

APPLICATION NOTE

Atmel AVR116: Wear Leveling on DataFlash

32-bit Atmel Microcontrollers

Features

• Wear leveling
• Average the program/erase operations in different blocks

• Write not need be preceded by an erase operation

• Redirect logical address from host system to physical address in flash memory

• Power loss recovery

• Support FAT file system

Description

Flash memory has a limited program/erase cycle, program and erase in a same block
many times will result in bad blocks and decrease the flash memory life cycle
dramatically.

Flash memory is not fit for sector-based file systems (fat, etc.). Flash memory has
several characteristics that make difficult straightforward replacement of magnetic
disks. First, a write in flash memory should be preceded by an erase operation, which
takes an order of magnitude longer than a write operation. Second, erase operations
can only be performed in a much larger unit than the write operation. This implies
that, for an update of even a single byte, an erase operation as well as restoration of
a large amount of data would be required. This not only degrades the potential
performance significantly, but also gives rise to an integrity problem since data may
be lost if the power goes down unexpectedly during the restoration process.

An intermediate software layer called flash translation layer (FTL) addresses the
above mentioned issues. It enables the file systems access flash memory as access
magnetic disks and prolong the flash memory life cycle.

This application note will help the user to use the FTL interface.

32194A−AVR−07/12

Atmel AVR116: Wear Leveling on DataFlash [APPLICATION NOTE]
32194A−AVR−07/12

2

Table of contents

1. Abbreviations and definitions ... 3

2. Related parts .. 3
2.1 Atmel AT25DFx series .. 3
2.2 Atmel AT45DBx series .. 3

3. FTL library .. 3
3.1 Introduction ... 3
3.2 Architecture ... 4
3.3 Interface .. 5

3.3.1 Up layer 5
3.3.2 FTL 6
3.3.3 Hardware abstract layer .. 8

3.3.3.1 Atmel AT25DFx series DataFlash 8
3.3.3.2 Atmel AT45DBx series DataFlash 10

3.4 Error control .. 12

4. Usage 13
4.1 Integrate library to your project.. 13
4.2 Example with Atmel EVK1100... 14
4.3 Using FTL through FAT ... 17

5. Performance .. 23

Atmel AVR116: Wear Leveling on DataFlash [APPLICATION NOTE]
32194A−AVR−07/12

3

1. Abbreviations and definitions
• FTL: Flash Translation Layer

• HAL: Hardware Abstract Layer

• sector Logical unit, 512Bytes

• page Physical unit, actual page size of the Atmel® DataFlash®

2. Related parts
FTL library can be applied to the following parts:

2.1 Atmel AT25DFx series
• AT25DF641A

• AT25DF641

• AT25DF321A

• AT25DF321

• AT25DF161

• AT25DF081A

• AT25DF041A

2.2 Atmel AT45DBx series
• AT45DB642D

• AT45DB321D

• AT45DB161D

3. FTL library

3.1 Introduction
FTL redirects the logical address from uplayer to physical address in flash memory, and average the program/erase
operation in different blocks.

FTL features the function of wear leveling, bad block management, garbage collection, defrag and power loss recovery.
It fully supports FAT file system.

Due to different features of the AT25DFx series and AT45DBx series DataFlash, two libraries have been implemented
respectively. Most of the two libraries are the same; the only difference for user is the hal layer interface. This will be
detailed in Section 3.3.3.

The footprint of FTL library is about 6Kbyte. The RAM usage depends on the block number.

Atmel AT25DFx series:

Take AT25DF321A as an example. Its size is 4Mbyte and use 64K as a FTL blocks. The maximum RAM usage is
2Kbyte.

Approximately, the RAM usage is 1.1Kbyte + 14 × (block number - used block).

Atmel AVR116: Wear Leveling on DataFlash [APPLICATION NOTE]
32194A−AVR−07/12

4

Atmel AT45DBx series:

Take AT45DB642D as an example. Its size is 8Mbyte and use 64K as a FTL block. The maximum RAM usage is
4.1Kbytes.

Approximately, the RAM usage is 2.1Kbyte + 16 × (block number - used block).

3.2 Architecture
FTL is divided into three parts, up layer, ftl and hal. Figure 3-1 illustrates the architecture. Figure 3-2 shows briefly the
redirection of the logical address from uplayer to physical address in flash.

Figure 3-1. FTL architecture.

Atmel AVR116: Wear Leveling on DataFlash [APPLICATION NOTE]
32194A−AVR−07/12

5

Figure 3-2. FTL redirect logical address to physical address.

1 2 3 4 5 6 7 8 9 10 11 12 …...

1 2 3 4 5 6 7 8 9 10 11 12 …...

1 2 3 4 5 6 7 8 9 10 11 12 …...

…...3 5 1 6 2 9 8 12 11 4 7 10

Block0 Block1 Block2

FAT
File System

FTL

Data Flash

Logical Sector
Address

Logical Sector

Physical Sector

Physical Sector
Address

3.3 Interface

3.3.1 Up layer
This layer provides the interface for FAT file system.

• uplayer_status_t test_unit_ready(void)
 This function is used to check memory state

Argument Type Comment
None - -

Return value Comment
UPLAYER_SUCCESS Memory is ready
UPLAYER_UNIT_NO_PRESENT Memory is not ready

• uplayer_status_t read_capacity(uint32_t *nb_sectors)

 This function is used to read memory capacity
Argument Type Comment
nb_sector uint32_t* Pointer to the variable which

store the number of sectors

Return value Comment
UPLAYER_SUCCESS Read memory capacity successful
UPLAYER_FAILURE Read memory capacity fail

Atmel AVR116: Wear Leveling on DataFlash [APPLICATION NOTE]
32194A−AVR−07/12

6

• bool test_wr_protect(void)
 This function is used to check memory if write protect

Argument Type Comment
None - -

Return value Comment
true Memory is write protect
false Memory is not write protect

• bool test_unit_removal(void)

 This function is used to check memory if be removed
Argument Type Comment
None - -

Return value Comment
true Memory is removed
false Memory is not removed

• uplayer_status_t ram_2_df(uint32_t sector, void *ram)

 This function is used to write one page data to memory
Argument Type Comment
sector uint32_t The logical sector number
ram void* RAM to store one sector

(512bytes) data write to memory

Return value Comment
UPLAYER_SUCCESS Write memory with one sector data successful
UPLAYER_FAILURE Write memory with one sector data fail

• uplayer_status_t df_2_ram(uint32_t sector, void *ram)

 This function is used to read one page data from memory
Argument Type Comment
sector uint32_t The logical sector number
ram void* RAM to store one sector

(512bytes) data read from
memory

Return value Comment
UPLAYER_SUCCESS Read memory with one sector data successful
UPLAYER_FAILURE Read memory with one sector data fail

All the routines are described in uplayer.h file.

3.3.2 FTL
This layer provides interfaces for uplayer, and can also be called directly when you don’t want to use FAT.

• ftl_status_t ftl_init(void)
 This function is used to initialize ftl structure

Argument Type Comment
None - -

Return value Comment
FTL_INIT_SUCCESS FTL structure initialization successful
FTL_INIT_FAILURE FTL structure initialization fail

Atmel AVR116: Wear Leveling on DataFlash [APPLICATION NOTE]
32194A−AVR−07/12

7

Note: This routine will erase all the contents of the memory when FTL has not been used before on this memory.
• ftl_status_t ftl_read(uint32_t sector, uint8_t *buf)

 This function is used to read one page data from memory
Argument Type Comment
sector uint32_t The logical sector number
buf uint8_t* Buf to store one sector

(512bytes) data read from
memory

Return value Comment
FTL_READ_PAGE_SUCCESS Read memory with one sector data successful
FTL_READ_PAGE_FAILURE Read memory with one sector data fail

• ftl_status_t ftl_write(uint32_t sector, uint8_t *buf)

 This function is used to write one page data to memory
Argument Type Comment
sector uint32_t The logical sector number
buf uint8_t* Buf to store one sector

(512bytes) data write to memory

Return value Comment
FTL_WRITE_PAGE_SUCCESS Write memory with one sector data successful
FTL_WRITE_PAGE_FAILURE Write memory with one sector data fail

• ftl_status_t ftl_test_unit_ready(void)

 This function is used to test memory state
Argument Type Comment
None - -

Return value Comment
FTL_UINT_READY Memory is ready
FTL_UINT_NOT_READY Memory is not ready

• ftl_status_t ftl_read_capacity(uint32_t *nb_sectors)

 This function is used to read memory capacity
Argument Type Comment
nb_sectors uint32_t* Pointer to the variable which

store the number of sectors

Return value Comment
FTL_READ_CAPACITY_SUCCESS Read memory capacity successful
FTL_READ_CAPACITY_FAILURE Read memory capacity fail

• ftl_status_t ftl_test_unit_wr_protect(void)

 This function is used to test memory write protect state
Argument Type Comment
None - -

Return value Comment
FTL_UNIT_WR_PROTECT Memory is write protect
FTL_UNIT_WR_NO_PROTECT Memory is not write protect

Atmel AVR116: Wear Leveling on DataFlash [APPLICATION NOTE]
32194A−AVR−07/12

8

• ftl_status_t ftl_unit_unprotect(void)
 This function is used to unprotect memory

Argument Type Comment
None - -

Return value Comment
FTL_UNIT_UNPROTECT_SUCCESS Unprotect memory successful
FTL_UNIT_UNPROTECT_FAILURE Unprotect memory fail

• ftl_status_t ftl_test_unit_removal(void)

 This function is used to test memory if be removed
Argument Type Comment
None - -

Return value Comment
FTL_UNIT_REMOVAL Memory is removed
FTL_UNIT_NO_REMOVAL Memory is not removed

Note: Use ftl_read_capacity(…) to get the available number of sectors.

All the routines are described in ftl.h file.

3.3.3 Hardware abstract layer
This layer provides interfaces for FTL. The routines in this layer will call data flash drivers which implemented by user.
The address arguments are all physical address in this layer.

3.3.3.1 Atmel AT25DFx series DataFlash
• ftl_status_t hal_block_erase(uint32_t addr)

 This function is used to erase memory block
Argument Type Comment
addr uint32_t The physical address of the

memory block to erase

Return value Comment
FTL_BLOCK_ERASE_SUCCESS Memory block erase successful
FTL_BLOCK_ERASE_FAILURE Memory block erase fail

Note: The block erase unit is 64Kbyte block.
• ftl_status_t hal_read_id(uint8_t *buf)

 This function is used to read memory id
Argument Type Comment
buf uint8_t* Buf (4bytes) used to store

memory ID

Return value Comment
FTL_GET_CHIP_ID_SUCCESS Get memory ID successful
FTL_GET_CHIP_ID_FAILURE Get memory ID fail

Atmel AVR116: Wear Leveling on DataFlash [APPLICATION NOTE]
32194A−AVR−07/12

9

• ftl_status_t hal_set_block_status(uint32_t addr, uint8_t *buf, uint16_t count)
 This function is used to set block status

Argument Type Comment
addr uint32_t The physical address of the

memory to write the bytes
buf uint8_t* Buf to store the data write to

memory
count uint16_t Number of bytes need to write

Return value Comment
FTL_SET_BLOCK_STATUS_SUCCESS Write successfully
FTL_SET_BLOCK_STATUS_FAILURE Write fail

• ftl_status_t hal_get_block_status(uint32_t addr, uint8_t *buf, uint16_t count)

 This function is used to get the block status
Argument Type Comment
addr uint32_t The physical address of the

memory to read the bytes
buf uint8_t* Buf to store the data read from

memory
count uint16_t Number of bytes need to read

Return value Comment
FTL_GET_BLOCK_STATUS_SUCCESS Read successfully
FTL_GET_BLOCK_STATUS_FAILURE Read fail

• ftl_status_t hal_write_page(uint32_t sector, uint8_t *buf)

 This function is used to write one sector data to memory
Argument Type Comment
sector uint32_t The physical sector number
buf uint8_t* Buf to store one sector

(512bytes) data write to memory

Return value Comment
FTL_WRITE_PAGE_SUCCESS Write memory with one sector data successful
FTL_WRITE_PAGE_FAILURE Write memory with one sector data fail

• ftl_status_t hal_read_page(uint32_t sector, uint8_t *buf)

 This function is used to read one sector data from memory
Argument Type Comment
sector uint32_t The physical sector number
buf uint8_t* Buf to store one page (512bytes)

data read from memory

Return value Comment
FTL_READ_PAGE_SUCCESS Read memory with one sector data successful
FTL_READ_PAGE_FAILURE Read memory with one sector data fail

• ftl_status_t hal_test_unit_wr_protect(void)

 This function is used to test memory if write protect
Argument Type Comment
None - -

Return value Comment
FTL_UNIT_WR_PROTECT Memory is write protect
FTL_UNIT_WR_NO_PROTECT Memory is not write protect

Atmel AVR116: Wear Leveling on DataFlash [APPLICATION NOTE]
32194A−AVR−07/12

10

• ftl_status_t hal_unit_unprotect(void)
 This function is used to unprotect memory

Argument Type Comment
None - -

Return value Comment
FTL_UNIT_UNPROTECT_SUCCESS Unprotect memory successful
FTL_UNIT_UNPROTECT_FAILURE Unprotect memory fail

• ftl_status_t hal_test_unit_removal(void)

 This function is used to test if memory be removed
Argument Type Comment
None - -

Return value Comment
FTL_UNIT_REMOVAL Memory is removed
FTL_UNIT_NO_REMOVAL Memory is not removed

3.3.3.2 Atmel AT45DBx series DataFlash
• ftl_status_t hal_read_id(uint8_t *buf)

 This function is used to read memory id
Argument Type Comment
buf uint8_t* Buf (4bytes) used to store

memory ID

Return value Comment
FTL_GET_CHIP_ID_SUCCESS Get memory ID successful
FTL_GET_CHIP_ID_FAILURE Get memory ID fail

• ftl_status_t hal_set_block_status(uint32_t addr, uint8_t *buf, uint16_t count)

 This function is used to set block status
Argument Type Comment
addr uint32_t The physical address of the

memory to write the bytes
buf uint8_t* Buf to store the data write to

memory
count uint16_t Number of bytes need to write

Return value Comment
FTL_SET_BLOCK_STATUS_SUCCESS Write successfully
FTL_SET_BLOCK_STATUS_FAILURE Write fail

• ftl_status_t hal_get_block_status(uint32_t addr, uint8_t *buf, uint16_t count)

 This function is used to get the block status
Argument Type Comment
addr uint32_t The physical address of the

memory to read the bytes
buf uint8_t* Buf to store the data read from

memory
count uint16_t Number of bytes need to read

Return value Comment
FTL_GET_BLOCK_STATUS_SUCCESS Read successfully
FTL_GET_BLOCK_STATUS_FAILURE Read fail

Atmel AVR116: Wear Leveling on DataFlash [APPLICATION NOTE]
32194A−AVR−07/12

11

• ftl_status_t hal_set_page_status(uint32_t addr, uint8_t *buf, uint16_t count)
 This function is used to set page status

Argument Type Comment
addr uint32_t The physical address of the

memory to write the bytes
buf uint8_t* Buf to store the data write to

memory
count uint16_t Number of bytes need to write

Return value Comment
FTL_SET_BLOCK_STATUS_SUCCESS Write successfully
FTL_SET_BLOCK_STATUS_FAILURE Write fail

• ftl_status_t hal_get_page_status(uint32_t addr, uint8_t *buf, uint16_t count)

 This function is used to get page status
Argument Type Comment
addr uint32_t The physical address of the

memory to read the bytes
buf uint8_t* Buf to store the data read from

memory
count uint16_t Number of bytes need to read

Return value Comment
FTL_GET_BLOCK_STATUS_SUCCESS Read successfully
FTL_GET_BLOCK_STATUS_FAILURE Read fail

• ftl_status_t hal_write_page(uint32_t sector, uint8_t *buf, bool spare)

 This function is used to write one sector data to memory
Argument Type Comment
sector uint32_t The physical sector number
buf uint8_t* Buf to store one sector

(512bytes) data write to memory
spare bool Write sector with spare or not

Return value Comment
FTL_WRITE_PAGE_SUCCESS Write memory with one sector data successful
FTL_WRITE_PAGE_FAILURE Write memory with one sector data fail

• ftl_status_t hal_read_page(uint32_t sector, uint8_t *buf, bool spare)

 This function is used to read one sector data from memory
Argument Type Comment
sector uint32_t The physical sector number
buf uint8_t* Buf to store one sector

(512bytes) data read from
memory

spare bool Read sector with spare or not

Return value Comment
FTL_READ_PAGE_SUCCESS Read memory with one page data successful
FTL_READ_PAGE_FAILURE Read memory with one page data fail

• ftl_status_t hal_test_unit_wr_protect(void)

 This function is used to test memory if write protect
Argument Type Comment
None - -

Return value Comment
FTL_UNIT_WR_PROTECT Memory is write protect
FTL_UNIT_WR_NO_PROTECT Memory is not write protect

Atmel AVR116: Wear Leveling on DataFlash [APPLICATION NOTE]
32194A−AVR−07/12

12

• ftl_status_t hal_unit_unprotect(void)
 This function is used to unprotect memory

Argument Type Comment
None - -

Return value Comment
FTL_UNIT_UNPROTECT_SUCCESS Unprotect memory successful
FTL_UNIT_UNPROTECT_FAILURE Unprotect memory fail

• ftl_status_t hal_test_unit_removal(void)

 This function is used to test if memory be removed
Argument Type Comment
None - -

Return value Comment
FTL_UNIT_REMOVAL Memory is removed
FTL_UNIT_NO_REMOVAL Memory is not removed

All the routines are described in the hal.h file.

This layer should be implemented by the user. Users need to use this layer to perform a full test of their DataFlash
driver.

3.4 Error control
All the routines return a status which is described in ftl_status.h. Using these statuses we can locate where the error
happen easily.

The routines in uplayer.c return a status which is known by FAT.

Atmel AVR116: Wear Leveling on DataFlash [APPLICATION NOTE]
32194A−AVR−07/12

13

4. Usage
All examples and test cases are tested in Atmel Studio 6.0.

4.1 Integrate library to your project
1. Create a new folder in your project; you can create this folder under drivers.

2. Add the FTL library files to this folder. Here we create a new folder ftl under drivers.

3. Set the search path for toolchains and enable FTL_SUPPORT. Right click on the project, select Properties.

Atmel AVR116: Wear Leveling on DataFlash [APPLICATION NOTE]
32194A−AVR−07/12

14

4. Add low level data flash driver (at25dfx.c/h or at45dbx.c/h) to your project. If these files have already existed in
your project, just replace them.

Note: Make sure the data flash can work (etc. read/write ok) before using FTL library.

4.2 Example with Atmel EVK1100
This section details a quick way to test the FTL functionality. The step-by-step procedure is as follow:

1. Create a new AT45DBX DataFlash example.

Atmel AVR116: Wear Leveling on DataFlash [APPLICATION NOTE]
32194A−AVR−07/12

15

2. Add FTL library to project. This step has been detailed in Section 4.1.

Atmel AVR116: Wear Leveling on DataFlash [APPLICATION NOTE]
32194A−AVR−07/12

16

3. Add FTL functionality test routine in file at45dbx_example.c.

Atmel AVR116: Wear Leveling on DataFlash [APPLICATION NOTE]
32194A−AVR−07/12

17

Note: Routine ftl_init() should be called firstly when the FTL is used.

If you use the FTL the first time, the routine ftl_init() will erase the entire chip. You should be careful if there are some
important data in the chip.

4. All things are done now. The only thing left is to compile the source code.

4.3 Using FTL through FAT
This section details a quick way to test the FTL functionality through FAT interface.

Based on the Atmel EVK1100 AT45DBX Example, which is detailed in Section 4.2, the step by step procedure is as
follow:

1. Add FAT service to the project.

Atmel AVR116: Wear Leveling on DataFlash [APPLICATION NOTE]
32194A−AVR−07/12

18

2. Add FTL uplayer.c and uplayer.h to the ftl folder.

Atmel AVR116: Wear Leveling on DataFlash [APPLICATION NOTE]
32194A−AVR−07/12

19

3. Add FTL uplayer interface for FAT in config/conf_access.h.

Atmel AVR116: Wear Leveling on DataFlash [APPLICATION NOTE]
32194A−AVR−07/12

20

4. Change FAT feature level in file config/conf_explorer.h.

5. Enable stream memory to memory interface to make compile pass.

6. Add test routine in the at45dbx_example.c file and include asf.h in this file.

Atmel AVR116: Wear Leveling on DataFlash [APPLICATION NOTE]
32194A−AVR−07/12

21

//Each file 1MByte size
#define NB_WRITE 2000L
#define BUF_SIZE 512L
bool test_case_2(void) //test ftl under fat
{

uint16_t i, cnt;
uint32_t index = 100;
uint8_t page_buf[BUF_SIZE]; //Buf used to write
uint8_t read_buf[BUF_SIZE]; //Buf used to read

uint8_t *name[3] = {"data1","data2","data3};

if(!mount_fat()) { //format Dataflash and mount fat
printf(“Mount fat fail!\r\n”);
return false;

}
memset(page_buf,0xa5,512);

while(index--) {
//Write file data1, data2, data3, each file 1Mbytes
for(i = 0; i < 3; i++) {

printf("File: %s created\r\n", name[i]);
if(!nav_file_create((const FS_STRING)name[i])) {

printf("Create file: %s fail\r\n", name[i]);
return false;

}
if(!file_open(FOPEN_MODE_W)) {

printf("Open file: %s for write fail\r\n", name[i]);
return false;

}
for(cnt = 0; cnt < NB_WRITE; cnt++) {

if(!file_write_buf(page_buf, BUF_SIZE)) {
file_close();
printf("File write fail: %s\r\n", name[i]);
return false;

}
}
file_close();
//Read back to verify it
if(!file_open(FOPEN_MODE_R)) {

printf("Open file: %s for read fail\r\n", name[i]);
return false;

}
while (file_eof()==false) {

file_read_buf(read_buf, BUF_SIZE);
if(compare_buf(0xa5, read_buf)) {

printf("Verify file %s fail!\r\n", name[i]);
file_close();
return false;

}
}
file_close();
printf("File: %s write OK, file size: %dMByte\r\n\n", name[i],1);

}
// Delete file data1, data2, data3, then we can write them in next loop
if(!file_delete()) {

printf(“File delete fail!\r\n”);
return false;

}
}
return true;

}

Atmel AVR116: Wear Leveling on DataFlash [APPLICATION NOTE]
32194A−AVR−07/12

22

//Delete files
bool file_delete()
{

uint8_t name[3] = {“data1”,”data2”,”data3”};
uint8_t i;
for(i = 0; i < 3; i++) {

//Select the file to be deleted
if(!nav_setcwd((FS_STRING)name[i], true, false)) {

printf("Nav setcwd: %s fail\r\n", name[i]);
return false;

}
//File delete
if(!nav_file_del(false)) {

printf("File: %s delete fail\r\n", name[i]);
return false;

}

printf("File: %s deleted \r\n", name[i]);
}

}

Atmel AVR116: Wear Leveling on DataFlash [APPLICATION NOTE]
32194A−AVR−07/12

23

5. Performance
FTL wear leveling performance is tested on the Atmel DataFlash AT45DB642D. This performance can also be applied
to the Atmel AT25DFx series DataFlash.

Figure 5-1 shows the wear leveling on the DataFlash AT45DB642D. This result was got through 400Mbytes data writing
in the same page of the DataFlash using FTL interface.

X-axis value is block number and Y-axis value is erase count in different blocks.

Figure 5-1. Wear leveling on the Atmel AT45DB642D using FTL interface.

Figure 5-2 shows the wear leveling on the DataFlash AT45DB642D after about 400MByte data write through FAT
interfaces.

X-axis value is block number and Y-axis value is erase count in different blocks.

45

46

47

48

49

50

51

52

53

54

55

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97 103 109 115 121 127

Block

Er
as

e
Co

un
t

Atmel AVR116: Wear Leveling on DataFlash [APPLICATION NOTE]
32194A−AVR−07/12

24

Figure 5-2. Wear leveling on the Atmel AT45DB624D using FAT interfaces.

FTL divides DataFlash lifecycle to four levels (for example, AT45DB642D 100,000 times program/erase life cycles, each
level has 25,000 program/erase cycles). The block will not be used when its erase count gets up to the first level while
other blocks’ erase counts are still below 25,000. Free blocks are allocated by round robin scheduling again when all
the blocks get up to the first level. This process is going on till the blocks get its end life cycle.

255

260

265

270

275

280

285

290

295

300

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97 103 109 115 121 127

Block

Er
as

e
Co

un
t

Atmel Corporation
2325 Orchard Parkway
San Jose, CA 95131
USA
Tel: (+1)(408) 441-0311
Fax: (+1)(408) 487-2600
www.atmel.com

Atmel Asia Limited
Unit 01-5 & 16, 19F
BEA Tower, Millennium City 5
418 Kwun Tong Road
Kwun Tong, Kowloon
HONG KONG
Tel: (+852) 2245-6100
Fax: (+852) 2722-1369

Atmel Munich GmbH
Business Campus
Parkring 4
D-85748 Garching b. Munich
GERMANY
Tel: (+49) 89-31970-0
Fax: (+49) 89-3194621

Atmel Japan G.K.
16F Shin-Osaki Kangyo Building
1-6-4 Osaki
Shinagawa-ku, Tokyo 141-0032
JAPAN
Tel: (+81)(3) 6417-0300
Fax: (+81)(3) 6417-0370

© 2012 Atmel Corporation. All rights reserved. / Rev.: 32194A−AVR−07/12

Atmel®, Atmel logo and combinations thereof, AVR®, DataFlash®, Enabling Unlimited Possibilities®, and others are registered trademarks or trademarks of Atmel
Corporation or its subsidiaries. Other terms and product names may be trademarks of others.

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this
document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL TERMS AND CONDITIONS OF SALES LOCATED ON THE ATMEL WEBSITE, ATMEL ASSUMES
NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT,
CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS AND PROFITS, BUSINESS INTERRUPTION, OR LOSS OF
INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no
representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and products descriptions at any time
without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in,
automotive applications. Atmel products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

http://www.atmel.com/�

	1. Abbreviations and definitions
	2. Related parts
	2.1 Atmel AT25DFx series
	2.2 Atmel AT45DBx series

	3. FTL library
	3.1 Introduction
	3.2 Architecture
	3.3 Interface
	3.3.1 Up layer
	3.3.2 FTL
	3.3.3 Hardware abstract layer

	3.4 Error control

	4. Usage
	4.1 Integrate library to your project
	4.2 Example with Atmel EVK1100
	4.3 Using FTL through FAT

	5. Performance

