hidlCE Introduction Accemic GmbH & Co. KG

1. Today's Trace Data Capturing Solutions

- 2. hidICE Capturing Full AND Continuous AND Real-time Trace
- 3. Comparison: Traditional Approaches vs. hidICE

	FULL TRACE	 Executed instructions Data read access Data write access CPU registers (e.g. stack pointer) Bus cycles Cache activity Time stamps
AND	CONTINUOUS TRACE	No CPU stop on full trace buffer
AND	REAL TIME OPERATION	CPU runs at full speed
AND	TRACE FROM PRODUCTION SILICON	 Software test and certification on the same silicon as used in mass production
AND	MULTI CORE SUPPORT	 Support of multi core microcontroller

Evaluation Chip Based In-Circuit Emulator

FULL TRACE	YES (depending on implementation)
CONTINUOUS TRACE	YES
REAL TIME OPERATION	NO (speed limitations on external bus)
PRODUCTION SILICON	NO
MULTI CORE SUPPORT	YES (depending on implementation)

Embedded Trace Based In-Circuit Emulator

FULL TRACE	LIMITED (bandwidth, trace buffer size)
CONTINUOUS TRACE	LIMITED (bandwidth)
REAL TIME TRACE	YES
TRACE FROM PRODUCTION SILICON	YES
MULTI CORE SUPPORT	LIMITED (bandwidth, trace buffer size)

Limitations of Traditional Approaches

1. Today's Trace Data Capturing Solutions

2. hidICE – Capturing Full AND Continuous AND Real-time Trace

3. Comparison: Traditional Approaches vs. hidICE

The hidICE Approach

Key idea:

 Synchronization of a CPU subsystem inside the emulator

Requirements:

- Emulation must receive clock signals
- Emulation must receive the result of read operations
- Emulation must receive events (interrupts, DMA requests, wait states)
- Emulation must contain all bus masters
- Emulation must contain a superset of the memory

The emulation does not need to implement peripherals.

hidICE – Typical System Configuration

Will emulation and target always exhibit the same behavior? *We need to make sure!*

- Compute recursive hash over all relevant internal signals
- Transmit hash to emulation
- Compute hash locally in the emulation

Target hash and emulation hash differ

- Synchronization lost
- Further investigation required (and possible as trace is available)

hidICE – System Integrity Control

Signals to transmit

Serialization

Deserialization

Hash calculation Hash check

hidICE – System Integrity Control

- Post manufacturing test
- Test of field-returning devices

hidICE – System Integrity Control

Using system integrity control to increase the test coverage

hidICE – Port Reconstruction

"Normal" mode

The port pins drives the LEDs.

"hidICE" mode

All pins are available for the application, even during recording of trace data.

Applicable for low speed output pins

Target	Emulator
1k 10k gates	No peripherals to implement
(simple functionality: data collection and hash calculation)	 One implementation supports all devices of the same family
 2 20 pins (without port reconstruction) 	 For low speed SoCs (< 100 MHz): FPGA implementation
 0 pins (with port reconstruction) 	 For high speed SoCs: ASIC implementation

Moving intelligence (and costs) from target to emulation

hidICE – Pin Count Estimation

Tool Pin Count

hidICE – Add-on Solution for On-Chip Debug Support

- Low end solution: On-chip debug support
- Mid/high end solution: Combination of OCDS and hidICE

Using 3rd party tools with hidlCE

The trace data available inside the emulator can be accessed by standard 3rd party NEXUS compliant tool chains.

- ③ Already available tool chains can be used
- ☺ Not all available trace information is used by NEXUS!

hidICE Demonstration System

- AHB bus system (4 bus master)
- On-chip Debug support
- CPU / bus clock: up to 100 MHz (FPGA)
- Full source code and documentation available

hidICE Demonstration System

- 1. Today's Trace Data Capturing Solutions
- 2. hidICE Capturing Full AND Continuous AND Real-time Trace
- 3. Comparison: Traditional Approaches vs. hidICE

hidICE - Combining the Advantages of Existing Technologies

- Full trace AND continuous trace AND real-time operation
- Applicable at high CPU frequencies (> 100 MHz)
- Very low implementation overhead (< 10k gates)
- Full trace support in mass production silicon
 Allows validation using the "real" chips, not any specifically designed ones (emulator chips)

	Evaluation Chip	Embedded trace	hidICE
Full AND continuous AND real-time trace	\checkmark	×	\checkmark
Software test on mass production chips	×	\checkmark	\checkmark
Gate count		10k100k + trace buffer	1k 10k
I/O port reconstruction	×	×	✓*
System integrity control	×	×	\checkmark
Additional effort for full multi-core trace (n cores)		~ N	<< n

* Applicable for slow output ports

Comparison: Traditional Approaches vs. hidlCE

	FULL TRACE	Executed instructions	✓
		Data read access	\checkmark
		 Data write access 	\checkmark
		 CPU registers (e.g. stack pointer) 	\checkmark
		Bus cycles	\checkmark
		 Cache activity 	\checkmark
		 Time stamps 	\checkmark
AND	CONTINUOUS TRACE	No CPU stop on full trace buffer	✓
AND	REAL TIME OPERATION	CPU runs at full speed	✓
AND	TRACE FROM PRODUCTION SILICON	 Software test and certification on the same silicon as used in mass production 	~
AND	MULTI CORE SUPPORT	 Support of multi core microcontroller 	✓
+	LOW RESSOURCES	1k 10k gates, low pin count	√
+	EXTENDED TEST COVERA	GE	✓

Our next steps...

- FPGA based implementations of major architectures
 - Busses: AXI, CoreConnect, ...
 - CPUs: ARM, PowerPC, ...
- Silicon implementations
- Interface specification
- Introducing hidICE to car makers and OEMs
- Exploring new applications:
 - SoC test and verification
 - Runtime verification
 - Continuous MC/DC analysis
 - Continuous bus performance analysis
 - High level language support for trace data analysis
 - Your ideas...

Accemic Services and Contact Information

- Estimation of required ressources
- hidICE implementation support
- hidICE based emulators
- hidICE IP licences

Project manager:

Alexander Weiss aweiss@accemic.com

Accemic GmbH & Co. KG Hochriesstr. 2 83126 Flintsbach Germany

www.accemic.comPhone+49 8034 90993-0Fax+49 8034 90993-27

