APPLICATION NOTE

Atmel AVR116: Wear Leveling on DataFlash

32-bit Atmel Microcontrollers

Features

e Wear leveling
e Average the program/erase operations in different blocks

e Write not need be preceded by an erase operation
e Redirect logical address from host system to physical address in flash memory
® Power loss recovery

® Support FAT file system

Description

Flash memory has a limited program/erase cycle, program and erase in a same block
many times will result in bad blocks and decrease the flash memory life cycle
dramatically.

Flash memory is not fit for sector-based file systems (fat, etc.). Flash memory has
several characteristics that make difficult straightforward replacement of magnetic
disks. First, a write in flash memory should be preceded by an erase operation, which
takes an order of magnitude longer than a write operation. Second, erase operations
can only be performed in a much larger unit than the write operation. This implies
that, for an update of even a single byte, an erase operation as well as restoration of
a large amount of data would be required. This not only degrades the potential
performance significantly, but also gives rise to an integrity problem since data may
be lost if the power goes down unexpectedly during the restoration process.

An intermediate software layer called flash translation layer (FTL) addresses the
above mentioned issues. It enables the file systems access flash memory as access
magnetic disks and prolong the flash memory life cycle.

This application note will help the user to use the FTL interface.

32194A-AVR-07/12

Table of contents

1. Abbreviations and definitionsoevvveeiiiiiiiieee e 3
2. Related PartsS.........uuuuiiiiiiiiiiiiii 3
2.1 ATMEI AT25DF X SEIIES ...t e e e e e e 3
2.2 AIMEI ATASDBX SEIIES ...uun et e e 3
G T e I I 1 o = 1 VPRSP PPPPPPPPPPPRt 3
3.1 [[aY i Yo VT3 1To] o IPS R 3
3.2 F AN @] 011 (=13 (0 | (YN 4
3.3 L) =T = Lo YRR 5
3.3.1 Up layer 5
3.3.2 FTL6
3.3.3 Hardware abstract layer.............ooovviviiiiiiiiiiiiiiiiiiiieeeee 8
3.3.3.1 Atmel AT25DFx series DataFlash...............ccooovvvvveeiiinnn. 8
3.3.3.2 Atmel AT45DBx series DataFlash............cccccooeeeiiiiinnnnnnn. 10
G T S ¢ (o] i oto]] { (o] O UTN 12
4, Usage 13
4.1 Integrate library to your project....... ..o 13
4.2 Example with Atmel EVKT100.........coiiiiiiiiiie e 14
4.3 Using FTL through FAT ...t 17
5. PerfOrMAaNCEooeeeeeee et 23
Atmel Atmel AVR116: Wear Leveling on DataFlash [APPLICATION NOTE] 2

32194A-AVR-07/12

1. Abbreviations and definitions
e FTL: Flash Translation Layer
e HAL: Hardware Abstract Layer
e sector Logical unit, 512Bytes
e page Physical unit, actual page size of the Atmel® DataFlash®
2, Related parts
FTL library can be applied to the following parts:
21 Atmel AT25DFx series
e AT25DF641A
e AT25DF641
e AT25DF321A
e AT25DF321
e AT25DF161
e AT25DF081A
e AT25DF041A
22 Atmel AT45DBx series
e AT45DB642D
e AT45DB321D
e AT45DB161D
3. FTL library
3.1 Introduction
FTL redirects the logical address from uplayer to physical address in flash memory, and average the program/erase
operation in different blocks.
FTL features the function of wear leveling, bad block management, garbage collection, defrag and power loss recovery.
It fully supports FAT file system.
Due to different features of the AT25DFx series and AT45DBx series DataFlash, two libraries have been implemented
respectively. Most of the two libraries are the same; the only difference for user is the hal layer interface. This will be
detailed in Section 3.3.3.
The footprint of FTL library is about 6Kbyte. The RAM usage depends on the block number.
Atmel AT25DFx series:
Take AT25DF321A as an example. Its size is 4Mbyte and use 64K as a FTL blocks. The maximum RAM usage is
2Kbyte.
Approximately, the RAM usage is 1.1Kbyte + 14 x (block number - used block).
Atmel Atmel AVR116: Wear Leveling on DataFlash [APPLICATION NOTE] 3
32194A-AVR-07/12

Atmel AT45DBx series:

Take AT45DB642D as an example. Its size is 8Mbyte and use 64K as a FTL block. The maximum RAM usage is
4.1Kbytes.

Approximately, the RAM usage is 2.1Kbyte + 16 x (block number - used block).

3.2 Architecture

FTL is divided into three parts, up layer, ftl and hal. Figure 3-1 illustrates the architecture. Figure 3-2 shows briefly the
redirection of the logical address from uplayer to physical address in flash.

Figure 3-1. FTL architecture.

FAT file system

-
Flash
>~ Translation
layer
/
Data flash Driver
Atmel Atmel AVR116: Wear Leveling on DataFlash [APPLICATION NOTE] 4

32194A-AVR-07/12

Figure 3-2. FTL redirect logical address to physical address.

Logical Sector

7 8 9 10 1 12 | ... Address

Logical Sector

8 | 12 | 1| 4 | 7 | 10| .. Physical Sector

FAT) s
File System
A A A
1 2 3
FTL
3 5 1
Data Flash

Physical Sector
------ Address

BlockO

3.3 Interface

3.3.1 Uplayer

Block2

This layer provides the interface for FAT file system.

e uplayer_status_t test_unit_ready(void)
e This function is used to check memory state

Argument

Type

Comment

None

Return value

Comment

UPLAYER_SUCCESS

Memory is ready

UPLAYER_UNIT_NO_PRESENT

Memory is not ready

e uplayer_status_t read_capacity(uint32_t *nb_sectors)
* This function is used to read memory capacity

Argument

Type

Comment

nb_sector

uint32_t*

Pointer to the variable which
store the number of sectors

Return value

Comment

UPLAYER_SUCCESS

Read memory capacity successful

UPLAYER_FAILURE

Read memory capacity fail

Atmel

Atmel AVR116: Wear Leveling on DataFlash [APPLICATION NOTE] 3

32194A-AVR-07/12

e bool test_wr_protect(void)

* This function is used to check memory if write protect

Argument Type Comment
None - -
Return value Comment
true Memory is write protect
false Memory is not write protect
e bool test_unit_removal(void)
* This function is used to check memory if be removed
Argument Type Comment
None - -
Return value Comment
true Memory is removed
false Memory is not removed
e uplayer_status_t ram_2_df(uint32_t sector, void *ram)
e This function is used to write one page data to memory
Argument Type Comment
sector uint32_t The logical sector number
ram void* RAM to store one sector
(512bytes) data write to memory

Return value

Comment

UPLAYER_SUCCESS

Write memory with one sector data successful

UPLAYER_FAILURE

Write memory with one sector data fail

e uplayer_status_t df_2_ram(uint32_t sector, void *ram)
e This function is used to read one page data from memory

Argument Type Comment
sector uint32_t The logical sector number
ram void* RAM to store one sector

(512bytes) data read from
memory

Return value

Comment

UPLAYER_SUCCESS

Read memory with one sector data successful

UPLAYER_FAILURE

Read memory with one sector data fail

All the routines are described in uplayer.h file.

3.3.2 FTL
This layer provides interfaces for uplayer, and can also be called directly when you don’t want to use FAT.
o ftl_status_t ftl_init(void)
* This function is used to initialize ftl structure

Argument

Type

Comment

None

Return value

Comment

FTL_INIT_SUCCESS

FTL structure initialization successful

FTL_INIT_FAILURE

FTL structure initialization fail

Atmel

Atmel AVR116: Wear Leveling on DataFlash [APPLICATION NOTE]

32194A-AVR-07/12

Note:

This routine will erase all the contents of the memory when FTL has not been used before on this memory.
o ftl_status_t ftl_read(uint32_t sector, uint8_t *buf)
e This function is used to read one page data from memory

Argument Type Comment
sector uint32_t The logical sector number
buf uint8_t* Buf to store one sector

(512bytes) data read from
memory

Return value

Comment

FTL READ_PAGE_SUCCESS

Read memory with one sector data successful

FTL READ PAGE _FAILURE

Read memory with one sector data fail

o ftl_status_t ftl_write(uint32_t sector, uint8_t *buf)
* This function is used to write one page data to memory

Argument Type Comment

sector uint32_t The logical sector number

buf uint8_t* Buf to store one sector
(512bytes) data write to memory

Return value

Comment

FTL_WRITE_PAGE_SUCCESS

Write memory with one sector data successful

FTL_WRITE_PAGE_FAILURE

Write memory with one sector data fail

o ftl_status_t ftl_test_unit_

ready(void)

e This function is used to test memory state

Argument Type

Comment

None -

Return value

Comment

FTL UINT READY

Memory is ready

FTL_UINT_NOT_READY

Memory is not ready

o ftl_status_t ftl_read_capacity(uint32_t *nb_sectors)
* This function is used to read memory capacity

Argument Type

Comment

nb_sectors uint32_t*

Pointer to the variable which
store the number of sectors

Return value

Comment

FTL_READ_CAPACITY_SUCCESS

Read memory capacity successful

FTL_READ_CAPACITY_FAILURE

Read memory capacity fail

o ftl_status_t ftl_test_unit_wr_protect(void)
* This function is used to test memory write protect state

Argument Type

Comment

None -

Return value

Comment

FTL UNIT WR_PROTECT

Memory is write protect

FTL_UNIT_WR_NO_PROTECT

Memory is not write protect

Atmel

Atmel AVR116: Wear Leveling on DataFlash [APPLICATION NOTE]

32194A-AVR-07/12

7

o ftl_status_t ftl_unit_unprotect(void)
* This function is used to unprotect memory

Argument Type Comment
None - -

Return value Comment

FTL UNIT_UNPROTECT SUCCESS Unprotect memory successful
FTL_UNIT_UNPROTECT_FAILURE Unprotect memory fail

e ftl_status_t ftl_test_unit_removal(void)
e This function is used to test memory if be removed

Argument Type Comment
None - -

Return value Comment
FTL_UNIT_REMOVAL Memory is removed
FTL_UNIT_NO_REMOVAL Memory is not removed

Note: Use ftl_read_capacity(...) to get the available number of sectors.
All the routines are described in ftl.h file.

3.3.3 Hardware abstract layer
This layer provides interfaces for FTL. The routines in this layer will call data flash drivers which implemented by user.
The address arguments are all physical address in this layer.

3.3.3.1 Atmel AT25DFx series DataFlash

o ftl_status_t hal_block_erase(uint32_t addr)
e This function is used to erase memory block

Argument Type Comment

addr uint32_t The physical address of the
memory block to erase

Return value Comment

FTL_BLOCK_ERASE_SUCCESS Memory block erase successful

FTL_BLOCK_ERASE_FAILURE Memory block erase fail

Note: The block erase unit is 64Kbyte block.
e ftl_status_t hal_read_id(uint8_t *buf)
e This function is used to read memory id

Argument Type Comment
buf uint8_t* Buf (4bytes) used to store
memory 1D
Return value Comment
FTL GET CHIP ID SUCCESS Get memory ID successful
FTL_GET_CHIP_ID_FAILURE Get memory ID fail
Atmel Atmel AVR116: Wear Leveling on DataFlash [APPLICATION NOTE] 8

32194A-AVR-07/12

o ftl_status_t hal_set_block_status(uint32_t addr, uint8_t *buf, uint16_t count)
* This function is used to set block status

Argument Type Comment

addr uint32_t The physical address of the
memory to write the bytes

buf uint8_t* Buf to store the data write to
memory

count uint16_t Number of bytes need to write

Return value Comment

FTL SET BLOCK STATUS SUCCESS Write successfully

FTL_SET_BLOCK_STATUS_FAILURE Write fail

o ftl_status_t hal_get_block_status(uint32_t addr, uint8_t *buf, uint16_t count)
e This function is used to get the block status

Argument Type Comment

addr uint32_t The physical address of the
memory to read the bytes

buf uint8_t* Buf to store the data read from
memory

count uint16_t Number of bytes need to read

Return value Comment

FTL GET BLOCK STATUS SUCCESS Read successfully

FTL_GET_BLOCK_STATUS_FAILURE Read fail

o ftl_status_t hal_write_page(uint32_t sector, uint8_t *buf)
e This function is used to write one sector data to memory

Argument Type Comment

sector uint32_t The physical sector number

buf uint8_t* Buf to store one sector
(512bytes) data write to memory

Return value Comment
FTL WRITE_PAGE_SUCCESS Write memory with one sector data successful
FTL_WRITE_PAGE_FAILURE Write memory with one sector data fail

e ftl_status_t hal_read_page(uint32_t sector, uint8_t *buf)
* This function is used to read one sector data from memory

Argument Type Comment

sector uint32_t The physical sector number

buf uint8_t* Buf to store one page (512bytes)
data read from memory

Return value Comment

FTL_READ PAGE_SUCCESS Read memory with one sector data successful

FTL_READ_PAGE_FAILURE Read memory with one sector data fail

o ftl_status_t hal_test_unit_wr_protect(void)
* This function is used to test memory if write protect

Argument Type Comment
None - _
Return value Comment
FTL _UNIT WR _PROTECT Memory is write protect
FTL_UNIT_WR_NO_PROTECT Memory is not write protect
Atmel Atmel AVR116: Wear Leveling on DataFlash [APPLICATION NOTE] 9

32194A-AVR-07/12

o ftl_status_t hal_unit_unprotect(void)
* This function is used to unprotect memory

Argument Type Comment
None - -

Return value Comment

FTL UNIT_UNPROTECT SUCCESS Unprotect memory successful
FTL_UNIT_UNPROTECT_FAILURE Unprotect memory fail

e ftl_status_t hal_test_unit_removal(void)
e This function is used to test if memory be removed

Argument Type Comment
None - -

Return value Comment
FTL_UNIT_REMOVAL Memory is removed
FTL_UNIT_NO_REMOVAL Memory is not removed

3.3.3.2 Atmel AT45DBx series DataFlash
o ftl_status_t hal_read_id(uint8_t *buf)
e This function is used to read memory id

Argument Type Comment

buf uint8_t* Buf (4bytes) used to store
memory 1D

Return value Comment

FTL GET_CHIP_ID_SUCCESS Get memory ID successful

FTL_GET_CHIP_ID_FAILURE Get memory ID fail

o ftl_status_t hal_set_block_status(uint32_t addr, uint8_t *buf, uint16_t count)
e This function is used to set block status

Argument Type Comment

addr uint32_t The physical address of the
memory to write the bytes

buf uint8_t* Buf to store the data write to
memory

count uint16_t Number of bytes need to write

Return value Comment

FTL SET BLOCK STATUS SUCCESS Write successfully

FTL_SET_BLOCK_STATUS_FAILURE Write fail

e ftl_status_t hal_get_block_status(uint32_t addr, uint8_t *buf, uint16_t count)
e This function is used to get the block status

Argument Type Comment
addr uint32_t The physical address of the
memory to read the bytes
buf uint8_t* Buf to store the data read from
memory
count uint16_t Number of bytes need to read
Return value Comment
FTL_GET BLOCK STATUS SUCCESS Read successfully
FTL_GET_BLOCK_STATUS_FAILURE Read fail
Atmel Atmel AVR116: Wear Leveling on DataFlash [APPLICATION NOTE] 10

32194A-AVR-07/12

o ftl_status_t hal_set_page_status(uint32_t addr, uint8_t *buf, uint16_t count)
* This function is used to set page status

Argument Type Comment

addr uint32_t The physical address of the
memory to write the bytes

buf uint8_t* Buf to store the data write to
memory

count uint16_t Number of bytes need to write

Return value Comment

FTL SET BLOCK STATUS SUCCESS Write successfully

FTL_SET_BLOCK_STATUS_FAILURE Write fail

o ftl_status_t hal_get_page_status(uint32_t addr, uint8_t *buf, uint16_t count)
e This function is used to get page status

Argument Type Comment

addr uint32_t The physical address of the
memory to read the bytes

buf uint8_t* Buf to store the data read from
memory

count uint16_t Number of bytes need to read

Return value Comment

FTL GET BLOCK STATUS SUCCESS Read successfully

FTL_GET_BLOCK_STATUS_FAILURE Read fail

o ftl_status_t hal_write_page(uint32_t sector, uint8_t *buf, bool spare)
e This function is used to write one sector data to memory

Argument Type Comment

sector uint32_t The physical sector number

buf uint8_t* Buf to store one sector
(512bytes) data write to memory

spare bool Write sector with spare or not

Return value Comment

FTL_WRITE_PAGE_SUCCESS Write memory with one sector data successful

FTL WRITE PAGE FAILURE Write memory with one sector data fail

o ftl_status_t hal_read_page(uint32_t sector, uint8_t *buf, bool spare)
e This function is used to read one sector data from memory

Argument Type Comment

sector uint32_t The physical sector number

buf uint8_t* Buf to store one sector
(512bytes) data read from
memory

spare bool Read sector with spare or not

Return value Comment

FTL_READ_PAGE_SUCCESS Read memory with one page data successful

FTL_READ _PAGE_FAILURE Read memory with one page data fail

o ftl_status_t hal_test_unit_wr_protect(void)
e This function is used to test memory if write protect

Argument Type Comment
None - -
Return value Comment
FTL _UNIT_ WR PROTECT Memory is write protect
FTL_UNIT_WR_NO_PROTECT Memory is not write protect
Atmel Atmel AVR116: Wear Leveling on DataFlash [APPLICATION NOTE] 11

32194A-AVR-07/12

o ftl_status_t hal_unit_unprotect(void)
* This function is used to unprotect memory

Argument Type Comment
None - -

Return value Comment

FTL_UNIT UNPROTECT SUCCESS Unprotect memory successful
FTL_UNIT_UNPROTECT_FAILURE Unprotect memory fail

o ftl_status_t hal_test_unit_removal(void)
e This function is used to test if memory be removed

Argument Type Comment
None - -

Return value Comment
FTL_UNIT_REMOVAL Memory is removed
FTL_UNIT_NO_REMOVAL Memory is not removed

All the routines are described in the hal.h file.

This layer should be implemented by the user. Users need to use this layer to perform a full test of their DataFlash
driver.

3.4 Error control

All the routines return a status which is described in ftl_status.h. Using these statuses we can locate where the error
happen easily.

The routines in uplayer.c return a status which is known by FAT.

Atmel Atmel AVR116: Wear Leveling on DataFlash [APPLICATION NOTE] 12

32194A-AVR-07/12

4, Usage

All examples and test cases are tested in Atmel Studio 6.0.

4.1 Integrate library to your project
1. Create a new folder in your project; you can create this folder under drivers.

= o o B
= | asf
= |7 awr3z
1 boards
O [y PR
1] Mew Tkem... Ctel+-Shift+a Add *
[z Existing Ikem. .. Shift+al-+a £ Cu Chrl+x
4 Mew Folder 53 Copy Zkr+C
H0 ™ Remave Del
N
0 Rename Fz
L Properties
LAl ue
=l | = common
1 boards
=1 I7=% romnnnenbs

2. Add the FTL library files to this folder. Here we create a new folder ftl under drivers.

= |7 sre
= |y asf
= @' avriz
(o] boards
= Iy drivers
(o] flashc
= = K
f:éj Ftl.by
E:j Ftl_status.h

2] hal.c
=] hal.h
=) libftl.a

E] uplayer.c
=| uplaver.h
[o gpio
[a] inkc
(o] spi

PHHH

3. Set the search path for toolchains and enable FTL_SUPPORT. Right click on the project, select Properties.

Build

Configuration: | Active (Debug) v| PlatFarm: |Active (AVR) v
Build Events
Toolch, = =
eeean = 2] AVR32/GNU C Compiler [AvR32/8NU € Compiler = Directories
Device j Preprocessor o
5 Symbols rclude Pates (1) [Ela)@)E]) 2
o ,
gging =/ Optimization ..;ﬁagjma’mlﬂgabuq . : A
5 i o ‘asf/commen)/utils/stdio/stdio_serial
Advanced & Debugging ..fsrcfasf{commony/services/serial
[Wamings fsrc/ast/avra2fservices|fs/fat
[Miscellaneous fsrc[asf/common|services/storagectrl_access
= Ij AVR32/GNU C Linker wJsrc/acfavr32/drivers, 'cycle_counter =)
=7 General ~ferc/asifavi32/driversfit v
Atmel Atmel AVR116: Wear Leveling on DataFlash [APPLICATION NOTE] 13

32194A-AVR-07/12

Toalchain

Device
Debugging

Advanced

Build

Build Events
Toolchain
Device
Debugging

Advanced

= [Z] AVR32/GNU € Compiler
[Preprocassor
= Symbols
[Directories
[Optimization
% Debuaging
& Wamings
[Miscellaneous
=[] AVR32/GNU C Linker
= General
[Libraries
= Optimization
= Miscellaneous
= |2 AVR32/GNU Assembler
= General
% Debuaging
= [Z] AVR32/GNU Preprocessing Assemt

= General

Configuration: | Active (Debug) A

= [Z] AVR32/GNU € Compiler
Preprocessor
[Directories
[Optimization
% Debugging
[Wamings
[Miscellaneous
= [Z] AVR32/GNU € Linker
= General
[Libraries
[Optimization
—

[AvR3z/GNU C Linker = Libraries

Libraries ()

16 BEEE

ib_addons-at32ucri-speed_opt
[#a

| Library search path {-L)

.. /src/asf/awr32thirdparty/newlib_addons/libs

.fsrcfasfiavr32 driversfid

Platfarm: | Active (AYR) R

[AvR3z/ENU € Compiler = Symbols

Defined symbols (-0}

ACCESS_USE_ENABLED
AT45DBX_ENABLE
BOARD=EVK1100

RY_EMABLE
FTL_SUPPORT

| Undefined symbols (-U)
r

FIEEE J_;.|

4. Add low level data flash driver (at25dfx.c/h or at45dbx.c/h) to your project. If these files have already existed in
your project, just replace them.

Note: Make sure the data flash can work (etc. read/write ok) before using FTL library.

4.2 Example with Atmel EVK1100

This section details a quick way to test the FTL functionality. The step-by-step procedure is as follow:
1. Create a new AT45DBX DataFlash example.

Atmel

Atmel AVR116: Wear Leveling on DataFlash [APPLICATION NOTE] 14

32194A-AVR-07/12

2. Add FTL library to project. This step has been detailed in Section 4.1.

Atmel

ple Project
ASF Version Device Family: | All

v | Category: | All

data

AT45DEX DataF-
h lash example -

= (5] Board Controller (0 projects) B
. =] EVKI1100
= (3] EVK1100 (3 proje
Provide an application ex-
ample using the Atmel
- = DataFlazh AT45DBEx com-
. DataFlash AT45D8X Example (from ASF V1) - EVK1100 ponent. The DataFlash re-
_— By quires an SPT bus as a low
o *j EVK1101 (3 projects) level communication infer-
&] EVK1104 (3 projicts) face. This interface can be
® (G1EVK1105 (2 projects) CRART i SPT mode fo
mn mode IoT
= _m MEGA-1284P Xplained (0 profscts) AVE devices. [AT435DEX
® (1QT600 (0 projects) e ol
| RZ600 (U projects) AT32UC3A0512)
(] SAM3N-EK (0 projects))
k.] & View Help
3] SAM3S-EK (0 projects)
| SAM35-EK2 (U projects)
& 5] SAM3U-EK (0 projects)
& | SAM3X_EK (0 projects) T
& 5] SAMAS_EK (U projects)
|5 Simulater (@ projects) =
& (3] STK600 (8 projects)
|5 UC3-A3 Xplained (2 projects)
& 5] UC3C-EX (2 projects) v o
Project Name: | AT4SDEX_EXAMPLEL |
Location: | EXVAVR_Studios | Browse...]
Solution: | |

Device: AT320C3A0512

B [src
= sy asf
= &y avr3z
o] boards
= I drivers
(o] Flashc
B [Fl
I:éj ftl.h
E:j FEl_status.b
1] hal.c
| hal.h
libftl. &
[od gpio
(2] inkc
[o] spi
[o] utils
= @ COMMon
|2 boards
= @ components
= @memnry
=l @ data_Fflash
=) Iy at45dbx

151 at45dhee.c
|h), at45dbeh
(h], at45dbe_hal_spi.h

o] services
[o] wtils

Atmel AVR116: Wear Leveling on DataFlash [APPLICATION NOTE]

32194A-AVR-07/12

15

3. Add FTL functionality test routine in file at45dbx_example.c.

#include “ft1.h"
—lint main(woid)
i
uint 16 t 1;
syaclk init () ;

A Initialize the board.
£ The board-zpecific conf_board.h file contains the configuration of the board
A dnitialization.
board init () ;
atdbdbx_init () ;
if (atdbdbx_mem check ()==true) {
gpio_zet _pin low(DATA FLASH LED EXAMPLE 0} ;
I elze
{
tezt kol);
1
FAADD FTL functionality test here
tezt_caze 10();
|
A Prepare half a data flash sector to Oxis
for (i=0:i<AT4EDEY_SECTOR STIE/2:i++) |
ram_buf [1]=0zh4;

h

AF And the remaining half to 0xG5

for (;1<AT4EDBY_SECTOR_SIZE;i++) |
ram_buf [1]=0x55;

h

Atmel Atmel AVR116: Wear Leveling on DataFlash [APPLICATION NOTE] 16

32194A-AVR-07/12

bool test_case_1(void)
{
uint32_t i;
ftl_status_t status;
uint8_t page_buf[512];
//\We need call ftl_init() before we use FTL
ftl_init();
//Here we write 400Mbytes to page 0 of dataflash
/to test ftl read/write and wear leveling
for(i = 0; i < 819200; i++){ // 400MByte data
memset(page_buf,0xaa,512);
//Write one page data to sector number O
status = ftl_write(0, page_buf);
if(status '= FTL_WRITE_PAGE_SUCCESS) {
print_dbg(“Write faill\r\n”);
return false;
}
memset(page_buf,0,512);
//Read one page data from sector number O
status = ftl_read(0, page_buf);
if(status '= FTL_READ_PAGE_SUCCESS) {
print_dbg(“Read faill\r\n”);
return false;
}
/Verify the data write and read
if(compare_buf(Oxaa, page_buf)){
print_dbg(“Verify fail\r\n”);
return false;
}
}
return true;
}

Note: Routine ftl_init() should be called firstly when the FTL is used.
If you use the FTL the first time, the routine ftl_init() will erase the entire chip. You should be careful if there are some
important data in the chip.
4. All things are done now. The only thing left is to compile the source code.

4.3 Using FTL through FAT
This section details a quick way to test the FTL functionality through FAT interface.

Based on the Atmel EVK1100 AT45DBX Example, which is detailed in Section 4.2, the step by step procedure is as
follow:
1. Add FAT service to the project.

Atmel Atmel AVR116: Wear Leveling on DataFlash [APPLICATION NOTE] 17

32194A-AVR-07/12

_ga] Solution 'AT45DEX_EXAMPLEL' (1 project) »~ |
= AT45DBX EXAMPLEL
S Dy Build
[=d] O)
B [st Febuild
= = Clean
& add

Set as Startlp Project

A5F Wizard

¥
i

Wiew A5F Example Project Help

X o< @

Zuk kel
Remove Dl
Rename Fz

IUnload Project

Properties

(o] ukils
= |2} comman
(o] boards
(==

— '

B2 Atmel Software Framework Wizard- Edit project AT45DBX_EXAMPLE1 =13

Select Drivers, Components, and Services Version: 3.0.1

Available Modules Selected Modules

w GPIO - General-Purpose Input/Cutput (driver)

w Generic board suppart {driver)

Name .

— — w System Clock Control (service)
. e system with automatic navigation

FAT file system with flat navigation

FAT file system with navigation filtered in flat mode

FAT file system with navigation filtered in list

FAT file systemn with POSIX API support

FAT file system with text file support

FAT file system with unicode support

Show: All

| addtosdetion>> |

FAT file system ! , @
FAT file system driver that provides an interface for accessing a FAT file system located on 2 memory device, Supports FAT1Z2, FAT1E and FAT32.

(oo | o>

2. Add FTL uplayer.c and uplayer.h to the ftl folder.

Atmel Atmel AVR116: Wear Leveling on DataFlash [APPLICATION NOTE] 18

32194A-AVR-07/12

= @asf
= @ awvtas
(o] boards
= I drivers
o] Flashc
= L [k
|'__3=j Ftl.h
=] Fti_status.h
2] hal.c
| halh
libFEl. &
C| uplaver.c
|'__3=j uplaver.h
|2 gpio
[a] inkc

3. Add FTL uplayer interface for FAT in config/conf_access.h.

=[S osre

[oy asf

(=l @ config
Il‘l conf_access.h
|h], conf_at45dbi.h
|h}, conf_board.h
(h}, conf_clack.h
ml conf_data_flash_example.b
|h], conf_explarer.h
[hl, conf_spi_master.h

] asf.h

\c], at45dbx_example.c

Atmel Atmel AVR116: Wear Leveling on DataFlash [APPLICATION NOTE] 19

32194A-AVR-07/12

F#| mname LN | Definitions

#

L1

—|#ifdef FTL_SUFFORT
#define AT4EDEX_MEN LIm_1
#define LUN_ID_AT45DEE_MEMN LUN_ID_1
#define LUN_1_ INCLUDE “uplayer. h”
#define Lun_1_test_unit_ready tezt_unit ready
#define Lun_ 1| read capacity read capacity
#define Lun_1_wr_protect tezt_wr_protect
#define Lun_1_remowval tezt_unit removal
#define Lun_1 _ush_read 10 uzb_read_ 10
#define Lun_1 ush write_10 uzh_write_10
#define Lun_ 1 mem ? ram df_2 ram
#define Lun_ 1 _ram ? mem kam_Z_df
#define LUN_1_NAME 3" 4T45DEE Data Flashh™"
#elze
#define AT4EDEX_MEN LIm_1
#define LUN_ID_AT45DEE_MEMN LUN_ID_1
#define LUN_1_INCLULE “at45dbx_mem. h"
#define Lun_ | test_unit ready atdbdbx_test_unit readsy
#define Lun_l read capacity at4bdbx_read capacity
#define Lun_ | wr protect atdbdbx_wr_ protect
#define Lun_| remowal at4bdbx_remowval
#define Lun_ | usb_read 10 atdbdbx_usb_read_10
#define Lun_ 1 usb_write 10 atdbdbx_usb_write_ 10
#define Lun_ | mem_2_ram atdbdbx_df 2 ram
#define Lun_ | ram_2 mem atdbdbx_ram 2 df
#define LUN_ 1 NAME “5"AT45DEY Data Flashh""

#endif

4. Change FAT feature level in file config/conf_explorer.h.

Af1 Lewel of features.
£l Select among:

f -
[-
i -
f -

#define F5_LEVEL_FEATURES

c FSFEATUEE_EEAD:
c FSFEATUEE_WRITE:
c FEFEATURE_WERITE_COMPLET:
c FSFEATURE_ALL:

411 read functiona.
nav_file copy(), nav _file paste(), nav file
FSFEATURE _WREITE functions and naw_driwve form

411 functions

{(FSFELTURE_FELD | FSFEATURE_WRITE_CO]'{FLET]II
#warning “FAT Lewel of Features =e 0 None Oy deradlt: edi g cont_explorer.h

5. Enable stream memory to memory interface to make compile pass.

#define
#define
#define
#define
£ m)

ACCESS_STEEAN
ACCESS_STEEAM EECOR]

true

F1< Streaming MEM <-» MEM interface.
alze /14 Streaming MEM <-> MEM interface in record mode.

ACCESS_MEM_TO_MEM !< MEM <-> MEM interface.

ACCESS_CODEC

false // 14 Codec interface.

6. Add test routine in the at45dbx_example.c file and include asf.h in this file.

Atmel

Atmel AVR116: Wear Leveling on DataFlash [APPLICATION NOTE] 20

32194A-AVR-07/12

//[Each file 1MByte size
#define NB_WRITE 2000L
#define BUF_SIZE 512L
bool test_case_2(void) //test ftl under fat
{
uint16_ti, cnt;
uint32_t index = 100;
uint8_t page_buf[BUF_SIZE]; //Buf used to write
uint8_t read_buf[BUF_SIZE]; //Buf used to read
uint8_t *namel[3] = {"data1","data2","data3};
if(!mount_fat()) { /format Dataflash and mount fat
printf(“Mount fat fail'\r\n”);
return false;
}
memset(page_buf,0xa5,512);
while(index--) {
/I\Write file data1, data2, data3, each file 1Mbytes
for(i=0; i< 3;i++) {
printf("File: %s created\r\n", name[i]);
if(!nav_file_create((const FS_STRING)namel[i])) {
printf("Create file: %s fail\r\n", name[i]);
return false;
}
if('file_open(FOPEN_MODE_W)) {
printf("Open file: %s for write fail\r\n", namel[i]);
return false;
}
for(cnt = 0; cnt < NB_WRITE; cnt++) {
if(!file_write_buf(page_buf, BUF_SIZE)) {
file_close();
printf("File write fail: %s\r\n", nameli]);
return false;
}
}
file_close();
/IRead back to verify it
if(!file_open(FOPEN_MODE_R)) {
printf("Open file: %s for read fail\r\n", namel[i]);
return false;
while (file_eof()==false) {
file_read_buf(read_buf, BUF_SIZE);
if(compare_buf(0xa5, read_buf)) {
printf("Verify file %s faill\r\n", nameli]);
file_close();
return false;
}
}
file_close();
printf("File: %s write OK, file size: %dMByte\r\n\n", name][i],1);
}
/I Delete file data1, data2, data3, then we can write them in next loop
if(Mfile_delete()) {
printf(“File delete faill\r\n");
return false;
}
}
return true;
}
Atmel Atmel AVR116: Wear Leveling on DataFlash [APPLICATION NOTE] 21
32194A-AVR-07/12

/IFormat dataflash and mount fat
void mount_fat()

{

nav_reset();

/[Select navigator O

if(Inav_select(0)) {
printf("Nav select fail \r\n");
return false;

}

/INavigator select the dataflash driver

if(Inav_drive_set(0)) {
printf("Nav drive set faill\r\n");
return false;

}

/[Format dataflash

if(!'nav_drive_format(FS_FORMAT_DEFAULT)) {
printf("Format fail\r\n");
return false;

}

//Mount dataflash

if(Inav_partition_mount()) {
printf("Partition mount fail\r\n");
return false;

/[Delete files
bool file_delete()
{
uint8_t name[3] = {“data1”,”data2”,"data3"};
uint8_ti;
for(i=0;i<3;i++) {
/[Select the file to be deleted
if('lnav_setcwd((FS_STRING)name[i], true, false)) {
printf("Nav setcwd: %s fail\r\n", namel[i]);
return false;
}
/[File delete
if(Inav_file_del(false)) {
printf("File: %s delete fail\r\n", nameli]);
return false;
}
printf("File: %s deleted \r\n", name[i]);
}
}
Atmel Atmel AVR116: Wear Leveling on DataFlash [APPLICATION NOTE] 22
32194A-AVR-07/12

5. Performance

FTL wear leveling performance is tested on the Atmel DataFlash AT45DB642D. This performance can also be applied
to the Atmel AT25DFx series DataFlash.

Figure 5-1 shows the wear leveling on the DataFlash AT45DB642D. This result was got through 400Mbytes data writing
in the same page of the DataFlash using FTL interface.

X-axis value is block number and Y-axis value is erase count in different blocks.

Figure 5-1. Wear leveling on the Atmel AT45DB642D using FTL interface.

55 -
54 -
53
52
51 -
50 -
49 -
48 -

Erase Count

47 -
46 -
45

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97 103 109 115 121 127
Block

Figure 5-2 shows the wear leveling on the DataFlash AT45DB642D after about 400MByte data write through FAT
interfaces.

X-axis value is block number and Y-axis value is erase count in different blocks.

Atmel Atmel AVR116: Wear Leveling on DataFlash [APPLICATION NOTE] 23

32194A-AVR-07/12

Figure 5-2. Wear leveling on the Atmel AT45DB624D using FAT interfaces.

300

295
290

=
———"1

285 il {l-Hfr— - —{I—{IH

13 19 25 31 37 43 49 55 61 67 73 79 85 91 97 103 109 115 121 127
Block

280 1
275 Il i il H

270 -
265
260 -
255
7

FTL divides DataFlash lifecycle to four levels (for example, AT45DB642D 100,000 times program/erase life cycles, each
level has 25,000 program/erase cycles). The block will not be used when its erase count gets up to the first level while
other blocks’ erase counts are still below 25,000. Free blocks are allocated by round robin scheduling again when all
the blocks get up to the first level. This process is going on till the blocks get its end life cycle.

Erase Count

Atmel Atmel AVR116: Wear Leveling on DataFlash [APPLICATION NOTE] 24

32194A-AVR-07/12

/ltmel_ Enabling Unlimited Possibilities

Atmel Corporation Atmel Asia Limited Atmel Munich GmbH Atmel Japan G.K.

2325 Orchard Parkway Unit 01-5 & 16, 19F Business Campus 16F Shin-Osaki Kangyo Building
San Jose, CA 95131 BEA Tower, Millennium City 5 Parkring 4 1-6-4 Osaki

USA 418 Kwun Tong Road D-85748 Garching b. Munich Shinagawa-ku, Tokyo 141-0032
Tel: (+1)(408) 441-0311 Kwun Tong, Kowloon GERMANY JAPAN

Fax: (+1)(408) 487-2600 HONG KONG Tel: (+49) 89-31970-0 Tel: (+81)(3) 6417-0300
www.atmel.com Tel: (+852) 2245-6100 Fax: (+49) 89-3194621 Fax: (+81)(3) 6417-0370

Fax: (+852) 2722-1369

© 2012 Atmel Corporation. All rights reserved. / Rev.: 32194A-AVR-07/12

Atmel®, Atmel logo and combinations thereof, AVR®, DataFIash®, Enabling Unlimited Possibilities®, and others are registered trademarks or trademarks of Atmel
Corporation or its subsidiaries. Other terms and product names may be trademarks of others.

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this
document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL TERMS AND CONDITIONS OF SALES LOCATED ON THE ATMEL WEBSITE, ATMEL ASSUMES
NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT,
CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS AND PROFITS, BUSINESS INTERRUPTION, OR LOSS OF
INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no
representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and products descriptions at any time
without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in,
automotive applications. Atmel products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

http://www.atmel.com/�

	1. Abbreviations and definitions
	2. Related parts
	2.1 Atmel AT25DFx series
	2.2 Atmel AT45DBx series

	3. FTL library
	3.1 Introduction
	3.2 Architecture
	3.3 Interface
	3.3.1 Up layer
	3.3.2 FTL
	3.3.3 Hardware abstract layer

	3.4 Error control

	4. Usage
	4.1 Integrate library to your project
	4.2 Example with Atmel EVK1100
	4.3 Using FTL through FAT

	5. Performance

