
Datasheet

4

®

PCapØ1Ax DSP

August 1st, 2011
Document-No.: DB_PCapØ1_DSP_e V0.0

Single-chip Solution for Capacitance Measurement

Description of the Digital Signal Processor

acam-messelectronic gmbh - Am Hasenbiel 27 - D-76297 Stutensee-Blankenloch - Germany - www.acam.de

4

2

PCapØ1Ax DSP

Legal note

The present manual (data sheet and guide) is still under development, which may result in correc-

tions, modifications or additions. acam cannot be held liable for any of its contents, neither for accu-

racy, nor for completeness. The compiled information is believed correct, though some errors and

omissions are likely. We welcome any notification, which will be integrated in succeeding releases.

The acam recommendations are believed useful, the firmware proposals and the schematics opera-

ble, nevertheless it is of the customer‘s sole responsibility to modify, test and validate them before

setting up any production process.

acam products are not designed for use in medical, nuclear, military, aircraft, spacecraft or life-

support devices. Nor are they suitable for applications where failure may provoke injury to people

or heavy material damage. acam declines any liability with respect to such non-intended use, which

remains under the customer‘s sole responsibility and risk. Military, spatial and nuclear use subject to

German export regu lations.

acam do not warrant, and it is not implied that the information and/or practice presented here is

free from patent, copyright or similar protection. All registered names and trademarks are menti-

oned for reference only and remain the property of their respective owners. The acam logo and the

PicoCap logo are registered trademarks of acam-messelectronic gmbh, Germany.

Support / Contact

For a complete listing of direct sales contacts, distributors and sales representatives visit the acam

website at:

 http://www.acam.de

For technical support you can contact the acam support team in the headquarter in Germany or the

distributor in your country. The contact details of acam in Germany are:

sales@acam.de or by phone +49 7244 7419 0.

Published by acam-messelectronic gmbh

© copyright 2011 by acam-messelectronic gmbh, Stutensee, Germany

acam-messelectronic gmbh - Am Hasenbiel 27 - D-76297 Stutensee-Blankenloch - Germany - www.acam.de 3

PCapØ1Ax DSP

Table of Contents

1 System Overview 1-1

7 Miscellaneous
7.1 Bug Report 7-1

7-17.2 Document History

6 Examples
6.2 xx

6-2

6-2

6.1 Standard Firmware,

5 Libraries

5.3 cdc.h

5.1 standard.h 5-3

5-4

5-4

5.2 pcap01a.h

4 Writing Assembly Programs
4.2 Sample Code

4-3

4-4

4.1 Directives

2 DSP & Environment
2.3 DSP Inputs & Outputs

2.1 RAM Structure 2-3

2-7

2-8

2.2 SRAM / OTP

2.5 DSPOUT – GPIO Assignment

2-12

2-13

2.4 ALU Flags

2.6 DSP Configuration 2-16

5.6 dma.h

5.4 rdc.h 5-5

5-6

5-6

5.5 signed24_to_signed48.h

5.9 median.h

5.7 pulse.h 5-7

5-7

5-8

5.8 sync.h

3 Instruction Set
3.2 Instruction Details

3-2

3-12

3.1 Instructions

acam-messelectronic gmbh - Am Hasenbiel 27 - D-76297 Stutensee-Blankenloch - Germany - www.acam.de4

4 PCapØ1Ax DSP

acam-messelectronic gmbh - Am Hasenbiel 27 - D-76297 Stutensee-Blankenloch - Germany - www.acam.de 1-1

PCapØ1Ax DSP

acam-messelectronic gmbh - Am Hasenbiel 27 - D-76297 Stutensee-Blankenloch - Germany - www.acam.de 1-1

1 System Overview
This datasheet describes the 48-DSP of the PCapØ1A. It describes only the items related to the DSP

itself. For all other issues please refer to the PCapØ1A-0301 datasheet.

A 48-Bit digital signal processor (DSP) in Harvard architecture has been integrated to the PCap01. It

is responsible for taking the information from the CDC and RDC measuring units, for processing the

data and making them available to the user interface. Both, the CDC/RDC raw data as well as the

data processed by the DSP are stored in the RAM. The program for the DSP is stored either in the

OTP or the SRAM. The DSP can collect various status information from a set of 64 I/O Bits and wri-

te back 16 of those. This way the DSP can react on and also control the GPIO pins of PCap01. The

DSP is internally clocked at approximately 100 MHz. The internal clock is stopped through a firmwa-

re command, to save power. The DSP can also be clocked by other sources (e.g. a low power clock).

The DSP starts again upon a GPIO signal or an “end of measurement” condition.

In its simpliest form, the DSP transfers the pure time measurement information from the CDC/RDC

to the read registers without any further processing. The next higher step is to calculate the capa-

citance ratios including the information from the compensation measurements, as it is provided in

acam’s standard firmware version 03.01.xx.

The DSP is acam proprietary to cover low-power tasks as well as very high data rates. It is program-

med in Assembler. A user-friendly assembler software with a graphical interface, helptext pop-ups as

well as sample code sustain programming efforts.

Figure 1-1: DSP Embedding

acam-messelectronic gmbh - Am Hasenbiel 27 - D-76297 Stutensee-Blankenloch - Germany - www.acam.de1-2

4 PCapØ1Ax DSP

acam-messelectronic gmbh - Am Hasenbiel 27 - D-76297 Stutensee-Blankenloch - Germany - www.acam.de1-2

1 System Overview

acam-messelectronic gmbh - Am Hasenbiel 27 - D-76297 Stutensee-Blankenloch - Germany - www.acam.de 2-1

PCapØ1Ax DSP

2 DSP & Environment .. 2-2
2.1 RAM Structure...2-3

2.1.1 Registers 0 to 43 ..2-3

2.1.2 Registers 44 to 47 ..2-4

2.1.3 Register 48, Shift Register ...2-5

2.1.4 Read Registers 49 to 61 ..2-5

2.1.5 Read Register 62 ...2-6

2.1.6 Read Register 63 ...2-6

2.1.7 Write Registers 50, 51 ..2-6

2.1.8 Write Registers 54 to 61 ...2-6

2.2 SRAM / OTP ..2-7

2.2.1 Memory Management ...2-7

2.2.2 OTP ..2-8

2.3 DSP Inputs & Outputs ...2-8

2.4 ALU Flags ..2-12

2.5 DSPOUT – GPIO Assignment...2-13

2.6 DSP Configuration ..2-16

acam-messelectronic gmbh - Am Hasenbiel 27 - D-76297 Stutensee-Blankenloch - Germany - www.acam.de2-2

4 PCapØ1Ax DSP

2 DSP & Environment
The detailed structure of how the DSP is implemented into the PCap01 is shown in figure 2-1.

Figure 2-1: DSP Environment

The 48-bit DSP has read/write access to the RAM. While the lowest 44 registers can be used free,

the higher ones are used for special information. In read access, the DSP can get the measurement

raw data from address space 49 to 61. If PARASEL = 0 this is the CDC data, if PARASEL = 1 it is

the RDC data and the parameter registers’ content. By write access the DSP provides the output

data to either the serial interfaces (addresses54 to 61 and 44 to 47) or to the PDM/PWM inter-

faces (addresses 50 and 51).

A detailed description of the RAM is given is section 2.1. The DSP operates with two accumulators A

and B and has direct access to the RAM, which can be seen as third accumulator. The RAM address

pointer is of 6 bit size and there is a 4-fold stack for RAM addresses.

The program code for the DSP is in the OTP or the SRAM. During evaluation the program is typically

in the SRAM. In production it will be in the OTP. For fast applications it is also possible that after

acam-messelectronic gmbh - Am Hasenbiel 27 - D-76297 Stutensee-Blankenloch - Germany - www.acam.de 2-3

PCapØ1Ax DSP

power-on reset the program is copied from the OTP into the SRAM automatically. The program coun-

ter has 12 bit and there is an 8-fold stack for the program counter.

Finally, the DSP can get a lot of information from the 64 I/O bits. The read information covers the

ALU status, trigger information, some of the configuration bits and the information about the status

of the GPIOs. 16 of those bits can be used as outputs, setting the GPIOs and also some internal

information. For details see section 2.3.1. The DSP can read these bits by means of instruction jcd

(conditional jump) and set those bts by means of instructions bits/bitc (bit set/clear).

The ALU flags overflow, carry, equal/not equal and pos/neg are used directly as condition for the jcd

instructions and are also mirrored in the I/O bits.

2.1 RAM Structure

The RAM plays a key role. It is made of 64 registers with size of maximum 48 bit. The DSP has free

write and read access to registers address 0 to 48, all 48 bits wide. The RAM space address 49

to 63 is different for read and write. The read section itself is doubled and the selection between the

two is made by setting parameter PARASEL. The data in the read section are the raw data as they

come from the CDC (PARASEL=0), and data from the RDC as well as the parameters (PARASEL=1).

The parameters are part of the configuration registers and set via the serial interface or copied

from the OTP. The DSP reads those raw data, does the data processing and writes back the results

into the write section of the RAM. From there the user can read the final results through the serial

interface.

Table 2-1 gives a full overview of the RAM write and read registers.

In the following we explain the various RAM sections in detail.

2.1.1 Registers 0 to 43

This is normal RAM space without any special functions. It is readable and writable via instruction

rad.

Example: Add content of RAM address 12 and 13 and write the result into RAM address 13

rad 12

move a, r

rad 13

add r, a

2 DSP & Environment

acam-messelectronic gmbh - Am Hasenbiel 27 - D-76297 Stutensee-Blankenloch - Germany - www.acam.de2-4

4 PCapØ1Ax DSP

RAM Write

Addr. Description Bits

63 n.c.

62 n.c. --

61 RES7 24

...

56 RES2 24

55 RES1 48

54 RES0 48

53 n.c.

52 n.c.

51 PULSE1 11

50 PULSE0 11

49 n.c.

48 Shift register 48

47 RQ47/RES11 48

46 RQ46/RES10 48

45 RQ45/RES9/DPTR1 48

44 RQ44/RES8/DPTRØ 48

43 Register 43 48

...

0 Register 0 48

Table 2-1: RAM Structure in Detail

RAM Read

Addr. Description Bits

63 RAM Address Stack 24

62 2^(last RAM Address) 48

PARASEL = 0 Bits PARASEL

= 1

61 TCsg 37 TM2 37

60 TC78 37 TM1 37

59 TC56 37 TM0 37

58 TC34 37 TMREF 37

57 TC12 37 PARA8 24

56 TC8 37 PARA7 24

...

49 TC1 37 PARA0 24

48 Shift register 48

47 RQ47/RES11 48/24

46 RQ46/RES10 48/24

45 RQ45/RES9/DPTR1 48/24

44 RQ44/RES8/DPTR0 48/24

43 Register 43 48

... ...

0 Register 0 48

2.1.2 Registers 44 to 47

This RAM space can be used as normal register.

As a specialty, registers 44 and 45 can be used as data pointers DPTRØ and DPTR1. They can be

used for indirect addressing. See section 3.2.1 for further information.

Additionally, the lower 24 bit of those four registers can be read via SPI/IIC. These lower 24 bit is

the content of read registers Res 8 to Res 11 (read address 11 to 14). In case registers 44 and

45 are used as pointers the reading from those registers via interface has to be synchronized with

the firmware. This is the case e.g. with the standard firmware.

2 DSP & Environment

acam-messelectronic gmbh - Am Hasenbiel 27 - D-76297 Stutensee-Blankenloch - Germany - www.acam.de 2-5

PCapØ1Ax DSP

2.1.3 Register 48, Shift Register

This register can be used as a normal RAM cell. Additionally, it can be used for 8/24/40 bit right

shift operations. The right shift is selected by bits SHI48MO0_OUT and SHI48MO1_OUT. Those are

write bits 12 and 13 out of the 16 DSP output bits.

Table 2-2: Shift register

Bit 13 Bit 12 Right shift

SHI48MO1_OUT SHIMO0_OUT

0 0 0

0 1 1 byte / 8 bit

1 0 3 byte / 24 bit

1 1 5 byte / 40 bit

Example: Make a one byte right shift

bitS SHI48MO0_OUT

bitC SHI48MO1_OUT

rad 48

move r,a

move a,r

2.1.4 Read Registers 49 to 61

The content depends on the setting of the DSP I/O bit 58, PARASEL.

PARASEL = 0:

Discharge time data of the capacitance measurement. TC1 = discharge time at port PC0, TC2 =

discharge time at port PC1, … TC78 = discharge time at ports PC6 and PC7 (external compensati-

on on), TCsg = discharge time with all ports off (internal comensation on).

The data have 37 bit.

PARASEL = 1:

Registers 49 to 57 show the 24-bit parameter data as they are given by configuration registers 11

to 19, Param0 to Param9. They can be used in the DSP program e.g. to set the offset and slope of

the pulsed ouputs.

Registers 58 to 61 contain the 24 bit discharge time data of the temperature measurement.

2 DSP & Environment

acam-messelectronic gmbh - Am Hasenbiel 27 - D-76297 Stutensee-Blankenloch - Germany - www.acam.de2-6

4 PCapØ1Ax DSP

2.1.5 Read Register 62

This register is the two’s exponent of the RAD stack. The exponent needs to be written into the RAM

address. The result can be read from register 62. In the assembler the necessary 3 instrunctions

are merged into one:

load2exp a,10 ; a = 2^10 = 1024

Is the same as

rad 10

rad 62

move a,r

A very simple and efficient method to set an accumulator = 1 is

load2exp b,0 ; b = 2^0 = 1

2.1.6 Read Register 63

This register contains the content of the RAM address stack. The 24 bit data is made of the 4 last

6-bit RAM addresses. This address can be used to load 24 bit constants from the program memo-

ry into the data space. The necessary 6 instructions are merged into one single instruction by the

assembler.

load a,1715956 ; a = 1715956

Is the same as

rad ’h06 ; ’h06*2^18

rad ’h22 ;+ ’h22*2^12

rad ’h3b ;+ ’h3b/2^6

rad ’h34 ;+ ’h34 = 1715956

rad 63

move a,r

2.1.7 Write Registers 50, 51

These registers contain the data that is used to generate the PWM/PDM output signals. After the

DSP has calculated and scaled the output data it writes those into these two registers. The data are

11 bit wide.

2.1.8 Write Registers 54 to 61

These are the result registers to which the DSP has to write the output data so that the user can

read those through the SPI/IIC interface as Res 0 to Res 7 from address 0 to 7.

Addresses 54 and 55 are 48 bit while the others are 24 bit wide only.

2 DSP & Environment

acam-messelectronic gmbh - Am Hasenbiel 27 - D-76297 Stutensee-Blankenloch - Germany - www.acam.de 2-7

PCapØ1Ax DSP

2.2 SRAM / OTP
Table 2-3 Memory organization

SRAM OTP
Address direct/single double quad
dec. hex. Contents Length

[Byte]

Contents Length

[Byte]

Contents Length

[Byte]

Contents Length

[Byte]

4095 FFF

Program

code 4096

Unused 1 Test byte 1 Test byte 1
4094

..

4032

FFE

..

FC0

Config.

Registry 63

Config.

Registry 63

Config.

Registry 63
4031

..

2048

FBF

..

800h

Program

code 4032

Program

code 4032

Program

code 1984

2047 7FF Test byte 1
2046

..

1984

7FE

..

7C0

Config.

Registry 63
1983

..

0

7BF

..

0

Program

code 1984

2.2.1 Memory Management

The DSP can be operated from SRAM (for maximum speed, 100 MHz max.) or from OTP (for low

power, 10 MHz max. with error correction, 40 MHz max. without error correction). When the firm-

ware has been copied from the OTP into the SRAM and the DSP runs from the SRAM it is possible

to use an SRAM-to-OTP data integrity monitor. It can be activated setting parameter MEMCOMP in

register 0. This has to be disabled for operation directly from the OTP and needs the DSP to run with

the internal ring oscillator.

2 DSP & Environment

acam-messelectronic gmbh - Am Hasenbiel 27 - D-76297 Stutensee-Blankenloch - Germany - www.acam.de2-8

4 PCapØ1Ax DSP

Memory integrity (“ECC”) mechanisms survey the OTP contents internally and correct faulty bits (as

far as possible).

MEMLOCK, the memory readout blocker, is activated by special OTP settings performed when loading

down the firmware (see the graphi cal user interface existing for firmware development). MEMLOCK

contributes to the protection of your intellectual property. MEMLOCK gets active earliest after it was

written to the OTP and the chip got a power-on reset. MEMLOCK is write only, it can not be set back.

2.2.2 OTP

The PCap device is equipped with a 4 kB permanent program memory space, which is one-time pro-

grammable, called the OTP memory. In fact, the OTP is total 8 kB in size but 4 kB are used for ECC

mechanism (error correction code). The default state of all the bits of the OTP memory in an un-pro-

grammed state is ’high’ or 1. Programming a bit means changing its state from High to Low. Once a

bit is programmed to 0, it cannot be programmed back to 1. Data retention is given for 10 years at

95°C. MEMLOCK is fourfold protected.

2.3 DSP Inputs & Outputs

The DSP has access to 64 bits of information on ALU status, start trigger, configuration, input/out-

put pins.

This information can be interpreted by means of instruction jcd, conditional jump.

Instruction conditional jump:

jcd p1,p2: if p1 ==1 then jump to p2

16 of those bits can be set by the DSP, e.g. to set a GPIO or to select between RDC and CDC data.

The bits are controlleds by means of instructions bitS/bitC (bit set/bit clear).

Table 2.4: DSP Inputs/Outputs

Bit Name Description Type Read Bit

#

Write

Bit #

FLAG1 Flags for free use. A typical example would be to

use this flag to indicate an initialization or calibra-

tion state.

Flag 63 15

FLAG0 Flag 62 14

FLAG0SHIM-

48MO1

Control bits for the shift register. See 2.1.3 for

the desciption of how to use them.

Out 61 13

FLAG0SHIM-

48MO0

Out 60 12

DSP_SNC This bit starts a new CDC measurement (Start-

New-Cycle by DSP).

Out 59 11

2 DSP & Environment

acam-messelectronic gmbh - Am Hasenbiel 27 - D-76297 Stutensee-Blankenloch - Germany - www.acam.de 2-9

PCapØ1Ax DSP

Bit Name Description Type Read Bit

#

Write

Bit #

PARASEL This parameter selects between the two Read

RAM blocks address 49 to 63

PARASEL = 0: CDC data

PARASEL = 1: RDC data and parameters

Out 58 10

TFLAGRES Temperature reset. This flag has to be set 1 and

back 0 after each RDC measurement. Otherwise

a new RDC measurement is not possible.

Out 57 9

Interrupt Sets the interrupt (pin INTN) Out 56 8

DSP_OUT<7…0> Status feedback of the 8 general DSP outputs

(Write bits 0 to 7).

IN 55…48

ALU_OFL_N ALU flags for overflow, carry, equal and sign.

The ALU flags are used by the jump instruction

of the assembler

Status 47

ALU_OFL Status 46

ALU_CAR_N Status 45

ALU_CAR Status 44

ALU_EQ Status 43

ALU_NE Status 42

ALU_POS Status 41

ALU_NEG Status 40

DSP_IN_TRIGN Flag = LOW indicates that a falling edge at a pin

or an SPI/IIC opcode has started the DSP. This

flag is reset by a STOP instruction at the end of

the firmware.

Start

trigger

39

n.c. 38,37

DSPOVLSTAN* Flag = LOW indicates that a TDC overflow has

started the DSP. This flag is reset by a STOP

instruction at the end of the firmware.

Start

trigger

36

MUP_ERRN* Flag = LOW indicates that a multi-pulse error

has started the DSP. This flag is reset by a STOP

instruction at the end of the firmware. For acam

internal use only.

Start

trigger

35

DSPTEMPSTAN* Flag = LOW indicates that an RDC measurement

has started the DSP. Therefore, DSP_STARTON-

TEMP has to be set (configuration register 8).

This flag is reset by a STOP instruction at the

end of the firmware.

Start

trigger

34

2 DSP & Environment

acam-messelectronic gmbh - Am Hasenbiel 27 - D-76297 Stutensee-Blankenloch - Germany - www.acam.de2-10

4 PCapØ1Ax DSP

Bit Name Description Type Read Bit

#

Write

Bit #

BANK1VALIDN* Flag = LOW indicates that a CDC measurement

has started the DSP. The CDC writes the mea-

surement data TC1, TC2 etc. into two banks

alternately. Those two flags indicate which bank

is currently active.

Therefore, in the firmware both flags have to

be checked (see sample firmware PCap01-stan-

dard).

Start

trigger

33

BANK0VALIDN* Start

trigger

32

PORTMASKN

<7…0>

These bits show the content of CMEAS_PORT_

EN, configuration register 2. The DSP can read

these bits to decide which calculations need to

be done.

Config Reg 31…24

PORTERRN <7…0> These bits indicate an error on one of the capaci-

tance ports. They are the same as the CAP_ER-

ROR_PC bits in the status register.

Status 23…16

MR2N Indicates whether measure mode 2 is set or not.

0 = MR2, 1 = MR1

Config Reg 15

FULLCOMPN Indicates whether full compensation in capaci-

tance measurement is on or not. 0 = on, 1 = off.

Config Reg 14

DIS_COMPN Flag = 0 indicates that the internal capacitance

compensation is switched off (CMEAS_BITS, con-

figuration register 2).

Config Reg 13

DIS_COMPFN Flag = 0 indicates that the full capacitance com-

pensation is switched off (CMEAS_BITS, configu-

ration register 2).

Config Reg 12

ERR_OVFLN Flag = bit 16 of status register. Indicates an

overflow or other error in the CDC.

Status 11

COMB_ERRN Flag = bit 16 of status register. This is a com-

bined condition of all known error conditions.

Status 10

CYC_ACTIVEN Flag = bit 23 of status register. Indicates that the

CDC forntend is active.

Status 9

PS_CAL_ERRN acam internal use only Status 8

PS_UNLOCKEDN 1 acam internal use only Status 7

2 DSP & Environment

acam-messelectronic gmbh - Am Hasenbiel 27 - D-76297 Stutensee-Blankenloch - Germany - www.acam.de 2-11

PCapØ1Ax DSP

Bit Name Description Type Read Bit

#

Write

Bit #

PS_UNLOCKEDN 0 acam internal use only Status 6

TEMPERRN Flag = bit 3 of status register. Indicates whether

an error occurred during the temperature mea-

surement. 0 = error, 1 = no error

Status 5

TENDFLAGN Flag = bit 22 of status register. Indicates the end

of the temperature measurement. 0 = measure-

ment done, 1 = measurement running.

Status 4

DSP_7 Those two outputs are used by the DSP for

- Reset watchdog

- INI_RESET by DSP

Out 7

DSP_6 Out 6

DSP_5 Sets the general purpose output pin PG5 Out 5

DSP_4 Sets the general purpose output pin PG4 Out 4

DSP_3 When the Pulse1 is switched OFF then this bit

can be used to set and clear the general pur-

pose output pin PG3. When the Pulse1 is ON

then this bit must be cleared so that the Pulse1

output appears on PG3.

In/Out 3 3

DSP_2 When the Pulse0 is switched OFF then this bit

can be used to set and clear the general pur-

pose output pin PG2. When the Pulse0 is ON

then this bit must be cleared so that the Pulse0

output appears on PG2

In/Out 2 2

DSP_1 Set or read the general purpose I/Os at pins

PG0 & PG1. The assigment is programmable

and shown in detail below.

In/Out 1 1

DSP_0 In/Out 0 0

* A positive edge on those inputs start the DSP. The status of the start trigger is memorized till the

next reset or stop of the DSP. The start trigger information can be read from inputs 32 to 36 by jcd.

2 DSP & Environment

acam-messelectronic gmbh - Am Hasenbiel 27 - D-76297 Stutensee-Blankenloch - Germany - www.acam.de2-12

4 PCapØ1Ax DSP

2.4 ALU Flags

With each ALU operation flags are set. The ALU has four flags: overflow, carry, equal and sign. The

following table shows an overview:

Table 2-5: ALU Flags

Flag Description Format Modified by

Instructions:

Interpreted by

Instructions:

Range

ON No Overflow signed add, sub, mult, div jOvlC, jOvlS >= -247 and <= 247

- 1

O Overflow < -247 and > 247 – 1

CN No Carry* unsigned add, sub, mult, div jCarC, jCarS < 248

C Carry* >= 248

Z Equal / Zero signed /

unsigned

add, sub, mult, div,

move, shiftL, shiftR

jEQ, jNE == 0

ZN Not Equal / not

Zero

!=0

S Positive signed add, sub, mult, div,

move, shiftL, shiftR

jPos, jNeg >= 0

SN Negative < 0

* During addition the carry C is set when a carry over takes place from the most significant bit, else

C remains at 0.

During subtraction, carry C is by default 1. Carry C is cleared only when the minuend < subtrahend.

i.e. for A - B: if A ≥ B C = 1; if A < B C = 0.

In other words, the carry C is actually the status of the carry of the addition operation A+ 2‘s com-

plement (B).

2 DSP & Environment

acam-messelectronic gmbh - Am Hasenbiel 27 - D-76297 Stutensee-Blankenloch - Germany - www.acam.de 2-13

PCapØ1Ax DSP

2 DSP & Environment
2.5 DSPOUT – GPIO Assignment

PCap01 is very flexible with assignment of the various GPIO pins to the DSP inputs/outputs. The

following table shows the possible combinations.

Table 2-6: Pin Assignment

External

Port

Description In/Out

PG0 SSN (in SPI-Mode) in

DSPØ or DSP2 in* / out

FF0 or FF2 in*

Pulse0 out

PG1 MISO (in SPI-Mode) out

DSP1 or DSP3 in* / out

FF1 or FF3 in*

Pulse1 out

PG2 DSPØ or DSP2 in* / out

FF0 or FF2 in*

Pulse0 out

INTN out

PG3 DSP1 or DSP3 in* / out

FF1 or FF3 in*

Pulse1 out

PG4 DSP4 (output only) out

PG5 DSP5 (output only) out

* these ports provide an optional debouncing filter and an optional pull-up resistor.

acam-messelectronic gmbh - Am Hasenbiel 27 - D-76297 Stutensee-Blankenloch - Germany - www.acam.de2-14

4 PCapØ1Ax DSP

Figure 2-2: GPIO Assignment

2 DSP & Environment

acam-messelectronic gmbh - Am Hasenbiel 27 - D-76297 Stutensee-Blankenloch - Germany - www.acam.de 2-15

PCapØ1Ax DSP

Figure 2-3: Port trigger timing

2 DSP & Environment
There is a possibility to activate a 40 ms debounce filter for the ports in case these are used as

inputs. This might be usful especially in case the DSP is started by the pins (signals FF0, FF2). Figure

2-3 shows the effect of the monoflop filter.

acam-messelectronic gmbh - Am Hasenbiel 27 - D-76297 Stutensee-Blankenloch - Germany - www.acam.de2-16

4 PCapØ1Ax DSP

The settings herefore are made in configuration registers 8 and 9. The relevant parameters are:

Parameter Description Settings

INT2PG2 Useful with QFN24 packages, where no
INTN pin is available. Permits rerouting
the interrupt signal to the PG2 port. If
INT2PG2 =1 then all other settings for
PG2 are ignored.

PG1_X_G3 The pulse codes can be output at ports
PGØ & PG1 or PG2 & PG3. In I2C mode
of communication, they can be optionally
given out on PG2 and PG3, instead of
PGØ and PG1.

0 = PG1

1 = PG3

PG0_X_G2 0 = PG0

1 = PG2

PG_DIR_IN toggles outputs to inputs (PG3/bit23 to
PG0/bit20).

0 = output

1 = input

PG_PULL_UP Activates pull-up resistors in PG0 to PG3
lines; useful for mechanical switches.

Bit 16 = PG0

Bit 17 = PG1

Bit 18 = PG2

Bit 19 = PG3

DSP_FF_IN Pin mask for latching flip-flop activation Bit 12 = PG0

Bit 13 = PG1

Bit 14 = PG2

Bit 15 = PG3

DSP_MOFLO_EN Activates anti-bouncing filter in PG0 and
PG1 lines

Bit 9 for PG1
Bit 8 for PG0

2.6 DSP Configuration

The configuration of the DSP is done in configuration register 8. Relevant bits are:

DSP_SRMA_SEL, DSP_START, DSP_STARTONOVL, DSP_STARTONTEMP, DSP_STARTPIN, DSP_

WATCHDOG_LENGTH, DSP_SPEED

Parameter Description Settings

DSP_SRAM_SEL Selects the program memory for the
processor

0 = OTP

1 = SRAM

DSP_START Start command for the processor; pro-
cessor clock is started, program counter
jumps to address zero and processing
begins. After firmware completion, DSP
stops its own clock!

2 DSP & Environment

acam-messelectronic gmbh - Am Hasenbiel 27 - D-76297 Stutensee-Blankenloch - Germany - www.acam.de 2-17

PCapØ1Ax DSP

DSPSTARTONOVL This setting assures that processor
starts upon error condition

0 = default is mandatory

DSP_STARTONTEMP This setting assures that processor
starts upon normal temperature mea-
surement completion. Depends very
much on firmware. In standard firmware
03.01.xx temperature values are deter-
mined after CDC-determination.

0 = default, mandatory with
standard firmware 03.01.xx

DSP_STARTPIN Pin mask for DSP trigger 0 = FF0

1 = FF1

2 = FF2

3 = FF3

DSP_WATCHDOG_
LENGTH

Processor watchdog to be defined in
connection with the software developper

0 = off

1 = 512

2 = 1024

3 = 2048

DSP_SPEED Setting the DSP speed 1 = standard (fast)
3 = low-current (slow)

DSP Start

There are various options to trigger the DSP.

In slave operation:

 � Trigger by external controller. This is done by setting configuration bit DSP_START.

In stand-alone operation:

 � Trigger by pin. The trigger pin is selected between pins PG0 to PG3 by configuration parameters

DSP_STARTPIN and PG0_X_PG2/PG1_X_PG3. Signal FFx triggers the DSP. FFx has to be reset in

the frimware by setting DSP_OUT_x.

 � Trigger by the end of a temperature measurement. This option is selected by configuration bit

DSP_STARTONTEMP and is recommended for stand-alone operation with temperature measure-

ment.

 � Trigger on error. This option is enabled by setting configuration bit DSPSARTONOVL. It should be

used only if error handling is implemented in the software.

2 DSP & Environment

acam-messelectronic gmbh - Am Hasenbiel 27 - D-76297 Stutensee-Blankenloch - Germany - www.acam.de2-18

4 PCapØ1Ax DSP

Watchdog

The watchdog is made of a counter based on the DSP clock. Parameter DSP_WATCHDOG_LENGTH

defines the maximum number of DSP clock cycles. Within this period the watchdog has to be reset

by instruction resetWDG. Otherwise a power-on reset will be triggered.

The watchdog is implemented to handle situations where the software hangs and doesn‘t serve the

awatchdog.

In slave applications the watchdog should be disabled.

System Reset

In case the PCap01 is operated as slave, not in self-boot mode, it is necessary to do the following

actions after applying power:

1. Send opcode Power up Reset via the serial interface, opcode ’h88.

2. Write the firmware into the SRAM by means of opcode “Write to SRAM“.

3. Write the configuration registers by means of opcode “Write Config”. Register 20 with the RUN-

BIT has to be the last one in order.

4. Send a partial reset, opcode ’h8A

5. Send a start command, opcode ’h8C

2 DSP & Environment

acam-messelectronic gmbh - Am Hasenbiel 27 - D-76297 Stutensee-Blankenloch - Germany - www.acam.de 3-1

PCapØ1Ax DSP

3 Instruction Set ... 3-2
3.1 Instructions ...3-2

3.2 Instruction Details ..3-12

3.2.1 rad ...3-12

3.2.2 mult ...3-13

3.2.3 div ..3-15

acam-messelectronic gmbh - Am Hasenbiel 27 - D-76297 Stutensee-Blankenloch - Germany - www.acam.de3-2

4 PCapØ1Ax DSP

3 Instruction Set

The complete instruction set of the PCap01 consists of 29 core instructions that have unique op-

code decoded by the CPU. Further, acam offers a set of libraries including common constant defini-

tions and mathematical operations

. The library family is intended to be continuously expanded and be a great help during software

development.

Table 1-0: Instruction set

Simple Arithmetic Miscellaneous Bitwise RAM access
add resetWDG bitC rad
sign powerOnReset bitS clear
sub nop load

stop load2exp
move

Complex Arithmetic Shift & Rotate Unconditional jump
div shiftL jsb
mult shiftR jrt

Conditional jump
jcd
jCarC
jCarS
jEQ
jNE
jNeg
jOflC
jOflS
jPOS

3.1 Instructions
add Addition
Syntax: add p1,p2
Parameters: p1 = ACCU [a,b,r]

p2 = ACCU [a,b,r]
Calculus: p1 := p1 + p2
Flags affected: C O S Z
Bytes: 1
Description: Addition of two registers
Category: Simple arithmetic

acam-messelectronic gmbh - Am Hasenbiel 27 - D-76297 Stutensee-Blankenloch - Germany - www.acam.de 3-3

PCapØ1Ax DSP

bitC Clear single bit
Syntax: bitC p1
Parameters: p1 = number 0 to 15
Calculus: Bit number p1 of the DSP outputs is cleared
Flags affected: -
Bytes: 1
Description: Clear a single bit in the DSP output bits
Category: Bitwise

bitS Set single bit
Syntax: bitS p1
Parameters: p1 = number 0 to 15
Calculus: Set bit number p1od the DSP output bits bit = 1
Flags affected: -
Bytes: 1
Description: Set a single bit in the DSP output bits
Category: Bitwise

clear Clear register
Syntax: clear p1
Parameters: p1 = ACCU [a,b,r]
Calculus: p1 := 0
Flags affected: S Z
Bytes: 2
Description: Clear addressed register to 0
Category: RAM access

div Unsigned division
Syntax: div
Parameters: -
Calculus: Single div code: b := (a/r), a := Remainder * 2

N div codes: b := (a/r)*2^(N-1), a := Remainder * (2^N)
Flags affected: S Z
Bytes: 1
Description: Unsigned division of two 48-bits registers. When the div opcode is used once, the result-

ing quotient is assigned to register ’b’. The remainder can be calculated from ‘a’.

When N div opcodes are used one after another, the result in b := (a/r)*2^(N-1).

Before executing the first division step, the following conditions must be satisfied:

’b’ = 0, and 0<’a’<2*’r’.

If this condition is not satisfied, you can shift ‘a’ until this is satisfied. After shifting, if a ->
a* (2^ea) and r -> r* (2^er), then the resulting quotient b for N division steps is

b:= (a/r) * 2^(1+ea-er-N)

a = Remainder * (2^N)
Category: Complex arithmetic

3 Instruction Set

acam-messelectronic gmbh - Am Hasenbiel 27 - D-76297 Stutensee-Blankenloch - Germany - www.acam.de3-4

4 PCapØ1Ax DSP

jCarC Jump on Carry Clear
Syntax: jCarC p1
Parameters: p1 = jumplabel
Calculus: if (carry == 0) PC := p1
Flags affected: -
Bytes: 2
Description: Jump on carry clear. Program counter will be set to target address if carry is clear. The

target address is given by using a jumplabel. The conditional jump does not serve the
stack. Therefore it is not possible to return by jrt.

If the target address is beyond the range of current address (PC) +-128 bytes, then the
assembler software will substitute this opcode for the following optimization:

jCarS new_label

jsb p1

jrt

new_label: ….........

In this case the stack will be loaded with p1, and therefore the stack capacity will be
reduced by one.

Category: Conditional jump

jCarS Jump on Carry Set
Syntax: jCarS p1
Parameters: p1 = jumplabel
Calculus: if (carry == 1) PC := p1
Flags affected: -
Bytes: 2
Description: Jump on carry set. Program counter will be set to target address if carry is set. The tar-

get address is given by using a jumplabel. The conditional jump does not serve the stack.
Therefore it is not possible to return by jrt.

If the target address is beyond the range of current address (PC) +-128 bytes, then the
assembler software will substitute this opcode for the following optimization:

jCarSC new_label

jsb p1

jrt

new_label: ….........

In this case the stack will be loaded with p1, and therefore the stack capacity will be
reduced by one.

Category: Conditional jump

jcd Conditional Jump
Syntax: jcd p1, p2
Parameters: p1 = Flag or input port bit [63...0]. See section 2.3 for DSP Inputs.

p2 = jumplabel
Calculus: If (p1 == 1) PC := p2
Flags affected: -
Bytes: 2

3 Instruction Set

acam-messelectronic gmbh - Am Hasenbiel 27 - D-76297 Stutensee-Blankenloch - Germany - www.acam.de 3-5

PCapØ1Ax DSP

Description: Program counter is set to target address if the bit given by p1 is set to one. The target
address is given by using a jumplabel. The conditional jump does not serve the stack.
Therefore it is not possible to return by jrt.

Category: Conditional jump

jEQ Jump on Equal
Syntax: jEQ p1
Parameters: p1 = jumplabel
Calculus: if (Z == 0) PC := p1
Flags affected: -
Bytes: 2
Description: Jump on equal zero. Program counter will be set to target address if the foregoing result

is equal to zero. The target address is given by using a jumplabel. The conditional jump
does not serve the stack. Therefore it is not possible to return by jrt.

If the target address is beyond the range of current address (PC) +-128 bytes, then the
assembler software will substitute this opcode for the following optimization:

jNE new_label

jsb p1

jrt

new_label: ….........

In this case the stack will be loaded with p1, and therefore the stack capacity will be
reduced by one.

Category: Conditional jump

jNE Jump on Not Equal
Syntax: jNE p1
Parameters: p1 = jumplabel
Calculus: if (Z == 1) PC := p1
Flags affected: -
Bytes: 2
Description: Jump on not equal to zero. Program counter will be set to target address if the foregoing

result is not equal to zero. The target address is given by using a jumplabel. The condi-
tional jump does not serve the stack. Therefore it is not possible to return by jrt.

If the target address is beyond the range of current address (PC) +-128 bytes, then the
assembler software will substitute this opcode for the following optimization:

jEQ new_label

jsb p1

jrt

new_label: ….........

In this case the stack will be loaded with p1, and therefore the stack capacity will be
reduced by one.

Category: Conditional jump

3 Instruction Set

acam-messelectronic gmbh - Am Hasenbiel 27 - D-76297 Stutensee-Blankenloch - Germany - www.acam.de3-6

4 PCapØ1Ax DSP

jNeg Jump on Negative
Syntax: jNeg p1
Parameters: p1 = jumplabel
Calculus: if (S == 1) PC := p1
Flags affected: -
Bytes: 2
Description: Jump on negative. Program counter will be set to target address if the foregoing result is

negative. The target address is given by using a jumplabel.

If the target address is beyond the range of current address (PC) +-128 bytes, then the
assembler software will substitute this opcode for the following optimization:

jPos new_label

jsb p1

jrt

new_label: ….........

In this case the stack will be loaded with p1, and therefore the stack capacity will be
reduced by one.

Category: Conditional jump

jOvlC Jump on Overflow Clear
Syntax: jOvlC p1
Parameters: p1 = jumplabel
Calculus: if (O == 0) PC := p1
Flags affected: -
Bytes: 2
Description: Jump on overflow clear. Program counter will be set to target address if the overflow flag

of the foregoing operation is clear. The target address is given by using a jumplabel. The
conditional jump does not serve the stack. Therefore it is not possible to return by jrt.

If the target address is beyond the range of current address (PC) +-128 bytes, then the
assembler software will substitute this opcode for the following optimization:

jOflS new_label

jsb p1

jrt

new_label: ….........

In this case the stack will be loaded with p1, and therefore the stack capacity will be
reduced by one.

Category: Conditional jump

jOvlS Jump on Overflow Set
Syntax: jOvlC p1
Parameters: p1 = jumplabel
Calculus: if (O == 1) PC := p1
Flags affected: -
Bytes: 2

3 Instruction Set

acam-messelectronic gmbh - Am Hasenbiel 27 - D-76297 Stutensee-Blankenloch - Germany - www.acam.de 3-7

PCapØ1Ax DSP

Description: Jump on overflow set. Program counter will be set to target address if the overflow flag
of the foregoing operation is set. The target address is given by using a jumplabel. The
conditional jump does not serve the stack. Therefore it is not possible to return by jrt.

If the target address is beyond the range of current address (PC) +-128 bytes, then the
assembler software will substitute this opcode for the following optimization:

jOflC new_label

jsb p1

jrt

new_label: ….........

In this case the stack will be loaded with p1, and therefore the stack capacity will be
reduced by one.

Category: Conditional jump

jPos Jump on Positive
Syntax: jPos p1
Parameters: p1 = jumplabel
Calculus: if (S == 0) PC := p1
Flags affected: -
Bytes: 2
Description: Jump on positive. Program counter will be set to target address if the foregoing result is

positive. The target address is given by using a jumplabel. The conditional jump does not
serve the stack. Therefore it is not possible to return by jrt.

If the target address is beyond the range of current address (PC) +-128 bytes, then the
assembler software will substitute this opcode for the following optimization:

jNeg new_label

jsb p1

jrt

new_label: ….........

In this case the stack will be loaded with p1, and therefore the stack capacity will be
reduced by one.

Category: Conditional jump

jrt Return from subroutine
Syntax: jrt
Parameters: -
Calculus: PC := PC from jsub-call
Flags affected: -
Bytes: 1
Description: Return from subroutine. A subroutine can be called via ‘jsb’ and exited by using jrt. The

program is continued at the next command following the jsb-call. You have to close a sub-
routine with jrt - otherwise there will be no jump back.

The stack is decremented by 1.
Category: Unconditional Jump

3 Instruction Set

acam-messelectronic gmbh - Am Hasenbiel 27 - D-76297 Stutensee-Blankenloch - Germany - www.acam.de3-8

4 PCapØ1Ax DSP

jsb Unconditional Jump
Syntax: jsb p1
Parameters: p1 = jumplabel
Calculus: PC := PC from jsub-call
Flags affected: -
Bytes: 2
Description: Jump to subroutine without condition. The programm counter is loaded by the address

given through the jumplabel. The subroutine is processed until the keyword ‘jrt’ occurs.
Then a jump back is performed and the next command after the jsub-call is executed. This
opcode needs temporarily a place in the program counter stack (explanation see below).

The stack is incremented by 1.
Category: Unconditional Jump

load Load Accumulator
Syntax: load p1,p2
Parameters: p1 = ACCU [a,b]

p2 = 24-bit number
Calculus: p1 := p2
Flags affected: S Z
Bytes: 6
Description: Move constant to p1 (p1=ACCU, p2=NUMBER)

The following instruction is not allowed:

load r, NUMBER

This instruction is a macro that is replaced by the following opcodes:

rad NUMBER[23:18]

rad NUMBER[17:12]

rad NUMBER[11:6]

rad NUMBER[5:0]

rad 63

move [a, b], r

Here the 24-bits number is split into four pieces, the symbol [xx:yy] indicates the individual
bit range belonging to each piece. Please notice that the ram address pointer is changed
during the operations, keep this in mind while coding.

Category: RAM access

load2exp Load Accumulator with 2exp

Syntax: load2exp p1,p2
Parameters: p1 = ACCU [a,b]

p2 = 6-bit number
Calculus: p1 := 2^p2
Flags affected: S Z
Bytes: 2

3 Instruction Set

acam-messelectronic gmbh - Am Hasenbiel 27 - D-76297 Stutensee-Blankenloch - Germany - www.acam.de 3-9

PCapØ1Ax DSP

Description: Move 2^(p2) to p1(p1=ACCU, p2=NUMBER)

The following instruction is not allowed:

load r, NUMBER

This instruction is a macro that is replaced by the following opcodes:

rad NUMBER[5:0]

rad 62

move [a, b], r
Category: RAM access

move Move
Syntax: move p1,p2
Parameters: p1 = ACCU [a,b,r]

p2 = ACCU [a,b,r]
Calculus: p1 := p2
Flags affected: S Z
Bytes: 1
Description: Move content of p2 to p1
Category: RAM access

mult Multiply
Syntax: mult
Parameters: -
Calculus: ab := (b * r)
Flags affected: S Z
Bytes: 1
Description: Unsigned multiplication of the content of ab and r registers.

ab is the composition of the registers a and b, forming an 96-bits long register, where ‘a’
takes the most significant bits, and register ’b’ takes the less significant ones.

The result is stored in the composed register a and b. The register ‘a’ must be previously
cleared.

This instruction only executes one multiplication step, to execute a full 48-bits multiplica-
tion, this instruction must be executed 48 times. This has the disadvantage of being
tedious to code, but also has the advantage of executing only the amount of arithmetic
needed, if you don’t need a 48-bits multiplication but N, where N<48, then you have only
to execute N multiplication steps in order to complete the full N-bits multiplication.

After one multiplication step, register ‘a’ contains ((a+(b[0]*r))>>1), and register ’b’ con-
tains { a[0], b[47:1] }. For example: lets denote the individual bits of register ‘a’ as a[47],
a[46], a[45]......a[2], a[1], a[0], and lets denote a range of bits of ‘a’ as: a[3:0], meaning
the 4 less significant bits of register ‘a’.

Then, after one multiplication step, a[46:0] = (a[47:0] + r[47:0] * b[0]) >> 1, where >>
1, means right shift by one position; the value of a[47] is zero, and b[47] = (a[0] + r[0] *
b[0]), and b[46:0] = b[47:1]. The register r remains unchanged.

Category: Complex arithmetic

3 Instruction Set

acam-messelectronic gmbh - Am Hasenbiel 27 - D-76297 Stutensee-Blankenloch - Germany - www.acam.de3-10

4 PCapØ1Ax DSP

nop No operation
Syntax: -
Parameters: -
Calculus: -
Flags affected: -
Bytes: 1
Description: Placeholder code or timing adjust (no function)
Category: Miscellaneous

powerOnReset LPower On Reset
Syntax: powerOnReset
Parameters: -
Calculus: -
Flags affected: S Z
Bytes: 5
Description: This is a symbolic opcode which is equivalent to the following instruction sequence:

bitC 54

bitC 55

bitS 55

bitS 54

bitC 55
Category: Miscellaneous

rad Set RAM Addess Pointer
Syntax: rad p1
Parameters: p1 = NUMBER [6-bit]
Calculus: -
Flags affected: 1
Bytes: 1
Description: Set pointer to ramaddress (range: 0..63)

Note:

rad _at_DPTR0 and rad _at_DPTR1 are instructions that will be seen in the firm-
ware. With these opcodes, the address in the Data Pointer (DPTR0 &1 at RAM
address 44 and 45) is taken as the address for the RAM address pointer.

rad _at_DPTR0

move a, r

will move the contents of the address stored in DPTR0 to the A register.

See also section 3.2.1.
Category: RAM access

3 Instruction Set

acam-messelectronic gmbh - Am Hasenbiel 27 - D-76297 Stutensee-Blankenloch - Germany - www.acam.de 3-11

PCapØ1Ax DSP

resetWDG Clear watch dog timer
Syntax: resetWDG
Parameters: -
Calculus: -
Flags affected: -
Bytes: 5
Description: Clear watchdog timer.

This is a symbolic opcode which is equivalent to the following instruction sequence:

bitC 54

bitC 55

bitS 54

bitS 55

bitC 54
Category: Miscellaneous

shiftL Shift Left
Syntax: shiftL p1
Parameters: p1 = ACCU [a, b]
Calculus: p1 := p1<< 1
Flags affected: S Z
Bytes: 1
Description: Shift p1 left --> shift p1 register to the left, fill LSB with 0, MSB is placed in carry

register
Category: Shift and rotate

shiftR Shift Right
Syntax: shiftR p1
Parameters: p1 = ACCU [a, b]
Calculus: p1 := p1>> 1
Flags affected: S Z
Bytes: 1
Description: Signed shift right of p1 --> shift p1 right, MSB is duplicated according to whether

the number is positive or negative
Category: Shift and rotate

sign Sign
Syntax: sign p1
Parameters: p1 = ACCU [a,b]
Calculus: When S = 0 => p1 := |p1|, S := (1 - p1/|p1|)/2

When S = 0 => p1 := - |p1|, S := (1 - p1/|p1|)/2
Flags affected: S Z
Bytes: 1
Description: The Signum flag takes the sign of accumulator, 0 when positive or 1 when negative.

The accumulator changes its sign after the execution of this opcode, when the Sig-
num flag (before the execution) is 1.

Zero is assumed to be positive.
Category: Simple arithmetic

3 Instruction Set

acam-messelectronic gmbh - Am Hasenbiel 27 - D-76297 Stutensee-Blankenloch - Germany - www.acam.de3-12

4 PCapØ1Ax DSP

stop Stop
Syntax: stop
Parameters: -
Calculus: -
Flags affected: -
Bytes: 1
Description: Stop of the PCAP-Controller. The clock generator is stopped, the PCAP-Controller

and the OTP go to standby. A restart can be achieved by an external event like
‘watchdog timer’, ‘external switch’ or ‘new capacitive measurement results’. Usually
this opcode is the last command in the assembler listing.

Category: Miscellaneous

sub Substraction
Syntax: sub p1,p2
Parameters: p1 = ACCU [a,b,r]

p2 = ACCU [a,b,r]
Calculus: p1:= p1 – p2
Flags affected: C O S Z
Bytes: 1
Description: Subtraction of 2 registers.

The following instructions are not allowed: add a,a. add b,b. add r,r
Category: Simple arithmetic

3.2 Instruction Details
3.2.1 rad

Sets the RAM address. Typical example:

rad 12

move a, r

Pointer

rad _at_DPTRØ and rad _at_DPTR1 are special instructions for indirect addressing. _at_DPTRØ /_

at_DPTR1 are special RAM addresses that have been defined in the firmware.

RAM addresses 44 and 45 are used as data pointers, named DPRTØ and DTPTR1.

By means of

rad DPTRØ

move r, a

an address is loaded into DPTRØ. With

rad _at_DPTRØ

the address in DPTRØ is loaded.

3 Instruction Set

acam-messelectronic gmbh - Am Hasenbiel 27 - D-76297 Stutensee-Blankenloch - Germany - www.acam.de 3-13

PCapØ1Ax DSP

Example: copy sequently RAM-content from one address-space to another

3 Instruction Set

load a, C0_ratio

rad DPTR1

move r, a

load a, RES0

rad DPTR0

move r, a

load b, 8

jsb __sub_dma__

3.2.2 mult

The instruction “mult” is just a single multiplication step. To do a complete 48-bit multiplication this

instruction has to be done 48 times. The multiplicands are in accumulators b and r. Every step takes

the lowest bit of b. If it is one, r is added to accumulator a, else nothing is added. Thereafter a and b

are shifted right. The lowest bit of a becomes the highest bit of b. Before the first step of the multipli-

cation a has to be cleared. The final result is spread over both accumulators a and b.

The use of mult is simplified by using the standard.h library. This library includes function calls for

multiplications with arbitrary number of multiplication steps. E.g., a call of function mult_24 will do a

24-step multiplication.

__sub_dma__:

; DPTR1 := source_address

; DPTR0 := destination address

; b:= length of dma

rad _at_DPTR1

move a, r

rad _at_DPTR0

move r, a

rad ONE

move a, r

rad DPTR0

add r, a

rad DPTR1

add r, a

sub b, a

jNE __sub_dma__

jrt

#endif

acam-messelectronic gmbh - Am Hasenbiel 27 - D-76297 Stutensee-Blankenloch - Germany - www.acam.de3-14

4 PCapØ1Ax DSP

Example 1: r= 5, b=5; 48-bit integer multiplication

Steps a b r

’b0..0000 ’b000000..000101 ’b0..0101 b= 5; r = 5

1 +,→ ’b0..0010 ’b100000..000010 ’b0..0101 r is added to a, a & b shifted

right

2 → ’b0..0001 ’b010000..000001 ’b0..0101 a & b shifted right

3 +,→ ’b0..0011 ’b001000..000000 ’b0..0101 r is added to a, a & b shifted

right

4 → ’b0..0001 ’b100100..000000 ’b0..0101 a & b shifted right

5 → ’b0..0000 ’b110010..000000 ’b0..0101 a & b shifted right

6 → ’b0..0000 ’b011001..000000 ’b0..0101 a & b shifted right

47 → ’b0..0000 ’b000000.0100110 ’b0..0101 a & b shifted right

48 → ’b0..0000 ’b000000..010011 ’b0..0101 a & b shifted right

In many cases it will not be necessary to do the full 48 multiplication steps but much less. The neces-

sary number of steps is given by the number of significant bits of b and also the necessary significant

number of bits of the result.

But, if the multiplication steps are less than 48 the result might be spread between accumulators a

and b. Doing an apropriate right shift of the multiplicand in r, and the apropriate number of multipli-

cation steps, it is possible to ensure that the result is either fully in a or in b.

Example 2: 24-bit fractional number multiplication, result in a

Let‘s assume that multiplicand b is 12.5, given as 24-bit number with 4 integer and 20 fractional

digits, and b has to be multiplied by 1.5. The result shall have 24 significant bits, too.

To have the final result fully in a it is best to shift r as far as possible to the left. Therefore, r is shif-

ted 46 bit to the left, r = ’h600000 000000. This left shift is easily done for constants.

The minimum number of multiplication steps is then given by the number of significant bits of b.

3 Instruction Set

acam-messelectronic gmbh - Am Hasenbiel 27 - D-76297 Stutensee-Blankenloch - Germany - www.acam.de 3-15

PCapØ1Ax DSP

12.5*1.5 = b*2expB * r*2expR = b*2-20 * r*2-46; b=’hC80000; r=’h600000000000

Steps a b r

’h000000000000 ’h000000C80000 ’h600000000000

8 → ’h000000000000 ’h00000000C800 ’h600000000000

16 → ’h000000000000 ’h0000000000C8 ’h600000000000

19 → ’h000000000000 ’h000000000019 ’h600000000000

20 +,→ ’h300000000000 ’h00000000000C ’h600000000000

21 → ’h180000000000 ’h000000000006 ’h600000000000

22 → ’h0C0000000000 ’h000000000003 ’h600000000000

23 +,→ ’h360000000000 ’h000000000001 ’h600000000000

24 +,→ ’h4B0000000000 ’h000000000000 ’h600000000000

After 24 multiplication steps the full 24-bit result stands in a, starting at the highest significant bit.

In many cases the result can be used in this form to do further mathematical processing, e.g. as

parameter r in a further multiplication.

In case the true decimal value has to be calculated from the result this is done by following formula:

product = a*2steps+expR+expB = a*224+(-20)+(-46) = a*2-42

’h4B0000000000*2-42 = ’h4B*2-2 = 75*2-2 = 18.75

3.2.3 div

The instruction “div” is like the multiplication just a sinlge step of a complete division. The necessary

number of steps for a complete division depends to the accuracy of the result. The dividend is in ac-

cumulator a, the divisor is in accumulator r. Every division step contains following actions:

 � leftshift b

 � compare a and r. If a is bigger or equal to r then r is subtracted from a and one is added to b

 � leftshfit a

Start Conditions: 0 < a < 2*r, b = 0

Again, multiple division steps are implemented in the standard.h library to be easily used by custo-

mers. A call of function e.g. div_24 out of this library will do a sequence of 24 division steps. The

result is found in b, the remainder in a.

With N division steps the result in b:= (a/r)+2^(N-1), a:= remainder*2^N.

3 Instruction Set

acam-messelectronic gmbh - Am Hasenbiel 27 - D-76297 Stutensee-Blankenloch - Germany - www.acam.de3-16

4 PCapØ1Ax DSP

Example 1: a = 2, r = 6, Integer division

Steps a = 2 b r = 6

000000..000010 0..00000 0..0110 a < r, leftshift b, a

1 000000..000100 0..00000 0..0110 a < r, leftshift b, a

2 000000..001000 0..00000 0..0110 leftshift b, a >= r: a-=r, b+=1,
leftshift a

3 000000..000100 0..00001 0..0110 a < r, leftshift b, a

4 000000..001000 0..00010 0..0110 leftshift b, a >= r: a-=r, b+=1,
leftshift a

5 000000..000100 0..00101 0..0110

Quotient = b * 2(1-steps) = 0.3125, Rest = a*2(-steps) = 4*2-5 = 0.125

The following two,

 more complex examples show a nice advantage of division over multiplication: The resolution in bit is

directly given by the number of multiplication steps. With this knowledge assembly programs can be

written very effective. It is easy to use only the number of division steps that is necessary.

Example 2: A = 8.75, R = 7.1875, Fractional number division, A & R with 4 fractional digits each.

8.75/7.1875 = a*2expA / r*2expR = a*2-4 / r*2-4

Steps a = 140 b r = 115

1000 1100 0000 0000 0111 0011 leftshift b, a >= r: a-=r, b+=1,
leftshift a

1 0011 0010 0000 0001 0111 0011 a < r, leftshift b, a

2 0110 0100 0000 0010 0111 0011 a < r, leftshift b, a

3 1100 1000 0000 0100 0111 0011 leftshift b, a >= r: a-=r, b+=1,
leftshift a

4 1010 1010 0000 1001 0111 0011 leftshift b, a >= r: a-=r, b+=1,
leftshift a

5 0110 1110 0001 0011 0111 0011 a < r, leftshift b, a

6 1101 1100 0010 0110 0111 0011 leftshift b, a >= r: a-=r, b+=1,
leftshift a

7 1101 0010 0100 1101 0111 0011 leftshift b, a >= r: a-=r, b+=1,
leftshift a

8 1011 1110 1001 1011 0111 0011

Quotient = b * 2(1+expA-expR-steps) = 155 * 2(1-4+4-8) = 1.2109, Rest = a*2(-steps) = 190*2-8 = 0.7421

3 Instruction Set

acam-messelectronic gmbh - Am Hasenbiel 27 - D-76297 Stutensee-Blankenloch - Germany - www.acam.de 3-17

PCapØ1Ax DSP

Example 3: A = 20, R = 1.2, Fractional number division, R << A.

A and R are left shifted to display the fractional digits of R. Further, R has to be leftshifted till it is

bigger than A/2.

20/1.2 = a*2expA /r*2expR = a*2-4 /r *2-8

Steps a = 320 b r = 307

0001 0100 0000 0000 0000 0000 0001 0011 0011 leftshift b, a >= r: a-=r, b+=1,
leftshift a

1 0000 0001 1010 0000 0000 0001 0001 0011 0011 a < r, leftshift b, a

2 0000 0011 0100 0000 0000 0010 0001 0011 0011 a < r, leftshift b, a

3 0000 0110 1000 0000 0000 0100 0001 0011 0011 a < r, leftshift b, a

4 0000 1101 0000 0000 0000 1000 0001 0011 0011 a < r, leftshift b, a

5 0001 1010 0000 0000 0001 0000 0001 0011 0011 leftshift b, a >= r: a-=r, b+=1,
leftshift a

6 0000 1101 1010 0000 0010 0001 0001 0011 0011 a < r, leftshift b, a

7 0001 1011 0100 0000 0100 0010 0001 0011 0011 leftshift b, a >= r: a-=r, b+=1,
leftshift a

8 0001 0000 0010 0000 1000 0101 0001 0011 0011 a < r, leftshift b, a

9 0010 0000 0100 0001 0000 1010 0001 0011 0011 leftshift b, a >= r: a-=r, b+=1,
leftshift a

10 0001 1010 0010 0010 0001 0101 0001 0011 0011 leftshift b, a >= r: a-=r, b+=1,
leftshift a

11 0000 1101 1110 0100 0010 1011 0001 0011 0011 a < r, leftshift b, a

12 0001 1011 1100 1000 0101 0110 0001 0011 0011

Quotient = b * 2(1+expA-expR-steps) = 2134 * 2(1-4+8-12) = 16.6719, Rest = a*2(-steps) = 28*2-12 = 0.109

3 Instruction Set

acam-messelectronic gmbh - Am Hasenbiel 27 - D-76297 Stutensee-Blankenloch - Germany - www.acam.de3-18

4 PCapØ1Ax DSP

3 Instruction Set

acam-messelectronic gmbh - Am Hasenbiel 27 - D-76297 Stutensee-Blankenloch - Germany - www.acam.de 4-1

PCapØ1Ax DSP

4 Writing Assembly Programs 4-2
4.1 Directives ..4-3

4.2 Sample Code ..4-4

4.2.1 “for” Loop ...4-4

4.2.2 “while” Loop ..4-4

4.2.3 “do - while” Loop ..4-5

4.2.4 “do - while” with 2 pointers ..4-5

4.2.5 Load Negative Values ...4-6

4.2.6 Load Signed Values ..4-6

4.2.7 Rotate Right A to B ..4-6

acam-messelectronic gmbh - Am Hasenbiel 27 - D-76297 Stutensee-Blankenloch - Germany - www.acam.de4-2

4 PCapØ1Ax DSP

4 Writing Assembly Programs
The PCap01 assembler is a multi-pass assembler that translates assembly language files into HEX

files as they will be downloaded into the device. For convenience, the assembler can include header

files. The user can write his own header files but also integrate the library files as they are provided

by acam. The assembly program is made of many statements which contain instructions and direc-

tives. The instructions have been explained in the former section 3 of this datasheet. In the following

sections we describe the directives and some sample code.

Each line of the assembly program can contain only one directive or instruction statement. State-

ments must be contained in exactly on line.

Symbols

A symbol is a name that represents a value. Symbols are composed of up to 31 characters from the

following list:

A - Z, a - z, 0 - 9, _

Symbols are not allowed to start with numbers. The assembler is case sensitive, so care has to be

taken for this.

Numbers

Numbers can be specified in hexadecimal or decimal. Decimal have no additional specifier. Hexadeci-

mals are specified by leading “0x”.

Expressions and Operators

An expression is a combination of symbols, numbers and operators. Expressions are evaluated at

assembly time and can be used to calculate values that otherwise would be difficult to be determined.

The following operators are available with the given precedence:

Level Operator Description

1 () Brackets, specify order of execution

2 * / Multiplication, Division

3 + — Addition, Subtraction

Example:

CONST wert 1

equal ((wert + 3)/2)

acam-messelectronic gmbh - Am Hasenbiel 27 - D-76297 Stutensee-Blankenloch - Germany - www.acam.de 4-3

PCapØ1Ax DSP

4.1 Directives

The assembler directives define the way the assembly language instructions are processed. They also

provide the possibility to define constants, to reserve memory space and to control the placement of

the code. Directives do not produce executable code.

The following table provides an overview of the assembler directives.

Directive Description Example

CONST Constant definition, CONST [name] [value]

value might be a number, a constant, a sum of

both

CONST Slope 42

CONST Slope constant + 1

LABEL: Label for target address of jump instructions.

Labels end with a colon. All rules that apply to

symbol names also apply to labels.

jsb LABEL1

LABEL1:

...
; Comment, lines of text that might be implemented

to explain the code. It begins with a semicolon

character. The semicolon and all subsequent cha-

racters in this line will be ignored by the assem-

bler. A comment can appear on a line itself or

follow an instruction.

; this is a comment

org Sets a new origin in program memory for subse-

quent statements.

org 0x23

equal 0x332211

; write 0x11 to address 0x23,

; 0x22 to address 0x24 ...

equal Insert three bytes of user defined data in program

memory, starting at the address as defined by

org.

#include Include the header or library file named in the quo-

tation marks "" or brackets < >. The code will be

added at the line of the include command.

In quotation marks the might be just the file name

in case it is in the same folder as the program,

but also the complete path. Names in brackets

refer to the acam library with the fixed path \Pro-

grams\acam PCap01\lib.

#include <rdc.h>

#include "rdc.h"

4 Writing Assembly Programs

acam-messelectronic gmbh - Am Hasenbiel 27 - D-76297 Stutensee-Blankenloch - Germany - www.acam.de4-4

4 PCapØ1Ax DSP

#ifdef

#elseif

#endif

Directive to implement code or not, dependig on

the value of the symbol following the #ifdef directi-

ve. Use e.g. to include header files only once into

a program.

#ifdef __standard_h__

#else

#define __standard_h__

...

#endif#define Defines a symbol that will be interpreted as true

when being analysed by the #ifdef directive

4.2 Sample Code

In the following we show some samle code for programming loops in the various kinds, for the use of

the load instruction and the rotate instruction.

4.2.1 “for” Loop
Assembler C-Equivalent Comment

load2exp b, n-1

rad index

move r, b

do:

;{..}

rad index

move b, r

sftR b

move r, b

jNE do

for(i = 1 << n-1 ; i != 0;

i =>> 1)

{..}

n := number of repetitions

loop body

loop increment

repeat while b != 0

4.2.2 “while” Loop
Assembler C-Equivalent Comment

do:

rad expression

move a, r

jEQ done

;{..}

clear a

jEQ do

done;

while (expression)

{..}

activate Status Flags for „expres-

sion“.jump if expression == 0

loop body

unconditional jump without writing

to program counter stack

4 Writing Assembly Programs

acam-messelectronic gmbh - Am Hasenbiel 27 - D-76297 Stutensee-Blankenloch - Germany - www.acam.de 4-5

PCapØ1Ax DSP

4.2.3 “do - while” Loop
Assembler C-Equivalent Comment

do:

;{..}

rad expression

move a, r

jNE do

do

{..}

while (expression)

loop body

activate Status Flags

jump if expression != 0

4.2.4 “do - while” with 2 pointers
Assembler C-Equivalent Comment

load a, MW7

rad loopLimit

move r, a

load a, MW0

rad rad_ext1

move r, a

load a, RES0

rad rad_ext3

move r, a

load2exp b, 0

do:

 rad ext1

 move a, r

 rad ext3

 move r, a

 rad loopLimit

 move a, r

 rad rad_ext3

 add r, b

 rad rad_ext1

 add r, b

 sub a, r

jCarS do

loopLimit = *MW7

ptrSource = *MW0;

ptrSink = *Res0;

do { *ptrSink++ = *ptrSour-

ce++ }

while (ptrSource <= MW7)

load max-address for ptrSource

load ptrSource with source address

load ptrSink with sink address

initialize b with 1

loop body

 load value from source

 write value to sink

 write max-address to a

 increment sink address

 increment source

 address

 limitLoop – ptrSource

repeat loop if ptrSource <= max-

address

4 Writing Assembly Programs

acam-messelectronic gmbh - Am Hasenbiel 27 - D-76297 Stutensee-Blankenloch - Germany - www.acam.de4-6

4 PCapØ1Ax DSP

4.2.5 Load Negative Values

How to load a negative 24 bit value from the program memory

Assembler C-Equivalent Comment

load a, 5

move b, a

sub a, b

sub a, b

a = -5 a = 5

b = 5

a = 0

a = -5

4.2.6 Load Signed Values

How to load a signed 24 bit value from the program memory

Assembler C-Equivalent Comment

load2exp a, 23

load b, <S24bC>

rad 0

move r, b

sub b, a

jCarC positive

 sub b, a

 move r, b

positive:

 move b, r

b = <S24bC> a=2^23

reg0 = <S24bC>

if(<S24bC> >= 2^23)

 reg0 = <S24bC> - 2^24

4.2.7 Rotate Right A to B

To rotate a value right from Akku A to Akku B, AkkuB and R must be set to zero. Afterwards with

each mult -command a single „rotate right from A to B“ is done. This function could be used e.g. to

shift a 8-bit value to to the highest byte in the register.

Assembler C-Equivalent Comment

load a, 0xa3

clear b

move r, b

mult ; (8x)

mult

..

mult

A = <U8bC>

b = a << 40

4 Writing Assembly Programs

acam-messelectronic gmbh - Am Hasenbiel 27 - D-76297 Stutensee-Blankenloch - Germany - www.acam.de 5-1

PCapØ1Ax DSP

acam-messelectronic gmbh - Am Hasenbiel 27 - D-76297 Stutensee-Blankenloch - Germany - www.acam.de 5-1

5 Libraries .. 5-2
5.1 standard.h ...5-3

5.2 pcap01a.h ..5-4

5.3 cdc.h ...5-4

5.4 rdc.h ...5-5

5.5 signed24_to_signed48.h ..5-6

5.6 dma.h ..5-6

5.7 pulse.h...5-7

5.8 sync.h ..5-8

5.9 median.h ..5-9

acam-messelectronic gmbh - Am Hasenbiel 27 - D-76297 Stutensee-Blankenloch - Germany - www.acam.de5-2

4 PCapØ1Ax DSP

acam-messelectronic gmbh - Am Hasenbiel 27 - D-76297 Stutensee-Blankenloch - Germany - www.acam.de5-2

5 Libraries
The PICOCAP assembler comes with a set of ready to use library functions. With these libraries the

firmware can be written in a modular manner. The standard fimware 03.01.01 is a good example

for this modular programming.

When the DSP has to be programmed by the user for a specific application or when the firmware

ought to be modified, these library functions can be simply integrated into the application program

without any major tailoring. These library functions save programming effort for known, repeatedly

used, important functions. Some library files are interdependent on other file(s) from the library.

The library functions are called header files (they have *.h extension) in the assembler software and

have to be included in the main *.asm program.

The following are the header files that are supplied with the Picocap assembler as part of the stan-

dard firmware.

 � standard.h

 � pcap01a.h

 � cdc.h

 � rdc.h

 � signed24_to_signed48.h

 � dma.h

 � pulse.h

 � sync.h

 � median.h

The input parameters, output parameters, effect on RAM contents etc. for each of these library

functions is explained in the tables below.

NOTE:

In the standard firmware and in all the library files, the notation “ufdN” is used as a comment. This

shows if the parameter is signed or unsigned and the number of fractional digits in the number, N.

For e.g. ufd21 indicates that the parameter is an unsigned number with 21 digits after the decimal

point, 21 fractional digits. If the u at the beginning is missing, it is a signed number.

acam-messelectronic gmbh - Am Hasenbiel 27 - D-76297 Stutensee-Blankenloch - Germany - www.acam.de 5-3

PCapØ1Ax DSP

acam-messelectronic gmbh - Am Hasenbiel 27 - D-76297 Stutensee-Blankenloch - Germany - www.acam.de 5-3

5.1 standard.h
Function: Standard math library for implementing multiplication, division and shift

operations.

Input parameters: For shift right (1-48): parameter in accumulator B

For shift left (1-48) : parameter in accumulator A

Multiplication (1-48 steps) : parameter in Accumulators B and R

Division (1-48 steps) : Dividend in Accumulator A, Divisor in R

Output/Return value: For shift right (1-48) : Output in B

For shift left (1-48) : Output in A

Multiplication (1-48 steps) : Output in AB

Division (1-48 steps): Quotient in B, Remainder can be calculated from R

Prerequisites -

Dependency on other

header files

-

Function call shiftR_B_48, ..., shiftR_B_01

shiftL_A_48, ..., shiftL_A_01

mult_48, ..., mult_01

div_49, ..., div_01

Temporary memory

usage

-

Changes any RAM con-

tent permanently?

No

5 Libraries

acam-messelectronic gmbh - Am Hasenbiel 27 - D-76297 Stutensee-Blankenloch - Germany - www.acam.de5-4

4 PCapØ1Ax DSP

acam-messelectronic gmbh - Am Hasenbiel 27 - D-76297 Stutensee-Blankenloch - Germany - www.acam.de5-4

5.2 pcap01a.h
Function: This is a standard library for PCap01A firmware projects. This library con-

tains the major address-mappings and constant names for the PCap01A.

This file should be always included. It contains no commands so no

program space is wasted

Input parameters: -

Output/Return value: The constants in the file are declared, these can be used further in the

program.

Prerequisites -

Dependency on other

header files

-

Function call -

Temporary memory

usage

-

Changes any RAM con-

tent permanently?

-

5.3 cdc.h
Function: Function for Capacitance-to-Digital Conversion. This module contains the

subroutine to determine the capacitor ratios, dependent on measurement

scheme and the compensation mode

Input parameters: __sub_cdc_differential__

:

__sub_cdc_gain_corr__

:

__persistent_cdc_first__

:

 __temporary_variab-

les__ :

0 = single sensor

1 = differential sensor

Factor for TCsg ufd21

Address where CDC results are to be stored

Define address space for temporary variables,

address < 39!

Output/Return value: Capacitance ratios C0_ratio, ..., C7_ratio

Prerequisites Declare a constant ONE = 1

Dependency on other

header files

#include <standard.h>

5 Libraries

acam-messelectronic gmbh - Am Hasenbiel 27 - D-76297 Stutensee-Blankenloch - Germany - www.acam.de 5-5

PCapØ1Ax DSP

acam-messelectronic gmbh - Am Hasenbiel 27 - D-76297 Stutensee-Blankenloch - Germany - www.acam.de 5-5

Function call jsb __sub_cdc__

Temporary memory

usage

5 locations – all declared and used in the “__temporary_variables__”

address range given as input parameter by the user.

Changes any RAM con-

tent permanently?

Yes – 8 locations updated with capacitance ratio results in the address

range specified by the user in __persistent_cdc_first__

 � C0_ratio

 � C1_ratio

 � C2_ratio

 � C3_ratio

 � C4_ratio

 � C5_ratio

 � C6_ratio

 � C7_ratio

5.4 rdc.h
Function: Function for Resistance-to-Digital Conversion. This module contains the

subroutine to determine the resistor ratios.

Input parameters: __persistent_rdc_first__ : address where RDC results are to be stored

__temporary_variables__ : define address space for temporary variables

Output/Return value: Resistance ratios R0_ratio, R1_ratio, R2_ratio

Prerequisites Declare a constant ONE = 1

Dependency on other

header files

#include <standard.h>

Function call jsb __sub_rdc__

Temporary memory

usage

1 location - declared and used in the “__temporary_variables__” address

range given as input parameter by the user.

Changes any RAM con-

tent permanently?

Yes – 3 locations updated with resistance ratio results in the address ran-

ge specified by the user in __persistent_rdc_first__

R0_ratio

R1_ratio

R2_ratio

5 Libraries

acam-messelectronic gmbh - Am Hasenbiel 27 - D-76297 Stutensee-Blankenloch - Germany - www.acam.de5-6

4 PCapØ1Ax DSP

acam-messelectronic gmbh - Am Hasenbiel 27 - D-76297 Stutensee-Blankenloch - Germany - www.acam.de5-6

5.5 signed24_to_signed48.h
Function: This function is used to type cast a 24-bit signed number to 48-bit signed

value. For e.g. values transferred by PARA-Registers to a full 48-bit signed

value.

Input parameters: Accumulator B = signed 24bit value

__temporary_variables__ : define address space for temporary variables

Output/Return value: Accumulator B = signed 48bit Value

Prerequisites -

Dependency on other

header files

-

Function call jsb __sub_signed24_to_signed48__

Temporary memory

usage

1 location - declared and used in the “__temporary_variables__” address

range given as input parameter by the user.

Changes any RAM con-

tent permanently?

No

5.6 dma.h
Function: „Direct Memory Access“ – This library file contains a subroutine to copy

sequential RAM-content from one address-space to another. The number

of contents to be copied can be specified.

Input parameters: Accumulator B : number of values to copy

DPTR1 : source RAM block address

DPTR0 : destination RAM block address

Output/Return value: The contents, i.e. the specified number of values are copied from the

source RAM block to the destination RAM block.

Prerequisites Declare a constant ONE = 1

Dependency on other

header files

-

Function call jsb __sub_dma__

Temporary memory

usage

-

Changes any RAM con-

tent permanently?

Yes, the destination RAM block

5 Libraries

acam-messelectronic gmbh - Am Hasenbiel 27 - D-76297 Stutensee-Blankenloch - Germany - www.acam.de 5-7

PCapØ1Ax DSP

acam-messelectronic gmbh - Am Hasenbiel 27 - D-76297 Stutensee-Blankenloch - Germany - www.acam.de 5-7

5.7 pulse.h
Function: Linearization function specifically to determine the pulse-output value:

Accumulator B = __sub_pulse_slope__ * Accu. B + __sub_pulse_offset__

Return Value is limited by 0 <= Akku B < 1024

Input parameters: Accumulator B :

__sub_pulse_slope__ :

__sub_pulse_offset__ :

__temporary_variab-

les__ :

input value, unsigned 21 fractional digits

constant factor, signed 4 fractional digits

constant summand, signed 1 fractional digit

define address space for temporary variables

Output/Return value: The contents, i.e. the specified number of values are copied from the

source RAM block to the destination RAM block.

Prerequisites Declare a constant ONE = 1

Dependency on other

header files

-

Function call jsb __sub_pulse__

Temporary memory

usage

1 location - declared and used in the “__temporary_variables__” address

range given as input parameter by the user.

Changes any RAM con-

tent permanently?

No

5.8 sync.h
Function: The sync-filter (aka sin(x)/x) or rolling average filter is a filter function

that determines the average for the last N values specified by the user in

“__sub_sync_FilterOrder__ “.

Input parameters: Accumulator B :

__sub_sync_FilterOrder__

:

__persistent_sync_first__

:

__temporary_variables__

:

input to be filtered

filter order, depth of filtering

address where the filtered results are stored

define address space for temporary variables

5 Libraries

acam-messelectronic gmbh - Am Hasenbiel 27 - D-76297 Stutensee-Blankenloch - Germany - www.acam.de5-8

4 PCapØ1Ax DSP

acam-messelectronic gmbh - Am Hasenbiel 27 - D-76297 Stutensee-Blankenloch - Germany - www.acam.de5-8

Output/Return value: The averaged value is passed back in Accumulator B. Additionally the filte-

red results are updated in the RAM.

Prerequisites Declare a constant ONE = 1

Filter must be initialized by -> jsub __sub_sync_initial__

Dependency on other

header files

-

Function call jsb __sub_sync__

Temporary memory

usag

1 location - declared and used in the “__temporary_variables__” address

range given as input parameter by the user.

Changes any RAM con-

tent permanently?

Yes –RAM locations updated with filtered results in the address range spe-

cified by the user in __persistent_sync_first__. Number of RAM locations

depends on the filter order.

ringMemFirst :

ringMemLast :

FilterAkku :

currentRingPos :

AkkuDivider :

start of filter-memory

last field of the filter memory

sum of all memory-fields

index Pointer; points to the current

memory field

2^42 * FilterOrder

5.9 median.h
Function: This is a quasi-median-filter. With __sub_median_FilterOrder__ the

depth of the memory is defined. Each new Value (X) will be compared

with the current median value,

Is the new value smaller or equal to the median value the last value in

the list will be replaced by X. Otherwise the first value in the list will be

replaced by X.

Afterwords the complete list is sorted. The value at the very

middle of the list is returend as new median.

5 Libraries

acam-messelectronic gmbh - Am Hasenbiel 27 - D-76297 Stutensee-Blankenloch - Germany - www.acam.de 5-9

PCapØ1Ax DSP

acam-messelectronic gmbh - Am Hasenbiel 27 - D-76297 Stutensee-Blankenloch - Germany - www.acam.de 5-9

Input parameters: Accumulator B = input to be filtered

__sub_ median _FilterOrder__ : filter order, depth of filtering

__persistent_median_first__ : address where the filtered results are

stored

__temporary_variables__ : define address space for temporary

variables

Output/Return value: The new median is returned in Accumulator B.

Prerequisites Declare a constant ONE = 1

Dependency on other

header files

-

Function call jsb __sub_median__

Temporary memory

usage

2 locations - declared and used in the “__temporary_variables__”

address range given as input parameter by the user.

Changes any RAM con-

tent permanently?

Yes – RAM locations updated with filtered results in the address range

specified by the user in __persistent_median_first__. Number of RAM

locations depends on the filter order.

__sub_median_list_first__ : Start of filter memory

__sub_median_list_middle__ : middle field of the filter memory

__sub_median_list_last__ : last field of the filter memory

5 Libraries

acam-messelectronic gmbh - Am Hasenbiel 27 - D-76297 Stutensee-Blankenloch - Germany - www.acam.de5-10

4 PCapØ1Ax DSP

acam-messelectronic gmbh - Am Hasenbiel 27 - D-76297 Stutensee-Blankenloch - Germany - www.acam.de5-10

5 Libraries

acam-messelectronic gmbh - Am Hasenbiel 27 - D-76297 Stutensee-Blankenloch - Germany - www.acam.de 6-1

PCapØ1Ax DSP

6 Examples ... 6-2
6.1 Standard Firmware, Version 03.01.02 ...6-2

acam-messelectronic gmbh - Am Hasenbiel 27 - D-76297 Stutensee-Blankenloch - Germany - www.acam.de6-2

4 PCapØ1Ax DSP

6 Examples
6.1 Standard Firmware, Version 03.01.02

Figure 6-1: Main Loop Flowchart

acam-messelectronic gmbh - Am Hasenbiel 27 - D-76297 Stutensee-Blankenloch - Germany - www.acam.de 6-3

PCapØ1Ax DSP

Code snippets:

a) Identification of firmware

The following code writes the version of the firmware into a specific address of the program code:

org FW_VERSION

 equal FWG_Capacitannce + FWT_Standard + 02

b) Check measurement status

These lines check whether measurement data are available or not. If they are the program jumps

into the sub routines given by the libraries. The CDC writes data alternatly into two banks. Therefore,

both banks have to be checked for valid data.

jcd BANK0VALIDN, MK_QUERY_FL1 ;Jump if a CDC result is not yet available in Bank0
 jsb __sub_cdc__ ;If result available - call subroutine for Capacitor
 ;to Digital conversion
 jsb MK_main
MK_QUERY_FL1: ;Checking if CDC result is available in Bank1
jcd BANK1VALIDN, MK_QUERY_FL2 ;Jump if a CDC result is not yet available in Bank1
 jsb __sub_cdc__ ;If result available - call subroutine for Capacitor
 ;to Digital conversion
 jsb MK_main
MK_QUERY_FL2: ;Checking if temperaure measurement (RDC) is running
jcd TENDFLAGN, MK_RO_STOP ;Jump if a meas. is still running & RDC result is not
 ;yet available
 jsb __sub_rdc__ ;If result available - call subroutine Resistor to
 ;Digital conversion

d) Provide data to read registers

After the subroutines __sub_cdc__ and __sub_cdc__ had been called the results in form of Cs/Cref

and Rs/Rref ratios are found in dedicated RAM space. With the following code the results are copi-

ed to the read registers. It is very simple thanks to subroutine __sub_dma__ from the acam library.

MK_main: ; Copying the CDC result registers
load a, C0_ratio ; Loads the accumulator with first result
rad DPTR1 ; Source address pointer
move r, a
load a, RES0 ; First result
rad DPTR0 ; Destination address pointer
move r, a

6 Examples

acam-messelectronic gmbh - Am Hasenbiel 27 - D-76297 Stutensee-Blankenloch - Germany - www.acam.de6-4

4 PCapØ1Ax DSP

load b, 8 ; 8 - No. of locations to be copied
jsb __sub_dma__ ; This copies 8 address contents from the source
 ;location to the destination location

rad R0_ratio ; Copy the RDC results to the result registers
move a, r ; Copying only 2 results
rad RES10
move r, a
rad R2_ratio
move a, r
rad RES11
move r, a

e) Set the pulse interface

The offset and slope of the pulse outputs is typically defined in the parameter registers of PCap01.

CONST pulse_select PARA2 ; bits<7..4> - pulse1_select
 ; bits<3..0> - pulse0_select, add this bits to address C0_ratio
CONST pulse_slope0 PARA3 ; signed 19 integer + fd4
CONST pulse_offset0 PARA4 ; signed 22 integer + fd1
CONST pulse_slope1 PARA5 ; signed 19 integer + fd4
CONST pulse_offset1 PARA6 ; signed 22 integer + f1

The following is the calculation of linear function with the given slope and offset and thus scaling the

pulse output to the necessary range.

; ---------- Pulse 0 -----------------------------
rad pulse_slope0
move b, r
jsb __sub_signed24_to_signed48__
rad Slope
move r, b ; Slope m

rad pulse_offset0
move b, r
jsb __sub_signed24_to_signed48__
rad Offset
move r, b ; Offset b

rad _at_DPTR0 ; Getting the result x to be linearized
move b, r
clear a

6 Examples

acam-messelectronic gmbh - Am Hasenbiel 27 - D-76297 Stutensee-Blankenloch - Germany - www.acam.de 6-5

PCapØ1Ax DSP

rad Slope
jsb mult_24 ; Calculating m*x, result present in lower 24 bits of a and
 ; upper 24 bits of b
rad Offset ; Taking only result in ‘a’ as final result
add a, r ; Calculating m*x + B
shiftR a ; To account for only 1 digit after the decimal point finally
rad AkkuC
move r, a

jPos MK_Pulse0_GE_Zero ; Scaling to minimum 0 : if(a < 0) a = 0
rad AkkuC
sub r, a
move a, r

After the result has been corrected by linearization it has to be scaled to the 0 to 1023 output of the

PCap01 pulse interface:

MK_Pulse0_GE_Zero:
load2exp b, 10 ; Scaling to maximum 1023 : if(a >= 1024) a = 1023
sub a, b
jNeg MK_Pulse0_s_1024
rad ONE
sub b, r ; b = 1023
rad AkkuC
move r, b
MK_Pulse0_s_1024:
rad AkkuC
move b, r
rad PULSE0
move r, b ; PCap01 can output the value at PULSE0 output

6 Examples

acam-messelectronic gmbh - Am Hasenbiel 27 - D-76297 Stutensee-Blankenloch - Germany - www.acam.de6-6

4 PCapØ1Ax DSP

6 Examples

acam-messelectronic gmbh - Am Hasenbiel 27 - D-76297 Stutensee-Blankenloch - Germany - www.acam.de 7-1

PCapØ1Ax DSP

7 Miscellaneous
7.1 Bug Report

7.2 Document History

01.08.2011 First release

Data Sheet

acam-messelectronic gmbh

Am Hasenbiel 27

76297 Stutensee-Blankenloch

Germany

ph. +49 7244 7419 - 0

fax +49 7244 7419 - 29

e-mail: support@acam.de

www.acam.de

	2	DSP & Environment
	2.1 	RAM Structure
	2.1.1 	Registers 0 to 43
	2.1.2 	Registers 44 to 47
	2.1.3 	Register 48, Shift Register
	2.1.4 	Read Registers 49 to 61
	2.1.5 	Read Register 62
	2.1.6 	Read Register 63
	2.1.7 	Write Registers 50, 51
	2.1.8 	Write Registers 54 to 61

	2.2 	SRAM / OTP
	2.2.1 	Memory Management
	2.2.2 	OTP

	2.3 	DSP Inputs & Outputs
	2.4 	ALU Flags
	2.5 	DSPOUT – GPIO Assignment
	2.6 	DSP Configuration

	3	Instruction Set
	3.1 	Instructions
	3.2 	Instruction Details
	3.2.1 	rad
	3.2.2 	mult
	3.2.3 	div

	4	Writing Assembly Programs
	4.1 	Directives
	4.2 	Sample Code
	4.2.1 	“for” Loop
	4.2.2 	“while” Loop
	4.2.3 	“do - while” Loop
	4.2.4 	“do - while” with 2 pointers
	4.2.5 	Load Negative Values
	4.2.6 	Load Signed Values
	4.2.7 	Rotate Right A to B

	5	Libraries
	5.1 	standard.h
	5.2 	pcap01a.h
	5.3 	cdc.h
	5.4 	rdc.h
	5.5 	signed24_to_signed48.h
	5.6 	dma.h
	5.7 	pulse.h
	5.8 	sync.h
	5.9 	median.h

	6	Examples
	6.1 	Standard Firmware, Version 03.01.02

