

Eyes on the future, feet on the ground

ACB's HDI PCB Design Rules Classification.

At ACB we are proud to launch a new version of our **Design Rule Classification Table**. Initiated 15 years ago, as an answer to a lack of similar design guidelines on the market, ACB's Design Rule Table is now recognized by designers and pcb manufacturers alike as a very easy to use and well set up tool. This table is part of ACB's in depth DFM analysis. Using it will help you to improve design quality, avoid manufacturing problems and reduce risk. It is valid also for High Density Interconnect (HDi) pcbs.

				STANDARD						ADVANCED or ENGINEERING			
UNITS = µm	Design Rules Version 11/11/2010 ACB group				Classification								
				3	4	5	6	7	8	9	10	11	12
Track & Gap	min Track to Track (TT) / Tra	ck to Pad (TP) / Pad to Pad (PI	P) Thermal Line Width (TW)	300	200	150	120	100	100	85	75	60	<
	min Track Width (MTW) / min Thermal Gap (GAP)			300	200	150	120	100	100	85	75	60	<
Local fan out density (allowed on 10 % of the surface)			NA	NA	120	100	100	85	75	60	50	<	
Ring for IPC Class 2	min Plated Layer Annular Ring (OAR) on Production Hole Diameter (PHD)		200	175	150	120	100	100	75	75	60	<	
ning for ir c class z	min Inner Layer Annular Ring (IAR) / Thermal Annular Ring on PHD			225	200	175	145	125	125	100	100	85	<
Ring for IPC Class 3	min Plated Layer Annular Ring (OAR) on Production Hole Diameter (PHD)		250	225	200	170	150	150	125	125	110	<	
King for IFC class 5	min Inner Layer Annular Ring (IAR) / Thermal Annular Ring on PHD			250	225	200	170	150	150	125	125	110	<
Aspect Ratio	max aspect ratio PTH: see table (Thickness / PHD)			see table	see table	see table	see table	see table	see table	see table	see table	see table	
Example for PCB wit	h thickness 1.6mm												
Hole diameter	min PHD			500	450	400	350	300	250	250	200	150	<
IPC Class 2	min Plated Layer Pad Diam	neter		900	800	700	590	500	450	400	350	270	<
IPC Class 2	min Inner Layer Pad Diameter		950	850	750	640	550	500	450	400	320	<	
IPC Class 3	min Plated Layer Pad Diameter		1000	900	800	690	600	550	500	450	370	<	
IFC Class 5	min Inner Layer Pad Diameter		1000	900	800	690	600	550	500	450	370	<	
	min µvia top pad size						350	300	300	275	250	250	<
	min µvia landing pad size					350	300	300	275	220	220	<	
unia	μvia diameter with dielectric 1 x 1080 prepreg					125	125	125	110	100	100	<	
μνία	μvia diameter with dielectric 2 x 106 prepreg (default)					150	150	150	130	NA	NA	<	
	μvia diameter with dielectric 2 x 1080 prepreg					175	175	175	150	NA	NA	<	
max number of laserruns / side						1	2	3	4	4	4	>	
Drill - Cu	distance PTH to Cu on inne	er layers (= TT/TP/PP + IAR cla	ass 2)	525	400	325	265	225	225	185	175	145	<
	distance PTH to PTH (= TT ·	+ 2 x IAR class 2 for standard)	750	600	500	410	350	350	285	275	230	<
	distance NPTH drill to Cu c	on inner layers (NPTH Routin	g always > 250 um)	IAR + 25	IAR + 25	IAR + 25	IAR + 25	IAR + 25	IAR + 25	IAR + 25	IAR + 25	IAR + 25	<
	distance NPTH to Cu on ou	ter layers (NPTH Routing alw	vays > 200 um)	350	300	250	200	200	200	150	100	75	<
CuThickness	maximum total cu thicknes	ss that can be etched (no mi	nimum)	105	70	60	50	35	35	20	15	15	<
	(Same trackwidth & bigger gap increases this value)			If Cu thickness is higher than the maximum for a class, class -> class +1									
Solder Mask	solder mask annular ring (f	MAR) & conductor overlap (M	10C): typical	150	100	75	60	50	50	42,5	37,5	30	<
	solder mask annular ring (f	MAR) & conductor overlap (M	1OC): exceptional	100	70	50	43,5	37,5	30	25	25	25	<
	solder mask min segment ((MSM) (If ACB creates SM, MS	SM >= 100)	200	150	125	100	100	100	87	87	75	<
PHD = Production Hole Di	ameter = Final hole size + 100 for C	omponent Holes if tolerance is syn	nmetrical (+ 150 for HASL) PI	HD = Prod	uction Ho	le Diamet	er = Final	hole size f	or Via Hol	es			

The table is used as follows : every new part that we prepare for Starting from classification 6, you main starting fro

production in one of the ACB plants is submitted to a thorough DFM check. Part of the DFM analysis is the Design Rule Check (DRC) of the layout. As result of this DRC-check we define minimum values for different parameters. (track widths / spacings / annular ring / aspect ratio / ...) The most critical parameters will define the risk-criteria.

ACB translates the DRC-parameters into our Classification table, which ranges from "easily manufacturable" (Class 3) to "extremely critical" (Class 12). Up to Class 8 (which is the green area of the table) you can consider the design as being industrial. From Class 9 onwards, the risk of getting a lower final yield increases and therefore some extra attention is needed during the manufacturing process. This is why we call them the "Advanced or Engineering" classes (orange area on the table).

For the annular ring parameter, you also have to consider the acceptance criteria. If IPC Class 3 is required, you need to use larger pads in the design. The same design, with a more severe acceptance requirement for the annular ring, will therefore "push" the design into a higher Classification.

Pay attention to the fact that the outer layer annular ring is measured in a different way to inner layers annular rings. The final outer layer annular ring also includes the plating in the hole, whilst the inner layer annular ring is measured without the plating-barrel in the hole. Starting from classification 6, you may consider introducing microvias (μ Via). The choice of dielectric at the microvia stage will define the microvia diameter which is needed for a good shaped microvia and the appropriate plating.

If you're designing a higher density board which needs some features from the Advanced classes, it would be a wrong approach to take all parameters from this higher class. Try to limit as much as possible the parameters you use from the "orange area" and check with ACB's Product Engineers that the combination of design rules you wish to apply, is feasible and cost-efficient.

The classification-table is in addition linked to the type of components planned in the design. From left to right (from Class 3 to Class 11 and more) you can see the incorporation of the smaller pitch components.

Some examples for BGA-design rules according to our table:											
For pcbs with thickness 1,6 mm and IPC class 2 requirements											
Component pitch (mm)	1	1	1	0.8	0.5	0.4					
Class	6	8	8	8	9	10					
Inner pad size (µm)	640	500	300	500	275	220					
Drill size (µm)	350	250	150	250	130	100					
			(µvia)		(µvia)	(µvia)					
# Tracks / channel	1	2	3	1	1	1					
Track / gap (µm)	120	100	100	100	75	60					

Find the complete DRC table at www.acb.be

Plant Dendermonde – ACB nv – Vosmeer 3 – BE-9200 Dendermonde – Belgium Tel. +32-52-20-20-30 – Fax +32-52-25-99-40 - email acb@acb.be—www.acb.be

Plant Malville – Atlantec sas – Z.I. de la Croix Blanche – FR-44260 Malville – France

Contact Monique Berckvens mob@acb.be

Plant Malville – Atlantec sas – Z.I. de la Croix Blanche – FR-44260 Malville – France Tel. +33-240-564-544 – Fax +33-240-564-509 – email fao@atlantec.fr—www.atlantec.fr