

hidICE Evaluation System
for SPARC V8 (LEON3)

Document number:

UG090220-V2.3

Contact person: Alexander Weiss
Accemic GmbH & Co. KG
aweiss@accemic.com
49 8034 90993-12

Project partners: Accemic GmbH & Co. KG
Hochriesstr. 2
D-83126 Flintsbach
Germany

Dresden University of Technology
Department of Computer Science
Institute for Computer Engineering
D-01062 Dresden
Germany

Munich University of Technology
Institute for Informatics I4
Boltzmannstr. 3
D-85748 Garching
Germany

mailto:aweiss@accemic.com

© Accemic GmbH & Co. KG 2009
Revision: 2.3/ 30.03.2009
Page 2 of 66

hidICE demonstration
system for SPARC V8
(LEON3)

Contents

Contents...2
1. Introduction ...3

1.1. Introduction in the hidICE technology ..4
1.1.1. Synchronization Interface...6
1.1.2. Trace Data Access...7
1.1.3. Further Applications ..9

1.2. LEON3 Processor... 11
1.2.1. Configuration ... 12
1.2.2. Synthesis... 12
1.2.3. Distribution .. 12
1.2.4. SPARC Conformance.. 12
1.2.5. Software Development .. 12

2. hidICE Evaluation System... 13
2.1. Hardware Description .. 14

2.1.1. ML507 Features .. 14
2.2. Implementation overview... 15

2.2.1. Target SoC implementation .. 15
2.2.2. Emulator implementation ... 17

2.3. Synchronization .. 18
2.4. Functionality .. 19

2.4.1. Memory Map .. 19
2.4.2. Interrupts .. 23
2.4.3. On-Chip Debug Support ... 27
2.4.4. System Integrity Control .. 30
2.4.5. Peripherals... 34

3. Installation... 42
3.1. Xilinx ML507 boards .. 42

3.1.1. Board Interconnection ... 42
3.1.2. Board modification .. 43
3.1.3. Power on / off sequence... 44
3.1.4. Configuration Options .. 45

3.2. Accemic MDE software ... 49
3.2.1. Getting started ... 49
3.2.2. Processor state window.. 52

3.3. Sample Projects.. 54
3.3.1. Target Board Buttons and LEDs... 54
3.3.2. Emulation Board LEDs ... 55
3.3.3. CPU0_Test ... 55
3.3.4. CPU1_Test ... 55
3.3.5. CPU2_DMA... 56
3.3.6. CPU(x)_Template.. 57

3.4. Load and modify the LEON3 template projects .. 58
3.5. Gaisler software.. 61

4. Appendix ... 62
4.1. Further development ... 62

4.1.1. Real-Time Trace Analysis ... 62
4.1.2. hidICE Supported Software Self Tests .. 63
4.1.3. Pin Count Optimization / Port Reconstruction .. 63
4.1.4. NEXUS class 3 interface .. 63

4.2. Issues and Limitations ... 63
4.3. References... 64
4.4. Part List... 65
4.5. Revision History.. 66
4.6. Current Versions ... 66

© Accemic GmbH & Co. KG 2009
Revision: 2.3/ 30.03.2009
Page 3 of 66

hidICE demonstration
system for SPARC V8
(LEON3)

1. Introduction
This document is a project draft of a hidICE evaluation system, based on the SPARC V8
LEON3 core.
The hidICE evaluation system hardware consists of two Xilinx Virtex 5 ML 507 boards.
The following objectives are planned for this project

• General demonstration of hidICE synchronization on a state of the art 32 bit SoC
system (synchronization via APB and AHB)

• Multi-core implementation
• On-chip debug support
• Real-time trace analysis
• hidICE supported software self tests
• Pin count optimization / Port reconstruction
• NEXUS class 3 interface

This document contains text passages sourced from the “GRLIB IP Core User’s Manual”.
These passages are marked in italic.

Please note this project is under development and subject to change.

© Accemic GmbH & Co. KG 2009
Revision: 2.3/ 30.03.2009
Page 4 of 66

hidICE demonstration
system for SPARC V8
(LEON3)

1.1. Introduction in the hidICE technology
The fundamental idea behind the new methodology for capturing trace data is to equip the
microcontroller with a facility that allows the synchronization with an external emulator.
Thus, the only data communicated from the SoC to the emulator is the one required to
reconstruct all internal data and the program flow. All other system responses are defined
by the program code. Fig. 1-1 shows the emulation principle.
Conventional methods transfer all read data and write data as well as all jumps to the
emulator. Whereas our proposed methodology only transfers all read data that originates
from the peripheral components of the controller and the interrupts, because only this
data/these events can change the program flow unpredictably.

C
om

pe
ra

to
r

Tr
ac

e
D

at
a

In
te

rfa
ce

Tr
ac

e
an

al
ys

is

Figure 1-1: principle. All related clocks, all data read from the periphery and all interrupts are transferred to the
emulation. One or more hash values of instructions, addresses and data can be transferred to the emulation.

The hidICE principle is not only applicable for microcontrollers with a single CPU without
DMA, but also for DMA equipped and multi-core microcontrollers. Identical hash values of
both systems guarantee the validity of the captured trace data. As the emulation does not
influence the system itself, it is possible to use the emulation concurrently to traditional on-
chip debug support.

Therefore, the emulator must meet these requirements:

• The emulator must replicate the microcontroller’s bus master cores (one or more
CPUs and DMA controller), but none of the peripherals such as ADC, UART or
CAN.

• Its RAM memory must be the same size or larger and have the same or faster
access times as the SoC.

• The emulator must have ROM of the same size or larger, same or faster access
times and the same content as that of the SoC.

• Via the synchronization interface the following signals have to be transmitted
from the SoC to the emulator:

o CPU clock
o results of the CPU / DMA read operations in the peripheral area
o interrupt and DMA requests

© Accemic GmbH & Co. KG 2009
Revision: 2.3/ 30.03.2009
Page 5 of 66

hidICE demonstration
system for SPARC V8
(LEON3)

Given these properties, emulation will precisely match the behaviour and the instructions
carried out by the microcontroller being emulated. Both SoC and emulator start with the
same internal state. Also, both have the same content of ROM. Thus, the information read
from peripheral components is sufficient to exactly reconstruct the RAM content in the
emulation, since writes to the local RAM are reflected in the emulation.
A read operation to non-initialized RAM addresses is not allowed, due to identical system
behaviour not being guaranteed in case of different RAM content. The system integrity
control discussed below will detect and signalize such a difference.

All branch decisions will be the same in the SoC and the emulator. The only remaining
changes of program flow which can not be predicted in the emulator are interrupts or DMA
requests, which are communicated to the emulation to replicate the exact behaviour of the
SoC.
Depending on complexity and speed, the emulation can be run in an FPGA for slower CPUs
or in an ASIC for faster CPUs. The ASIC / FPGA emulation must include the CPU core(s), the
DMA controller and the internal memory.
In difference to the traditional evaluation chips, only one implementation of the emulation
core is required for each CPU series. A new evaluation chip for each new device with new or
different periphery is no longer required, since the implementation of peripheral units is not
necessary for the emulation. The costs for new evaluation chips, their physical limitations
and associated time-to-market delays are no longer encountered. The proposed principle is
particularly suited for microcontroller families which have identical cores and varying
periphery, as for each new derivative full trace support can be provided immediately at no
additional cost.
For slower CPUs (up to ~50 MHz), emulating the CPU in an FPGA lowers tool cost
dramatically because only the existing FPGA needs to be reconfigured and one emulator can
support different CPU families. Also the emulator logic which analyzes or pre-processes the
available trace data can be implemented in the same FPGA. This will provide a very compact
and cost efficient emulation system.
In case of an ASIC implementation, the trace data can be made available on a configurable
interface. Due to the very high width of the available trace data, it seems reasonable to
provide a configurable interface, which provides a subset of the available trace data
depending on the current demand. For instance, for a branch / decision code coverage
analysis of a CPU the program counter and the data read by the CPU can be made available
on the output. For another problem e.g. stack analysis, the stack pointer and program
counter may be selected for output. Currently, we are discussing a convenient interface with
some major emulator vendors.
Alternatively, the principle can also be used with software emulation. A fast buffer captures
the synchronization data and a software emulation of the CPU core computes the executed
instructions. Yet, this approach does not work in real time for most applications and the
available trace interval is limited by the size of the buffer.

© Accemic GmbH & Co. KG 2009
Revision: 2.3/ 30.03.2009
Page 6 of 66

hidICE demonstration
system for SPARC V8
(LEON3)

1.1.1. Synchronization Interface
For the implementation of the synchronization support the internal architecture of the SoC
has to be analyzed. First we have to extract all signals which are required for the
synchronization. In a second step we have to analyze the signal interdependence for further
compression of the synchronization information. For instance, in case of starting an
interrupt sequence, no I/O operations may be possible on the bus and in this case the pins
used to transfer the interrupt number can be shared with the pins which are used to
transfer the data read from the CPU. As a third step the system integrity IP has to be
implemented. The complexity of this IP is scalable.
A correct synchronization of both systems may be achieved with a simple hash function,
whereas a more complex hash may provide information on the problem’s cause in case of a
system integrity violation.
A generic synchronization protocol is not reasonable, since the signal interdependence often
differs from SoC to SoC. Within a group of SoCs with identical core (e.g. a microcontroller
family) the synchronization protocol will be identical.

In one architecture it makes sense to capture the sync data very local to the CPU, in
another architecture it may be more advantageous to capture the sync data on the bridge
from local bus to periphery bus.

The hidICE synchronization interface can be easily implemented as an add-on to existing
on-chip debug support modules (OCD), which are available in a wide range of
implementations (e.g. Renesas NSD or Freescale BDM). The OCD module is required for
initial flash memory programming, setting breakpoints and in some cases for capturing
some frames of trace data. An additional implementation of a synchronization facility
extends this very limited trace to a continuous and complete real-time trace of executed
instructions, data read, data written, DMA operations and CPU register values.

SoC hidICE Emulation

CPU ROM
RAM

LED
driver

hidICE IP
(Sync TX)

Bus System

Other
Periphery

CPU ROM
RAM

LED
driver

hidICE IP
(Sync RX)

Bus System

VCC

S1

S2

Trace

Synchronization
data

Figure 1-2: Port Reconstruction: If the emulator is connected, the information necessary for synchronization of the
CPU cores will be transferred via the same I/O pins, which are normally used for driving the LEDs. When the LEDs
are driven by the emulator’s LED driver, the LEDs will be turned on or off with a well-defined delay of some CPU
clock cycles. From the application’s point of view all pins are accessible, even during recording of the trace data.

The developer can assign the pins required to output the synchronization information to
simple output functions such as LED driver, pulse generators or LCD drivers. Once the
emulator is attached to the microcontroller, it then takes over emulation of the pins which
are temporarily used to output trace data. A ribbon cable allows the emulated signals to be
transferred back to the target hardware (see Fig. 1-2).

© Accemic GmbH & Co. KG 2009
Revision: 2.3/ 30.03.2009
Page 7 of 66

hidICE demonstration
system for SPARC V8
(LEON3)

1.1.2. Trace Data Access
Due to the availability of full trace data inside the emulator, it is possible to capture a very
detailed trace. Not only the program counter and the data read and written, also the clock
cycle synchronous bus control signals are available for further analysis. The capturing of the
trace data has no influence to any on-chip debug activities, because the emulation only
passively observes the SoC activities. On-chip debug resources and the hidICE IP are
completely independent functional units.
The quality of the captured trace data is similar to a state analysis by a logic analyzer,
which has access to all internal bus signals of the microcontroller. This enables the deep
analysis of bus performance, cache and DMA operation and makes a new generation of in-
circuit emulators possible.

Until new in-circuit emulators will be available, a connection to existing interfaces like Nexus
can easily be implemented and thus, it extends the applicability of those emulators to new
chips that incorporate the synchronization interface.

Emulator With Bus Extension

Embedded Trace Based Emulator

Evaluation Chip Based Emulator

Emulator
Emulator logic

Trace recorder

Code coverage

Benchmarking

Profiling

Emulator
Target hardware

Emulator logic

Trace recorder

Code coverage

Benchmarking

Profiling

Emulator Target hardware
Emulator logic

Trace recorder

Code coverage

Benchmarking

Profiling

Full
trace
data

CPU
socket

Full
trace
data

Evaluation chip

CPU core

Peripherals

Emulation

CPU core

SoC

Peripherals

Probe cable

Target hardware

SoC

CPU core

Peripherals

E
m

b.
 tr

ac
e

Limited trace data

Bus

CPU core
(disabled)

B
us

 I/
F

B
us

 I/
F

Figure 1-3: Overview of traditional trace approaches: Evaluation chip based emulator, embedded trace based
emulator and emulation with bus extension

© Accemic GmbH & Co. KG 2009
Revision: 2.3/ 30.03.2009
Page 8 of 66

hidICE demonstration
system for SPARC V8
(LEON3)

hi
dI

C
E

 T
X

hi
dI

C
E

 R
X

Figure 1-4: hidICE based emulation approach

Fig. 1-3 illustrates the traditional techniques (evaluation chip, embedded trace and bus
extension based emulators). Fig. 1-4 illustrates the new hidICE approach.

On evaluation chip based emulators the application is executed in a special chip inside the
emulator. Basically, the evaluation chip can provide all trace information. The disadvantages
are the physical limitations of this concept, which allows a limited speed only, and the high
system costs. Due to these reasons evaluation chip based emulators become less important.

Over the last years, embedded trace based emulators have become the state of the art
approach. Here the trace capturing capabilities are implemented on chip. Due to the cost
pressure only limited chip space is available for the embedded trace support. The result is
that the developer has to accept an incomplete trace or the system will be slowed down
when a complete trace has to be captured. With increasing CPU clock frequencies, this
limitation gets more and more inconvenient.

The new approach combines the advantages of both traditional technologies: the trace can
be accessed at very high CPU clocks in the same quality as from the evaluation chip.
Depending on the SoC technology, we expect possible synchronization clock rates up to 400
MHz. In FPGAs (Xilinx Virtex 4) we have already implemented hidICE synchronized CPU
cores running up to 200 MHz.

The proposed solution is well applicable for multi-core SoCs, but in case of independent
clock domains and high I/O bandwidth the synchronization information may need a very
high bandwidth. However, in this case other comparable technologies are also not able to
deliver a full, continuous and real-time trace.

© Accemic GmbH & Co. KG 2009
Revision: 2.3/ 30.03.2009
Page 9 of 66

hidICE demonstration
system for SPARC V8
(LEON3)

1.1.3. Further Applications
After the successful completion of the post-design and post-manufacturing tests of SoCs
there is still the chance that some failures were still not detected. Especially, dynamic
failures (cross talk, delays and power supply noise) occurring during the interaction between
IP modules or under real operation conditions are difficult to find. Due to the general
limitations of the built-in self-test (BIST) modules it would be too complex to implement full
test coverage of dynamic operation and interaction of IPs.

Figure 1-5: Built-in self test (BIST) and hidICE test approach

Figure 1-6: Test coverage by Built-In Self Test BIST, SBST and hidICE

© Accemic GmbH & Co. KG 2009
Revision: 2.3/ 30.03.2009
Page 10 of 66

hidICE demonstration
system for SPARC V8
(LEON3)

At this point the hidICE methodology provides a high level supplement to the BIST and
software based self test (SBST) approaches (Fig. 1-5 and Fig. 1-6). Initially special test
routines are loaded into the SoC and the emulator. After applying a reset signal, the SoC
and the synchronized emulation (“golden” system) execute the same code. On each clock
cycle a hash value of relevant internal signals (e.g. embedded memory address, data,
control signals etc.) will be computed recursively and compared. A divergence of the hash
values of the SoC and the emulation indicates a failure. At this point, the recording of the
execution trace within the emulator will be stopped. The captured trace is very helpful to
analyze the root cause of the divergence. In this situation it is very helpful to have a range
of multiple hashes to discover the source of the divergence. For instance, hash values can
be independently computed for code addresses, fetched code, data read, data written, bus
operations and the corresponding control signals.
In case of a divergence of the hash values the possibility of a false positive error detection
has to be considered. This can be caused by a communication failure between SoC and
emulation or by a failure within the emulation. Also it is self-evident that the tests can not
be continued until a reset signal is applied to get both systems synchronized again.
As the tests are running in the real SoC environment, it is simple to modify and extend test
routines. By changing environmental conditions such as temperature, clock frequency and
supply voltage not only functional tests can be executed, but also the SoC manufacturing
parameters can be verified and optimized.
In comparison to pure software based self tests the hidICE approach exposes a more
comprehensive range of failures in combination with information of the exact time of the
failure occurrence and a detailed trace.
Another application area is explorative tests. In this case the hidICE based test process
keeps all individual peripheral components busy with random tasks and thus, all possible
combinations of internal states are checked. This methodology is likely to also find failures
that are not identified by module tests. As this approach can fairly easy be implemented in
software, it is not an expensive test.
In general, the hidICE synchronization interface requires only a few I/O pins, depending on
the SoC architecture. For extended test purposes a special mode can be implemented in
the SoC, where additional I/O pins are available to output the synchronization data and
more detailed hash values. In this case the proposed approach is also well applicable for
SoCs with high I/O bandwidth (e.g. USB 2.0 controller, Gigabit Ethernet etc. on the CPU
local bus).
Because the tasks of the hidICE IP in the SoC are very limited (collecting some signals,
calculating hash values and handling the transfer protocol), only a few gates are required
for the implementation. In comparison to BIST solutions the hidICE IP does not require a
test pattern generator and a response checker. All analysis is done within the emulator,
where much more resources are available then ever may be implemented into a BIST
module.
By planning tests using the hidICE approach it has to be considered that the test coverage
is limited to the observed chip core area and only to circuits which are accessible (direct or
indirect) by the CPU.

Sometimes regularly produced chips fail in the field. For the manufacturer it is extremely
interesting why those chips failed and which part of the chip failed. Also here the hidICE
methodology allows to reconstruct the exact situation in which the chip failed (namely the
time when the hashes differ) and in some cases even enable the identification of the failing
component.

© Accemic GmbH & Co. KG 2009
Revision: 2.3/ 30.03.2009
Page 11 of 66

hidICE demonstration
system for SPARC V8
(LEON3)

1.2. LEON3 Processor
The LEON3 is a synthesisable VHDL model of a 32-bit processor compliant with the SPARC
V8 architecture. The model is highly configurable, and particularly suitable for system-on-a-
chip (SOC) designs. The full source code is available under the GNU GPL license, allowing
free and unlimited use for research and education. LEON3 is also available under a low-cost
commercial license, allowing it to be used in any commercial application to a fraction of the
cost of comparable IP cores. The LEON3 processor has the following features:

• SPARC V8 instruction set with V8e extensions
• Advanced 7-stage pipeline
• Hardware multiply, divide and MAC units
• High-performance, fully pipelined IEEE-754 FPU
• Separate instruction and data cache (Harvard architecture) with snooping
• Configurable caches: 1 - 4 sets, 1 - 256 kbytes/set. Random, LRR or LRU

replacement
• Local instruction and data scratch pad rams
• SPARC Reference MMU (SRMMU) with configurable TLB
• AMBA-2.0 AHB bus interface
• Advanced on-chip debug support with instruction and data trace buffer
• Symmetric Multi-processor support (SMP)
• Power-down mode and clock gating
• Robust and fully synchronous single-edge clock design
• Up to 125 MHz in FPGA and 400 MHz on 0.13 um ASIC technologies
• Fault-tolerant and SEU-proof version available for space applications
• Extensively configurable
• Large range of software tools: compilers, kernels, simulators and debug monitors

Figure 1-7: LEON3 processor core block diagram

The LEON3 processor is distributed as part of the GRLIB IP library, allowing simple
integration into complex SOC designs. GRLIB also includes a configurable LEON3 multi-
processor design, with up to 4 CPUs and a large range of on-chip peripheral blocks.

© Accemic GmbH & Co. KG 2009
Revision: 2.3/ 30.03.2009
Page 12 of 66

hidICE demonstration
system for SPARC V8
(LEON3)

1.2.1. Configuration
The LEON3 processor is fully parametrizable through the use of VHDL generics, and does
not rely on any global configuration package. It is thus possible to instantiate several
processor cores in the same design with different configurations. The LEON3 template
designs can be configured using a graphical tool built on tkconfig from the linux kernel. This
allows new users to quickly define a suitable custom configuration. The configuration tool
not only configures the processor, but also other on-chip peripherals such as memory
controllers and network interfaces.

1.2.2. Synthesis
The LEON3 processor can be synthesised with common synthesis tools such as Synplify,
Synopsys DC and Cadence RC. The core will reach up 125 MHz on FPGA and 400 MHz on
0.13 um ASIC technologies. The core area (pipeline, cache controllers and mul/div units)
requires only 20 - 25 Kgates or 3500 LUT, depending on the configuration. The LEON3
processor can also be synthesised with Xilinx XST and Altera Quartus, either through scripts
or by using the graphical interfaces of the Xilinx and Altera tools.

1.2.3. Distribution
LEON3 is distributed as part of the GRLIB IP library, and the library contains LEON3
templates designs for several popular FPGA prototyping boards. Pre-synthesized FPGA
programming files are also provided.

1.2.4. SPARC Conformance
LEON3 has been certified by SPARC International as being SPARC V8 conformant. The
certification was completed on May 1, 2005.

1.2.5. Software Development
Being SPARC V8 conformant, compilers and kernels for SPARC V8 can be used with LEON3
(kernels will need a LEON bsp). To simplify software development, Gaisler Research is
providing BCC, a free C/C++ cross-compiler system based on gcc and the Newlib embedded
C-library. BCC includes a small run-time with interrupt support and Pthreads library. For
multi-threaded and/or multi-processor applications, a LEON3 port of the eCos real-time
kernel is available. A LEON3 port of RTEMS 4.6.5 is available in form of the RCC cross-
compiler, a system that supports RTEMS for ERC32, LEON2 and LEON3. For industrial and
high-rel applications, ports for Nucleus, VxWorks 5.4 and 6.3 are available, as well as
ThreadX.
Linux support for LEON3 is provided through a special version of the SnapGear Embedded
Linux distribution. SnapGear Linux is a full source package, containing kernel, libraries and
application code for rapid development of embedded Linux systems. The LEON3 port of
SnapGear supports both MMU and non-MMU LEON configurations, as well as the optional V8
mul/div instructions and floating-point unit (FPU). A single cross-compilation tool-chain is
provided which is capable of compiling the kernel and applications for any configuration. The
latest version of Snapgear now also includes multi-processor support (SMP) for multi-core
LEON3 systems!
Debugging is generally done using the gdb debugger, and a graphical front-end such as
DDD or Eclipse. It is possible to perform source-level symbolic debugging, either on a
simulator or using real target hardware. Gaisler Research provides TSIM, a high-
performance LEON3 simulator which seamlessly can be attached to gdb and emulate a
LEON3 system at more than 10 MIPS. The GRMON monitor interfaces to the LEON3 on-chip
debug support unit (DSU), implementing a large range of debug functions as well as a GDB
gateway. For multi-processor and/or advanced SOC designs, the GRSIM multi-core
simulator is available for early software development.

© Accemic GmbH & Co. KG 2009
Revision: 2.3/ 30.03.2009
Page 13 of 66

hidICE demonstration
system for SPARC V8
(LEON3)

2. hidICE Evaluation System
The hidICE evaluation system provides the following functionality:

• Multi-core LEON3 SoC
• Multiple AHB Bus Master
• On-Chip Debug Support
• AHB periphery

The SoC consists of

- 2 CPUs (LEON3 core)
- 1 CPU (LEON3 core) used as DMA controller
- OCDs support (AHBUART and DSU3)
- 4 AHB bus masters (3 x CPU, 1 x AHBUART)
- Clock controller (enables clock switching while the application is running)
- Multiprocessor Interrupt Controller
- AHB and APB bus, AHB/APB bus bridge
- APB Periphery: Timer, UART, I/O port, ADC
- hidICE Sync IP (RX and TX)
- hidICE Hash IP and comparator (system integrity control)

C
om

pe
ra

to
r

Figure 2-1: hidICE evaluation system block diagram

The ROM content will be loaded in the external memory by Accemic MDE.
The software will provide the following features:

• System initialization
• Test routines can be controlled by PC via OCDs
• Handling of timer interrupts

© Accemic GmbH & Co. KG 2009
Revision: 2.3/ 30.03.2009
Page 14 of 66

hidICE demonstration
system for SPARC V8
(LEON3)

2.1. Hardware Description
The hidICE evaluation system consists of two Xilinx ML507 boards.

2.1.1. ML507 Features
• Xilinx Virtex-5 FPGA XC5VFX70T-1FFG1136
• Two Xilinx XCF32P Platform Flash PROMs (32 Mb each)
• Xilinx System ACE™ CompactFlash configuration controller with Type I

CompactFlash connector
• Xilinx XC95144XL CPLD for glue logic
• 64-bit wide, 256-MB DDR2 small outline DIMM (SODIMM)
• Clocking

o Programmable system clock generator chip
o One open 3.3V clock oscillator socket
o External clocking via SMAs (two differential pairs)

• General purpose DIP switches (8), LEDs (8), pushbuttons, and rotary encoder
• Expansion header with 32 single-ended I/O, 16 LVDS-capable differential pairs,

14 spare I/Os shared with buttons and LEDs, power, JTAG chain expansion
capability, and IIC bus expansion

• Stereo AC97 audio codec with line-in, line-out, 50-mW headphone, microphone-
in jacks, SPDIF digital audio jacks, and piezo audio transducer

• RS-232 serial port, DB9 and header for second serial port
• 16-character x 2-line LCD display
• One 8-Kb IIC EEPROM and other IIC capable devices
• PS/2 mouse and keyboard connectors
• VGA and DVI video output (Chrontel CH7301C)
• 9Mb ZBT synchronous SRAM (ISSI IS61NLP25636A-200TQL)
• 32 MB Flash (Intel JS28F256P30T95)
• Serial Peripheral Interface (SPI) flash (2 MB)
• 10/100/1000 tri-speed Ethernet PHY transceiver and RJ-45 with support for MII,

GMII, RGMII, and SGMII Ethernet PHY interfaces (Marvell 88E1111)
• USB interface chip with host and peripheral ports (Cypress CY7C67300)
• Rechargeable lithium battery to hold FPGA encryption keys
• JTAG configuration port for use with Parallel Cable III, Parallel Cable IV, or

Platform USB download cable
• Onboard power supplies for all necessary voltages
• Temperature and voltage monitoring chip with fan controller
• 5V @ 6A AC adapter
• Power indicator LED
• MII, GMII, RGMII, and SGMII Ethernet PHY Interfaces
• GTP/GTX: SFP (1000Base-X) / SMA (RX and TX Differential Pairs) / SGMII / PCI

Express® (PCIe™) edge connector (x1 Endpoint) / SATA (dual host connections)
with loopback cable / Clock synthesis ICs

• Mictor trace port
• BDM debug port
• Soft touch port
• System monitor

© Accemic GmbH & Co. KG 2009
Revision: 2.3/ 30.03.2009
Page 15 of 66

hidICE demonstration
system for SPARC V8
(LEON3)

2.2. Implementation overview

2.2.1. Target SoC implementation

Instance File Description
hidICE_3CV2_target_tl hidICE_3CV2_target_tl.v Top level module
|-- dcm0 Xilinx DCM Sytem clock generation
|-- rstgen_inst rstgen.vhd Reset generator (grlib)
|-- hidICE_3CV2_target_inst hidICE_3CV2_target.hvd SoC system
 |-- ahbctrl0 ahbctrl.vhd AHB controller (grlib)
 |-- ahbuart0 ahbuart.vhd AHB UART (grlib)
 |-- ahbram0 ahbram.vhd AHB RAM (grlib)
 |-- ahbtrace0 ahbtrace.vhd AHB Trace (grlib)
 |-- cpu0 leon3s.vhd LEON3 CPU (grlib)
 |-- cpu1 leon3s.vhd LEON3 CPU (grlib)
 |-- cpu2 leon3s.vhd LEON3 CPU (grlib)
 |-- dsu0 dsu3.vhd Debug Support Unit (grlib)
 |-- apbctrl0 apbctrl.vhd AHB / APB bridge (grlib)
 |-- irqmp0 irqmp.vhd Interrupt controller (grlib)
 |-- gpio0 gpio.vhd I/O ports (grlib)
 |-- timer0 gptimer.vhd Timer unit (grlib)
 |-- apbuart1 apbuart.vhd APB UART (grlib)
 |-- mctrl0 mctrl.vhd Memory controller (grlib)
 |-- sysm0 grsysmon.vhd System monitor / ADC (grlib)
|-- target_hash_data_inst datahash.v AHB data hash
|-- target_hash_adr_inst hash1.v AHB address hash
|-- qdr_out_inst QDR_out.v Sync data output

Table 2-1: Main modules of target SoC implementation

© Accemic GmbH & Co. KG 2009
Revision: 2.3/ 30.03.2009
Page 16 of 66

hidICE demonstration
system for SPARC V8
(LEON3)

ds
u_

br
ea

k

ta
r_

ah
bu

ar
t_

tx
d

Figure 2-2: Target SoC implementation block diagram

© Accemic GmbH & Co. KG 2009
Revision: 2.3/ 30.03.2009
Page 17 of 66

hidICE demonstration
system for SPARC V8
(LEON3)

2.2.2. Emulator implementation

Instance File Description
hidICE_3CV2_emu_tl hidICE_3CV2_target_tl.v Top level module
|-- dcm0 Xilinx DCM DDR input delay clock support
|-- hidICE_3CV2_emu_inst hidICE_3CV2_emu.hvd Emulation system
 |-- ahbctrl0 ahbctrl.vhd AHB controller (grlib)
 |-- ahbuart0 ahbuart.vhd AHB UART (grlib)
 |-- ahbtrace0 ahbtrace.vhd AHB Trace (grlib)
 |-- cpu0 leon3s.vhd LEON3 CPU (grlib)
 |-- cpu1 leon3s.vhd LEON3 CPU (grlib)
 |-- cpu2 leon3s.vhd LEON3 CPU (grlib)
 |-- dsu0 dsu3.vhd Debug Support Unit (grlib)
|-- emu_hash_data_inst datahash.v AHB data hash
|-- emu_hash_adr_inst hash1.v AHB address hash
|-- qdr_in_inst QDR_out.v Sync data input

Table 2-2: Main modules of emulator implementation

Figure 2-3: Emulation implementation block diagram

© Accemic GmbH & Co. KG 2009
Revision: 2.3/ 30.03.2009
Page 18 of 66

hidICE demonstration
system for SPARC V8
(LEON3)

2.3. Synchronization
The synchronization interface consists of the following signals:

Signal Direction Width Description
CLKM T -> E 1 System clock
RESET T -> E 1 System reset
HRDATA[31:0] T -> E 32 AHB bus read data
HREADY T -> E 1 AHB bus transfer done
HRESP[1:0] T -> E 2 AHB bus transfer response
IRQI_IRL T -> E 12 Interrupt level of 3 CPUs a (4 lines each)
IRQI_RST T -> E 3 Power down for the 3 CPUs a (1 line each)
HASH_ADR T -> E 1 Address hash
HASH_DATA T -> E 2 Data hash

Table 2-3: Synchronization signals

For the debug support the following signals are required:

Signal Direction Width Description
DSU_BREAK_OUT T -> E 1 Emulation DSU break
AHBUART_RXD_OUT T -> E 1 Input signals for emulation AHB_UART
AHBUART_TXD T -> E 1 Output signals from target AHB_UART
DSU_BREAK_IN E -> T 1 Break command for DSU

(in case of system integrity failure)
AHBUART_RXD_IN E -> T 1 Input signals for target AHB_UART

Table 2-4: Debug signals

The synchronization signals are modulated with a QDR modulator to save IO pins and to use
the MICTOR cable for transmission.
The QDR modulator is clocked by the differential clock J12/J13.

Please note, the synchronization signals are not optimized for bandwidth / pin
count reduction in this stage of development.
The pin count optimization is planned for a further task. After optimization (DDR transfer,
using of ready states and optimization of interrupt level transfer) we expect a reduction to
10-20 pins.

© Accemic GmbH & Co. KG 2009
Revision: 2.3/ 30.03.2009
Page 19 of 66

hidICE demonstration
system for SPARC V8
(LEON3)

2.4. Functionality
• Implementation of the LEON3 based Sock and the hidICE subsystem
• Installation and start-up the LEON3 tool chain
• Verification of synchronization (system integrity control)
• Accessing of trace data from target and emulation:

o CPU trace (CPU 0, CPU1, CPU2):
 Time stamp
 Instruction address
 Instruction code
 Data address
 Data access direction (r/w)

o AHB bus trace
 Time stamp
 Address
 Access type
 Data
 Bus control signals

2.4.1. Memory Map

Address Unit Description
0x40000000 Code Start CPU 0
0x4000FFFC Stack Top CPU 0
0x40010000 Code Start CPU 1
0x4001FFFC Stack Top CPU 1
0x40020000 Code Start CPU 2 (DMA)
0x4002FFFC Stack Top CPU 2 (DMA)
0x40030000 to
0x4003000C

DMA control register

0x40030010 to
0x4003FFFF

MCTRL
(1 MByte external SRAM)

General purpose RAM

0x80000000 APCBTRL AHB/APB bridge
0x90000000 DSU3 Debug Support unit

(controlled by Accemic MDE)
0xA0000000 to
0xA001FFFF

AHBRAM
(128 kByte internal SRAM)

AHB internal RAM
(general purpose RAM)

0xF0000000 Special functions See section “Special Functions”
0xFFF00000 AHBTRACE AHB trace buffer
0xFFFC0000 System monitor control ADC functionality
0xFFFC1000 System monitor data ADC functionality

Table 2-5: Memory map

© Accemic GmbH & Co. KG 2009
Revision: 2.3/ 30.03.2009
Page 20 of 66

hidICE demonstration
system for SPARC V8
(LEON3)

2.4.1.1. Periphery Control Registers

Address Unit Register
0x80000000 Memory config register 1
0x80000004 Memory config register 2
0x80000008

Memory controller

Memory config register 3
0x80000100 UART data register
0x80000104 UART status register
0x80000108 UART control register
0x8000010C

APB UART

UART scaler register
0x80000200 Interrupt level register
0x80000204 Interrupt pending register
0x80000208 Interrupt force register
0x8000020C Interrupt clear register
0x80000210 Interrupt status register
0x80000240 Interrupt mask register 0
0x80000244 Interrupt mask register 1
0x80000248 Interrupt mask register 2
0x80000280 Interrupt force register 0
0x80000284 Interrupt force register 1
0x80000288

Multi-processor Interrupt Ctrl

Interrupt force register 2
0x80000300 Scaler value register
0x80000304 Scaler reload register
0x80000308 Configuration register
0x80000310 Timer1 value register
0x80000314 Timer1 reload register
0x80000318 Timer1 control register
0x80000320 Timer2 value register
0x80000324 Timer2 reload register
0x80000328 Timer2 control register
0x80000330 Timer3 value register
0x80000334 Timer3 reload register
0x80000338 Timer3 control register
0x80000340 Timer4 value register
0x80000344 Timer4 reload register
0x80000348

Modular Timer Unit

Timer4 control register
0x80000800 I/O data register
0x80000804 I/O output register
0x80000808 I/O direction register
0x8000080C I/O interrupt register
0x80000810 I/O interrupt polarity reg.
0x80000814 I/O interrupt edge register
0x80000818

General purpose I/O port

I/O bypass register

© Accemic GmbH & Co. KG 2009
Revision: 2.3/ 30.03.2009
Page 21 of 66

hidICE demonstration
system for SPARC V8
(LEON3)

0xFFFC0000 Configuration register
0xFFFC0004 Status register
0xFFFC1000 Temperatur register
0xFFFC1004 VCCINT register
0xFFFC1008 VCCAUX register
0xFFFC100C VP/VN register
0xFFFC1010 VREFP register
0xFFFC1014 VREFN register
0xFFFC1020 Supply Offset register
0xFFFC1024 ADC Offset register
0xFFFC1028 Gain Error register
0xFFFC1040 Result register 0
0xFFFC1044 Result register 1
0xFFFC1048 Result register 2
0xFFFC104C Result register 3
0xFFFC1050 Result register 4
0xFFFC1054 Result register 5
0xFFFC1058 Result register 6
0xFFFC105C Result register 7
0xFFFC1060 Result register 8
0xFFFC1064 Result register 9
0xFFFC1068 Result register 10
0xFFFC106C Result register 11
0xFFFC1070 Result register 12
0xFFFC1074 Result register 13
0xFFFC1078 Result register 14
0xFFFC107C Result register 15
0xFFFC1080 Max Temp register
0xFFFC1084 Max VCCINT register
0xFFFC1088 Max VCCAUX register
0xFFFC1090 Min Temp register
0xFFFC1094 Min VCCINT register
0xFFFC1098

System Monitor

Min VCCAUX register

Table 2-6: IO registers

© Accemic GmbH & Co. KG 2009
Revision: 2.3/ 30.03.2009
Page 22 of 66

hidICE demonstration
system for SPARC V8
(LEON3)

2.4.1.2. Special Functions

By a write operation to the special addresses the following actions can be performed:

Address Action
0xF0000000 Toggling the system clock
0xF0000004 System reset
0xF0000008 Communication with target AHBUART
0xF000000C Communication with emulation AHBUART

Table 2-7: Special function addresses

These special functions are used by Accemic MDE.

© Accemic GmbH & Co. KG 2009
Revision: 2.3/ 30.03.2009
Page 23 of 66

hidICE demonstration
system for SPARC V8
(LEON3)

2.4.2. Interrupts
The interrupt processing is provided by the Multiprocessor Interrupt Controller (IRQMP)
core. A detailed description can be found in chapter 54 of the GRLIB IP Library User’s
Manual.

The AMBA system in GRLIB provides an interrupt scheme where interrupt lines are routed
together with the remaining AHB/APB bus signals, forming an interrupt bus. Interrupts from
AHB and APB units are routed through the bus, combined together, and propagated back to
all units. The multiprocessor interrupt controller core is attached to AMBA bus as an APB
slave, and monitors the combined interrupt signals.
The interrupts generated on the interrupt bus are all forwarded to the interrupt controller.
The interrupt controller prioritizes masks and propagates the interrupt with the highest
priority to the processor. In multiprocessor systems, the interrupts are propagated to all
processors.

Figure 2-4: Interrupt system block diagram

The interrupt controller monitors interrupt 1 - 15 of the interrupt bus (APBI.PIRQ[15:1]).
When any of these lines are asserted high, the corresponding bit in the interrupt pending
register is set. The pending bits will stay set even if the PIRQ line is de-asserted, until
cleared by software or by an interrupt acknowledge from the processor. Each interrupt can
be assigned to one of two levels (0 or 1) as programmed in the interrupt level register.
Level 1 has higher priority than level 0. The interrupts are prioritised within each level, with
interrupt 15 having the highest priority and interrupt 1 the lowest. The highest interrupt
from level 1 will be forwarded to the processor. If no unmasked pending interrupt exists on
level 1, then the highest unmasked interrupt from level 0 will be forwarded.

© Accemic GmbH & Co. KG 2009
Revision: 2.3/ 30.03.2009
Page 24 of 66

hidICE demonstration
system for SPARC V8
(LEON3)

Interrupt Level Priority Assigned to

(by hardware)
Handled by

(sample projects)
15 1 31 (Highest)
14 1 30
13 1 29
12 1 28
11 1 27
10 1 26
9 1 25
8 1 24
7 1 23 Push button West CPU1
6 1 22
5 1 21
4 1 20 Push button East CPU1
3 1 19
2 1 18
1 1 17
0 1 16
15 0 15
14 0 14
13 0 13
12 0 12
11 0 11
10 0 10
9 0 9
8 0 8 Timer CPU0
7 0 7
6 0 6 Push button South CPU0
5 0 5 Push button North CPU0
4 0 4
3 0 3
2 0 2
1 0 1
0 0 0 (Lowest)

Table 2-8: Interrupt priorities and interrupt services of the sample projects

© Accemic GmbH & Co. KG 2009
Revision: 2.3/ 30.03.2009
Page 25 of 66

hidICE demonstration
system for SPARC V8
(LEON3)

2.4.2.1. Interrupt instantiation
The interrupt lines of the peripheries can be assigned to the interrupt inputs of the
Multiprocessor Interrupt Controller by setting the corresponding VHDL generics (within the
file “hidICE_3CV2_tar.vhd”).

The interrupts of the AHB and APB peripherals can be assigned to an interrupt line by
setting the PIRQ generic.

component apbslave
generic (

pindex : integer := 0; -- slave index
pirq : integer := 0); -- interrupt index

port (rst : in std_ulogic;
clk : in std_ulogic;
apbi : in apb_slv_in_type; -- APB slave inputs
apbo : out apb_slv_out_type); -- APB slave outputs

end component;

slave3 : apbslave
generic map (pindex => 1, pirq => 2)
port map (rst, clk, pslvi, pslvo(1));

Figure 2-5: Code snippet for interrupt assignment demonstration

The AHB/APB bridge in the GRLIB provides interrupt combining, and merges the APB-
generated interrupts with the interrups bus on the AHB bus. This is done by OR-ing the
interrupt vectors from each APB slave into one joined vector, and driving the combined
value on the AHB slave output bus (AHBSO.HIRQ).

An exception from this schema is the interrupt assignment of I/O ports.
Each I/O port can drive a separate interrupt line on the APB interrupt bus. The interrupt
number is equal to the I/O line index (PIO[1] = interrupt 1, etc.). The interrupt generation
is controlled by three registers: interrupt mask, polarity and edge registers. To enable an
interrupt, the corresponding bit in the interrupt mask register must be set. If the edge
register is ‘0’, the interrupt is treated as level sensitive.
If the polarity register is ‘0’, the interrupt is active low. If the polarity register is ‘1’, the
interrupt is active high. If the edge register is ‘1’, the interrupt is edge-triggered. The
polarity register then selects between rising edge (‘1’) or falling edge (‘0’).

© Accemic GmbH & Co. KG 2009
Revision: 2.3/ 30.03.2009
Page 26 of 66

hidICE demonstration
system for SPARC V8
(LEON3)

2.4.2.2. Interrupt processing
Within the sample projects the processing of different interrupts is demonstrated. The
sample projects use the BCC library functions (catch_interrupt), explained in the Bare-C
Cross-Compiler User’s Manual and routines defined in “leon3.h” (enable_irq).

The following example demonstrates the usage of the timer interrupt, assigned to interrupt
8:

Code Description

void Init_Timer_IRQ (void)
{
 catch_interrupt((int)timerirqhandler, 8);

 APB_BUS(T1VAL) = 0x00000000;
 APB_BUS(T1REL) = t1_reload;
 APB_BUS(T1CON) = 0x0000000D;

 enable_irq(8,0);

}

void timerirqhandler(int irq)
{
 APB_BUS(T1CON) = 0x0000000D;

 leds = leds+1;
 APB_BUS(GRGPIO_OUT) = (leds<<8)&0xF00;
}

Interrupt initialization

Assign interrupt service routine
to interrupt 8

Init the timer

Enable the timer interrupt
(Level 0)

Timer interrupt service routine

Clear interrupt request

Do something…

© Accemic GmbH & Co. KG 2009
Revision: 2.3/ 30.03.2009
Page 27 of 66

hidICE demonstration
system for SPARC V8
(LEON3)

2.4.3. On-Chip Debug Support

2.4.3.1. Hardware implementation

The on-chip debug support (OCD) is provided by the DSU3 unit in combination with the
AHBUART.

To simplify debugging on target hardware, the LEON3 processor implements a debug mode
during which the pipeline is idle and the processor is controlled through a special debug
interface. The LEON3 Debug Support Unit (DSU) is used to control the processor during
debug mode. The DSU acts as an AHB slave and can be accessed by any AHB master. An
external debug host can therefore access the DSU through the AHBUART. The DSU supports
multi-processor systems and can handle up to 16 processors.

Figure 2-6: DSU3 connection

Through the DSU AHB slave interface, any AHB master can access the processor registers
and the contents of the instruction trace buffer. The DSU control registers can be accessed
at any time, while the processor’s registers, caches and trace buffer can only be accessed
when the processor has entered debug mode. In debug mode, the processor pipeline is held
and the processor state can be accessed by the DSU.

The AHBUART consists of a UART connected to the AMBA AHB bus as a master. A simple
communication protocol is supported to transmit access parameters and data. Through the
communication link, a read or write transfer can be generated to any address on the AMBA
AHB bus.

© Accemic GmbH & Co. KG 2009
Revision: 2.3/ 30.03.2009
Page 28 of 66

hidICE demonstration
system for SPARC V8
(LEON3)

Figure 2-7: AHBUART block diagram

C
om

pe
ra

to
r

Figure 2-8: Multiple AHB bus master LEON3 SoC system with on-chip debug support

© Accemic GmbH & Co. KG 2009
Revision: 2.3/ 30.03.2009
Page 29 of 66

hidICE demonstration
system for SPARC V8
(LEON3)

2.4.3.2. Accemic MDE
With Accemic MDE a user interface which controls the OCD functionality is provided by
Accemic.
Accemic MDE provides the following features:

• Support for AHBUART debug link via PC COM port
• Read/write access to all system registers and memory
• Download application (CPU0, CPU1, CPU2)
• Start / Stop application (individual or all CPUs)
• Setting breakpoints (CPU0, CPU1, CPU2)
• Disassembler
• Display of trace buffer (CPU0, CPU1, CPU2, AHB)
• Comparison of trace buffer content (target and emulation)
• Accessing global and local variables
• Visualization of periphery registers and I/O ports (Processor state window)

Please note, that the Accemic MDE for SPARC V8 version is a beta release and not
completely tested.

2.4.3.3. GRMON / GRMON RCP
Alternatively, the GRMON tools can be used to control the hidICE demonstration system.
The evaluation version of GRMON can be downloaded from www.gaisler.com. The evaluation
version may be used during a period of 21 days without purchasing a license.

© Accemic GmbH & Co. KG 2009
Revision: 2.3/ 30.03.2009
Page 30 of 66

hidICE demonstration
system for SPARC V8
(LEON3)

2.4.4. System Integrity Control
To ensure the system integrity, hash values of AHB addresses and AHB data will be
calculated.
In case of a difference of the hash values, the DSU units in the target and in the emulation
will be stopped. The trace data can be read by Accemic MDE to explore possible reasons of
system integrity loss.

C
om

pe
ra

to
r

Figure 2-9: hidICE system integrity control. In case of system integrity failure the DSU unit of the target and of the
emulation will be stopped. The target and the emulation trace are displayed in the Accemic MDE trace window.

The system integrity control implementation can be tested by the CPU0_Test program.

CPU 0 does continuously read from 0x40030020. If the center button (error button) is
pressed, the target integrity control error simulation does invert the data that is sent to the
emulator. The system integrity control comparator (inside the emulator) will stop the target
and the emulator (DSU-Break). Before the read operation from 0x40030020 is done the
data cache has to be flushed, otherwise no operation will occur on the AHB. Note that AHB
trace in Accemic MDE is stopped by the DSU break signal.
After a target integrity control error both systems have to be powered down to clear the
AHB trace. Before that, you should disconnect Accemic MDE.

© Accemic GmbH & Co. KG 2009
Revision: 2.3/ 30.03.2009
Page 31 of 66

hidICE demonstration
system for SPARC V8
(LEON3)

reg[1:0] errorstate;

always @(posedge clkm)
begin
 if(rstn == 0)
 errorstate <= 0;

 if(error_button == 1 &&
 tar_ahbsi[`ahbsi_hwrite] == 0 &&
 tar_ahbsi[`ahbsi_htrans_high] == 1 &&
 tar_ahbsi[`ahbsi_haddr] == 'h40030020)
 errorstate <= 1;
 else if(errorstate==1 && tar_ahbmi[`ahbmi_hready]==0)
 errorstate <= 2;
 else if(errorstate==2 && tar_ahbmi[`ahbmi_hready])
 errorstate <= 0;
end

assign ahbmi_hrdata_sync[0] = (errorstate == 2) ?
~ahbmi_hrdata[0]:ahbmi_hrdata[0];
assign ahbmi_hrdata_sync[31:1] = ahbmi_hrdata[31:1];

Figure 2-10: hidICE system integrity control source code snippet

In the sample projects, the following routine will be executed continuously in CPU0:

 1 void TestSyncControl()
 2 {
 3 volatile int dummy = 0;
 4 *(int*)(0x40030020) = 0;
 5
 6 __asm__ __volatile__("FLUSH");//flush data cache
 7 __asm__ __volatile__("nop");
 8 __asm__ __volatile__("nop");
 9 __asm__ __volatile__("nop");
10 __asm__ __volatile__("nop");
11
12 dummy=*(int*)(0x40030020);
13
14 if (*(int*)(0x40030020) == 0)
15 dummy ++;
16 }

Figure 2-11: System integrity control test routine

If the center button is pressed, the system stops after execution of line 12

dummy=*(int*)(0x40030020);

The ERR1 LED (Integrity Control error on data access) gets active now and the AHB trace
window displays the difference between target (T) and emulation (E) bus data.

© Accemic GmbH & Co. KG 2009
Revision: 2.3/ 30.03.2009
Page 32 of 66

hidICE demonstration
system for SPARC V8
(LEON3)

Figure 2-12: AHB bus trace with system integrity failure

In the target the value 0x00000000 is read by the bus, but to the emulation the modified
value 0x00000001 is transmitted. The hash differs and the hash comparator stops the
system.
The instruction trace of CPU0 is still valid, due to the read operation to address 0x40030020
does not influence the program counter.

© Accemic GmbH & Co. KG 2009
Revision: 2.3/ 30.03.2009
Page 33 of 66

hidICE demonstration
system for SPARC V8
(LEON3)

In the next code line (press the center button and execute the Single Step command over
line 14) the program counter of CPU0 on the target and CPU0 on the emulation differs. Now
the instruction trace is also invalid and the ERR0 LED (Integrity Control error far address)
gets active.

Figure 2-13: CPU0 instruction trace with system integrity failure

To reset the system simply turn off the power of the emulation board first, and than of the
target board.

© Accemic GmbH & Co. KG 2009
Revision: 2.3/ 30.03.2009
Page 34 of 66

hidICE demonstration
system for SPARC V8
(LEON3)

2.4.5. Peripherals
The hidICE demosntartion system includes the following peripherals:

• GRGPIO - General Purpose I/O Port
• UART
• ADC
• Timer

2.4.5.1. GRGPIO - General Purpose I/O Port
The general purpose input output port core is a scalable and provides optional interrupt
support. The port width can be set to 2 - 32 bits through the nbits VHDL generic (i.e. nbits
= 16). Interrupt generation and shaping is only available for those I/O lines where the
corresponding bit in the imask VHDL generic has been set to 1. Each bit in the general
purpose input output port can be individually set to input or output, and can optionally
generate an interrupt. For interrupt generation, the input can be filtered for polarity and
level/edge detection.

The I/O ports are implemented as bi-directional buffers with programmable output enable.
The input from each buffer is synchronized by two flip-flops in series to remove potential
meta-stability. The synchronized values can be read-out from the I/O port data register.
They are also available on the GPIOO.VAL signals. The output enable is controlled by the
I/O port direction register. A ‘1’ in a bit position will enable the output buffer for the
corresponding I/O line. The output value driven is taken from the I/O port output register.
Each I/O port can drive a separate interrupt line on the APB interrupt bus. The interrupt
number is equal to the I/O line index (PIO[1] = interrupt 1, etc.). The interrupt generation
is controlled by three registers: interrupt mask, polarity and edge registers. To enable an
interrupt, the corresponding bit in the interrupt mask register must be set. If the edge
register is ‘0’, the interrupt is treated as level sensitive.
If the polarity register is ‘0’, the interrupt is active low. If the polarity register is ‘1’, the
interrupt is active high. If the edge register is ‘1’, the interrupt is edge-triggered. The
polarity register then selects between rising edge (‘1’) or falling edge (‘0’).

© Accemic GmbH & Co. KG 2009
Revision: 2.3/ 30.03.2009
Page 35 of 66

hidICE demonstration
system for SPARC V8
(LEON3)

I/O
port
pin

FPGA
pin

Part Signal

0 AH30 SW2_1 Rotation encoder inc_a
1 AG30 SW2_6 Rotation encoder inc_b
2 AH29 SW2_3/5 Rotation encoder push
3 G30 U45_2 Piezo
4 AK7 SW12 Switch East
5 U8 SW10 Switch North
6 V8 SW11 Switch South
7 AJ7 SW13 Switch West
8 G16 DS13 LED4
9 AD25 DS12 LED5
10 AD24 DS11 LED6
11 AE24 DS10 LED7
12 E8 DS24 LED Center
13 AG23 DS21 LED East
14 AF13 DS20 LED North
15 AG12 DS22 LED South
16 AF23 DS23 LED West
17 U25 SW8_1 DIP-Switch 1
18 AG27 SW8_2 DIP-Switch 2
19 AF25 SW8_3 DIP-Switch 3
20 AF26 SW8_4 DIP-Switch 4
21 AE27 SW8_5 DIP-Switch 5
22 AE26 SW8_6 DIP-Switch 6
23 AC25 SW8_7 DIP-Switch 7
24 AC24 SW8_8 DIP-Switch 8

Table 2-9: GPIO pins

© Accemic GmbH & Co. KG 2009
Revision: 2.3/ 30.03.2009
Page 36 of 66

hidICE demonstration
system for SPARC V8
(LEON3)

2.4.5.2. UART
The interface is provided for serial communications. The UART supports data frames with 8
data bits, one optional parity bit and one stop bit. To generate the bit-rate, each UART has
a programmable 12-bit clock divider. Two FIFOs are used for data transfer between the APB
bus and UART, when fifosize VHDL generic > 1. Two holding registers are used data transfer
between the APB bus and UART, when fifosize VHDL generic = 1. Hardware flow-control is
supported through the RTSN/CTSN handshake signals, when flow VHDL generic is set. Parity
is supported, when parity VHDL generic is set.

Figure 2-14: APB UART overview

UART signal FPGA pin Connector pin Signal

TXD F10 J61_3 (via MAX232) APBUART TXD
RXD G10 J61_2 (via MAX232) APB UART RXD

© Accemic GmbH & Co. KG 2009
Revision: 2.3/ 30.03.2009
Page 37 of 66

hidICE demonstration
system for SPARC V8
(LEON3)

2.4.5.2.1. Transmitter operation
The transmitter is enabled through the TE bit in the UART control register. Data that is to be
transferred is stored in the FIFO/holding register by writing to the data register. This FIFO is
configurable to different sizes via the fifosize VHDL generic. When the size is 1, only a single
holding register is used but in the following discussion both will be referred to as FIFOs.
When ready to transmit, data is transferred from the transmitter FIFO/holding register to
the transmitter shift register and converted to a serial stream on the transmitter serial
output pin (TXD). It automatically sends a start bit followed by eight data bits, an optional
parity bit, and one stop bit. The least significant bit of the data is sent first.

2.4.5.2.2. Receiver operation

The receiver is enabled for data reception through the receiver enable (RE) bit in the UART
control register. The receiver looks for a high to low transition of a start bit on the receiver
serial data input pin. If a transition is detected, the state of the serial input is sampled a half
bit clocks later. If the serial input is sampled high the start bit is invalid and the search for a
valid start bit continues. If the serial input is still low, a valid start bit is assumed and the
receiver continues to sample the serial input at one bit time intervals (at the theoretical
centre of the bit) until the proper number of data bits and the parity bit have been
assembled and one stop bit has been detected. The serial input is shifted through an 8-bit
shift register where all bits have to have the same value before the new value is taken into
account, effectively forming a low-pass filter with a cut-off frequency of 1/8 system clock.
The receiver also has a configurable FIFO which is identical to the one in the transmitter. As
mentioned in the transmitter part, both the holding register and FIFO will be referred to as
FIFO. During reception, the least significant bit is received first. The data is then transferred
to the receiver FIFO and the data ready (DR) bit is set in the UART status register as soon
as the FIFO contains at least one data frame. The parity, framing and overrun error bits are
set at the received byte boundary, at the same time as the receiver ready bit is set. The
data frame is not stored in the FIFO if an error is detected. Also, the new error status bits
are or:ed with the old values before they are stored into the status register. Thus, they are
not cleared until written to with zeros from the AMBA APB bus. If both the receiver FIFO and
shift registers are full when a new start bit is detected, then the character held in the
receiver shift register will be lost and the overrun bit will be set in the UART status register.
If flow control is enabled, then the RTSN will be negated (high) when a valid start bit is
detected and the receiver FIFO is full. When the holding register is read, the RTSN will
automatically be reasserted again.
When the VHDL generic fifosize > 1, which means that holding registers are not considered
here, some additional status and control bits are available. The RF status bit (not to be
confused with the RF control bit) is set when the receiver FIFO is full. The RH status bit is
set when the receiver FIFO is half-full (at least half of the entries in the FIFO contain data
frames). The RF control bit enables receiver FIFO interrupts when set. A RCNT field is also
available showing the current number of data frames in the FIFO.

2.4.5.2.3. Baud-rate generation

Each UART contains a 12-bit down-counting scaler to generate the desired baud-rate. The
scaler is clocked by the system clock and generates a UART tick each time it underflows. It
is reloaded with the value of the UART scaler reload register after each underflow. The
resulting UART tick frequency should be 8 times the desired baud-rate. If the EC bit is set,
the scaler will be clocked by the external clock input rather than the system clock. In this
case, the frequency of external clock must be less than half the frequency of the system
clock.

© Accemic GmbH & Co. KG 2009
Revision: 2.3/ 30.03.2009
Page 38 of 66

hidICE demonstration
system for SPARC V8
(LEON3)

2.4.5.2.4. Interrupt generation

Interrupts are generated differently when a holding register is used (VHDL generic fifosize =
1) and when FIFOs are used (VHDL generic fifosize > 1). When holding registers are used,
the UART will generate an interrupt under the following conditions: when the transmitter is
enabled, the transmitter interrupt is enabled and the transmitter holding register moves
from full to empty; when the receiver is enabled, the receiver interrupt is enabled and the
receiver holding register moves from empty to full; when the receiver is enabled, the
receiver interrupt is enabled and a character with either parity, framing or overrun error is
received. For FIFOs, two different kinds of interrupts are available: normal interrupts and
FIFO interrupts. For the transmitter, normal interrupts are generated when transmitter
interrupts are enabled (TI), the transmitter is enabled and the transmitter FIFO goes from
containing data to being empty. FIFO interrupts are generated when the FIFO interrupts are
enabled (TF), transmissions are enabled (TE) and the UART is less than half-full (that is,
whenever the TH status bit is set). This is a level interrupt and the interrupt signal is
continuously driven high as long as the condition prevails. The receiver interrupts work in
the same way. Normal interrupts are generated in the same manner as for the holding
register. FIFO interrupts are generated when receiver FIFO interrupts are enabled, the
receiver is enabled and the FIFO is half-full. The interrupt signal is continuously driven high
as long as the receiver FIFO is half-full (at least half of the entries contain data frames).

© Accemic GmbH & Co. KG 2009
Revision: 2.3/ 30.03.2009
Page 39 of 66

hidICE demonstration
system for SPARC V8
(LEON3)

2.4.5.3. ADC

The core provides an AMBA AHB interface to the Xilinx System Monitor present in Virtex-5
FPGAs. All Xilinx System Monitor registers are mapped into AMBA address space. The core
also includes functionality for generating interrupts triggered by System Monitor outputs,
and allows triggering of conversion start via a separate register interface.

Figure 2-15: ADC block diagramm

ADC
pin

FPGA
pin

ML507 net Header

VAUXN0 AE34 HDR2_42_SM_14_N J4_42
VAUXP0 AF34 HDR2_44_SM_14_P J4_44
VAUXN1 AE33 HDR2_46_SM_12_N J4_46
VAUXP1 AF33 HDR2_48_SM_12_P J4_48
VAUXN2 AB33 HDR2_58_SM_4_N J4_58
VAUXP2 AC33 HDR2_60_SM_4_P J4_60
VAUXN3 AB32 HDR2_54_SM_13_N J4_54
VAUXP3 AC32 HDR2_56_SM_13_P J4_56
VAUXN4 AD34 HDR2_50_SM_5_N J4_50
VAUXP4 AC34 HDR2_52_SM_5_P J4_52
VAUXN5 Y34 HDR1_30 J6_30
VAUXP5 AA34 HDR1_26 J6_26
VAUXN6 AA33 HDR2_38_SM_6_N J4_38
VAUXP6 Y33 HDR2_40_SM_6_P J4_40
VAUXN7 V34 HDR2_34_SM_15_N J4_34
VAUXP7 W34 HDR2_36_SM_15_P J4_36
VAUXN8 V33 HDR2_30_DIFF_3_N J4_30
VAUXP8 V32 HDR2_32_DIFF_3_P J4_32
VAUXN9 U31 HDR2_26_SM_11_N J4_26
VAUXP9 U32 HDR2_28_SM_11_P J4_28

VAUXN10 T34 HDR2_22_SM_10_N J4_22
VAUXP10 U33 HDR2_24_SM_10_P J4_24
VAUXN11 R32 HDR2_18_DIFF_2_N J4_18
VAUXP11 R33 HDR2_20_DIFF_2_P J4_20
VAUXN12 R34 HDR2_14_DIFF_1_N J4_14

© Accemic GmbH & Co. KG 2009
Revision: 2.3/ 30.03.2009
Page 40 of 66

hidICE demonstration
system for SPARC V8
(LEON3)

VAUXP12 T33 HDR2_16_DIFF_1_P J4_16
VAUXN13 N32 HDR2_10_DIFF_0_N J4_10
VAUXP13 P32 HDR2_12_DIFF_0_P J4_12
VAUXN14 K32 HDR2_6_SM_7_N J4_6
VAUXP14 K33 HDR2_8_SM_7_P J4_8
VAUXN15 K34 HDR2_2_SM_8_N J4_2
VAUXP15 L34 HDR2_4_SM_8_N J4_4

VN V17 FPGA_V_N J9_10
VP U18 FPGA_V_P J9_9

Table 2-10: ADC pins

2.4.5.3.1. Operational model

The core has two I/O areas that can be accessed via the AMBA bus; the core configuration
area and the System Monitor register area.

2.4.5.3.2. Configuration area

The configuration area, accessed via AHB I/O bank 0, contains two registers that provide
status information and allow the user to generate interrupts from the Xilinx System
Monitor’s outputs. Write accesses to the configuration area have no AHB wait state and read
accesses have one wait state. To ensure correct operation, only word (32-bit) sized
accesses should be made to the configuration area.

2.4.5.3.3. System Monitor register area

The System Monitor register area is located in AHB I/O bank 1 and provides a direct-
mapping to the System Monitor’s Dynamic Reconfiguration Port. The System Monitor’s first
register is located at address offset 0x00000000 in this area.
Since the System Monitor documentation defines its addresses using half-word addressing,
and AMBA uses byte-addressing, the addresses in the System Monitor documentation
should be multiplied to get the correct offset in AMBA memory space. If the Configuration
register bit WAL is ‘0’ the address in System Monitor documentation should be multiplied by
two to get the address mapped by the AMBA wrapper. A System Monitor register with
address n is at AMBA offset 2*n. If the Configuration register bit WAL is ‘1’, all registers
start at a word boundary and the address in the System Monitor documentation should be
multiplied by four to get the address mapped in AMBA address space. In this case, a System
Monitor register with address n is at AMBA offset 4*n. The wrapper always makes a single
register access as the result of an access to the System Monitor register area. The size of
the AMBA access is not checked and to ensure correct operation the mapped area should
only be accessed using half-word (16-bit) accesses. If the core has been implemented with
AMBA split support, it will issue a SPLIT response to all accesses made to the mapped
System Monitor registers.
For a description of the System Monitor’s capabilities and configuration, please refer to the
Xilinx Virtex-5 FPGA System Monitor User Guide.

© Accemic GmbH & Co. KG 2009
Revision: 2.3/ 30.03.2009
Page 41 of 66

hidICE demonstration
system for SPARC V8
(LEON3)

2.4.5.4. Timer
The General Purpose Timer Unit provides a common prescaler and decrementing timer(s).
Number of timers is configurable through the ntimers VHDL generic in the range 1 to 7.
Prescaler width is configured through the sbits VHDL generic. Timer width is configured
through the tbits VHDL generic. The timer unit acts a slave on AMBA APB bus. The unit
implements one 16 bit prescaler and 3 decrementing 32 bit timer(s). The unit is capable of
asserting interrupt on timer(s) underflow. Interrupt is configurable to be common for the
whole unit or separate for each timer.

Figure 2-16: Timer overview

The prescaler is clocked by the system clock and decremented on each clock cycle. When
the prescaler underflows, it is reloaded from the prescaler reload register and a timer tick is
generated. The operation of each timer is controlled through its control register. A timer is
enabled by setting the enable bit in the control register. The timer value is then
decremented on each prescaler tick. When a timer underflows, it will automatically be
reloaded with the value of the corresponding timer reload register if the restart bit in the
control register is set, otherwise it will stop at -1 and reset the enable bit.
The timer unit can be configured to generate common interrupt through a VHDL-generic.
The shared interrupt will be signalled when any of the timers with interrupt enable bit
underflows. The timer unit will signal an interrupt on appropriate line when a timer
underflows (if the interrupt enable bit for the current timer is set), when configured to
signal interrupt for each timer. The interrupt pending bit in the control register of the
underflown timer will be set and remain set until cleared by writing ‘0’.
To minimize complexity, timers share the same decrementer. This means that the minimum
allowed prescaler division factor is ntimers+1 (reload register = ntimers) where ntimers is
the number of implemented timers.
By setting the chain bit in the control register timer n can be chained with preceding timer
n-1. Decrementing timer n will start when timer n-1 underflows.
Each timer can be reloaded with the value in its reload register at any time by writing a
‘one’ to the load bit in the control register. The last timer acts as a watchdog, driving a
watchdog output signal when expired, when the wdog VHDL generic is set to a time-out
value larger than 0. At reset, the scaler is set to all ones and the watchdog timer is set to
the wdog VHDL generic, 0xFFF.

© Accemic GmbH & Co. KG 2009
Revision: 2.3/ 30.03.2009
Page 42 of 66

hidICE demonstration
system for SPARC V8
(LEON3)

3. Installation

3.1. Xilinx ML507 boards

3.1.1. Board Interconnection
The hidICE synchronization interface is implemented by using the following resources:

Signals Target Emulation
Synchronization clock
(differential)

J12 (p)
J13 (n)

J10 (p)
J11 (n)

Synchronization data
(Mictor cable)

P22 P22

OCD connection P22 (from emulation) P3

Table 3-1: Board interconnection

IMPORTANT: Set J54 to OFF.

In a later version the Xilinx Rocket IO (high-speed communication link) can be used for
synchronization.

hidICE Based Emulator

Emulator
(FPGA #2)

Target
(FPGA #1)

Emulator logic

Trace recorder

Code coverage

Benchmarking

Profiling

Full
trace
data

Emulation

LEON3
core

SoC

LEON3
core

Peripherals hi
dI

C
E

IP

hi
dI

C
E

IP

Sync data

FPGA #1
(Target)

P22

Sync data

Sync clock out
(J12/J13)

FPGA #2
(Emulation)

Sync clock in
(J10/J11)

P22

OCD interface
(P3)

J54 = OFF

Figure 3-1: hidICE evaluation system. Set J54 to OFF.

© Accemic GmbH & Co. KG 2009
Revision: 2.3/ 30.03.2009
Page 43 of 66

hidICE demonstration
system for SPARC V8
(LEON3)

3.1.2. Board modification
Both boards are connected by the Mictor cable (P22). The pin P22_14 is connected to the
VCC3V3 net of each board.

Figure 3-2: Mictor connector

To prevent a cross current between the boards, the resistor R82 should be removed from
one of the boards. Alternatively, both boards should be powered by the same supply.

Figure 3-3: R82 location (bottom)

© Accemic GmbH & Co. KG 2009
Revision: 2.3/ 30.03.2009
Page 44 of 66

hidICE demonstration
system for SPARC V8
(LEON3)

3.1.3. Power on / off sequence
If both boards are powered by different supplies (R82 removed), the following sequence
should be used for power on and power off:

Power on:

1. Turn on the target board.
2. Turn on the emulation board.

Power off:

3. Turn off the emulation board.
4. Turn off the target board.

The target board checks the input level on the mictor_in[2] input (FPGA pin A24).
If the emulation board is not connected or not powered, the mictor_in[2] input is pulled
down and disables all synchronization output signals of the target board.
If the emulation board is powered on, the mictor_in[2] input is driven high by the emulation
board and enables the synchronization outputs.

© Accemic GmbH & Co. KG 2009
Revision: 2.3/ 30.03.2009
Page 45 of 66

hidICE demonstration
system for SPARC V8
(LEON3)

3.1.4. Configuration Options
The hidICE demonstration system can be configured by the following major devices:

• Xilinx download cable (JTAG)
• Two Platform Flash PROMs
• System ACE controller (JTAG)

The configuration mode is controlled by the 8pol. DIP switch SW3

Switch
(SW3)

Function
Description

1 Config Address [2]

2 Config Address [1]

3 Config Address [0]

4 MODE [2]

5 MODE [1]

6 MODE [0]

7 Not used

8

System ACE
Configuration
(On = Enable,
Off = Disable).

When enabled, the System ACE controller configures the
FPGA from the CF card whenever a card is inserted or
the SYSACE RESET button is pressed.

Table 3-2: Configuration settings by SW3

SW3 [4:6]
Mode[2:0]

Mode

000
Master Serial (Platform Flash PROM, up to four
configurations)

001 SPI (One configuration)

010 BPI Up (Parallel NOR Flash, up to four configurations)

011 BPI Down (Parallel NOR Flash, up to four configurations)

100
Master SelectMAP (Platform Flash PROM, up to four
configurations)

101 JTAG (PC4, System ACE up to eight configurations)

110
Slave SelectMAP (Platform Flash PROM, up to four
configurations)

111
Slave Serial (Platform Flash PROM, up to four
configurations)

Table 3-3: Configuration mode settings by SW3[4:6]

3.1.4.1. Xilinx download cable (JTAG)

The JTAG configuration port for the board (J1) allows for device programming and FPGA
debug. The JTAG port supports the Xilinx Parallel Cable III, Parallel Cable IV, or Platform
USB cable products. Third-party configuration products might also be available. The JTAG
chain can also be extended to an expansion board by setting jumper J21 accordingly.

© Accemic GmbH & Co. KG 2009
Revision: 2.3/ 30.03.2009
Page 46 of 66

hidICE demonstration
system for SPARC V8
(LEON3)

3.1.4.2. Two Platform Flash PROMs
The two onboard Xilinx XCF32P Platform Flash PROM configuration storage devices offer
a convenient and easy-to-use configuration solution for the FPGA. The Platform Flash
PROM holds up to two separate configuration images (up to four with compression) that
can be accessed through the configuration address switches SW3[3:1]]. To use the Platform
Flash PROM to configure the FPGA, the configuration DIP switch SW3 must be set to the
position 00011001.
The Platform Flash PROM can program the FPGA by using the master or slave configuration
in serial or parallel (SelectMap) modes. The Platform Flash PROM is programmed using
Xilinx iMPACT software through the board’s JTAG chain.

1. Start Xilinx Impact
V10.1

2. On the start screen
double-click on „PROM
File Formatter“

3. Select a PROM File
Name and press “Next”
two times

4. Add two (!) xcf32p
and press “Next” and
then “Finish” in the
following window

5. Click on “OK” and
then select your bitfile,
when asked for
another one press “No”

© Accemic GmbH & Co. KG 2009
Revision: 2.3/ 30.03.2009
Page 47 of 66

hidICE demonstration
system for SPARC V8
(LEON3)

6. Now run “Operations
-> Generate File”

7. In the Boundary
Scan Window: right-
click on the first xcf32p
and select “Add new
configuration file…”
and choose “[PROM
File Name]_0.mcs”

8. Right-click again
and select “Set
Programming
Properties…”

9. Set parameters
according to the
window: set “Verify”,

© Accemic GmbH & Co. KG 2009
Revision: 2.3/ 30.03.2009
Page 48 of 66

hidICE demonstration
system for SPARC V8
(LEON3)

set “Erase before
Programming”, set
“Parallel Mode”, set
“During Configuration
PROM is Configuration
Master”, set Clock to
“Internal Clock (20
MHz), jumper setting
on the board has to be
“00011001”

10. To finish, right-
click on first xcf32p
and select “Program”

© Accemic GmbH & Co. KG 2009
Revision: 2.3/ 30.03.2009
Page 49 of 66

hidICE demonstration
system for SPARC V8
(LEON3)

3.2. Accemic MDE software

3.2.1. Getting started

1. Start Accemic MDE
2008

2. On the start screen
delete all existing
processors and projects by
clicking the “minus” sign
(bottom left in figure)

3. Now add the new
processor by clicking on
the “plus” sign (bottom
left)

4. In the opening window
choose the following
settings: Manufacturer
“Accemic”, Family
“SPARC”, Device “LEON3
ML507 orig” and Interface
“Accemic Leon 3
Emulator”

5. Click on “OK”, in the
next window just press
“Next”, in the following
window select your serial
port (COM1 here shown),
then continue with “Next”
and then “Finish” in next
window

© Accemic GmbH & Co. KG 2009
Revision: 2.3/ 30.03.2009
Page 50 of 66

hidICE demonstration
system for SPARC V8
(LEON3)

6. Click on “Debug” and
choose “Connect” to connect
the processors

7. Your processor window
should now look like the
screen on the right. Now you
can add your project by again
using the “plus” sign (bottom
left)

8. Add project CPU0_Test
(use ELF for file type) in the
Project Explorer

9. Add project CPU1_Test
(use ELF for file type) in the
Project Explorer

10. Add project CPU2_DMA
(use ELF for file type) in the
Project Explorer

11. Drag CPU0_Test to
Processor 1 Core 0

12. Drag CPU1_Test to
Processor 1 Core 1

13. Drag CPU2_DMA to
Processor 1 Core 2

15. Power on target board

© Accemic GmbH & Co. KG 2009
Revision: 2.3/ 30.03.2009
Page 51 of 66

hidICE demonstration
system for SPARC V8
(LEON3)

16. Power on emulator board

17. Click on “Debug” and then
“Restart”

18. To start all cores press

19. To stop all cores press

20. Press if you want to
display the AHB trace

21. Press if you want to
display the instruction trace

22. The menu item
Debug->”Toggle speed” does
switch between 50 and 5 MHz
clock for the target board

© Accemic GmbH & Co. KG 2009
Revision: 2.3/ 30.03.2009
Page 52 of 66

hidICE demonstration
system for SPARC V8
(LEON3)

3.2.2. Processor state window
The Processor Window allows the user to view and modify the processor’s register fields in
both symbolic and numeric format, which puts an end to the tedious process of searching
through manual pages for register descriptions. When the user selects a register, the actual
processor’s memory is read and displayed.

Figure 3-4: Processor state window

By clicking on a module an information window will appear, where specified information on
the module is displayed. In addition, the visible registers of the selected module can be
edited by double-clicking on them.

Figure 3-5: Processor state window resource

© Accemic GmbH & Co. KG 2009
Revision: 2.3/ 30.03.2009
Page 53 of 66

hidICE demonstration
system for SPARC V8
(LEON3)

Around the core the state and the direction of the port pins are displayed. Used pins are
displayed in light-grey. By moving the mouse over one of the pins, a hint will be displayed,
that shows which port pin this is.
If the input pin state is low, the pin is displayed in white color. If the input pin state is high,
the pin is displayed in yellow color.
By pressing the ‘Strg’ button and clicking on a pin which is not grey, the direction of the pin
will be toggled.
By clicking on a pin which is not grey, the output value of the pin will be toggled.

Pin state Pin colour Actions available
Output low White

Left click -> Set high
Strg + Left click -> Set to input

Output high Yellow Left click -> Set low
Strg + Left click -> Set to input

Input low White Strg + Left click -> Set to output
Input high Yellow Strg + Left click -> Set to output

Table 3-4: Processor state window I/O pin actions

I/O
port
pin

Direction Signal

P_0_2 Input Rotation encoder push
P_0_3 Output Piezo
P_0_4 Input Switch East
P_0_5 Input Switch North
P_0_6 Input Switch South
P_0_7 Input Switch West
P_0_8 Output LED4
P_0_9 Output LED5
P_0_10 Output LED6
P_0_11 Output LED7
P_0_12 Output LED Center
P_0_13 Output LED East
P_0_14 Output LED North
P_0_15 Output LED South
P_0_16 Output LED West
P_0_17 Input DIP-Switch 1
P_0_18 Input DIP-Switch 2
P_0_19 Input DIP-Switch 3
P_0_20 Input DIP-Switch 4
P_0_21 Input DIP-Switch 5
P_0_22 Input DIP-Switch 6
P_0_23 Input DIP-Switch 7
P_0_24 Input DIP-Switch 8

Table 3-5: I/O pins overview

© Accemic GmbH & Co. KG 2009
Revision: 2.3/ 30.03.2009
Page 54 of 66

hidICE demonstration
system for SPARC V8
(LEON3)

3.3. Sample Projects

3.3.1. Target Board Buttons and LEDs

LED 0:
Heartbeat

LED 1: Reset

LED 4..7:
Used by TestCPU_0
program

Push Button West
TestCPU_1:
Decrement hit counter

Push Button Center
Forces integrity error

Push Button South
TestCPU_0:
Decrement reload value

Push Button North
TestCPU_0:
Increment reload value

Push Button East
TestCPU_1:
Increment hit counter

Reset button

LED 2:
Emulation
board is present

Figure 3-6: Target LEDs / Buttons for sample projects

© Accemic GmbH & Co. KG 2009
Revision: 2.3/ 30.03.2009
Page 55 of 66

hidICE demonstration
system for SPARC V8
(LEON3)

3.3.2. Emulation Board LEDs

Figure 3-7: Emulation LEDs for sample projects

3.3.3. CPU0_Test
• Interrupt handling for the General Purpose Timer 1. On each overrun the timer is

reloaded and the LEDs 4 to 7 are incremented.
• Interrupt handling for the south and north buttons. On each hit the reload value for

Timer 1 is incremented or decremented.
• Test procedures for single stepping testing and C definition.
• The unit TestDMA does test the DMA Transfer. It initializes an array

(DMASourceData) and starts the transfer. When finished the DMADestinationData
does contain the same data as DMASourceData. A transfer is restarted if the DMA is
ready.

3.3.4. CPU1_Test
• Interrupt handling for the west and east buttons. On each hit a counter (hitCounter)

is incremented or decremented. The behavior can easily be observed by using the
online watch function in the global variable window, when the application is running.

• Test procedures for single stepping testing and C definition.

© Accemic GmbH & Co. KG 2009
Revision: 2.3/ 30.03.2009
Page 56 of 66

hidICE demonstration
system for SPARC V8
(LEON3)

3.3.5. CPU2_DMA
CPU2_DMA contains a software implemented DMA controller.
A transfer is started by writing the transfer size and the ENABLE_DMAA bit to the DMACA
register. After that the controller transfers the amount of words from the source address
(DMASA) to the destination (DMADA). After each operation the source and destination
addresses are incremented. When the last word is transferred the DMACA register is
cleared.

//DMA Controller
#define DMA_ADR 0x40030000

// Control/status register A
#define DMACA (volatile unsigned int*)(DMA_ADR+0)
#define ENABLE_DMAA 0x10000
//Transfer source address register
#define DMASA (volatile unsigned int*)(DMA_ADR+8)
//Transfer destination address register
#define DMADA (volatile unsigned int*)(DMA_ADR+12)

/*--

FUNCTION: DMALoop

DESCRIPTION: Waits until ENABLE_DMAA is set in DMACA; Starts transfer
 from DMASA to DMADA. Size is defined in lowest 16 of DMACA.

---*/
void DMALoop()
{
 unsigned int toTransfer;
 unsigned int* psource;
 unsigned int* pdest;

 *DMACA=0;

 while(1)
 {
 if(*DMACA & ENABLE_DMAA)
 {
 toTransfer = *DMACA & 0xFFFF;
 psource = (int*)*DMASA;
 pdest = (int*)*DMADA;

 while(toTransfer--)
 {
 *pdest++ = *psource++;
 }
 DMACA = 0;/ signal end of transfer */
 }
 }
}

Figure 3-8: Software DMA controller code snippet

© Accemic GmbH & Co. KG 2009
Revision: 2.3/ 30.03.2009
Page 57 of 66

hidICE demonstration
system for SPARC V8
(LEON3)

3.3.6. CPU(x)_Template
For each CPU a template project is provided, which includes the settings for correct linking
to the CPU specific start address range: 0x40000000+(x)*0x10000.

© Accemic GmbH & Co. KG 2009
Revision: 2.3/ 30.03.2009
Page 58 of 66

hidICE demonstration
system for SPARC V8
(LEON3)

3.4. Load and modify the LEON3 template projects

• First you have to install Java (www.java.com)
• Then you can install the Toolchain for the Leon-Processor from Aero-Flex Gaisler.

(www.gaisler.com). It's called GRTools.
• Now you can open Eclipse that comes with this toolchain. It looks like the next

picture.

• Click „File“ → „Import“. The following window opens. Please choose „Existing Projects
into Workspace”.

© Accemic GmbH & Co. KG 2009
Revision: 2.3/ 30.03.2009
Page 59 of 66

hidICE demonstration
system for SPARC V8
(LEON3)

• Select the Hidice_template_cpu0 and select „copy into workspace“
• Go 2 steps back and do the same for the Hidice_template_cpu1. Your workspace now

should look like as follows:

© Accemic GmbH & Co. KG 2009
Revision: 2.3/ 30.03.2009
Page 60 of 66

hidICE demonstration
system for SPARC V8
(LEON3)

• When you click right on the two projects you can change the names with „rename“
• Click „File“ → „New“ → „Source File“
• Now you can add your source code.
• When you are ready, click „Project“ → „Build Project“
• Now you can find the output-file in your Workspace → Project-Name → Debug (or

Release)

© Accemic GmbH & Co. KG 2009
Revision: 2.3/ 30.03.2009
Page 61 of 66

hidICE demonstration
system for SPARC V8
(LEON3)

3.5. Gaisler software
GRLIB is distributed as a gzipped tar-file and can be installed in any location on the host
system.
The distribution has the following file hierarchy:

• bin various scripts and tool support files
• boards support files for FPGA prototyping boards
• designs template designs
• doc documentation
• lib VHDL libraries
• netlists Vendor specific mapped netlists
• software software utilities and test benches
• verification test benches

© Accemic GmbH & Co. KG 2009
Revision: 2.3/ 30.03.2009
Page 62 of 66

hidICE demonstration
system for SPARC V8
(LEON3)

4. Appendix

4.1. Further development
The following tasks are still under development:

• Real time trace analysis
• hidICE Supported Software Self Tests
• Pin Count Optimization / Port Reconstruction
• NEXUS class 3 interface

4.1.1. Real-Time Trace Analysis
The hidICE technology enables the access to extensive trace data. All AHB bus signals can
be monitored.
At each CPU / bus clock a few hundred signals will be available. This huge amount of data
requires a new approach for analysis. In this task we will implement a programmable trace
analyzer with the following key features:

• High level language programmable
• AHB bus analyzer
• Microcode sequencer

The analyzer can provide the following outputs:

• Trigger output for trace data capturing
• Breakpoints
• Performance measurement
• Runtime reflection

S
ig

na
l s

el
ec

tio
n

/
in

te
rp

re
te

r

hi
dI

C
E

 e
m

ul
at

or

Figure 4-1: Trace analyzer

© Accemic GmbH & Co. KG 2009
Revision: 2.3/ 30.03.2009
Page 63 of 66

hidICE demonstration
system for SPARC V8
(LEON3)

4.1.2. hidICE Supported Software Self Tests
TBD

4.1.3. Pin Count Optimization / Port Reconstruction
TBD

4.1.4. NEXUS class 3 interface

In this task the emulator will be equipped with an industry standard NEXUS class 3
interface.

The hidICE emulation provides all trace information required for NEXUS class 3 trace (and
also much more trace information, which are not specified for the NEXUS interface, such as
DMA and CPU register trace).

By providing the NEXUS class 3 interface, already available 3rd party tools can be used to
access the trace data provided by the hidICE emulation. This approach is reasonable as a
fast and cost-efficient start-up with the hidICE technology. In further steps, the interface
can be expanded to access all possible trace information, provided by hidICE.

C
om

pe
ra

to
r

Tr
ac

e
D

at
a

FI
FO

Figure 4-2: hidICE Emulator with Nexus interface

4.2. Issues and Limitations

Please note that the Accemic MDE for SPARC V8 version is a beta release and not
completely tested.

© Accemic GmbH & Co. KG 2009
Revision: 2.3/ 30.03.2009
Page 64 of 66

hidICE demonstration
system for SPARC V8
(LEON3)

4.3. References

GRLIB IP Library User’s Manual, Version 1.0.20, Gaisler Research, 2009.
http://gaisler.com/products/grlib/grlib.pdf

GRLIB IP Core User’s Manual, Version 1.0.20, Gaisler Research, 2009.
http://gaisler.com/products/grlib/grip.pdf

GRLIB VHDL source code, Version 1.0.20, Gaisler Research, 2009.
http://www.gaisler.com/products/grlib/grlib-gpl-1.0.20-b3403.tar.gz

BCC - Bare-C Cross-Compiler User’s Manual
included in ftp://gaisler.com/gaisler.com/grtools/GRTools-20081001.exe

Virtex-5 FXT FPGA ML507 Evaluation Platform
http://www.xilinx.com/products/devkits/HW-V5-ML507-UNI-G.htm

ML505/ML506/ML507 Evaluation Platform User Guide
http://www.xilinx.com/support/documentation/boards_and_kits/ug347.pdf

Hochberger, C.; Weiss, A., "A new methodology for debugging and validation of soft cores,"
Field Programmable Logic and Applications, 2008. FPL 2008. International Conference on ,
vol., no., pp.551-554, 8-10 Sept. 2008
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=4630006&isnumber=4629890

Hochberger, C.; Weiss, A., "Acquiring an exhaustive, continuous and real-time trace from
SoCs," Computer Design, 2008. ICCD 2008. IEEE International Conference on , vol., no.,
pp.356-362, 12-15 Oct. 2008
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=4751885&isnumber=4751825

http://gaisler.com/products/grlib/grlib.pdf
http://gaisler.com/products/grlib/grip.pdf
http://www.gaisler.com/products/grlib/grlib-gpl-1.0.20-b3403.tar.gz
ftp://gaisler.com/gaisler.com/grtools/GRTools-20081001.exe
http://www.xilinx.com/products/devkits/HW-V5-ML507-UNI-G.htm
http://www.xilinx.com/support/documentation/boards_and_kits/ug347.pdf
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=4630006&isnumber=4629890
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=4751885&isnumber=4751825

© Accemic GmbH & Co. KG 2009
Revision: 2.3/ 30.03.2009
Page 65 of 66

hidICE demonstration
system for SPARC V8
(LEON3)

4.4. Part List

Part Quantity Supplier Order number
Xilinx ML507 board 2 Xilinx HW-V5-ML507-UNI-G
RF Coax cable, SMA M/M cable 12” 2 Digikey 744-1276-ND
Mictor cable 18“ M/M 1 Emulation

Technology,
Inc.

MIC-38-CABLE-MM-18

Cable null modem DB9M to DB9F 1 Digikey AE9880-ND
Accemic MDE for Sparc8 1 Accemic MDE-2008-SPARC8
Accemic MDE Multiprocessor Support 1 Accemic MDE-2008-MP
PC (1 COM port, 1 USB port) 1 Accemic MDE-2008-MP
Xilinx ML507 board for NEXUS class3
interface, not implemented yet
(optionally)

1 Xilinx HW-V5-ML507-UNI-G

ISE™ Foundation™ Software
(optionally)

1 Xilinx EF-ISE-FND

ChipScope Pro™ Tool
(optionally)

1 Xilinx EF-CSP-PRO

Platform Cable USB II
(optionally)

1 Xilinx HW-USB-II-G

Table 4-1: hidICE demonstration system part list

Accemic offers full assembled demonstration systems and individual training and support.

© Accemic GmbH & Co. KG 2009
Revision: 2.3/ 30.03.2009
Page 66 of 66

hidICE demonstration
system for SPARC V8
(LEON3)

4.5. Revision History

Revision Comment
2.1. - First public version
2.2. - Processor state window added

- SYSMON (ADC) added
- APB UART routed to COM2

2.3. - Board modification and power on / off sequence
description, required for independent power supplies

- Extended description of the system integrity control
- Description of the processor state window added

Table 4-2: Revision history

4.6. Current Versions
This manual corresponds with the following versions:

System Software version
Target board hidICE_3CV2_tar_V23_0.mcs
Emulation board hidICE_3CV2_emu_V23_0.mcs
Demonstration software V2.3
Accemic MDE V3.5.1

Table 4-3: Current software versions

	Contents
	Introduction
	Introduction in the hidICE technology
	Synchronization Interface
	Trace Data Access
	Further Applications

	LEON3 Processor
	Configuration
	Synthesis
	Distribution
	SPARC Conformance
	Software Development

	hidICE Evaluation System
	Hardware Description
	ML507 Features

	Implementation overview
	Target SoC implementation
	Emulator implementation

	Synchronization
	Functionality
	Memory Map
	Periphery Control Registers
	Special Functions

	Interrupts
	Interrupt instantiation
	Interrupt processing

	On-Chip Debug Support
	Hardware implementation
	Accemic MDE
	GRMON / GRMON RCP

	System Integrity Control
	Peripherals
	GRGPIO - General Purpose I/O Port
	UART
	ADC
	Timer

	Installation
	Xilinx ML507 boards
	Board Interconnection
	Board modification
	Power on / off sequence
	Configuration Options
	Xilinx download cable (JTAG)
	Two Platform Flash PROMs

	Accemic MDE software
	Getting started
	Processor state window

	Sample Projects
	Target Board Buttons and LEDs
	Emulation Board LEDs
	CPU0_Test
	CPU1_Test
	CPU2_DMA
	CPU(x)_Template

	Load and modify the LEON3 template projects
	Gaisler software

	Appendix
	Further development
	Real-Time Trace Analysis
	hidICE Supported Software Self Tests
	Pin Count Optimization / Port Reconstruction
	NEXUS class 3 interface

	Issues and Limitations
	References
	Part List
	Revision History
	Current Versions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

