

1

IAC-06-B5.7.1 Ethernet over SpaceWire – Hardware Issues

Barry M Cook, Paul Walker 4Links Limited Bletchley Park MK3 6ZP UK

Introduction

Amongst other things ... Ethernet

- Is a long established technology with extremely wide takeup in computer networks;
- Has enabled a huge variety of applications through a rich set of supported protocols.

SpaceWire

- Is a newcomer which has, nonetheless, generated wide interest and significant take-up, worldwide, in the space industry;
- Is capable of being built into highly fault-tolerant networks and systems;
- Comes with a very limited, but growing, set of protocols targeted to the space industry.

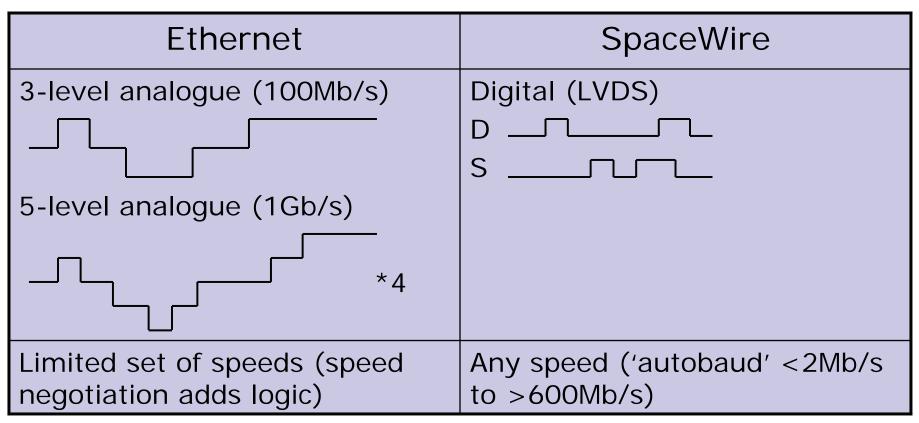
Introduction (2)

What if SpaceWire networks could offer Ethernet services as well as supporting the new Space-related SpaceWire, and other, protocols?

This would automatically support that rich set of protocols we are familiar with and its very wide variety of applications (and allow re-use of existing code).

This paper is based on a successful Linux proof-ofconcept implementation.

Context for Comparison



The ISO OSI 7-layer model

Layer 7 – Application
Layer 6 – Presentation
Layer 5 – Session
Layer 4 – Transport
Layer 3 – Network
Layer 2 – Data link
Layer 1 – Physical

Data Link Layer

Ethernet	SpaceWire
Sequence of octets encodes data	Sequence of tokens allows data to be interrupted by high- priority time codes
Crude flow control (optional)	Precise flow control (mandatory)
Minimum and maximum packet size	No limits on packet size

Network Layer (1)

Ethernet	SpaceWire
Must be tree	Any topology – permits multiple paths
Allows multicast and broadcast	Multicast not permitted (due to possibly multiply connected network)
Bandwidth increase with aggregation	Bandwidth increase with group- adaptive Routing
Passive redundancy (disable parts of network to maintain tree structure)	Active redundancy through group-adaptive routing (use everything available)

Network Layer (2)

Ethernet	SpaceWire
Store and forward routing	Wormhole (cut-through) routing – low latency
Best effort delivery	"Guaranteed delivery" due to FCT – but failures can occur
Routing by address at front of packet (48-bit address)	Routing by address at front of packet (8-bit)

Transport Layer

Ethernet	SpaceWire
Rich set of protocols – with existing software	A very small number of protocols – more being developed

Ethernet packet structure

Destination	Source	Туре /	Data	CRC
address	address	length		

- Device address is (unique) 48-bits
- One of the destination address bits indicates multicast
 - Multicast packet is received by ALL nodes
 - Unicast packet is received by the one node with the corresponding address
 - Until location is known send to all nodes
 - Each router in the network learns the port corresponding to an address by inspecting the source address of packets received
 - Each router must maintain a table of addresses
 - Of unknown size
 - Which must be updated adding is easy, removal is not

SpaceWire packet structure

Data

There is no defined structure.

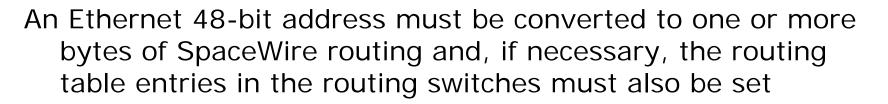
The receiver determines how to interpret the data.

- Extensions are being proposed to add some structure
 - Protocol Identification like Ethernet's Type/Length field

SpaceWire Routing

One, or more, bytes at the front of the packet are interpreted by routing switches in the network.

- The first data byte is interpreted by the first routing switch
 - 0 is communication with the switch
 - 1-31 sends the data to that physical port
 - Deleting the address byte
 - 32-255 indexes a table in the switch to determine disposition
 - The address byte may be retained or deleted
 - A set of acceptable output ports may be specified groupadaptive routing
- The address table in the switch must be explicitly written
 - The switch has no learning capability


SpaceWire Routing

A packet my be routed through the network by

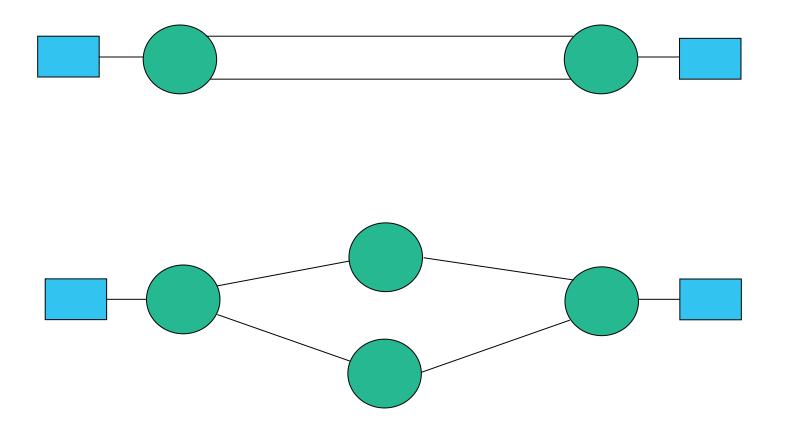
- Using a logical address configured at each switch (similar to Ethernet but 8-bit, not 48-bit)
- Using a set of physical address, one per hop
- A mix of the above

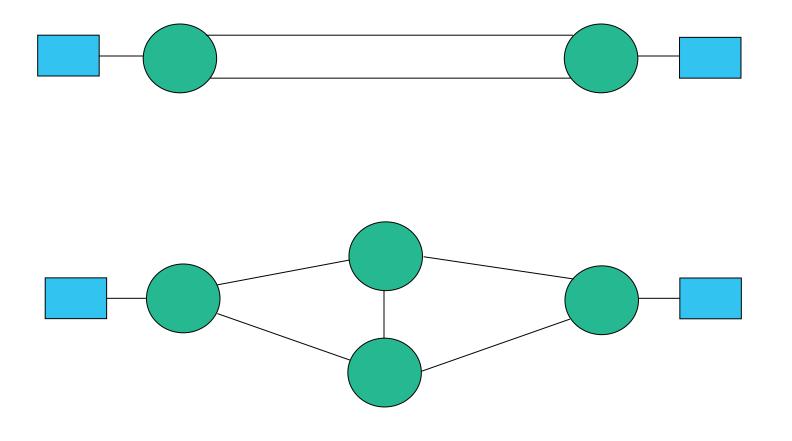
Ethernet over SpaceWire (1)

- IF the network topology is static, with known devices at known ports on known routers then the tables and translations can be fixed
- Group-adaptive routing can provide fault tolerance for limited topologies

Otherwise use (plug-and-play) techniques to dynamically configure translations and tables *Note: Ethernet is plug-and-play*

4Links


Ethernet over SpaceWire (2)


- Fault-tolerant SpaceWire networks will contain multiple paths – broadcast would result in deadlock
- Broadcast is not supported by the hardware
- Broadcast may be simulated by software as multiple unicast
 - At some cost in network traffic
 - OK if broadcast is not too frequent

One exception – SpaceWire does allow broadcast of a time-code

Static configuration limitations

- Dynamic configuration can provide a working network with a wider range of faults than static configuration
- Even with a static topology, dynamic configuration offers advantages
- Static becomes partially-dynamic when faults occur
- Enabling cold-redundant units produces a dynamic, not static, network

Conclusions

- SpaceWire is easy to implement and very well suited to the construction of highly fault-tolerant networks and systems
- Ethernet offers a rich set of tried-and-tested protocols – and software
- Ethernet and SpaceWire deliver largely similar lowlevel services – except multicast and broadcast
- Ethernet addressing has to be converted to (similar) SpaceWire addressing

Ethernet over SpaceWire can be delivered – but some software support is required ...