
© Actum Solutions 0332600 Page 1 of 8

Application note on REALIZER

Title: How the generated code looks like
Date: 27 October 1998
Our ref.: 0332600
Subject: Version 3.20
Author: René Balvers

Introduction

This document informs users of Realizer how
the program code that is generated by Realizer
is built up. It describes the various properties
of the parameters and algorithms that Realizer
uses to generate the code.

Scope

This document assumes that the reader is either
a user of Realizer or is interested in the
working principles or Realizer. A basic
knowledge about microcontrollers and the way
they are programmed is mandatory. The reader

is supposed to have elementary experience in
programming in assembly.

All example schemes are for illustration
purposes only. The resulting code shown is
literally as generated by Realizer for the related
schemes.

For reasons of convenience, all the code has
been generated for STM’s ST62 series of
microcontroller. Please note that Realizer can
generate code for more than just this controller
architecture. For more information, please visit
our web site: www.actum.com.

Realizer Application note on: How the generated code looks like (Version 3.20)

© Actum Solutions 0332600 Page 2 of 8

Traditional programming (hand-crafted)

If you would program an application by hand
in assembly you would start with a main
program that will check various conditions and
upon certain conditions execute specific
routines to perform specific tasks.

However, in embedded control applications
“multitasking” is always built in. This is
opposite to the way personal computer
applications are programmed. There is a lot of
sequential structure in a PC-application: First
read the file, then search for the specific string,
then change its value, then write back the data
to the disk.

In embedded applications there are very often
a lot of things to do at the same time. E.g.:
compare values to switch an output on and
check for time-outs on other variables as well

(“at the same time”). This is essentially what
makes embedded systems so hard to program.

Standard Realizer generated code

Realizer technology is based on the demands
that have been identified in embedded
applications. Lets assume we have the
following application:

Inputs are: A, B, and C.
Outputs are: Go and Fault.

Go should be on when either C is on or when
A and B are both on. Fault is the output
signalling that C and B are both on too long (>
15 seconds).

The Schematic in Realizer would look like the
one shown in figure 1.The code generated by
Realizer is shown in table 1.

Figure 1 - Example scheme

Realizer Application note on: How the generated code looks like (Version 3.20)

© Actum Solutions 0332600 Page 3 of 8

Code Remarks
Reset:
 CLR IOR
 LDI HWDR,0FFH

BUDRA .DEF 089H,0FFH,0FFH
BUDRB .DEF 08aH,0FFH,0FFH
PortInit:
 LDI DDRA,004H
 LDI ORA,000H
 LDI DRA,000H
 LDI BUDRA,000H
 LDI DDRB,040H
 LDI ORB,040H
 LDI DRB,002H
 LDI BUDRB,002H
AdcInit:
Rtcinit:
TICK .DEF 08BH,0FFH,0FFH
RTICK .DEF 08CH,0FFH,0FFH
ARTICK .EQU 08CH
 LDI PSC,015H
 LDI TCR,0CFH
 LDI TSCR,06DH
 CLR TICK
 LDI IOR,010H
 RETI

RamInit:

 LDI A,0
 LDI X,084H
 LDI Y,3
RamInit1:
 LD (X),A
 INC X
 DEC Y
 JRNZ RamInit1

v0n3 .DEF 084H,001H,001H
v0n1 .DEF 084H,002H,002H
v0n0 .DEF 084H,004H,004H
v0n9 .DEF 084H,008H,008H
pv0n9 .DEF 084H,010H,010H
v0n8 .DEF 084H,020H,020H
v0n2 .DEF 084H,040H,040H
v0n4 .DEF 084H,080H,080H
T00009 .DEF 085H,0FFH,0FFH

RealMain:
Rtc:
 CLR IOR
 LD A,TICK
 CLR TICK
 LDI IOR,010H
 LD RTICK,A

 diginb v0n3,0,1,DRB,3,1
 diginb v0n1,1,1,DRA,1,1
 diginb v0n0,2,1,DRB,1,1
RINPEND:
 and2bbb v0n1,1,1,v0n3,0,1,v0n9,3,1
 delfonbbb
v0n9,3,1,pv0n9,4,1,v0n8,5,1,1500,100,T
00009,4,RTICK,2
 digoutb v0n8,5,1,BUDRA,2,1
 and2bbb v0n0,2,1,v0n1,1,1,v0n2,6,1
 or2bbb v0n2,6,1,v0n3,0,1,v0n4,7,1
 digoutb v0n4,7,1,BUDRB,6,1
ROUTPEND:
 copybb v0n9,3,1,pv0n9,4,1
 LD A,BUDRA
 LD DRA,A
 LD A,BUDRB
 LD DRB,A
 LDI HWDR,0FFH

 JP RealMain

Hardware reset entry
point

Initialization of the
devices I/O

Analog inputs

Initialization of time
keeping device

Initialization of data
memory

Variables declaration

Main entry point

Keep track of time
elapsed since previous
loop started

Reading Bit inputs

AND (B, C)
On Delay timer

Write to output
AND (A, B)
OR (AandB, C)
Write Output

Save previous value of
timer input.
extra instructions
(See ST62xx datasheet)

Trigger watchdog

Start over again

Table 1 - Code generated for scheme of figure 1

Realizer Application note on: How the generated code looks like (Version 3.20)

© Actum Solutions 0332600 Page 4 of 8

Please note the following about the cod-listing:

1. The instructions listed are very often calls
to macro’s supplied with Realizer. Each
macro is optimally implemented and
extensively tested for the particular
processor architecture by experienced
assembly programmers: they already did
the job for you.

2. The calculations of functions between the
reading of the input and the completion of
write operation of the outputs is
encapsulated by the labels RINPEND1 and
ROUTPEND2. The location and meaning of
these labels are important orientation
points during the next discussions involving
code generated by Realizer.

3. Behind the label AdcInit, there is no code.
Since this application does not use any of
such inputs, Realizer doesn’t generate any
code for that function. So optimal code is
generated, with very little overhead.

In the code listing we can identify the
following parts:

• Chip initialization
• I/O initialization
• Timer initialization
• Data memory (application) initialization
• Entrance of main loop
• Keep track of elapsed time
• Reading input data
• Calculation of output data
• Writing of output data
• Backup copies of variables (to detect edges)
• Update state machines
• Start over at main loop

Figure 2 shows the structure of the code in a
graphical manner.

Realizer can apply various kinds of
optimizations while analysing the design and
generating the code. Among them are:

1. Variable optimization and

2. Sleeping code optimizations.

The next sections of this document describes
each of them.

Future developments will lead to
enhancements to the algorithms as well as new
optimizations.

1 Realizer INPut reading ENDed
2 Realizer OUTPut writing ENDed

Figure 2 - Structure of Realizer
generated code

Realizer Application note on: How the generated code looks like (Version 3.20)

© Actum Solutions 0332600 Page 5 of 8

Variable optimization

This decreases the number of RAM variables
that are needed. Normally each net (a
collection of wires carrying the same signal) is
stored in a separate memory location in RAM.
Variable optimization decreases this number of
memory locations by allocating more than one
net to the same memory location.

The result is that larger applications can be
implemented on a certain microcontroller.

In figure 1, the memory allocated for the net
between input A and the And-gate can be re-
used for storing the result of the And-operation.
This can be cascaded throughout a scheme,
saving a lot of valuable data space. In theory,
this example can be calculated using 3 bit
variables (excluding the overhead of input
buffering and internal variables).

Realizer Application note on: How the generated code looks like (Version 3.20)

© Actum Solutions 0332600 Page 6 of 8

Sleeping code optimization

This optimisation makes the application
execute faster (and thus saving processor time).

The analyser checks for specific symbols like
AND-gates, multiplexers and many more.
When the analyser is confident that at a certain
moment during execution, the resulting value
of a branch of symbols is of no interest to the
final result, it will skip the code execution of
that branch.

In the example of figure 1 this would mean
that the determination of the fact that input C is
on, the branch connected to the other input of
the Or-gate will not be calculate. An if-then-
else construction is put around this part of the
scheme. In a pseudo programming language:

if Input C = 1

then Go = 1

else Go = A & B

Before applying this optimization, the analyser
will measure the size of each branch and
generate the code for the shortest one first.
Then it will insert the code for the if-then and
then the code for the other branch.

Besides the information mentioned, it also (but
not only) checks for timers and other symbols
that have some kind of automatic, internal or
“static data”. This limits the extent of the
optimization.

Note that the optimization is done at compile
time, with the effect of saving execution time
during the usage of the code.

The result of the sleeping code optimizations
cannot easily be quantified, since it greatly
depends on the schematic diagram. Tables 2
and 3 show the code generated of the example
in figure 1.

Note that for the example of figure 1 the gain
is not obvious.

Code Remarks
RINPEND:
 and2bbb v0n1,1,1,v0n3,0,1,v0n9,3,1
 delfonbbb
v0n9,3,1,pv0n9,4,1,v0n8,5,1,1500,100,T
00009,4,RTICK,2
 digoutb v0n8,5,1,BUDRA,2,1
 cifnelsb v0n3,0,1,0
 cifelsb v0n1,1,1,1
 copybb v0n0,2,1,v0n2,6,1
 celse 1
 copybb v0n1,1,1,v0n2,6,1
 cendif 1
 copybb v0n2,6,1,v0n4,7,1
 celse 0
 copybb v0n3,0,1,v0n4,7,1
 cendif 0
 digoutb v0n4,7,1,BUDRB,6,1

ROUTPEND:

And (B, C)
Calculate timer

Output (Fault)
If not (C=1)
 If B=1
 AandB = A
 Else
 AandB = B
 Endif
 AandBorC = AandB
Else
 AandBorC = C
Endif
Write output

Table 2 - Example Scheme with sleeping code optimization

Code Remarks
RINPEND:
 and2bbb v0n1,1,1,v0n3,0,1,v0n9,3,1
 delfonbbb
v0n9,3,1,pv0n9,4,1,v0n8,5,1,1500,100,T
00009,4,RTICK,2
 digoutb v0n8,5,1,BUDRA,2,1
 and2bbb v0n0,2,1,v0n1,1,1,v0n2,6,1
 or2bbb v0n2,6,1,v0n3,0,1,v0n4,7,1
 digoutb v0n4,7,1,BUDRB,6,1

ROUTPEND:

Normal code
And (B, C)
Calculate timer

Output(Fault)
And (A, B)
Or (AandB, C)
Output (Go)

Table 3 - Example Scheme without Sleeping code optimization

Realizer Application note on: How the generated code looks like (Version 3.20)

© Actum Solutions 0332600 Page 7 of 8

The scheme of figure 3 however, shows a quite
different application, where the effect is
astonishing.

If the enable input of the D-type latch is not
active (0), the value of the D-input is
irrelevant.

From the tables 4 and 5, which show parts of
the generated code of figure 3, we can see that
during the low-state of the Float input, the only
statements executed are the if-construction and
the update of the PWM-output. Its obvious that
the execution speed is strongly increased.

Table 6 shows the effects of the optimization in
terms of code size data size and the loop-time.

Figure 3 - Example for Sleeping code optimization

Code Remarks
RINPEND:
 mulwww v0n11,2,v0n12,2,v0n16,4
 add2www v0n16,4,v0n18,3,v0n19,4
 mulwww v0n9,2,v0n10,2,v0n5,4
 add2www v0n5,4,v0n17,5,v0n6,5
 add2www v0n6,5,v0n19,4,v0n23,5
 limfww v0n23,5,v0n25,5,0,120
 dltchwbww v0n25,5,v0n0,0,1,v0n3,5,0,0
 pwmwwww v0n4,2,pv0n4,2,v0n3,5,pv0n3,5

ROUTPEND:

Scale first input

Scale second one

Add them together
Apply limits
Calculate D-Latch
Write output

Table 4 - Example of figure 3 without Sleeping

Loop-time and
memory sizes

Sleeping Code Optimization

Parameter Without With
Best case (µS) 2055 240
Worst case (µS) 3140 3146
Code (bytes) 612 617
Data (bytes) 33 33

Table 5 - Comparison of results of example of figure 3

Code Remarks
RINPEND:
 cifb v0n0,0,1,0
 mulwww v0n11,2,v0n12,2,v0n16,4
 add2www v0n16,4,v0n18,3,v0n19,4
 mulwww v0n9,2,v0n10,2,v0n5,4
 add2www v0n5,4,v0n17,5,v0n6,5
 add2www v0n6,5,v0n19,4,v0n23,5
 limfww v0n23,5,v0n25,5,0,120
 dltchwbww v0n25,5,v0n0,0,1,v0n3,5,0,0
 cendif 0
 pwmwwww v0n4,2,pv0n4,2,v0n3,5,pv0n3,5

ROUTPEND:

if Float then
 Scale first input

 Scale second one

 Add them together
 Apply limits
 Calculate D-Latch
endif
Update output

Table 6 - Example of figure 3 with sleeping code optimization code optimization

Realizer Application note on: How the generated code looks like (Version 3.20)

© Actum Solutions 0332600 Page 8 of 8

Conclusion

You have seen the effect of various
optimizations. They are all implemented in
Realizer V3.20. With these optimizations,
larger designs can be implemented on the
samen microcontroller, or increase the
performance of existing designs.

It is important to realize that the optimizations
never interfere with the functionality of the
design. So you can experiment freely to
determine the right combination to trade off
the various gains using the optimizations,
either for code size, data memory size, or
speed.

For more information please visit our web site:
www.actum.com, send an e-mail to
info@actum.com or fax us at: +31 (0)72 576
2555.

	Introduction
	Scope
	Traditional programming (hand-crafted)
	Standard Realizer generated code
	Variable optimization
	Conclusion

