

ACB GROUP NEWS

Eyes on the future, feet on the ground

ACB's HDI PCB Design Richtlinien - Klassifizierungen

Wir - bei ACB - freuen uns die neue Version unserer **Design Rule Classification Tabelle** vorstellen zu können! Initiiert vor 15 Jahren, als es eine solche Informationsquelle noch nicht gab, wurde ACB's Design Rule Tabelle inzwischen von Herstellern und Designer, als übersichtlich und leicht nutzbar gleichermaßen anerkannt. Diese Tabelle stellt die Tiefe der ACBDFM Analyse dar. Die Anwendung dieser Richtlinien führt zu einer besseren Designqualität, hilft Fertigungsprobleme zu vermeiden und reduziert allgemein die Risiken. Die Informationen sind auch für High Density Interconnect (HDi) Platinen gültig.

	Design Rules Version 11/11/2010 ACB group			STANDARD						ADVANCED or ENGINEERING			
UNITS = µm				Classification									
				3	4	5	6	7	8	9	10	11	12
Track & Gap	min Track to Track (TT) / Tra	ack to Pad (TP) / Pad to Pad (PP) Thermal Line Width (TW)	300	200	150	120	100	100	85	75	60	<
	min Track Width (MTW) / min Thermal Gap (GAP)			300	200	150	120	100	100	85	75	60	<
	Local fan out density (allowed on 10 % of the surface)			N A	NA	120	100	100	85	75	60	50	<
Ring for IPC Class 2	min Plated Layer Annular Ring (OAR) on Production Hole Diameter (PHD)			200	175	150	120	100	100	75	75	60	<
	min Inner Layer Annular Ring (IAR) / Thermal Annular Ring on PHD			225	200	175	145	125	125	100	100	85	<
Ring for IPC Class 3	min Plated Layer Annular Ring (OAR) on Production Hole Diameter (PHD)			250	225	200	170	150	150	125	125	110	<
	min Inner Layer Annular Ring (IAR) / Thermal Annular Ring on PHD			250	225	200	170	150	150	125	125	110	<
Aspect Ratio	max aspect ratio PTH: see table (Thickness / PHD)			see table	see table	see table	see table	see table	see table	see table	see table	see table	
Example for PCB wit	h thickness 1.6mm												
Hole diameter	min PHD			500	450	400	350	300	250	250	200	150	<
IPC Class 2	min Plated Layer Pad Diar	meter		900	800	700	590	500	450	400	350	270	<
	min Inner Layer Pad Diameter		950	850	750	640	550	500	450	400	320	<	
IPC Class 3	min Plated Layer Pad Diameter		1000	900	800	690	600	550	500	450	370	<	
IPC Class 3	min Inner Layer Pad Diameter		1000	900	800	690	600	550	500	450	370	<	
μvia	min μvia top pad size					350	300	300	275	250	250	<	
	min μvia landing pad size					350	300	300	275	220	220	<	
	μvia diameter with dielectric 1 x 1080 prepreg					125	125	125	110	100	100	<	
	μvia diameter with dielectric 2 x 106 prepreg (default)						150	150	150	130	NA	NA	<
	μvia diameter with dielectric 2 x 1080 prepreg					175	175	175	150	NA	NA	<	
	max number of laserruns / side					1	2	3	4	4	4	>	
Drill - Cu	distance PTH to Cu on inne	er layers (= TT/TP/PP + IAR cla	iss 2)	525	400	325	265	225	225	185	175	145	<
	distance PTH to PTH (= TT	+ 2 x IAR class 2 for standard)		750	600	500	410	350	350	285	275	230	<
	distance NPTH drill to Cu	on inner layers (NPTH Routing	g always > 250 um)	IAR + 25	IAR + 25	IAR + 25	IAR + 25	IAR + 25	IAR + 25	IAR + 25	IAR + 25	IAR + 25	<
	distance NPTH to Cu on ou	uter layers (NPTH Routing alw	ays > 200 um)	350	300	250	200	200	200	150	100	75	<
Cu Thickness	maximum total cu thickne	ss that can be etched (no mir	nimum)	105	70	60	50	35	35	20	15	15	<
	(Same trackwidth & bigger gap increases this value)		If Cu thickness is higher than the maximum for a class, class -> class +1										
Solder Mask	solder mask annular ring (MAR) & conductor overlap (M	IOC): typical	150	100	75	60	50	50	42,5	37,5	30	<
	solder mask annular ring (MAR) & conductor overlap (MOC): exceptional			100	70	50	43,5	37,5	30	25	25	25	<
	solder mask min segment (MSM) (If ACB creates SM, MSM >= 100)			200	150	125	100	100	100	87	87	75	<
PHD = Production Hole Di	ameter = Final hole size + 100 for 0	Component Holes if tolerance is sym	metrical (+ 150 for HASL) PI	HD = Prod	luction Ho	le Diame	ter = Final	hole size	for Via Ho	les			

Die Tabelle benutzt man folgendermaßen: jede neue Platine, die in den ACB-Werken in Produktion geht, ist vollständig dem DFM unterzogen. Ein wichtiger Bestandteil der DFM-Analyse ist die Design Rule Check (DRC) des Layouts. Aus der DFM-Analyse, definieren wir Minimum-Werte für verschiedene Parameter (Bahnbreiten / Abständen / Restringbreiten / Aspect ratio / ...). Die schwierigste Parameter werden zu Risiko-Kriterien definiert.

ACB überträgt die DRC-Parameter in der Klassifikationstabelle, wobei die Technik von "leicht fertigbar" (Class 3) bis "sehr kritisch" (Class 12) reicht. Bis Class 8 (welche auf der Tabelle grün markiert ist) kann man das Design, als industriell betrachten. Ab Class 9 erhöht sich das Risiko, das die Ausbeute verringert und man muss mit erhöhter Aufmerksamkeit und Engineering Support fertigen. Deshalb werden diese Klassen "Advanced or Engineering" Klassen (auf der Tabelle ist das Feld orange markiert) genannt.

Für die Restringparameter muss man auch die abnahme-kriterien betrachten. Wenn IPC Class 3 gefordert wird, sind größere Pads im Design notwendig. Das gleiche Design, aber mit strengeren Abnahmekriterien, bedeutet, dass die Platine in eine höhere Klasse fällt. Bitte beachten Sie, dass ein Restring auf der Außenlage anders wie ein Restring auf einer Innenlage gemessen wird. Eine Restringmessung auf der Außenlage beinhaltet auch das Kupfer im Loch, während man auf der Innenlage ohne Lochwand mißt.

Ab Klasse 6 kann man sich für Microvias (μ Via) entscheiden. Die Auswahl des Dielektrikums bestimmt die Grösse, Form und galvanische Ausführung der Microvia. Wenn man eine hochdichte Platine in der oberen Klasse plant, wäre es verkehrt alle Parameter aus der "Advanced classes" zu nehmen. Man muss versuchen die Parameter aus dem "Orangen Bereich" zu limitieren und mit den ACB Product Engineers prüfen, dass die Kombination der Designparameter machbar und kostenmäßig im Rahmen ist.

Unsere Tabelle wurde auch an die Bauteildesigns angepasst. Von links nach rechts (von Class 3 bis Class 11 und weiter) sehen Sie die Feinpitch Bauelemente.

Einige Beispiele für BGA-Design Richtlinien, die in unserer Tabelle ersichtlich sind:

Fuer Leiterplatten : Enddicke 1.6 mm und IPC Klasse 2 Anforderungen										
Bauteil pitch (mm)	1	1	1	0.8	0.5	0.4				
Class	6	8	8	8	9	10				
Innenlagen Padgroesse (μm)	640	500	300	500	275	220				
Bohrdurchmesser (µm)	350	250	150	250	130	100				
			(µvia)		(µvia)	(µvia)				
# Leiterbahnen / Kanal	1	2	3	1	1	1				
Leiterbahn / Abstand (µm)	120	100	100	100	75	60				

Sie finden die Komplette DRC Tabelle auf www.acb.be

Plant Dendermonde – ACB nv – Vosmeer 3 – BE-9200 Dendermonde – Belgium Tel. +32-52-20-20-30 – Fax +32-52-25-99-40 - email acb@acb.be—www.acb.be