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INTRODUCTION

Standards ISO/IEC 14575[1] and IEEE 1355[2] define an inter-processor communication link suitable for multi-
processor applications. Data transfer is high speed and, more importantly, low latency. This standard was used to create
links integrated with high performance processors and a low-latency routing switch, using cut-through (also known as
wormhole) routing and outstanding aggregate performance demonstrated.

Some aspects of IEEE 1355, such as the signal levels (PECL for wired connections) and connectors used are not suited
to Space applications and led to a variant being defined which has become known as SpaceWire.

SpaceWire currently defines only twisted-pair wired connections using LVDS signaling and specifies connectors that
are available in Space qualified versions (IEEE 1355 also contains co-axial cable and optical transmission
specifications). One extension made to IEEE 1355 is the inclusion of a mechanism for global distribution of values for
use as time-codes.

Time-codes are broadcast to all end nodes in the system. The time-code source and each routing switch does, however
introduce some jitter on the received time code, which can amount to several microseconds. It is possible, completely
within the standard, to send, forward and receive time-codes in such a way that the jitter is reduced to the order of tens
of nanoseconds. Furthermore, it is possible to align received time-code indications so that all nodes are synchronized to
within a few tens of nanoseconds.

We discuss the time codes themselves and the source of time uncertainty – jitter. An experimental test-set, Fig. 1., was
used to verify the predicted behaviour and a probability density function (PDF) of tick arrival times plotted, Fig 2. A
technique for reducing jitter is described and a typical resulting signal waveform shown in Fig. 4., with a normal
waveform for reference, Fig. 3. The resulting PDF is dramatically improved, as shown in Fig. 5. A further extension
allowing synchronized time code delivery is described and the resulting arrival time PDF shown in Fig. 6.

TOKENS

SpaceWire transmits basic tokens of either 4- or 10-bits. Each token contains a flag bit indicating its type and a parity
bit for detecting transmission errors. Short, 4-bit, tokens are used for control – encoding end-of-packet marks, flow
control credit and one escape token. Long, 10-bit, tokens are used for data. Compounds are formed with the escape
control token: escape with flow control for a null token, and escape with data for a time code – see Table 1. Escape with
end-of-packet or another escape are not currently used and their detection results in an error condition which, like parity
errors, causes the link to be reset.

In order to confirm connection and to be able to detect loss of connection, the link is always sending tokens. Priority is
given to time-code and flow control tokens, then data and flow control tokens, and finally, if there is nothing of more
importance then a Null token is sent in order to maintain continuous transitions and indicate that the link is still
connected.



Table 1. SpaceWire tokens

Use Length
EOP End-of-packet marker 4-bits
EEP End-of-packet marker 4-bits
FCT Flow control 4-bits
ESC (Only as part of compound)

Data Byte-wide data 10-bits
ESC-FCT Null 8-bits
ESC-Data Time code 14-bits

SPACEWIRE TIME CODES

Time codes are globally transmitted – broadcast – from a single source to all nodes in the network. SpaceWire networks
are permitted to have multiple connections in order to provide redundancy and fault tolerance. These alternate paths
form loops that can lead to livelock with a simple broadcast mechanism – SpaceWire routing switches may receive a
time code already sent and must only selectively transmit new values. A time code, therefore, contains a sequence
number in support of this requirement.

Six-bits are currently used to define the sequence number and, together with two reserved bits, are contained in a
normal data token. An escape token precedes this data token in order to identify it as a time code.

In normal usage, time codes are transmitted from the time source at regular intervals. Each node receives both the
sequence number (and reserved bits) and a tick indicating its arrival time.

JITTER PERFORMANCE

Jitter, uncertainty, in the time-code indication – the time code “tick” – has two sources. The SpaceWire transmitter
being the major contributor with a small addition from the receiver. It is assumed that a well-designed routing switch
has a fixed delay and adds no further uncertainty.

Transmitter Contribution

Requests to send a time code will not occur at a regular time relative to the transmitted token stream. We may expect
time ticks to be generated at regular intervals but the tokens, being of variable length may not stop and start at the same
times.

It may be possible to send a time-code at the instant a tick request is made, or it may be necessary for the currently
being sent token to finish first – a delay of up to 10-bit times (we assume that a time tick will not be so soon after a
previous time tick that it must wait 14 bit times). Thus, we see an introduced jitter of 10 bit-times.

The approved standard [3] considers only this contribution in its example jitter calculation. It takes the default transmit
rate of 10Mb/s to give a transmit uncertainty of 1µs at each link. Across a reasonable system having ten such links we
see an accumulated jitter expectation of some 10µs.

Receiver Contribution

Link ends are not required to share a common clock signal, and in general will not do so, with the result that the
SpaceWire transmitter and receiver are not synchronized. The receiver must resynchronize what is received with its
own clock and an uncertainty of one sampling period is inevitable. The receive sampler may operate at a frequency
corresponding to the link bit rate but need not do so. For example, the XOR-recovered clock may be used to group
received bits into tokens and these tokens passed to the local clock domain, which may therefore be at a lower
frequency than the bit-rate might suggest. The sampling uncertainty occurs at this last transition and can thus be greater
than one bit time.
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Fig. 1. Experimental test harness

Experimental Verification

In order to test this theoretical prediction, and to provide a reference for comparison with an improved scheme, a test
harness was constructed, as shown in Fig. 1. A PC connected, via Ethernet, to an EtherSpaceLink ESL-F201 able to
generate time-codes at intervals set by an external function generator in turn connected by SpaceWire link to a unit
containing two link engines to copy data to another SpaceWire link and again on to a third link.  Reference signals and
received time ticks were collected in a jitter recorder that accumulated the number of ticks received at each of 1023
intervals of 10ns after the reference – a probability density function – the ESL-F201 was used to pass the recorded data
back to the PC. An external function generator was used in preference to the internal time-code generator in the ESL-
F201 in order to de-synchronize the tick requests from the link clock.

Links were set to transmit at 12.5Mb/s, for reasons explained later, and a large number of time-ticks were generated and
recorded.

The resulting distributions are shown in Fig. 2. The top trace shows the distribution after one SpaceWire link (point A
in Fig. 1.), the middle trace after two links (point B in Fig. 1.) and the bottom trace after three links (point C in Fig. 1.).
Due to the need to scale the number of ticks received at each time point, it is hard to see points at which only a
relatively few ticks were received – a bar appears under each group of received ticks indicating the range from earliest
to latest, together with text giving the difference between these times – the peak-to-peak jitter.

Fig. 2. Time code behaviour with links running normally (Idling at 12.5Mb/s)



All the SpaceWire links are idling, sending NULLs but no data. The transmit jitter introduced is thus only 8-bits, rather
then up to 10-bits as would be found in an active link. Measured jitters should be scaled by 10 / 8 to get true values.

At 12.5Mb/s we have a bit time of 80ns and would expect to see a jitter of 8 * 80ns = 640ns. As seen in the top line of
Fig. 2., our experiment confirms this. Traversing the second link doubles the jitter and the third link triples it. It is
interesting to note that the distribution is rectangular at the first stage, triangular at the second and reaches a fair
approximation of a normal distribution after three stages.

LOW-LEVEL CODING – AN OPPORTUNITY TO DO BETTER

SpaceWire uses a Gray-code on two pairs of wires to transfer both data and their clock signal. Fig. 3. shows a sample of
the signals on the “Data” (top line) and “Strobe” (bottom line) lines. As can be seen the bits are sent at regular intervals
– every 80ns in this instance, corresponding to a data rate of 12.5Mb/s. Time codes are inserted into the stream at the
next available regular interval.

Such regular bit times are not, however, obligatory. A benefit of carrying the timing data in the signals is that bits can
be conveyed at irregular intervals, so long as each is interval is long enough to be identified by the receiver and not so
long as to trigger a disconnect timeout. We can use irregular intervals to remove the major source of time-code jitter.

The interval between a time-code request and its being sent varies depending on how long the transmitter is occupied
sending its current token. This variable interval causes the large jitter observed.

It is not necessary to send a time-code as soon as it is possible to do so. We may delay sending the code, until some time
after the transmitter is able to send it. By doing so we may arrange for the interval between the request for time-code
transmission and its being sent to be constant – and jitter-free. See Fig. 4.

Fig. 3. Physical layer waveforms at 12.5Mb/s, showing an inserted time-code.

Fig. 4. Physical layer waveforms at 12.5Mb/s, showing a delayed inserted time-code.



The delay introduced must be as long as the longest token that may be being transmitted when the time-code request
arrives – 10-bits – in order to be sure that it has been completely sent before the time-code must be sent. The period for
which the data and strobe lines is held will be between zero (when the time-code request arrives exactly 10-bit times
before the last token is completely sent) and ten bit times (when the last token finishes just as the time-code request
arrives). In order to avoid a disconnect detection this delay must not exceed the timeout period of 850ns nominal.
Taking a practical limit of 800ns over 10-bit times requires the link to be running at 80ns / bit or less – 12.5Mb/s or
faster.

Time-code jitter is dramatically reduced by this technique, as can be seen in Fig. 5.

ACHIEVABLE PERFORMANCE

Delayed time-code transmission totally removes the transmitter contribution to jitter leaving only the receiver to
transmitter synchronization uncertainty. A jitter performance of only 10ns per link is easily achievable.

The cost of this approach is the introduction of up to 10 bit-periods of inactivity, average 5 bit-periods, on the data and
strobe lines. It is almost certain that time-codes constitute only a small fraction of the traffic on a link and their
extension from 12- to 17-bits (average) will have minimal affect on link throughput.

Although the effect is most dramatic at low speeds, it is still useful at higher speeds. A 200Mb/s link has a bit-period of
5ns and 10-bits of jitter amount to 50ns. Reducing this to 10ns (or less, depending on the link system clock speed) is
still a worthwhile gain – especially when multiplied by the number of hops in a network.

Links are required to start at 10Mb/s [3] but time-codes are not permitted to be sent until the link is running, at which
time the link speed can be increased to at least 12.5Mb/s.

Lower speed links can also benefit from a modified form of this technique, as described in the next section.

REDUCING THE LOWER SPEED LIMIT

We assume, in the above calculation of the lower speed limit, that the delay is introduced only in one place – before the
start of the time code. It would also be possible to add a little bit of delay to each bit of the time code itself to achieve a
total of the required delay.

Fig. 5. Time code behaviour with delayed time-codes (Idling at 12.5Mb/s)



Fig. 6. Time code behaviour with output delays added

Before we can do this, however, we must be careful to consider when a time tick is generated from a received time
code. All the added delay must occur before that point in time. It is not possible to know that a time-code has been
correctly received until all its data bits and parity bit are seen and checked. At least ten bits are available for extension
to give the required delay, allowing a link speed of down to 2.5Mb/s.

GLOBAL SYNCHRONISATION

Given low-jitter times it is possible to consider synchronizing all nodes in the system. Some nodes receive their time-
codes before others but the order of receipt will be deterministic – for a given time-code source.

It is thus possible to delay early ticks at the time-code output of the links so that all are produced at the same time. Fig.
6. shows the test system with ticks at point A delayed by 3970ns and those at point B delayed by 1990ns while those at
point C are not delayed at all. The result of the delays is that all ticks are received at the same time, to within the jitter
interval – note the much expanded time scale of this figure relative to those above. The delays added compensate for the
latency of the routing switches and also of the connecting cables (at about 5ns/m these cannot be ignored).

If time-codes are sourced at a different point in the network (e.g. if the primary source fails and its function is taken by
an alternate source) it will be necessary to change the output delays applied – inclusion of a writable register between
the link receiver and tick output pin is suggested.

It might be preferable to fix the delay from time source to tick at all nodes, including the longest path, to a value longer
than that of the longest path, in all circumstances. For example, we might set the tick arrival time to be, say, 25µs after
it is sent and then to maintain that interval even if the time code source changes. This would avoid time jumps in the
event of failure of, and recovery from, time master problems.

CONCLUSION

We have shown, both theoretically and practically, that a small change in the time-code transmitter can give a very
significant reduction in jitter. The receiver need not be altered, so long as it behaves deterministically.

Jitter performance of 10ns per link is easily achieved and significantly smaller jitters are possible.

It is possible to extend this benefit to produce accurately synchronized time signals at all nodes in a system.
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