

Customer Notification

November 2015

Our PICOPROG device is used as a general interface between PC and all our evaluation kits. From today on PICOPROG V2.0 will be replaced by PICOPROG V3.0. The reason is that we want to support the UART capability of our new TDC-GP30 device.

V3.0 is fully downwards compatible to V2.0. In use there is no difference.

Following comparison points out the hardware differences between PICOPROG V2.0 and PICOPROG V3.0.

PICOPROG V2.0	PICOPROG V3.0	
Supported Communication Interface: - SPI - I2C	Supported Communication Interface: - SPI - I2C - UART (additional for TDC-GP30)	
Pin Description: 1 – IIC_SDA 2 – SPI_ENABLE	Pin Description: 1 – IIC_SDA 2 – SPI_ENABLE	Used ports GP30-DEV-KIT
3 – GND 4 – PP_GPIO0 5 – VCC_OTP	3 – GND 4 – PP_GPIO0 5 – VCC_OTP	3 – GND
6 – SPI_CSN 7 – IIC_SCL	6 – SPI_CSN 7 – IIC_SCL	6 – SSN
8 – SPI_MISO 9 – VCC_3V3 10 – PP_GPIO1	8 – SPI_MISO 9 – VCC_3V3 10 – PP_GPIO1	8 – MISO / <mark>TXD</mark>
11 – SPI_MOSI 12 – SPI_SCLK 13 – INT_GPIO_C1 14 – VCC_LEVEL	11 – SPI_MOSI 12 – SPI_SCLK 13 – INT_GPIO_C1 14 – VCC_LEVEL	11 – MOSI 12 – SCK / <mark>RXD</mark> 13 – INTN 14 – VCC LEVEL
15 – VCC_5V	15 – VCC_5V	15 – VCC
Schematic Difference: U13 – CY7C68013 / Pin 61 – unused U5 – TC7SZ04F (CMOS-Inverter)	Schematic Difference: U13 – CY7C68013 / Pin 61 – UART U5 – SN74LVC1G86 (Exclusive-OR Gate) R61 – 100k (additional PULL-UP resistor)	
By default CYPRESS μ C applies HIGH at TXD0 (U13 – Pin 40). Therefore an inverter is used for the SPI clock to provide a LOW by default.	Now, an XOR gate provides either SPI clock or UART – RXD which is controlled by additional GPIO (U13 – Pin 61).	

