

IAC-06- B5.7.2

ETHERNET OVER SPACEWIRE – SOFTWARE ISSUES

Dr Barry M Cook
4Links Limited, UK

Barry@4Links.co.uk
Paul Walker
4Links Limited, UK
Paul@4Links.co.uk

ABSTRACT

We consider the software issues involved in combining the best of SpaceWire, such as
modularity, high speed, low latency, fault-tolerance, and ease of implementation, with the vast
experience of protocol design that has been implemented on Ethernet. We consider how existing
Ethernet-based designs can be implemented on SpaceWire networks.
Both technologies can be used to create networks that route packets from source to destination.
SpaceWire, however, has a physical layer that has proven easier to build into a Radiation-Hard
environment. Ethernet is based on the legacy of a bus and so relies on broadcast with packets
visible to all nodes, whereas SpaceWire is entirely point-to-point and allows multiple connections
for redundancy which raises issues for broadcast.
Issues that will be addressed here, to allow Ethernet to work over SpaceWire, include: converting
Ethernet addressing into SpaceWire routing; behavior in the event of faults (which may create a
need to re-route); handling broadcast; and considering whether the network topology is static (as
in conventional large spacecraft) or dynamic with plug and play (as suggested for responsive
space on small satellites, or for the Shuttle/CEV).

FULL TEXT

INTRODUCTION

Ethernet is a long established technology
which has progressed through several
generations and implementations. It is the
basis for a very significant proportion of data
transfers within ‘local’ area networks – where
local can easily encompass thousands of
users over campus- or small-town-sized
facilities. Take-up is extensive and it is
probably the best-known networking
technology in the world.
Success for Ethernet is, at least in part, due
to the very wide range of protocols that are

supported, and have been developed by this
ubiquitous data transfer technology. There is
a protocol for high-speed transfers,
guaranteed delivery, real-time data such as
streaming audio and video and dozens more.
Protocol development continues as new
applications make their demands known and
the underlying implementation improves.
Networks with data rates of 10Mb/s, 100Mb/s
and 1Gb/s are now commonly deployed with
higher rates appearing [1].
SpaceWire is a relative newcomer. Its roots
go back to a 1995 standard [2] but recent
(relatively minor) changes resulted in
SpaceWire being standardized by the
European Space Agency in 2003 [3].

1
 Ethernet over SpaceWire - Software Issues
Presented at International Astronautical Congress, September 2006, and selected for publication in Acta Astronautica
 Copyright 4Links Limited 2007

2

Although new, world take-up has been
extensive in the Space industry with many
missions committed to its use.
One reason for SpaceWire being adopted is
its demonstrated ability to be used to build
highly fault-tolerant networks and systems.
As yet, SpaceWire protocols are very thin on
the ground and there is no legacy protocol
code for anything like the range of
applications that Ethernet offers.
Naturally, the question that has occurred to
some is – What if SpaceWire networks could
offer Ethernet services as well as supporting
the new Space-related SpaceWire, and other,
protocols? Such a combination would provide
a rich set of protocols for a wide variety of
applications – and allow re-use of existing,
proven, software.
We have established that this is indeed
possible by implementing a proof-of-concept
SpaceWire network running native Ethernet
protocols. It was achieved by writing a Linux
network driver for a SpaceWire interface – no
other change being required in the operating
system.
A companion paper [4] compares Ethernet
and SpaceWire at the hardware level to
reveal why SpaceWire is attractive and
discusses the, few, issues that have to be
considered in implementing the network. This
paper concerns the software required to
complement SpaceWire hardware to provide
an Ethernet network.
The software requirements described here
can easily be implemented in a SpaceWire
device driver which appears, to the operating
system, to be a standard Ethernet driver. All
the interfacing can be hidden so that the
SpaceWire network appears to the operating
system, and hence the user, as a standard
Ethernet network.
The first requirement is to route Ethernet data
from source to destination, using information
normally used for an Ethernet
implementation. This can be within a network
that is assumed never to change or in a
dynamic network. We will see that the latter is
a more useful model since faults do change
the network and this approach can recover
from a wider range of faults than a static
configuration will allow.
Data multicast and broadcast is not directly
supported by SpaceWire but is a basic
assumption for Ethernet. Software must be
used to emulate Ethernet’s assumptions in a
SpaceWire network.

A NOTE FOR THE PURISTS
The formal definition of Ethernet, as
contained in IEEE802.3, uses precise terms
for aspects of the standard. These terms are
not always used by the world at large and
other, not formally specified, words commonly
substituted. SpaceWire does not share
exactly the same terms of Ethernet’s formal
definition – but has much in common with
Ethernet’s informally used terminology. In
order to avoid much tedious explanation, we
have used the common set of terms in this
paper and hereby apologize to the Ethernet
community for our informality.

ETHERNET PACKET STRUCTURE AND
ROUTING

Each Ethernet packet is defined to consist of
• A destination address – the address

of the node to which the packet must
be directed;

• A source address – where the packet
came from;

• An indicator of either the length of the
packet or of the protocol used;

• Data;
• A Cyclic Redundancy Check over the

packet.
Only the destination address is important to
us for the purpose of routing. A unique 48-bit
value is used so that no two devices (in the
whole world) have the same address. It is
possible to attach any two or more devices to
a network and be sure they do not have the
same address.
One bit of the address is used to indicate
whether the packet is intended to be received
by a single destination (unicast) or by many
destinations (multicast and broadcast). A
unicast packet may be broadcast to all
destinations – the decision as to whether to
accept a packet rests with the receiver. It is
not possible to rely on the routing network
only to deliver packets addressed to a
receiver.
The routing network starts by not knowing
where any packet is to be directed. A packet
with an unknown destination address is
broadcast to all nodes. As nodes respond,
their source addresses are noted by the
network and routes to them become known.
This knowledge soon results in a packet
being sent only along the required path to its
destination.
Dynamic networks, where nodes move
between ports, are often not well supported
as the mechanism for changing internal

 Ethernet over SpaceWire - Software Issues
Presented at International Astronautical Congress, September 2006, and selected for publication in Acta Astronautica
 Copyright 4Links Limited 2007

3

tables of locations can take too long to drop a
route and re-discover the new location when
a node moves.

SPACEWIRE PACKET STRUCTURE
Each SpaceWire packet is defined to consist
of

• Data.
SpaceWire does not specify any structure on
the data in a packet but leaves it to the node
receiving the data to interpret it.
There are extensions to the standard that
suggest some structure. One example is the
‘Protocol Identification’ [5] which corresponds
to Ethernet’s Type/Length field in indicating
how the rest of the data in the packet should
be interpreted.

SPACEWIRE ROUTING
There is no specified addressing in the
packet. Instead, each switch interprets the
first byte of the packet for routing purposes.
The first byte is interpreted in different ways,
depending on its value

• 0: direct the packet to the switch
• 1-31: direct the packet to the physical

port indicated
• 32-255: use the value as an index into

a routing table that indicates what to
do with the packet.

Address 0 is used to control / communicate
with the switch, for example to set the routing
table entries.
Addresses 1 to 31 constitute ‘physical routing’
and the packet is forwarded after deleting the
first byte. This exposes the second byte of
the original packet to the next router. A
complete path through the network may be
explicitly specified by the packet sender –
‘source routing’.
Addresses 32 to 255 constitute ‘logical
routing’ where a table in the switch is used to
determine how the packet is to be forwarded.
This allows the output port or group of ports
to be specified and also determines whether
the first byte is to be deleted or retained.
Logical routing retaining the first byte allows a
packet to be directed through several
switches to the destination with only a single
addressing byte.
A mix of physical and logical routing may be
used.

ETHERNET OVER SPACEWIRE
Two situations may be identified, routing a
unicast packet to its destination and routing
multicast / broadcast packets to all

destinations. We will identify here the
principles of what we need to achieve in the
hardware and leave details such as precise
values to use to the companion software
issues paper.

Unicast Packets
Each Ethernet packet to be routed will begin
with a 48-bit destination address. Somewhere
in the network will be a destination node with
that address.
If we can satisfy the following constraints

• The network topology will not change;
• Each device is always connected to

the same port on the network;
• The address of each device is known.

Then there is a simple mechanism to achieve
routing.

1. Allocate a logical address for each
device;

2. Statically configure each routing table
to forward packets the correct device;

3. Translate each 48-bit destination
address to its corresponding 8-bit
logical address.

Run-time effort is restricted to address
translation which need be little more than a
table look-up (albeit a sparse table of 48-bit
addresses).
A degree of fault tolerance can be achieved
by using group adaptive routing over
alternate paths – provided some care is taken
over topology, see below.
It may be argued that minor changes, such as
a link failure, can still be considered to be a
static network in that a static configuration
may not need to change. More significant
changes, such as multiple link failures,
routing switch failures, or powering-up a cold-
redundant unit are very likely to be beyond a
static configuration.
Changing topology or device location
(including adding spare units) requires the
ability to re-configure routing switches and,
possibly, translation tables.
Several years ago, 4Links demonstrated a
plug-and-play network where any topology
could be used and devices connected
anywhere, and the topology changed and the
devices moved. The routing tables and
address translations automatically changed to
match the network. At least some of the
techniques used there could be employed in
this application. The companion paper
describes the basic operation of that dynamic
system.

 Ethernet over SpaceWire - Software Issues
Presented at International Astronautical Congress, September 2006, and selected for publication in Acta Astronautica
 Copyright 4Links Limited 2007

4

Fig. 1: Example Network

Multicast / Broadcast Packets
We have already discussed the problems
with multicast and broadcast and their
implementation by multiple unicast
messages. The impact on the system is that
translation to a SpaceWire logical address
must be extended to replicate packets to all
known logical addresses.
SpaceWire switches are permitted to
‘distribute’ packets in a limited way and this
may be used to reduce the number of packet
copies transmitted.

EXAMPLE NETWORK
In order to give concrete examples on
configuration and operation of a network
without and with faults we will use the
example network shown in Fig. 1.
Devices A to E are connected to routing
switches P, Q, R and S. Lines represent
SpaceWire links over which data may flow in
both directions (full-duplex). Each device has
two SpaceWire links for redundancy and the
whole is configured into a classic cross-
strapped redundant network. There are at
least two routes between any two devices.
Switches Q and S are connected by two links
to provide more bandwidth and/or more
redundancy.

STATIC CONFIGURATION
Static configuration relies solely on group
adaptive routing for fault tolerance. This is a
powerful technique as fault detection and fail-
over to an alternate path is very fast – of the
order of micro-seconds.
It is easy to see how to configure this network
to forward packets. Each device is allocated a
logical address and each switch is configured
so that packets are directed toward the
destination using groups of as many alternate
paths are possible.
Using logical address 200, say, for device D
we configure switches to forward packets with
header value 200 as follows …

P forwards to R or S
Q forwards to R or S

R forwards to D A P R S forwards to D D
Packets from device A, for example directed
to device D can take one of many routes: B

A – P – R – D E
A – P – S – D

C S Q A – Q – R – D
A – Q – S – D

This allows transmission even when failures
occur either in links or switches. A link failure
between switch P and switch R, Fig. 2a, still
leaves three working routes

A – P – S – D
A – Q – R – D
A – Q – S – D

A P R

Fig. 2a Example Network with failed link

Fig. 2b Example Network with failed link

Fig. 2c Example Network with failed switch

Fig. 2d Example Network with failed link

B

C

D

E

S Q

A P R

B

C

D

E

S Q

A P R

B

C

D

E

S Q

A R

B

C

D

E

S Q

P

 Ethernet over SpaceWire - Software Issues
Presented at International Astronautical Congress, September 2006, and selected for publication in Acta Astronautica
 Copyright 4Links Limited 2007

A link failure between device A and switch P,
Fig. 2b, still leaves two working routes

A – Q – R – D
A – Q – S – D

A failure of switch R, Fig. 2c, still leaves two
working routes

A – P – S – D
A – Q – S – D

This network appears to provide a good level
of fault tolerance where we still have two or
more usable routes. Indeed, it appears that
multiple faults can be corrected.
Fig. 2d, however shows a more difficult fault.
A link immediately connected to device D has
failed. Routes through switch S are
operational but switches P and Q, using
grouping, may send packets to either switch
S or R. Packets sent to switch R cannot be
delivered to device D as the link between
them has failed – and there is no alternative
path. The obvious solution, to provide an
alternate path from switch R to switch S, Fig
3, must be carefully considered. For greatest
effect we would appear to have to set switch
R to forward packets destined for device D to
use a group of links to D or S and similarly
set a group on switch S to forward to D or R.
But this gives rise to the risk that a packet will
be sent from R to S to R one or more times
before the correct link to D is selected. If both
links to D, or the device itself, fails then we
are guaranteed an infinite loop between R
and S. We really need the table entry for a
logical address to depend in some way on
where the packet came from – a feature not
envisaged by the authors of the SpaceWire
standard (although supported by 4Links
Flexible SpaceWire Router products).

LIMITATIONS OF STATIC CONFIGURATION
As we have seen, such static configuration
may not be able to deliver the desired level of
fault tolerance.
Perhaps the underlying difficulty is that a fault
changes the network and it is only static until
an event it is intended to handle occurs.
Faults make the network dynamic. Recovery

5

Fig. 3 Solution to problem of Fig 2d?

from faults can also be dynamic – powering-
up a cold-redundant switch, for instance.
Dynamic configuration would have been able
to reconfigure around the fault in the network
of Fig 2d.

DYNAMIC CONFIGURATION
Dynamic configuration acknowledges that the
network can change, possibly as the result of
faults or recovery from them. This is not
because there is expected to be active re-
arrangement in a plug-and-play situation,
although that is also supported.
Two stages are involved:

1. Discover the current Network to
identify the switches, connections and
devices (at least those devices
offering an Ethernet interface);

2. Select routes and configure devices
and switches.

These are repeated either at regular (not
necessarily frequent) intervals or whenever a
change is detected (by, for example,
unexpected behavior of a protocol).

NETWORK DISCOVERY
Each active component must be able to be
probed and respond with information to assist
the discovery process. Exactly what
information is required is a matter of some
judgment – a minimal set reduces initial traffic
and is most easily implemented but a more
complete reply may reduce the total number
of packets required.
We have found that a (not quite minimal)
response should contain

• Whether the component is a switch or
a device;

• How many ports are present;
• Which port received the request;
• A unique identifier both to detect loops

(redundant paths) in the network and
to contain an Ethernet address.

The first two of these may be a single value
encoding both pieces of information. Our first
implementation, for example, recognized that
a component with a single port could not be a
switch but had to be a device. The question
of whether a 2-port component is a (trivial)
switch or a device with two ports was avoided
by a different view of two-port devices.

A R

Unique identifiers do not require strictly
unique values – a switch and a device could
share a value since the combination of type
of component and value is unique. Ethernet
routing is well supported if the unique
identifier of a device is its 48-bit Ethernet

B

C

D

E

S Q

P

 Ethernet over SpaceWire - Software Issues
Presented at International Astronautical Congress, September 2006, and selected for publication in Acta Astronautica
 Copyright 4Links Limited 2007

MAC address. Switches can be differently
numbered (and do not even need the same
length identifier).
Discovery proceeds from some point in the
network – any point, there is no need for
dedicated locations performing discovery.
Probe requests are sent from each port on
this initial location to discover what is
immediately connected. For each connected
component that is a switch, recursively probe
each of its ports to see what is connected.
Probing stops with devices or previously
probed switches.
This is most easily demonstrated with an
example. Fig 4 adds marks indicating port
number 1 on each component. Ports are
numbered clockwise from port 1.
Starting to discover the network from Device
A:

1. Probe the component on port 1 to
discover it is an 8-port switch and the
probe request came in on port 5, thus
A.1 = P.5

2. Probe on port 2, thus
A.2 = Q.6

We have completed all ports on A but now
know about two switches, P and Q so we
proceed to probe what is connected to their
ports:

3. P.1 = R.4
4. P.2 = S.5
5. P.3 = C.1
6. P.4 = B.1
7. P.5 = A.1 (already known)
8. P.6 unconnected
9. P.7 unconnected
10. P.8 unconnected
11. Q.1 = R.3
12. Q.2 = S.4
13. Q.3 = S.3
14. Q.4 = C.2
15. Q.5 = B.2
16. Q.6 = A.2 (already known)
17. Q.7 unconnected
18. Q.8 unconnected

6

Fig. 4 Example network with marked ports – marks

 indicate port number 1, numbers ascend in
 clockwise order

Revealing devices B and C which cannot
route data, and switches R and S which can:

19. R.1 = D.2
20. R.2 = E.2
21. R.3 = Q.1 (already known)
22. R.4 = P.1 (already known)
23. R.5 unconnected
24. R.6 unconnected
25. R.7 unconnected
26. R.8 unconnected
27. S.1 = D.1
28. S.2 = E.1
29. S.3 = Q.3 (already known)
30. S.4 = Q.2 (already known)
31. S.5 = P.2 (already known)
32. S.6 unconnected
33. S.7 unconnected
34. S.8 unconnected

And we have finished.
Seven of the 34 probes do not need to take
place as the information is already known
from earlier probes. Twelve probes are to
unconnected ports – adding information to
the probe reply about active ports could have
avoided these messages.
The network is more clearly described by
placing these results in a table – see table 1.

ROUTING
At this point we have received, from each
device, a probe response containing the
device identifier which is also its Ethernet
address. We can select the device to receive
a packet by comparing its address with the
destination address of the Ethernet packet to
be transmitted.
Knowing the destination device and the
network topology, we can select the route(s)
through the network for the packet.
As an example, assume we want to send a
packet (from device A) to device E. We can
see that several routes are possible:

A.1 – P.1 – R.2 – E.2
A.1 – P.2 – S.2 – E.1

Port: 1 2 3 4 5 6 7 8

A P5 Q6
B P5 Q5
C P4 Q4
D S1 R1
E S2 R2
P R4 S5 C1 B1 A1 - - -
Q R3 S4 S3 C2 B2 A2 - -
R D2 E2 Q1 P1 - - - -
S D1 E1 Q3 Q2 P2 - - -

A R

Table 1 Map of the example network

B

C

D

E

Q S

P

 Ethernet over SpaceWire - Software Issues
Presented at International Astronautical Congress, September 2006, and selected for publication in Acta Astronautica
 Copyright 4Links Limited 2007

7

A.2 – Q.1 – R.2 – E.2
A.2 – Q.2 – S.2 – E.1
A.2 – Q.3 – S.2 – E.1
A.1 – P.1 – R.3 – Q.2 – S.2 – E.1
A.1 – P.1 – R.3 – Q.3 – S.2 – E.1
A.2 – Q.2 – S.5 – P.1 – R.2 – E.2
A.2 – Q.3 – S.5 – P.1 – R.2 – E.2

We must select one of these, perhaps by
shortest route, perhaps by some criterion that
includes bandwidth allocation and prefix the
Ethernet packet with suitable routing bytes.
The physical path is immediately available
from the chosen route. If we use the first
route above as an example, we must send
the packet from Port 1 of device A with
header bytes 1 and 2. The first byte is
interpreted by switch P (connected to A’s port
1) and the value 1 will send the packet (minus
that byte) to switch R. Switch R will see the
new first byte – 2 – and use this to direct the
packet (minus that byte) to the device
connected to port 2 – E, our required
destination. At this point the packet will be
reduced to the original Ethernet packet.
If we chose the last route above, the packet
would be sent from port 2 with header values
3, 5, 1, 2 resulting in routing through Q, S, P
and R.
There is no need to re-create the network
map for each packet sent and discovered
routes could be cached to avoid searching for
and selecting routes for each packet.
Re-discovery and re-routing is required only
when the network changes. A periodic check
may be used to detect this.

MULTICAST / BROADCAST
Each device that runs a network discovery
procedure and creates a network map knows
how to route packets to all the devices on the
network. Multicast by repeated transmission
is thus straightforward.

ROBUSTNESS
All operations required to route a packet from
a device take place on that device. There is
no dedicated controller and no central table
to be accessed. The result is a very robust
system.

CONCLUSIONS
SpaceWire is easy to implement and very
well suited to the construction of highly fault
tolerant networks. Ethernet offers a rich set of
tried-and-tested protocols – and software.
Ethernet and SpaceWire deliver largely

similar low-level services, except multicast
and broadcast. Translation of Ethernet
addressing to SpaceWire addressing can be
achieved in a distributed and very robust
manner – with very modest processing
requirements.
Ethernet over SpaceWire can not only be
delivered but be delivered with a very good
degree of fault tolerance.

REFERENCES
[1] IEEE Std 802.3 – 2002: IEEE Standard for
Information Technology –
Telecommunications and information
exchange between systems – Local and
metropolitan area networks – Part 3: Carrier
sense multiple access with collision detection
(CSMA/CD) access method and physical
layer specifications.
[2] IEEE Std 1355-1995: Heterogeneous
InterConnect (HIC) (Low-Cost, Low-Latency
Scalable Serial Interconnect for Parallel
System Construction).
[3] ECSS-E-50-12A 24 January 2003 Space
engineering: SpaceWire – Links, nodes,
routers and networks.
[4] “Ethernet Over SpaceWire- Hardware
Issues”, B M Cook & P Walker, in
Proceedings of 57th International
Astronautical Congress, Valencia, 2006.
[5] ECSS-E-50-12 Part 2 Draft B SpaceWire
Protocol ID Jan 2005

 Ethernet over SpaceWire - Software Issues
Presented at International Astronautical Congress, September 2006, and selected for publication in Acta Astronautica
 Copyright 4Links Limited 2007

