in the 
hardware and leave details such as precise 
values to use to the companion software 
issues paper. 

Unicast Packets 
Each Ethernet packet to be routed will begin 
with a 48-bit destination address. Somewhere 
in the network will be a destination node with 
that address. 
If we can satisfy the following constraints 

• The network topology will not change; 
• Each device is always connected to 

the same port on the network; 
• The address of each device is known. 

Then there is a simple mechanism to achieve 
routing. 

1. Allocate a logical address for each 
device; 

2. Statically configure each routing table 
to forward packets the correct device; 

3. Translate each 48-bit destination 
address to its corresponding 8-bit 
logical address. 

Run-time effort is restricted to address 
translation which need be little more than a 
table look-up (albeit a sparse table of 48-bit 
addresses). 
A degree of fault tolerance can be achieved 
by using group adaptive routing over 
alternate paths – provided some care is taken 
over topology, see below. 
It may be argued that minor changes, such as 
a link failure, can still be considered to be a 
static network in that a static configuration 
may not need to change. More significant 
changes, such as multiple link failures, 
routing switch failures, or powering-up a cold-
redundant unit are very likely to be beyond a 
static configuration. 
Changing topology or device location 
(including adding spare units) requires the 
ability to re-configure routing switches and, 
possibly, translation tables. 
Several years ago, 4Links demonstrated a 
plug-and-play network where any topology 
could be used and devices connected 
anywhere, and the topology changed and the 
devices moved. The routing tables and 
address translations automatically changed to 
match the network. At least some of the 
techniques used there could be employed in 
this application. The companion paper 
describes the basic operation of that dynamic 
system. 
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Fig. 1: Example Network 
 

Multicast / Broadcast Packets 
We have already discussed the problems 
with multicast and broadcast and their 
implementation by multiple unicast 
messages. The impact on the system is that 
translation to a SpaceWire logical address 
must be extended to replicate packets to all 
known logical addresses. 
SpaceWire switches are permitted to 
‘distribute’ packets in a limited way and this 
may be used to reduce the number of packet 
copies transmitted. 
 

EXAMPLE NETWORK 
In order to give concrete examples on 
configuration and operation of a network 
without and with faults we will use the 
example network shown in Fig. 1. 
Devices A to E are connected to routing 
switches P, Q, R and S. Lines represent 
SpaceWire links over which data may flow in 
both directions (full-duplex). Each device has 
two SpaceWire links for redundancy and the 
whole is configured into a classic cross-
strapped redundant network. There are at 
least two routes between any two devices. 
Switches Q and S are connected by two links 
to provide more bandwidth and/or more 
redundancy. 
 

STATIC CONFIGURATION 
Static configuration relies solely on group 
adaptive routing for fault tolerance. This is a 
powerful technique as fault detection and fail-
over to an alternate path is very fast – of the 
order of micro-seconds. 
It is easy to see how to configure this network 
to forward packets. Each device is allocated a 
logical address and each switch is configured 
so that packets are directed toward the 
destination using groups of as many alternate 
paths are possible. 
Using logical address 200, say, for device D 
we configure switches to forward packets with 
header value 200 as follows … 

P forwards to R or S 
Q forwards to R or S 

R forwards to D A P R S forwards to D D 
Packets from device A, for example directed 
to device D can take one of many routes: B 

A – P – R – D  E 
A – P – S – D  

C S Q A – Q – R – D  
A – Q – S – D  

This allows transmission even when failures 
occur either in links or switches. A link failure 
between switch P and switch R, Fig. 2a, still 
leaves three working routes 

A – P – S – D  
A – Q – R – D  
A – Q – S – D 

 

A P R 

 
 
Fig. 2a  Example Network with failed link 
 

 
 
Fig. 2b Example Network with failed link 
 

 
 
Fig. 2c Example Network with failed switch 
 

 
 
Fig. 2d Example Network with failed link 
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A link failure between device A and switch P, 
Fig. 2b, still leaves two working routes 

A – Q – R – D  
A – Q – S – D 

A failure of switch R, Fig. 2c, still leaves two 
working routes 

A – P – S – D  
A – Q – S – D 

This network appears to provide a good level 
of fault tolerance where we still have two or 
more usable routes. Indeed, it appears that 
multiple faults can be corrected. 
Fig. 2d, however shows a more difficult fault. 
A link immediately connected to device D has 
failed. Routes through switch S are 
operational but switches P and Q, using 
grouping, may send packets to either switch 
S or R. Packets sent to switch R cannot be 
delivered to device D as the link between 
them has failed – and there is no alternative 
path. The obvious solution, to provide an 
alternate path from switch R to switch S, Fig 
3, must be carefully considered. For greatest 
effect we would appear to have to set switch 
R to forward packets destined for device D to 
use a group of links to D or S and similarly 
set a group on switch S to forward to D or R. 
But this gives rise to the risk that a packet will 
be sent from R to S to R one or more times 
before the correct link to D is selected. If both 
links to D, or the device itself, fails then we 
are guaranteed an infinite loop between R 
and S. We really need the table entry for a 
logical address to depend in some way on 
where the packet came from – a feature not 
envisaged by the authors of the SpaceWire 
standard (although supported by 4Links 
Flexible SpaceWire Router products). 
 

LIMITATIONS OF STATIC CONFIGURATION 
As we have seen, such static configuration 
may not be able to deliver the desired level of 
fault tolerance. 
Perhaps the underlying difficulty is that a fault 
changes the network and it is only static until 
an event it is intended to handle occurs. 
Faults make the network  dynamic.  Recovery 
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Fig. 3 Solution to problem of Fig 2d? 

from faults can also be dynamic – powering-
up a cold-redundant switch, for instance. 
Dynamic configuration would have been able 
to reconfigure around the fault in the network 
of Fig 2d. 
 

DYNAMIC CONFIGURATION 
Dynamic configuration acknowledges that the 
network can change, possibly as the result of 
faults or recovery from them. This is not 
because there is expected to be active re-
arrangement in a plug-and-play situation, 
although that is also supported. 
Two stages are involved: 

1. Discover the current Network to 
identify the switches, connections and 
devices (at least those devices 
offering an Ethernet interface); 

2. Select routes and configure devices 
and switches. 

These are repeated either at regular (not 
necessarily frequent) intervals or whenever a 
change is detected (by, for example, 
unexpected behavior of a protocol). 
 

NETWORK DISCOVERY 
Each active component must be able to be 
probed and respond with information to assist 
the discovery process. Exactly what 
information is required is a matter of some 
judgment – a minimal set reduces initial traffic 
and is most easily implemented but a more 
complete reply may reduce the total number 
of packets required. 
We have found that a (not quite minimal) 
response should contain 

• Whether the component is a switch or 
a device; 

• How many ports are present; 
• Which port received the request; 
• A unique identifier both to detect loops 

(redundant paths) in the network and 
to contain an Ethernet address. 

The first two of these may be a single value 
encoding both pieces of information. Our first 
implementation, for example, recognized that 
a component with a single port could not be a 
switch but had to be a device. The question 
of whether a 2-port component is a (trivial) 
switch or a device with two ports was avoided 
by a different view of two-port devices. 

A R 

Unique identifiers do not require strictly 
unique values – a switch and a device could 
share a value since the combination of type 
of component and value is unique. Ethernet 
routing is well supported if the unique 
identifier of a device is its 48-bit Ethernet 
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MAC address. Switches can be differently 
numbered (and do not even need the same 
length identifier). 
Discovery proceeds from some point in the 
network – any point, there is no need for 
dedicated locations performing discovery. 
Probe requests are sent from each port on 
this initial location to discover what is 
immediately connected. For each connected 
component that is a switch, recursively probe 
each of its ports to see what is connected. 
Probing stops with devices or previously 
probed switches.  
This is most easily demonstrated with an 
example. Fig 4 adds marks indicating port 
number 1 on each component. Ports are 
numbered clockwise from port 1. 
Starting to discover the network from Device 
A: 

1. Probe the component on port 1 to 
discover it is an 8-port switch and the 
probe request came in on port 5, thus 
A.1 = P.5 

2. Probe on port 2, thus 
A.2 = Q.6 

We have completed all ports on A but now 
know about two switches, P and Q so we 
proceed to probe what is connected to their 
ports: 

3. P.1 = R.4 
4. P.2 = S.5 
5. P.3 = C.1 
6. P.4 = B.1 
7. P.5 = A.1 (already known) 
8. P.6 unconnected 
9. P.7 unconnected 
10. P.8 unconnected 
11. Q.1 = R.3 
12. Q.2 = S.4 
13. Q.3 = S.3 
14.  Q.4 = C.2 
15. Q.5 = B.2 
16. Q.6 = A.2 (already known) 
17. Q.7 unconnected 
18. Q.8 unconnected 
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Fig. 4 Example network with marked ports – marks 

 indicate port number 1, numbers ascend in 
 clockwise order 

Revealing devices B and C which cannot 
route data, and switches R and S which can: 

19. R.1 = D.2 
20. R.2 = E.2 
21. R.3 = Q.1 (already known) 
22. R.4 = P.1 (already known) 
23. R.5 unconnected 
24. R.6 unconnected 
25. R.7 unconnected 
26. R.8 unconnected 
27. S.1 = D.1 
28. S.2 = E.1 
29. S.3 = Q.3 (already known) 
30. S.4 = Q.2 (already known) 
31. S.5 = P.2 (already known) 
32. S.6 unconnected 
33. S.7 unconnected 
34. S.8 unconnected 

And we have finished. 
Seven of the 34 probes do not need to take 
place as the information is already known 
from earlier probes. Twelve probes are to 
unconnected ports – adding information to 
the probe reply about active ports could have 
avoided these messages. 
The network is more clearly described by 
placing these results in a table – see table 1. 
 

ROUTING 
At this point we have received, from each 
device, a probe response containing the 
device identifier which is also its Ethernet 
address. We can select the device to receive 
a packet by comparing its address with the 
destination address of the Ethernet packet to 
be transmitted. 
Knowing the destination device and the 
network topology, we can select the route(s) 
through the network for the packet. 
As an example, assume we want to send a 
packet (from device A) to device E. We can 
see that several routes are possible: 

A.1 – P.1 – R.2 – E.2 
A.1 – P.2 – S.2 – E.1 

 
Port: 1 2 3 4 5 6 7 8 

A P5 Q6       
B P5 Q5       
C P4 Q4       
D S1 R1       
E S2 R2       
P R4 S5 C1 B1 A1 - - - 
Q R3 S4 S3 C2 B2 A2 - - 
R D2 E2 Q1 P1 - - - - 
S D1 E1 Q3 Q2 P2 - - - 

A R 

 
Table 1 Map of the example network 
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A.2 – Q.1 – R.2 – E.2 
A.2 – Q.2 – S.2 – E.1 
A.2 – Q.3 – S.2 – E.1 
A.1 – P.1 – R.3 – Q.2 – S.2 – E.1 
A.1 – P.1 – R.3 – Q.3 – S.2 – E.1 
A.2 – Q.2 – S.5 – P.1 – R.2 – E.2 
A.2 – Q.3 – S.5 – P.1 – R.2 – E.2 

We must select one of these, perhaps by 
shortest route, perhaps by some criterion that 
includes bandwidth allocation and prefix the 
Ethernet packet with suitable routing bytes. 
The physical path is immediately available 
from the chosen route. If we use the first 
route above as an example, we must send 
the packet from Port 1 of device A with 
header bytes 1 and 2. The first byte is 
interpreted by switch P (connected to A’s port 
1) and the value 1 will send the packet (minus 
that byte) to switch R. Switch R will see the 
new first byte – 2 – and use this to direct the 
packet (minus that byte) to the device 
connected to port 2 – E, our required 
destination. At this point the packet will be 
reduced to the original Ethernet packet. 
If we chose the last route above, the packet 
would be sent from port 2 with header values 
3, 5, 1, 2 resulting in routing through Q, S, P 
and R.  
There is no need to re-create the network 
map for each packet sent and discovered 
routes could be cached to avoid searching for 
and selecting routes for each packet. 
Re-discovery and re-routing is required only 
when the network changes. A periodic check 
may be used to detect this. 
 

MULTICAST / BROADCAST 
Each device that runs a network discovery 
procedure and creates a network map knows 
how to route packets to all the devices on the 
network. Multicast by repeated transmission 
is thus straightforward. 
 

ROBUSTNESS 
All operations required to route a packet from 
a device take place on that device. There is 
no dedicated controller and no central table 
to be accessed. The result is a very robust 
system. 
 
 

CONCLUSIONS 
SpaceWire is easy to implement and very 
well suited to the construction of highly fault 
tolerant networks. Ethernet offers a rich set of 
tried-and-tested protocols – and software. 
Ethernet and SpaceWire deliver largely 

similar low-level services, except multicast 
and broadcast. Translation of Ethernet 
addressing to SpaceWire addressing can be 
achieved in a distributed and very robust 
manner – with very modest processing 
requirements. 
Ethernet over SpaceWire can not only be 
delivered but be delivered with a very good 
degree of fault tolerance. 
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