

Adaptive Digital Technologies, Inc.

G.711 Waveform Coder for ARM Devices

With Appendices 1 & 2

PRODUCT DESCRIPTION

G.711 is, by far, the most commonly supported voice companding algorithm used in telephony. It has become the de facto standard used to ensure interoperability in voice over Internet protocol (VoIP) applications. Compression is performed on a per sample basis with each uniformly quantized sample producing an 8-bit pulse code modulated (PCM) or companded value.

In addition to companding, appendices have been added to the G.711 standard that allow telephony equipment to reduce network traffic by transmitting minimal data during periods of silence and to improve playback quality by synthesizing speech during periods when data has been lost or corrupted.

Adaptive Digital's G.711 waveform coder is a bit exact implementation of the ITU G.711 PCM standard. Adaptive Digital's G.711 coder converts between 8-bit mu-law (American standard) or a-law (European standard) companded values and 16-bit uniformly quantized values. Although many DSPs support G.711 conversion via hardware interface to TDM highways, it is often necessary to perform G.711 conversion in software, particularly when voice and signaling applications share a common line. Unlike the G.711 companding standard, the two G.711 appendices are not bit-exact. As a result, not all implementations perform identically.

G.711 **Appendix 1** (optional) coder is a high quality low-complexity algorithm for packet loss concealment (PLC). It is a highly effective algorithm for concealing lost packets of G.711 data. Speech remains intelligible even under conditions where up to 30% of the packets are lost.

G.711 **Appendix 2** (optional) provides voice activity detection (VAD), discontinuous transmission (DTX), and comfort noise generation (CNG). When combined, these algorithms provide an efficient method for reducing packet bandwidth during portions of a conversation when no voice activity is present. During silence periods, only the bits necessary to model the background noise characteristics

FEATURES

- Supports both mu-law and a-law
- ITU G.711 Compliant
- C Callable
- Multi-channel capable
- Robust packet loss concealment improves voice quality under packet loss conditions

AVAILABILITY

ADT G.711 is available on the following Platforms: Other configurations are available upon request.

Product	Platform	Memory Model	Endian	Code Gen Tool Version
ADT_g711_arm7	ARM7	N/A	Little	N/R
ADT_g711_arm9	ARM9	N/A	Little	N/R
ADT_g711_arm11	ARM11	N/A	Little	N/R

ADT G.711 Appendices 1 and 2 are available on the following Platforms: Other configurations are available upon request.

Product	Platform	Memory Model	Endian	Code Gen Tool Version
ADT_g711a1_arm9	ARM9	N/A	Little	N/R
ADT_g711a1_arm11	ARM11	N/A	Little	N/R
ADT_g711a1a2_arm9	ARM9	N/A	Little	Code Sourcery 2011.09-70
ADT_g711a1a2_arm11	ARM11	N/A	Little	N/R
ADT_g711a1a2_m3	ARM Cortex-M3	N/A	Little	Code Sourcery 2011.09-70
ADT_g711a1a2_m4	ARM Cortex-M4	N/A	Little	GCC v 4.5.2*
ADT_g711a1a2_a8	ARM Cortex-A8	N/A	Little	Code Sourcery 2011.09-70
ADT_g711a1a2_a9	ARM Cortex-A9	N/A	Little	Android NDK r6b
ADT_g711a1a2_a15	ARM Cortex-A15	N/A	Little	Android NDK r6b

^{*}GCC v 4.5.2 (Sourcery G++2011.03-41)

Endian, byte order: "Little Endian" means that the low-order byte of the number is stored in memory at the lowest address, and the high-order byte at the highest address. "Big Endian" means that the high-order byte of the number is stored in memory at the lowest address, and the low-order byte at the highest address.

Acronyms

Mm - Memory Model: Memory Model is specific to Texas Instruments processors.

N/A - Not Applicable

N/R - Not Recorded

SPECIFICATIONS

ARM® DEVICES

ARM7

CPU UTILIZATION & MEMORY REQUIREMENTS

All Memory usage is given in units of 8 bit byte.

Function	Per-Sample Cycles	Program Memory	Table Memory	Per-Channel Data Memory
Mu-law (Compress) Encode	69			
Mu-law (Expand) Decode	20			
A-Law (Compress) Encode	70			-
A-Law (Expand) Decode	15			-
G.711 Common/Tables		900	1024	0

ARM9/ARM11

CPU UTILIZATION & MEMORY REQUIREMENTS

All Memory usage is given in units of 8bit bytes.

Product	Function	MIPS	Program Memory	Data Memory	Per-Channel Data Memory	Scratch Memory
G.711A1A2	Encode 12.1	5.26k	1640	624		
G.7 IIAIAZ	Decode	3.8	61k	3.20K	1776	624

ARM CORTEX-M3 / CORTEX-M4

CPU UTILIZATION & MEMORY REQUIREMENTS

All Memory usage is given in units of byte.

Product	Function	MIPS	Program Memory	Data Memory	Per-Channel Data Memory
G.711A1A2	Encode	7.33	22700	2886	1636
G./ IIAIAZ	Decode	2.5	22700		1776

ARM CORTEX-A8/A9/A15

CPU UTILIZATION & MEMORY REQUIREMENTS

All Memory usage is given in units of byte.

Product	Function	MIPS	Program Memory	Data Memory	Per-Channel Data Memory	Scratch Memory
G.711A1A2	Encode	7.9	92K	5.26K	1640	624
G.711A1A2	Decode	2.3		5.20K	1776	624

FUNCTIONS

API function call summary

<pre>void Vad_ADT_Init()</pre>	Performs Appendix 2 VAD initialization function
<pre>void Cng_ADT_Init()</pre>	Performs Appendix 2 CNG initialization function
<pre>void Vad_ADT_Run()</pre>	Performs Appendix 2 VAD function
<pre>void Cng_ADT_Run()</pre>	Performs Appendix 2 CNG function
G711_Encode()	Performs G.711 encode function
G711_Decode()	Performs G.711 decode function
G711A1Decode()	G711AlDecode generate a synthesis signal to cover missing data.
G711ErasureInit()	G711ErasureInit initializes an instance of the G711A1 channel.

Deliverables

The deliverable items are platform dependent. In general, there is one library. (Sometimes multiple variants of the library are included in the deliverables.) There are also header files, some of which are specific to the product and others are common across many of Adaptive Digital's products. Also included in the deliverables is product documentation, which includes a users guide and usually includes release notes and a data sheet. Sample/test code may be included as well.

Adaptive Digital is a member of the Texas Instruments Developer Network, and ARM Connected Community.

CONTACT INFORMATION

Web: www.adaptivedigital.com Email: information@adaptivedigital.com

Tel: 610.825.0182 ~ Toll Free: 1.800.340.2066

Fax: 610.825.7616

Address: 525 Plymouth Road, Suite 316

Plymouth Meeting, PA 19462

IMPORTANT NOTICE: Data subject to change, for the most up to date information visit our website. Customers are advised to obtain the most current and complete information about Adaptive Digital products and services before placing orders.

All trademarks are property of their respective owners.

