
SpaceWire on FPGA – Challenges and Solutions

Dr Barry M Cook, C Paul H Walker

4Links Limited, PO Box 816, Bletchley Park, Milton Keynes, MK3 6ZP England,
Email: [Barry, Paul] @4Links.co.uk

ABSTRACT
SpaceWire is characterised by transmission on two
signal lines that encode both the data and its clock.
Clock recovery and design of the receiver appears to be
simple but presents two distinct implementation issues,
both presenting serious challenges for FPGA
implementation (and are non-trivial challenges for
ASIC implementation).

The first challenge is that of the tight timing constraints
required to use the recovered clock. The second is that
the received data/tokens are in the clock domain of the
remote transmitter (the recovered clock) and must be
re-timed to the receive clock. These constraints and
asynchronous interfaces are not easy to guarantee in
FPGA – nor is their design well supported by design
tools.

We explain these issues and then describe an
alternative approach using a fully-synchronous
technique. The result is a robust design that meets the
assumptions of design tools and can be implemented
very easily in FPGA – and ASIC.

1. INTRODUCTION
SpaceWire [1] is a high speed (2 to >400Mb/s) digital
communication standard. It is characterised by
transmission on two signal lines that encode both the
data and its clock. Clock recovery at the receiver is as
simple as an exclusive-or of the two signal lines. This
recovered clock can be used to decode the serial data
stream into its constituent tokens. The tight timing
constraints required to use the recovered clock are
difficult to guarantee as the commonly available FPGA
design tools do not allow a simple specification of the
required constraints and users must resort to hand-
placement of the logic cells required for this function.
The recovered clock net may also have to drive the
logic decoding the data and may require the use of
clock buffers further limiting placement choices.
Explicit placement of SpaceWire logic restricts the
placement and routing of other parts of the design
leading to reduced usability of the silicon.

Received data/tokens are in the clock domain of the
remote transmitter (the recovered clock) and must be
re-timed to the receive clock. Transmit and receive
clocks need not be the same frequency and, even if
nominally the same, may drift relative to each other in
frequency or phase. Passing data between clock
domains is known to be difficult [2]. Issues such as
meta-stability can be handled for single-bit signals –
although at the expense of limiting the data rate
between clock domains. Attempts to improve
throughput using multi-bit parallel transfers bring
issues of path delay matching that add further
difficulties in FPGA implementations.

Of the many faulty SpaceWire implementations we
have seen and analysed, most were due to the
asynchronous interfaces. Unfortunately, asynchronous
design is poorly supported by silicon design tools and
simulation is particularly difficult. Asynchronous
errors have been seen in practice even after extensive
simulations detected no problems.

We present an alternative design strategy that is fully
synchronous and, as a result, can be implemented in
FPGA (and ASIC) with no more constraint than
specifying the (single) system clock frequency. Design
tools are thus not limited in their ability to place user
logic and hence are able to fully utilize the silicon.
4Links has built a large number of SpaceWire
interfaces with this strategy and all have proved both
simple to design and extremely robust in operation at
speeds up to 500Mb/s.

We begin by reviewing the commonly used
asynchronous design technique, showing where
difficulties arise, and proceed to describe the
alternative, fully synchronous, approach that has
proved to be easy to implement and robust in operation.

2. SPACEWIRE LINE CODING AND
CLOCK/DATA RECOVERY

SpaceWire sends its data signal (D) along with a
“Strobe” (S) signal such that there is a transition on one

1

Space Wire on FPGA - Challenges and Solutions, Dr Barry M Cook, C Paul H Walker, 4Links Limited
Copyright 4Links Limited 2008, Presented at DASIA conference, Palma, Majorca, Spain, 27 May 2008

signal for each bit period. An example sequence is
shown if figure 1.

Figure 1 Signals D, S and D xor S

The source clock signal can be recovered by an
exclusive-or of D and S and D must be sampled on
both edges of the recovered clock. Re-timing the
recovered data to a single clock edge is convenient.
Suitable logic is shown in figure 2.

Figure 2 Logic to recover data from D and S

Although apparently simple, this logic demands care in
obtaining suitable time delays through various paths:

• To maximise performance (data rate) the delays
from the D and S pins to the exclusive-or gate
must be matched;

• Set-up and hold times for the first data latches,
FF1 and FF2 must be met
o The time delay through the exclusive-or to the

clock inputs must not be too short to prevent
incorrect operation

o The time delay through the exclusive-or to the
clock inputs must not be too long to prevent
performance degradation

FPGA implementations, where use is made of general-
purpose interconnect to flip-flops within cells whose
placement depends on other logic within the device
rarely provide tools with sufficient control of
placement to meet these requirements directly.
Recourse then has to be made to hand placement of
cells.

Further complication arises when the recovered clock
is used for logic that decodes the data stream into

SpaceWire tokens. Local (signal) nets often have too
much skew for the clock signal resulting in

• The need to use a clock buffer, often at the edge
of a chip with attendant restrictions on the
location of the SpaceWire circuit, and/or

D = Data

S = Strobe
• More hand placement of logic

D xor S
Hand placement results in a longer design cycle, more
difficulty in making changes and more restrictions on
the use of the rest of the chip.

3. CLOCK DOMAINS AND WHERE TO PLACE
THE BOUNDARIES
Received data has to be decoded to SpaceWire tokens
and results in two or three distinct signals

• Received data
• Received flow control tokens
• Received time codes (optional)

D D1
The most obvious implementation places all the decode
logic in the transmitters time domain – using the
recovered clock signal. The resulting tokens must then
cross into the local clock domain.

It is also possible to divide the decode logic between
domains, for example by collecting a few received bits,
un-decoded, and passing then to a decoder in the local
clock domain.

4. CROSSING CLOCK DOMAINS
Transferring data between clock domains is not easy,
and it may not be fast.

In order to be received correctly, data presented to a
flip-flop must not change within a critical period
around the active edge of the clock signal. This is
normally expressed as the data needing to be stable for
a period before the clock edge – the setup time – and
then not changing until after the clock edge – the hold
time.

When the signal is produced in one clock domain and
received in another there can be no guarantee of
meeting these timing requirements. In general the clock
frequencies will be different, even if nominally the
same but differing by a few parts per million. Sooner
or later, data that changes during the critical period will
be presented.

When the setup and hold times are violated the output
of the flip-flop will be unstable and will take time to
fall into a stable state (metastability). The effect rapidly
becomes more apparent as clock frequencies increase.
The time to become stable is unbounded but the

S

D2

Clock

2

Space Wire on FPGA - Challenges and Solutions, Dr Barry M Cook, C Paul H Walker, 4Links Limited
Copyright 4Links Limited 2008, Presented at DASIA conference, Palma, Majorca, Spain, 27 May 2008

likelihood of being in the unstable state reduces
exponentially with time.

The most widely used technique to reduce the effect of
metastability is to use two cascaded flip-flops clocked
with the same signal – figure 3. This can reduce the
problem by many orders of magnitude.

A single flip-flop at tens of Mega-Hertz is very likely
to show metastability. A pair of flip-flops will
normally reduce the incidence to something negligible.
In extreme cases a third flip-flop will need to be added.
It is possible to calculate the frequency of occurrence
of this effect, see [2] and numerous technical notes
from silicon vendors.

Figure 3 Two cascaded flip-flops, input from clock
domain A, clocked in domain B

If it is necessary to know that the data arrived safely a
handshake, reply, signal must be passed in the other
direction – again requiring two, or more, flip-flops. A
total round-trip delay of at least two clock cycles in
each clock domain.

At first sight, some optimisation can be obtained by
transferring multiple signals under the control of a
single handshake. When a parallel set of signals is
ready to be transferred a single-bit “ready” signal is
transferred from A to B; B takes the parallel data and
then sends a handshake back.

On further consideration, however, we must be sure
that the routing delays on all the signals is the same as
or less than the delay on the ready signal or we may
latch data that is not yet ready. This also usually
requires hand placement and its attendant blocking of
chip area for other logic.

We must also be careful that the transfers are fast
enough to meet the rate at which tokens are received.
Data tokens at 10-bits and time-codes at 14 might be
expected to cope with 2 cycles transfer delay in each
clock domain but consecutive flow-control or end-of-
packet tokens at 4-bits might not.

Use of asynchronous FIFO’s is a possibility – but these
must be carefully designed and do not seem to be the
ideal choice for time-codes or flow-control. They
represent a less effective use of silicon than should be
possible.

5. SYNCHRONOUS DESIGN
If we could move the time domain boundary right up to
the pins on the chip and do all SpaceWire decoding in
the local clock domain. By using the local clock to
sample D and S in the input buffers we can produce a
completely synchronous design – see figures 4 and 5.
We need only a single clock net for both transmit and
any number of receivers.

Figure 4 Sampling D and S with the local clock

Figure 5 Sampling Logic

At a stroke we can eliminate all difficult issues – there
is no need to hand place anything and the normal
design tools can be left with a simple clock speed
requirement and total freedom to use any part of the
chip for SpaceWire and other logic.

Sampling at the pins is the only point at which there is
any asynchronous logic – we still need two flip-flops to
avoid metastability but on only two signals, D and S
(the Gray code used ensures that only one of these will
change per bit).

Having recovered the data and strobe signals we must
determine the location of the bit boundaries. These
occur whenever there is a change in level in either D or
S and simple edge detectors can be used.

Instead of having a data and clock signal in an external
time domain we have a data and valid signal in the
local clock domain.

SpaceWire decoding proceeds as usual but all in the
local clock domain – we have no performance limiting
clock domain crossings to deal with.

We must sample the incoming bits fast enough not to
miss any. We are used to thinking of sampling at many
times the data rate – oversampling – maybe 8 to 16
samples per bit in order to be sure of correctly
synchronizing to bit boundaries. One significant
advantage of the Data-Strobe encoding that SpaceWire
uses is that the clock signal is directly available to us

Clock

In I/O Cell

D

S

Detect bit
transitions

Data

Valid

Clock

3

Space Wire on FPGA - Challenges and Solutions, Dr Barry M Cook, C Paul H Walker, 4Links Limited
Copyright 4Links Limited 2008, Presented at DASIA conference, Palma, Majorca, Spain, 27 May 2008

and, in fact, we need only sample at (just) greater than
one sample per SpaceWire bit.

Imperfect transmission lines cause edges to move from
their ideal locations and one sample per bit has no
margin to cope with this. In practice, a sample rate of
1.5 times the bit rate works well and we have not found
it worth exceeding 2 times.

Using both edges of the local clock (so called “double
data rate” input) gives us two samples per clock cycle
and thus we can use the simple rule-of-thumb that the
local clock frequency should equal the SpaceWire bit
rate.

If double-data-rate input is not supported we can use
one sample per clock sample which has the advantage
of simpler logic but a lower acceptable SpaceWire data
rate.

It is also possible to implement more samples per clock
cycle by using a multi-phase sampling scheme or a
frequency multiplier from the local clock.

Table 1 shows a small selection of schemes that we
have used, characterised by the ratio of sampling
frequency to system clock frequency (Nf) and number
of samples per clock cycle (Mp). A conservative ratio
of sampling rate to data rate of >1.5:1 has been used in
this table.

Scheme Sample Rate Data rate
1f1p f f/2
1f2p 2f f
1f4p 4f 2f
3f2p 6f 4f

Table 1 Sampling Schemes

6. PERFORMANCE ON FPGA

Using far from the state-of-the-art FPGA’s (Xilinx™
Virtex 2) we achieve a data rate of 500Mb/s with a
125MHz system clock.

We have recently ported designs to Actel™ devices
and find the results most encouraging. Here are a few
key findings:
• Using a 125 MHz system clock, sampled on both

edges (250 Ms/s) for a nominal input data rate of
125 Mb/s we find that the maximum input data
rate – after signal degradation through 10 metres
of cable – is >190Mb/s. This is an ultra-
conservative margin.

• Un-optimised, the Actel™ toolset prediction for
the codec performance in RTAX, at 100 KRad
dose, is >155MHz. We expect a version
optimised for these devices to be capable of
200Mb/s. [The un-optimised design is already
capable of exceeding 220Mb/s in commercial,
AX, silicon.]

• The codec consumes just 460 cells – plus receive
buffers. These buffers consume very little
resource when implemented in block RAM but
approximately double the size when implemented
in registers.

• A complete 4-port routing switch, with FIFO’s in
registers (the resource-hungry option) requires
4300 cells (14% of an (RT)AX2000). It uses just
one clock net for the whole design and no
placement constraints.

7. CONCLUSION
Asynchronous SpaceWire designs can be implemented
– many people, including ourselves, have done so – but
there are many challenges to doing so on FPGA’s. We
have explained the worst of those challenges and
suggested an easier alternative. Synchronous designs
are easier to develop and implement in FPGA and our
experience with them at the leading edge of
performance in demanding applications gives
confidence that this is a preferred route to success. It
can also be usefully applied to ASIC design.

Benefits of the synchronous design include
• One clock net, regardless of the number of

SpaceWire ports (Asynchronous designs require
one clock net per port in addition to the system
net);

• No cell placement is needed (asynchronous
designs require careful placement to meet
difficult timing relationships);

• Robustness due to the lack of difficult timing
issues (placement is critical to asynchronous
designs – they are fragile);

• Easy to mix designs with other IP – the tools have
full freedom to intermix cells and routing
(asynchronous design may have to reserve silicon
area to ensure they meet their timing
requirements).

8. REFERENCES
1. ECSS-E-50-12A (24 January 2003), SpaceWire,

Links, Nodes, Routers and Networks
2. H. Johnson & M. Graham, High Speed Digital

Design, Prentice Hall

4

Space Wire on FPGA - Challenges and Solutions, Dr Barry M Cook, C Paul H Walker, 4Links Limited
Copyright 4Links Limited 2008, Presented at DASIA conference, Palma, Majorca, Spain, 27 May 2008

