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ABSTRACT 
SpaceWire is characterised by transmission on two 
signal lines that encode both the data and its clock. 
Clock recovery and design of the receiver appears to be 
simple but presents two distinct implementation issues, 
both presenting serious challenges for FPGA 
implementation (and are non-trivial challenges for 
ASIC implementation). 
 
The first challenge is that of the tight timing constraints 
required to use the recovered clock. The second is that 
the received data/tokens are in the clock domain of the 
remote transmitter (the recovered clock) and must be 
re-timed to the receive clock. These constraints and 
asynchronous interfaces are not easy to guarantee in 
FPGA – nor is their design well supported by design 
tools. 
 
We explain these issues and then describe an 
alternative approach using a fully-synchronous 
technique. The result is a robust design that meets the 
assumptions of design tools and can be implemented 
very easily in FPGA – and ASIC. 
 

1. INTRODUCTION 
SpaceWire [1] is a high speed (2 to >400Mb/s) digital 
communication standard. It is characterised by 
transmission on two signal lines that encode both the 
data and its clock. Clock recovery at the receiver is as 
simple as an exclusive-or of the two signal lines. This 
recovered clock can be used to decode the serial data 
stream into its constituent tokens. The tight timing 
constraints required to use the recovered clock are 
difficult to guarantee as the commonly available FPGA 
design tools do not allow a simple specification of the 
required constraints and users must resort to hand-
placement of the logic cells required for this function. 
The recovered clock net may also have to drive the 
logic decoding the data and may require the use of 
clock buffers further limiting placement choices. 
Explicit placement of SpaceWire logic restricts the 
placement and routing of other parts of the design 
leading to reduced usability of the silicon. 

 
Received data/tokens are in the clock domain of the 
remote transmitter (the recovered clock) and must be 
re-timed to the receive clock. Transmit and receive 
clocks need not be the same frequency and, even if 
nominally the same, may drift relative to each other in 
frequency or phase. Passing data between clock 
domains is known to be difficult [2]. Issues such as 
meta-stability can be handled for single-bit signals – 
although at the expense of limiting the data rate 
between clock domains. Attempts to improve 
throughput using multi-bit parallel transfers bring 
issues of path delay matching that add further 
difficulties in FPGA implementations. 
 
Of the many faulty SpaceWire implementations we 
have seen and analysed, most were due to the 
asynchronous interfaces. Unfortunately, asynchronous 
design is poorly supported by silicon design tools and 
simulation is particularly difficult. Asynchronous 
errors have been seen in practice even after extensive 
simulations detected no problems. 
 
We present an alternative design strategy that is fully 
synchronous and, as a result, can be implemented in 
FPGA (and ASIC) with no more constraint than 
specifying the (single) system clock frequency. Design 
tools are thus not limited in their ability to place user 
logic and hence are able to fully utilize the silicon. 
4Links has built a large number of SpaceWire 
interfaces with this strategy and all have proved both 
simple to design and extremely robust in operation at 
speeds up to 500Mb/s. 
 
We begin by reviewing the commonly used 
asynchronous design technique, showing where 
difficulties arise, and proceed to describe the 
alternative, fully synchronous, approach that has 
proved to be easy to implement and robust in operation. 

2. SPACEWIRE LINE CODING AND 
CLOCK/DATA RECOVERY 

SpaceWire sends its data signal (D) along with a 
“Strobe” (S) signal such that there is a transition on one 
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signal for each bit period. An example sequence is 
shown if figure  1. 

 

 
 
Figure 1  Signals D, S and D xor S 
 

The source clock signal can be recovered by an 
exclusive-or of D and S and D must be sampled on 
both edges of the recovered clock. Re-timing the 
recovered data to a single clock edge is convenient. 
Suitable logic is shown in figure 2. 

 

Figure 2  Logic to recover data from D and S 

Although apparently simple, this logic demands care in 
obtaining suitable time delays through various paths: 

• To maximise performance (data rate) the delays 
from the D and S pins to the exclusive-or gate 
must be matched; 

• Set-up and hold times for the first data latches, 
FF1 and FF2 must be met 
o The time delay through the exclusive-or to the 

clock inputs must not be too short to prevent 
incorrect operation 

o The time delay through the exclusive-or to the 
clock inputs must not be too long to prevent 
performance degradation 

FPGA implementations, where use is made of general-
purpose interconnect to flip-flops within cells whose 
placement depends on other logic within the device 
rarely provide tools with sufficient control of 
placement to meet these requirements directly. 
Recourse then has to be made to hand placement of 
cells. 

Further complication arises when the recovered clock 
is used for logic that decodes the data stream into 

SpaceWire tokens. Local (signal) nets often have too 
much skew for the clock signal resulting in 

• The need to use a clock buffer, often at the edge 
of a chip with attendant restrictions on the 
location of the SpaceWire circuit, and/or 

D = Data 

S = Strobe 
• More hand placement of logic 

D xor S 
Hand placement results in a longer design cycle, more 
difficulty in making changes and more restrictions on 
the use of the rest of the chip. 

3. CLOCK DOMAINS AND WHERE TO PLACE 
THE BOUNDARIES 
Received data has to be decoded to SpaceWire tokens 
and results in two or three distinct signals 

• Received data 
• Received flow control tokens 
• Received time codes (optional) 

D D1  
The most obvious implementation places all the decode 
logic in the transmitters time domain – using the 
recovered clock signal. The resulting tokens must then 
cross into the local clock domain. 
 
It is also possible to divide the decode logic between 
domains, for example by collecting a few received bits, 
un-decoded, and passing then to a decoder in the local 
clock domain. 

4. CROSSING CLOCK DOMAINS 
Transferring data between clock domains is not easy, 
and it may not be fast. 
 
In order to be received correctly, data presented to a 
flip-flop must not change within a critical period 
around the active edge of the clock signal. This is 
normally expressed as the data needing to be stable for 
a period before the clock edge – the setup time – and 
then not changing until after the clock edge – the hold 
time. 
 
When the signal is produced in one clock domain and 
received in another there can be no guarantee of 
meeting these timing requirements. In general the clock 
frequencies will be different, even if nominally the 
same but differing by a few parts per million. Sooner 
or later, data that changes during the critical period will 
be presented. 
 
When the setup and hold times are violated the output 
of the flip-flop will be unstable and will take time to 
fall into a stable state (metastability). The effect rapidly 
becomes more apparent as clock frequencies increase. 
The time to become stable is unbounded but the 

S 

D2 

Clock 
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likelihood of being in the unstable state reduces 
exponentially with time. 
 
The most widely used technique to reduce the effect of 
metastability is to use two cascaded flip-flops clocked 
with the same signal – figure 3. This can reduce the 
problem by many orders of magnitude. 
 
A single flip-flop at tens of Mega-Hertz is very likely 
to show metastability. A pair of flip-flops will 
normally reduce the incidence to something negligible. 
In extreme cases a third flip-flop will need to be added. 
It is possible to calculate the frequency of occurrence 
of this effect, see [2] and numerous technical notes 
from silicon vendors. 
 

 
 
Figure 3 Two cascaded flip-flops, input from clock 
domain A, clocked in domain B 
 
If it is necessary to know that the data arrived safely a 
handshake, reply, signal must be passed in the other 
direction – again requiring two, or more, flip-flops. A 
total round-trip delay of at least two clock cycles in 
each clock domain. 
 
At first sight, some optimisation can be obtained by 
transferring multiple signals under the control of a 
single handshake. When a parallel set of signals is 
ready to be transferred a single-bit “ready” signal is 
transferred from A to B; B takes the parallel data and 
then sends a handshake back. 
 
On further consideration, however, we must be sure 
that the routing delays on all the signals is the same as 
or less than the delay on the ready signal or we may 
latch data that is not yet ready. This also usually 
requires hand placement and its attendant blocking of 
chip area for other logic. 
 
We must also be careful that the transfers are fast 
enough to meet the rate at which tokens are received. 
Data tokens at 10-bits and time-codes at 14 might be 
expected to cope with 2 cycles transfer delay in each 
clock domain but consecutive flow-control or end-of-
packet tokens at 4-bits might not. 
 
Use of asynchronous FIFO’s is a possibility – but these 
must be carefully designed and do not seem to be the 
ideal choice for time-codes or flow-control. They 
represent a less effective use of silicon than should be 
possible. 

5. SYNCHRONOUS DESIGN 
If we could move the time domain boundary right up to 
the pins on the chip and do all SpaceWire decoding in 
the local clock domain. By using the local clock to 
sample D and S in the input buffers we can produce a 
completely synchronous design – see figures 4 and 5. 
We need only a single clock net for both transmit and 
any number of receivers. 
 

 
 
Figure 4 Sampling D and S with the local clock 
 

 
 
Figure 5 Sampling Logic 
 
At a stroke we can eliminate all difficult issues – there 
is no need to hand place anything and the normal 
design tools can be left with a simple clock speed 
requirement and total freedom to use any part of the 
chip for SpaceWire and other logic. 
 
Sampling at the pins is the only point at which there is 
any asynchronous logic – we still need two flip-flops to 
avoid metastability but on only two signals, D and S 
(the Gray code used ensures that only one of these will 
change per bit). 
 
Having recovered the data and strobe signals we must 
determine the location of the bit boundaries. These 
occur whenever there is a change in level in either D or 
S and simple edge detectors can be used. 
 
Instead of having a data and clock signal in an external 
time domain we have a data and valid signal in the 
local clock domain. 
 
SpaceWire decoding proceeds as usual but all in the 
local clock domain – we have no performance limiting 
clock domain crossings to deal with. 
 
We must sample the incoming bits fast enough not to 
miss any. We are used to thinking of sampling at many 
times the data rate – oversampling – maybe 8 to 16 
samples per bit in order to be sure of correctly 
synchronizing to bit boundaries. One significant 
advantage of the Data-Strobe encoding that SpaceWire 
uses is that the clock signal is directly available to us 
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and, in fact, we need only sample at (just) greater than 
one sample per SpaceWire bit. 
 
Imperfect transmission lines cause edges to move from 
their ideal locations and one sample per bit has no 
margin to cope with this. In practice, a sample rate of 
1.5 times the bit rate works well and we have not found 
it worth exceeding 2 times. 
 
Using both edges of the local clock (so called “double 
data rate” input) gives us two samples per clock cycle 
and thus we can use the simple rule-of-thumb that the 
local clock frequency should equal the SpaceWire bit 
rate. 
 
If double-data-rate input is not supported we can use 
one sample per clock sample which has the advantage 
of simpler logic but a lower acceptable SpaceWire data 
rate. 
 
It is also possible to implement more samples per clock 
cycle by using a multi-phase sampling scheme or a 
frequency multiplier from the local clock. 
 
Table 1 shows a small selection of schemes that we 
have used, characterised by the ratio of sampling 
frequency to system clock frequency (Nf) and number 
of samples per clock cycle (Mp). A conservative ratio 
of sampling rate to data rate of >1.5:1 has been used in 
this table. 
 

Scheme Sample Rate Data rate 
1f1p f f/2 
1f2p 2f f 
1f4p 4f 2f 
3f2p 6f 4f 

 
Table 1 Sampling Schemes 

6. PERFORMANCE ON FPGA 

Using far from the state-of-the-art FPGA’s (Xilinx™ 
Virtex 2) we achieve a data rate of 500Mb/s with a 
125MHz system clock. 

We have recently ported  designs to Actel™ devices 
and find the results most encouraging. Here are a few 
key findings: 
• Using a 125 MHz system clock, sampled on both 

edges (250 Ms/s) for a nominal input data rate of 
125 Mb/s we find that the maximum input data 
rate – after signal degradation through 10 metres 
of cable – is >190Mb/s. This is an ultra-
conservative margin. 

• Un-optimised, the Actel™ toolset prediction for 
the codec performance in RTAX, at 100 KRad 
dose, is >155MHz. We expect a version 
optimised for these devices to be capable of 
200Mb/s. [The un-optimised design is already 
capable of exceeding 220Mb/s in commercial, 
AX, silicon.] 

• The codec consumes just 460 cells – plus receive 
buffers. These buffers consume very little 
resource when implemented in block RAM but 
approximately double the size when implemented 
in registers. 

• A complete 4-port routing switch, with FIFO’s in 
registers (the resource-hungry option) requires 
4300 cells (14% of an (RT)AX2000). It uses just 
one clock net for the whole design and no 
placement constraints. 

7. CONCLUSION 
Asynchronous SpaceWire designs can be implemented 
– many people, including ourselves, have done so – but 
there are many challenges to doing so on FPGA’s. We 
have explained the worst of those challenges and 
suggested an easier alternative. Synchronous designs 
are easier to develop and implement in FPGA and our 
experience with them at the leading edge of 
performance in demanding applications gives 
confidence that this is a preferred route to success. It 
can also be usefully applied to ASIC design. 
 
Benefits of the synchronous design include 
• One clock net, regardless of the number of 

SpaceWire ports (Asynchronous designs require 
one clock net per port in addition to the system 
net); 

• No cell placement is needed (asynchronous 
designs require careful placement to meet 
difficult timing relationships); 

• Robustness due to the lack of difficult timing 
issues (placement is critical to asynchronous 
designs – they are fragile); 

• Easy to mix designs with other IP – the tools have 
full freedom to intermix cells and routing 
(asynchronous design may have to reserve silicon 
area to ensure they meet their timing 
requirements). 
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