
© Actum Solutions 0371700 Page 1 of 16

Application note on REALIZER

Title: New features described
Date: 9 February 1999
Our ref. 0371700
Subject: Version 4.00
Author: René Balvers

Introduction

This document explains how Realizer® Version
4 generates code and how this code is
structured.

It describes the various properties of the
parameters and algorithms that Realizer uses to
generate the code.

Realizer technology is based on the demands
that have been identified in the world of
embedded applications. Especially the need for
a comfortable tool that would deal with the
timing aspects of such applications is
addressed with the availability of Realizer®
Version 4.

Scope

This document assumes that the reader is either
a user of Realizer or is interested in the
working principles of Realizer. Basic
knowledge about microcontrollers and the way

they are programmed is mandatory. The target
audience are readers who are interested in the
working principles of Realizer® Version 4 or
are users of earlier versions of Realizer.

The reader is supposed to have elementary
experience in programming in assembly and
has dealt with timing aspects of
microcontroller applications.

All example schemes are for illustration
purposes only. The resulting code shown is
literally as generated by Realizer for the related
schemes.

For reasons of convenience, all the code has
been generated for STM’s ST62 series of
microcontrollers. Please note that Realizer can
generate code for more than just this controller

architecture. For information about other
supported microcontrollers, please visit our
web site: www.actum.com.

Realizer Application note on: New features described (Version 4.00)

© Actum Solutions 0371700 Page 2 of 16

Standard Realizer generated code

Typically, the code generated by Realizer has a
structure as shown in figure 1.

Realizer can apply optimizations while
analysing the design and generating the code.
The next sections of this document describe
each of these optimisations.

New Extensions for Realizer® Version 4

With the release of V4 of Realizer a new and
extended set of optimizations are available.
Also known as Extensions, these features
challenge even the most experienced assembly
programmers.

The Version 4 Extensions can be listed as:

1. Periodic execution

2. Timed Interrupt execution

3. Subscheme input change

4. Compile-time operating system generation

5. Advanced hardware control

All the Version 4 Extensions are geared
towards the same goal of the previous versions:
To provide the users with a tool which realises
most of the microcontroller applications in a
very efficient and convenient way, without the
need to be an expert on assembly language.

However the Version 4 Extensions operate on
a much larger scale and with more impact. For
its working Version 4 Extensions greatly co-
operates closely with the designer/engineer.

Thus, Realizer gives your project with the best
of both worlds: designers/engineers expertise
and state of the art microcontroller design
programming technology.

In the next sections the Version 4 Extensions
by showing an example in which most of the
Extensions are used.

I/O Initialization

Keep track of
elapsed time

Read inputs
Calculate data
Write outputs

Update of:
- Copies
- Statemachines

Update timer
datastructures

Chip initialization

Reset entry point

Timer Initialization

Data memory
Initialization

TIMER-IRQ

Figure 1 - Overall structure of
Realizer generated code

Realizer Application note on: New features described (Version 4.00)

© Actum Solutions 0371700 Page 3 of 16

Periodic execution

When the designer encounters a task that is
only supportive but has to be serviced
regularly, he now can put this information into
the design. The following example shows this.

The application is a room temperature
controller (thermostat). It should measure the
room temperature, compare it with the
required temperature, and take action if it is
too low.

Figure 2 shows a part of this scheme. The

complete design can be downloaded from our
web-site: www.actum.com.

In this figure we see that after the compare
using a subtraction, filtering is applied to
prevent the controller from oscillating when
differences are too small.

The filtering is built with the histeresis
comparator and the Heater Delay timer of 1
second.

Please note that the constant of 20 at the input
of the comparator is the equivalent of about
0.5 ºC, which is determined by the electronic
circuit that drives the input pin of the chip.

To increase the accuracy of such a controller
one would like to have a moving average filter

that would sample the temperature every 15
seconds and apply a moving average on those
4 samples.

A basic scheme (using Realizer V3.2 or earlier)
that would do that, looks like the one shown
in figure 3.

It shows that each program loop (please refer
to figure 1 for an overview of the code
generated by Realizer) in this scheme is
recalculated. One could very easily get the
impression that a lot of processor time is

wasted since it is “obvious” that
recalculation is only needed once every 15
seconds.

The Version 4 Extensions allow designers to
put such information into the design.

In figure 4 we see that extra information is put
into the scheme at the lower left corner of the
drawing area. This is done by a right mouse
click on the sheet itself. Just like an input
symbol is connected to one of the physical
pins of the microcontroller in the connection
dialogue box, a periodic event is put onto the
sheet.

The following figure shows this dialogue box
(figure 5).

A
DSetpoint

No
SBYTE

A
DMeasurement

No
SBYTE

+-
A

B

B>A

B<CC

B=A=C

20

0 T
1:00
No

Heater Delay

I O

Figure 2 - Room temperature controller (part of ~)

TYPE=UINT Out+
+

÷
A

B

Q

R4

+
+

+
+

A
DMeasurement

Measured temperature
UBYTE _

D

C

Q

Q
_

D

C

Q

Q
_

D

C

Q

Q

-1

Z Z
-1

Z Z7.5
Clock every 15 Sec.

Clock

O

Figure 3 - Basic moving average filter

Realizer Application note on: New features described (Version 4.00)

© Actum Solutions 0371700 Page 4 of 16

The result is that optimised code is generated
according to this information. The following
figure shows the structure of the optimised
code (figure 6).

Just as an experienced assembly programmer
would do, it will keep track of time and, when
time has elapsed, it will execute the
appropriate code. All this is being generated
automatically by Realizer® Version 4.

TYPE=UINT Out++

÷
A

B

Q

R4

++++

A
DMeasurement

Measured temperature
UBYTE

-1
Z Z

-1
Z Z

-1
Z Z

Periodic 15 Sec.

Execution Conditions:

Figure 4 - Moving average filter in Version 4

Figure 5 - Event Connection dialogue box (to the
scheme)

Normal code
execution

Normal code
execution

Periodic
code part

Update timer
datastructures

Initialization

Reset entry point

N

Y

Time
elapsed

?

TIMER-IRQ

O
pt

im
iz

ed
 p

ar
t (

Pe
rio

di
c

O
pt

im
iz

at
io

n)

Figure 6 - Structure of Realizer
code using the Periodic-event

Realizer Application note on: New features described (Version 4.00)

© Actum Solutions 0371700 Page 5 of 16

Timed Interrupt execution

When writing assembly code you would use a
timer interrupt to generate events on a regular
basis to schedule tasks that need to be done at
a specified interval.

A good example to show this is the
multiplexing of an LED-display. Saving
valuable I/O resources, a combination of 4
digit outputs and 7 segment outputs plus an
appropriate amount of software would do that
job. The human eye would not see the
switching of the display refreshment as long as
the software is fast enough.

The following scheme shows how the
Realizer® Version 4 design looks like (figure
7).

On the scheme an event called Timed Interrupt
is applied, notifying Realizer® Version 4 to
generate code that would execute this
subscheme every 30 milliseconds. This is
shown in the drawing at the lower left-hand
corner. The multiplexing rhythm is thus fixed
at 30 mSec. The state machine (state diagram)
will advance to the next state each time the
scheme is executed, selecting a different
pattern at the segments output and driving a
different digit to the active state.

The code generated by Realizer® Version 4
has the structure as shown in figure 8.
Comparing the structures of figures 1, 6 and 8,
you can see the influence of the event

attributes to the structure of the generated
code.

Normal code
execution

Update timer
datastructures

Initialization

Reset entry point

Timed Interrupt
code part

N

Y

Time
elapsed

?

TIMER-IRQ

Return from Interrupt

Figure 7 - Structure of
Timed interrupt execution

In1

In2

In3

In4

} 0
3
_

0

1 Out

0

1

2

3

Digit0

D
ig

it1

Digit2

D
ig

it3

1»
A

B

Z

1»
A

B

Z

Digit3

Digit1

Digit2

Digit3

Digit1

Digit2

Digit0 Digit 0 (lsd)

Digit 1

Digit 2

Digit 3 (msd)

B0

B1

W

B2

B3

B4

B5

B6

B7

d-segment

c-segment

b-segment

a-segment

f-segment

e-segment

g-segment

Timed Interrupt 0.03 Sec.
Conditional Execution:

Figure 8 - Multiplexing LED display, drawn in Realizer® Version 4

Realizer Application note on: New features described (Version 4.00)

© Actum Solutions 0371700 Page 6 of 16

Subscheme Input Change

Another optimization in Realizer® Version 4 is
the execution of code upon data change.

Realizer® Version 4 handles this in the same
transparent manner. By applying an attribute to
the subscheme, the particular subscheme is
only executed when the inputs of that
subscheme have shown a change with respect
to the previous execution.

So if you can identify parts of a design that
depend on information that does not change a
lot, you can use this optimization to increase
the execution speed of the overall design.

The following example shows this:

To show the value of an engine speed
indicator (4 digits showing the RPM of the
engine), you need to extract the digit
information from the measured value, see
figure 9.

For this you need 4 dividers and 4 index
tables. The tables convert the digit value (0..9)
to the segment information for the displays.

The structure of the code is similar to the
Timed event, but the decision is made upon
the status changes on the input of the
subscheme. See figure 10.

TYPE=UBYTE

TYPE=UBYTE

TYPE=UBYTE

TYPE=UBYTE

TYPE=UBYTE

In Out1

Out2

Out3

Out4

÷
A

B

Q

R

÷
A

B

Q

R

÷
A

B

Q

R

7-segm.tab

INDEX
I Q(I)
UBYTE

7-segm.tab

INDEX
I Q(I)
UBYTE

7-segm.tab

INDEX
I Q(I)
UBYTE

7-segm.tab

INDEX
I Q(I)
UBYTE

1000

100

10

Upon sub scheme input change
Execution Conditions:

Figure 9 - Convert to 7-segment data only upon input change

Normal code
execution

Normal code
execution

Subscheme
code

Update timer
datastructures

Initialization

Reset entry point

N

Y

Subscheme
input(s)

changed?

TIMER-IRQ

Return from Interrupt

Figure 10 - Code structure for
Subscheme Input Change

Realizer Application note on: New features described (Version 4.00)

© Actum Solutions 0371700 Page 7 of 16

Compile time Operating System Generation

The advantages of the new Realizer V4
Extensions are that designer and computer
software co-operate each in their own field of
expertise. The designer simply puts in the data
about the application, Realizer takes care of
code generation and optimizations.

When dealing with (larger) computer systems,
this attitude has resulted to the development
and availability of operating systems and real-
time kernels. Not only for desktops but for
industrial controllers as well.

With the availability of smaller microcontrol-
lers, developers of tools have tried to optimize
the size and resource claims of their real time
kernels. Selecting a kernel for specific
applications is a process of making trade-offs
over and over again.

Now with Realizer V4 it is has become a
simple reality that the design tool incorporates
the generation of a real-time kernel depending
on the application.

It takes care of:

• Device drivers
• I/O register initialisation
• Interrupt serv. routines
• Data synchronisation (ISR <-> normal

code)
• Task synchronisation
• Re-use of data (index tables, etc.)
• Allocation of processing power
• And much more..

This is all being determined at compile time.

This is what we at Actum Solutions call:

Application Specific Kernel® = ASK®

On the fly, at compile time, Realizer generates
the optimal kernel for that particular applica-
tion. So there is nothing too much and nothing
too little in your kernel.

Examples

The pages in the back of this application note
show some advanced schematic designs in
which the features of Realizer® Version 4 are
show. Most of these examples can be found on
our web site: www.actum.com.

Pictures may tell you more than many
paragraphs of text.

Conclusion

With the optimizations implemented in
Realizer V3.20, a significant higher efficiency
can be reached.

With the Realizer® Version 4 Extensions,
Realizer is reaching the level of efficiency
(code and data sizes) of the experienced
assembly programmer. For the first time in
computer technology history, there is a tool
that programs your microcontroller as you
would do it yourself!

Please note that Realizer can only excel in this
task by using the information provided by the
designer. With the availability of powerful
desktop computers, the “cost” of compile
cycles has become a trivial.

It is important to realise that the optimizations
never interfere with the functionality of the
design. So one can experiment freely to
determine the right combination to trade off
the various gains using the optimizations,
either for code size, data memory size, or
speed.

For more information please visit our web site
at www.actum.com, send an e-mail to
info@actum.com or fax us at: +31 (0)72 576
2559.

Realizer Application note on: New features described (Version 4.00)

© Actum Solutions 0371700 Page 8 of 16

Appendix 1
Fast counter application - Schematics

The following description of an application is
added to this application note to illustrate the
features and properties of Realizer, especially

the new features that come with V4.00.

The application is a pulse counting device
used to measure the frequency of a digital
signal. It uses the interrupt sensitive inputs of

an ST6260 device from ST-Microelectronics.

It will filter the measured frequency so that a
readable value is obtained. It converts these
values into displayable data and then drives a
4 digit 7-segment LED-display. Figure 11 shows
the basic block diagram.

The 4 major symbols are the sub-scheme
symbols that represent the sub schemes.

The next diagrams show the 4 sub schemes in
detail. Parts of these sub schemes are used in
the first part of this application note. Please

note that they are all made using Realizer®
Version 4.

In appendix 2, the Realizer Report File
(FASTCNT.RPF) is shown. It informs the designer

what resources are used in which way. Also
the code generated by Realizer is shown, with
some comments added for your convenience.

Latch.sch

Filter - Limit

In Out

Input.sch

Counter

Out

convert.sch

Convert
In Out1

Out2

Out3

Out4

display.sch

Display
In1

In2

In3

In4

Main scheme: The overview.

Figure 11 - Overview of the fast counter application

Counter

No

0

Up

Dn Val

UINT

Clr

Pr

Zero

0

Out

Count

.

_

D

C

Q

Q

-1
Z Z

0.5
Clocking value into D-ff

Clocker

O
1

Input section: Measuring the frequency

Figure 12 - Fast Counter: Input section

In

Out

9999

0

I O

-1

Z Z

++

÷
A

B

Q

R4

-1

Z Z
-1

Z Z

++ ++

Processing section: Filter and limit the measured value

Periodic 3 Sec.
Execution Conditions:

Figure 13 - Fast Counter: Filter and Limit section

Realizer Application note on: New features described (Version 4.00)

© Actum Solutions 0371700 Page 9 of 16

In1

In2

In3

In4

} 0
3
_

0

1 Out

0

1

2

3

Digit0

D
ig

it1

Digit2

D
ig

it3

1»
A

B

Z

1»
A

B

Z

Digit3

Digit1

Digit2

Digit3

Digit1

Digit2

Digit0 Digit 0 (lsd)

Digit 1

Digit 2

Digit 3 (msd)

B0

B1

W

B2

B3

B4

B5

B6

B7

d-segment

c-segment

b-segment

a-segment

f-segment

e-segment

g-segment

Display section: Driving the display in multiplexed mode.

Timed Interrupt 0.03 Sec.
Execution Conditions:

Figure 14 - Fast Counter: Display section

TYPE=UBYTE

TYPE=UBYTE

TYPE=UBYTE

TYPE=UBYTE

TYPE=UBYTE

In Out1

Out2

Out3

Out4

÷
A

B

Q

R

÷
A

B

Q

R

÷
A

B

Q

R

7-segm.tab

INDEX
I Q(I)
UBYTE

7-segm.tab

INDEX
I Q(I)
UBYTE

7-segm.tab

INDEX
I Q(I)
UBYTE

7-segm.tab

INDEX
I Q(I)
UBYTE

1000

100

10

Convert section: Creating the information for each digit.

Upon sub scheme input change
Execution Conditions:

Figure 15 - Fast Counter: Conversion section

Realizer Application note on: New features described (Version 4.00)

© Actum Solutions 0371700 Page 10 of 16

Appendix 2 - Fast counter application -
Realizer Report File

This appendix shows the Realizer Report file
that was generated by Realizer V4 for the
sample application of appendix 1.

ST6260 Realizing Unit (V4.00) (c) 1990-99 Actum Solutions
Report file of project C:\REAL\EXAMPLES\V400\FastCnt\FastCnt.rpf
Scheme Version : 1.03
Report timestamp : Fri Oct 23 15:38:55 1998

Schematic dependencies and events:
--

C:\REAL\EXAMPLES\V400\FastCnt\Fastcnt.sch
 Scheme: C:\REAL\EXAMPLES\V400\FastCnt\Latch.sch
 Event: Periodic 3 Sec.
 Scheme: C:\REAL\EXAMPLES\V400\FastCnt\Input.sch
 Event: Count=PB.2 interrupt
 Scheme: C:\REAL\EXAMPLES\V400\FastCnt\convert.sch
 Event: Upon sub scheme input change
 Scheme: C:\REAL\EXAMPLES\V400\FastCnt\display.sch
 Event: Timed Interrupt 0.03 Sec.

ST6260 (DIL20) connection overview:
--

Pin Name Alternative name Type I/O Description
 1: PB.0 Digit 0 (lsd) (BIT Output), 20 mA sink open drain output
 2: PB.1 Digit 1 (BIT Output), 20 mA sink open drain output
 3: TEST (), Test/program
 4: PB.2 Count (BIT Input), interrupt
 5: PB.3 (BIT Input), Not connected
 6: PB.6 Digit 2 (BIT Output), 20 mA sink open drain output
 7: PB.7 Digit 3 (msd) (BIT Output), 20 mA sink open drain output
 8: PA.0 a-segment (BIT Output), 5 mA sink open drain output
 9: Vdd (), Power supply
 10: Vss (), Power supply
 11: PA.1 b-segment (BIT Output), 5 mA sink open drain output
 12: PA.2 c-segment (BIT Output), 5 mA sink open drain output
 13: PA.3 d-segment (BIT Output), 5 mA sink open drain output
 14: OSCin (), Oscillator
 15: OSCout (), Oscillator
 16: RESET (BIT Input), Active low
 17: NMI (BIT Input), Non Maskable Interrupt
 18: PC.4 f-segment (BIT Output), 5 mA sink open drain output
 19: PC.3 g-segment (BIT Output), 5 mA sink open drain output
 20: PC.2 e-segment (BIT Output), 5 mA sink open drain output

Hardware connections:
--

Symbolic name H/W name Type | Comment
Digit 0 (lsd) PB.0 20 mA sink open drain output |
Digit 1 PB.1 20 mA sink open drain output |
Digit 2 PB.6 20 mA sink open drain output |
Digit 3 (msd) PB.7 20 mA sink open drain output |
a-segment PA.0 5 mA sink open drain output |
b-segment PA.1 5 mA sink open drain output |
c-segment PA.2 5 mA sink open drain output |
d-segment PA.3 5 mA sink open drain output |
e-segment PC.2 5 mA sink open drain output |
f-segment PC.4 5 mA sink open drain output |
g-segment PC.3 5 mA sink open drain output |

Variable overview:
--

Total used bits : 23
Total used events : 5
Total used unsigned bytes : 20
Total used signed bytes : 0
Total used unsigned integers : 19

Realizer Application note on: New features described (Version 4.00)

© Actum Solutions 0371700 Page 11 of 16

Total used signed integers : 0
Total used longs : 0

Memory overview:
--

Total used RAM : 73 byte (000H->03FH,085H->08CH)
Total used ROM : 1714 byte (0080H->0732H) of 0F9DH

Note: The pins that are not used are defined as digital input with pull-up.
 The timer pin is configured as an output.

Realizer Application note on: New features described (Version 4.00)

© Actum Solutions 0371700 Page 12 of 16

Appendix 3 - Fast counter application -
Generated code

This appendix shows the code that Realizer V4
has generated for the sample application
discussed in appendix 1.

; ST Realizer (V4.00) : generated ST6260 Code Standard heading for each generated
; File : C:\REAL\EXAMPLES\V400\FastCnt\Fastcnt.asm project
; Scheme Version : 1.03
; Date : Fri Oct 23 15:38:50 1998
; Used variables : 52
; Used functions : 100

.VERS "ST6260"

.ROMSIZE 4

.DP_ON

.INPUT "Fastcnt.inc" Include variables and definitions

.INPUT "C:\real\LIB\v400\ST6260.inc" Include symbol libraries

.INPUT "C:\real\LIB\v400\st62lib.mac"

.INPUT "C:\real\LIB\v400\st62xx.mac"

.INPUT "C:\real\LIB\v400\st62eepr.mac"

.ORG 00080H Start at first ROM location
RROMST:

Project data included in the code
.ASCIZ "Fastcnt"
.ASCIZ "1.03"

Reset:
 LDI IOR,IOR_MASK Initialize chip
 LDI HWDR,0FFH

 LDI DRBR,010H
 LDI EECTL,000H

; DBG: initialize PORTB events Initialize I/O resources

; DBG: Enable interrupt on PORTB.2
PortInit:
 LDI DDRA,00FH
; LDI ORA,000H Optimized line
 LDI DRA,00FH
 LDI BUDRA,00FH
 LDI DDRB,0C3H
 LDI ORB,004H
 LDI DRB,0C3H
 LDI BUDRB,0C3H
 LDI DDRC,01CH
; LDI ORC,000H Optimized line
 LDI DRC,01CH
 LDI BUDRC,01CH

Rtcinit: Initialize hardware timer
 LDI PSC,015H
 LDI TCR,0CFH
 LDI TSCR,06DH
 CLR TICK
 LDI IOR,(IOR_MASK | 010H)
 RETI

RamInit: Initialize data memory with 0
 LDI A,0
 LDI X,000H
 LDI Y,62
RamInit1:
 LD (X),A
 INC X
 DEC Y
 JRNZ RamInit1

 iconstw v1n27,2,4 Initialize special symbols
 iconstb v2n2,5,1,0 (presets, etc.
 idltchwbww v2n6,4,v2n7,2,1,y2n5,4,0,0
 iconstw v3n7,2,10
 iconstw v3n6,2,100
 iconstw v3n4,4,1000

Realizer Application note on: New features described (Version 4.00)

© Actum Solutions 0371700 Page 13 of 16

 JP EIS03011
IS03011:
.BYTE 000H This is the index table for 7
.BYTE 07EH segment display
.BYTE 001H Note that one table is used to
.BYTE 030H implement the 4 index table symbols
.BYTE 002H
.BYTE 06DH
.BYTE 003H
.BYTE 079H
.BYTE 004H
.BYTE 033H
.BYTE 005H
.BYTE 05BH
.BYTE 006H
.BYTE 01FH
EIS03011:

RealMain: This is where the real thing starts
Rtc: Keep track of time elapsed since
 LDI IOR,IOR_MASK previous loop started
 LD A,TICK
 CLR TICK
 LDI IOR,(IOR_MASK | 010H)
 LD RTICK,A
RTIMEND:

 LD A,RTICK Pass it to the application
 JRNZ IRTC0001
 JP RTCSKIP
IRTC0001:
; DBG: Decrement 16 bit timers
 JRS 7,037H,RTC0001 Update timers if tick(s) was(were)
 sub2www 037H,4,RTICK,2,037H,4 detected
RTC0001:

RTCSKIP:

RINPEND:

; moved to TIMER1 interrupt: CALL SUB0002
 LDI IOR,000H Synchronize data between interrupt
 copyww y2n5,4,v0n5,4 service routine and normal
 LDI IOR,010H executed code

; moved to PORTB interrupt: CALL SUB0002

; check for time-out TIMED part:
 JRR 7,AT00001,_UNI0000 If 3 sec. have elapsed:
 LDI AT00001+0,1 Reload software timer
 LDI AT00001+1,43 and
 CALL SUB0001 execute the subscheme
_UNI0000:

; Input change detection on v0n7 SUBSCHEME INPUT CHANGE part:
 LD A,v0n7+0 is current value (msbyte)
 CP A,pv0n7+0 equal to previous one?
 JRNZ EXEC0003 no: execute subscheme
 LD A,v0n7+1 is current value (lsbyte)
 CP A,pv0n7+1 equal to previous one?
 JRNZ EXEC0003 no: execute subscheme
 JP NOEX0003 yes: skip this subscheme
EXEC0003:
 CALL SUB0003 Call it
NOEX0003:

; Disable interrupts for parameter passing Pass parameters to the interrupt
 LDI IOR,IOR_MASK driven display section
 copyww v0n9,2,x4n3,2 (the 4 digit data bytes)
 copyww v0n11,2,x4n5,2
 copyww v0n10,2,x4n4,2
 copyww v0n8,2,x4n2,2

; Enable interrupts
 LDI IOR,(IOR_MASK | 010H)

; moved to TIMER1 interrupt: CALL SUB0004
ROUTPEND:
 copyww v0n7,4,pv0n7,4 Update some previous values and
 LDI IOR,IOR_MASK backed up data registers
 LD A,BUDRA
 LD DRA,A
 LD A,BUDRB

Realizer Application note on: New features described (Version 4.00)

© Actum Solutions 0371700 Page 14 of 16

 LD DRB,A
 LD A,BUDRC
 LD DRC,A
 LDI IOR,(IOR_MASK | 010H)
 LDI HWDR,0FFH
 JP RealMain

SUB0001: Subroutine: Filter and Limit
 loopdelwww v0n5,4,sv1n22,4,v1n20,4
 loopdelwww v1n20,4,pv1n20,4,v1n21,4
 loopdelwww v1n21,4,pv1n21,4,v1n25,4
 add2www v0n5,4,v1n20,4,v1n23,4
 add2www v1n23,4,v1n21,4,v1n24,4
 add2www v1n24,4,v1n25,4,v1n26,4
 divwwww v1n26,4,v1n27,2,v1n29,4,0,0
 limfww v1n29,4,v0n7,4,0,9999
 copyww v0n5,4,sv1n22,4
 copyww v1n20,4,pv1n20,4
 copyww v1n21,4,pv1n21,4
 ret

Subroutine: Input, called from edge
SUB0002: ; interrupt driven sub routine sensitive interrupt service routine
 oscfb v2n0,0,1,49,100,T02006,2 and from timer interrupt serv. rout.
 edgebbb v2n0,0,1,pv2n0,1,1,v2n7,2,1
 loopdelbbb v2n7,2,1,pv2n7,3,1,v2n1,4,1
 eventb v2n8,6,1
 countfbbbbbbbwb
v2n8,6,1,pv2n8,7,1,v2n2,5,1,pv2n2,0,1,v2n1,4,1,v2n2,5,1,pv2n2,
0,1,v2n6,4,0,0,0,0,CT02000,4
 dltchwbww v2n6,4,v2n7,2,1,y2n5,4,0,0
 copybb v2n0,0,1,pv2n0,1,1
 copybb v2n7,2,1,pv2n7,3,1
 copybb v2n2,5,1,pv2n2,0,1
 ret

SUB0003: Subroutine: Convert
 divwwww v0n7,4,v3n4,4,v3n3,2,v3n1,4
 divwwww v3n1,4,v3n6,2,v3n17,2,v3n2,2
 divwwww v3n2,2,v3n7,2,v3n15,2,v3n8,2
 indtabww v3n8,2,v0n11,2,S03011,14,0 ! only one table is used for the 4
 indtabww v3n15,2,v0n10,2,S03011,14,0 symbols
 indtabww v3n17,2,v0n9,2,S03011,14,0
 indtabww v3n3,2,v0n8,2,S03011,14,0
 ret

SUB0004: Subroutine: Display
 stateoutb v4n22,1,1,st0,2,2
 stateoutb v4n21,2,1,st0,2,3
 or2bbb v4n21,2,1,v4n22,1,1,v4n1,3,1
 stateoutb v4n19,4,1,st0,2,1
 or2bbb v4n19,4,1,v4n21,2,1,v4n0,5,1
 mux2bbwwwww
v4n0,5,1,v4n1,3,1,x4n2,2,x4n3,2,x4n4,2,x4n5,2,v4n6,2
 bunpackwbbbbbbbb
v4n6,2,0,0,0,v4n43,6,1,v4n47,7,1,v4n42,0,1,v4n41,1,1,v4n44,2,1
,v4n45,3,1,v4n46,4,1
 digoutb v4n46,4,1,BUDRC,3,1
 digoutb v4n45,3,1,BUDRC,4,1
 digoutb v4n44,2,1,BUDRC,2,1
 digoutb v4n42,0,1,BUDRA,2,1
 digoutb v4n47,7,1,BUDRA,1,1
 digoutb v4n43,6,1,BUDRA,0,1
 digoutb v4n41,1,1,BUDRA,3,1
 stateoutb v4n12,5,1,st0,2,0
 digoutb v4n12,5,1,BUDRB,0,1
 stateoutb v4n13,6,1,st0,2,1
 digoutb v4n13,6,1,BUDRB,1,1
 stateoutb v4n14,7,1,st0,2,2
 digoutb v4n14,7,1,BUDRB,6,1
 stateoutb v4n15,0,1,st0,2,3
 digoutb v4n15,0,1,BUDRB,7,1
 stateminit st0,2,0
 stateminit st0,2,1
 stateminit st0,2,2
 stateminit st0,2,3
 stateminit st0,2,-1
 stateinit st0,2,0
 state st0,2,0,1
 stateend st0,2,0
 stateinit st0,2,1
 state st0,2,1,2
 stateend st0,2,1
 stateinit st0,2,2

Realizer Application note on: New features described (Version 4.00)

© Actum Solutions 0371700 Page 15 of 16

 state st0,2,2,3
 stateend st0,2,2
 stateinit st0,2,3
 state st0,2,3,0
 stateend st0,2,3
 statemend st0,2,4
 LD A,BUDRA
 LD DRA,A
 LD A,BUDRB
 LD DRB,A
 LD A,BUDRC
 LD DRC,A
 ret

.IFC NDF Rtcint
Rtcint: TIMER interrupt service routine
 LDI TSCR,000H
 LDI PSC,015H
 LDI TCR,0CFH
 LDI TSCR,06DH
 INC TICK Signal elapsed time to normal s/w

timers
; DBG: Create normal stack push
 LD STACKA,A
 LD A,X
 LD STACKX,A
 LD A,Y
 LD STACKY,A
 LD A,V
 LD STACKV,A
 LD A,W
 LD STACKW,A
 LD A,REG0
 LD STACK0,A

; DBG: Decrement interrupt timers Oscillator in input scheme
 JRS 7,T02006,TM1_0002
 decw T02006,2 Timed out?
 JRR 7,T02006,TM1_0002
 CALL SUB0002 Yes: run subscheme
TM1_0002:

; DBG: Decrement prioritized timers Display subscheme
 decw AT00004,2
 JRR 7,AT00004,TM1_0003 Time to be executed again?
 CALL SUB0004 Yes
 copyww 2,TCONST,AT00004,2
TM1_0003:

; DBG: Create normal stack pop
 LD A,STACK0
 LD REG0,A
 LD A,STACKW
 LD W,A
 LD A,STACKV
 LD V,A
 LD A,STACKY
 LD Y,A
 LD A,STACKX
 LD X,A
 LD A,STACKA
 RETI
.ENDC

; DBG: PORTA,PORTB interrupt service routine
.IFC NDF PORTAint
PORTAint:

; DBG: Create normal stack push
 LD STACKA,A
 LD A,X
 LD STACKX,A
 LD A,Y
 LD STACKY,A
 LD A,V
 LD STACKV,A
 LD A,W
 LD STACKW,A
 LD A,REG0
 LD STACK0,A
 SET 6,v2n8 Set event to ON
 CALL SUB0002 execute subscheme

Realizer Application note on: New features described (Version 4.00)

© Actum Solutions 0371700 Page 16 of 16

 RES 6,v2n8 Reset event again

; DBG: Create normal stack pop
 LD A,STACK0
 LD REG0,A
 LD A,STACKW
 LD W,A
 LD A,STACKV
 LD V,A
 LD A,STACKY
 LD Y,A
 LD A,STACKX
 LD X,A
 LD A,STACKA
 RETI
.ENDC

RROMEND:

.ORG 0FFEH Reset and interrupt vectors
 JP Reset

.ORG 0FF0H
 JP Rtcint

.ORG 0FF6H
 JP PORTAint

