

INTERFACE CARD P

FOR THYRO-P AND THYRO-P MC

July 2014 DE/EN - V3

TABLE OF CONTENTS

Lis	t of figures and tables	4
Ab	breviations	4
1.	Safety notes	5
	1.1 Obligatory instruction	5
	1.2 Appropriate usage	5
	1.3 Residual hazards of the product	6
	1.4 Incorrect operation and their consequences	6
	1.5 Scope of supply	6
	1.6 Storage	6
	1.7 Assembly	7
	1.8 Connection	7
	1.9 Operation	7
	1.10 Maintenance, Service, Faults	7
	1.11 Shut down, dis-assembly	9
2.	Safety requirements	10
	2.1 Important instructions and explanations	10
	2.2 General danger information	11
	2.3 Qualified personnel	12
	2.4 Requirements to the operator	12
	2.5 Intended use	13
	2.6 Liability	13
3.	Notes on these operating instructions	14
	3.1 Validity	14
	3.2 Handling	14
	3.3 Type designation	14
	3.4 Loss of warranty	14
	3.5 Copyright	14
	3.6 Further information on copyright	14

4.	Contact	16
	4.1 Technical queries	16
	4.2 Commercial queries	16
	4.3 Service	16
	4.4 Internet	16
5.	Introduction	17
	5.1 General information	17
	5.2 Special features	17
6.	Installation	18
	6.1 Setting the protocol	18
	6.2 Installation of the plug-in card	19
	6.3 Connecting the Ethernet plug-in card to the master	19
7.	Digital inputs	20
8.	Local operation of a setpoint	21
9.	Project planning	24
	9.1 Setting the device name	24
	9.2 Installing the device description file (GSDML)	24
	9.3 Start configurations (parameterization)	25
	9.4 Cyclical data transmission (configuration)	27
	9.5 Acyclic data transmission (parameterization)	31
	9.6 Parameter tables (acyclic)	32
10.	Diagnosis	40
	10.1 LED status indications	40
	10.2 Diagnosis messages	40
11.	External connections	41
	11.1 Ethernet interface	41
12.	Approvals and conformities	42

LIST OF FIGURES AND TABLES

Tab. 1	Terminal configuration X21	20
Tab. 2	Setpoints Thyro-P	27
Tab. 3	Actual values Thyro-P	28
Tab. 4	Several Thyro-P values	29
Tab. 5	Status messages	29
Tab. 6	LED and relay status	30
Tab. 7	Functions	30
Tab. 8	Controller Parameter (Thyro-P/Thyro-P MC)	32
Tab. 9	Operating status of the Ethernet plug-in card	40
Tab. 10	Status LED of Ethernet ports 1 and 2	40
Fig. 1	Hardware structure	18
Fig. 2	Example for input connections	20
Fig. 3	Relative alteration of the motor potentiometer setpoint over the time	21
Fig. 4	Local operation of the motor potentiometer setpoint	22
Fig. 5	State diagram	23

ABBREVIATIONS

The following specific abbreviations are used in this description: Advanced Energy - Advanced Energy Industries GmbH MC - Multi-Channel

1. SAFETY NOTES

The safety notes and the operating instructions are to be read carefully before installing and commissioning.

1.1 OBLIGATORY INSTRUCTION

These safety notes and the operating instructions shall carefully be read by the persons deployed for work using and employing the Thyro-P Ethernet plug-in card PROFINET prior to assembly, installation and the initial start-up of the Thyro-P Ethernet plug-in card PROFINET. These operating instructions are part of the Thyro-P Ethernet plug-in card PROFINET. The operator of this device is committed to provide these operating instructions without limitation to all persons, who transport the device, start it up, maintain it, or perform other work tasks to it. In accordance with the Product Liability Act the manufacturer of this product

- is obligated to inform about and warn against
- other than the intended use of a product
- the residual hazards of a product as well as
- incorrect usages and their consequences

The following information is intended for this purpose. This information should warn the product user and protect him and his appliances.

1.2 APPROPRIATE USAGE

- The Thyro-P Ethernet plug-in card PROFINET is an interface component which may only be operated in connection with the Thyro-P.
- As a component the Thyro-P Ethernet plug-in card PROFINET is not functional on its own and must be project planned for its appropriate usage in order to minimize the residual hazards of the product.
- The Thyro-P Ethernet plug-in card PROFINET may only be used for the purpose for which it was intended, as persons may otherwise be exposed to dangers (e.g. electric shock, burns) and systems also (e.g. overload).
- It is not permitted to make any unauthorized modifications to the device or to use any spare parts or replacement parts not approved by Advanced Energy, or to use the device for any other purpose.
- The warranty obligations of the manufacturer are only applicable if these operating instructions are observed and complied with.
- The Thyro-P Ethernet plug-in card PROFINET connects a Thyro-P with a master.

- The devices supplied have been produced in accordance with the ISO 9001 quality standard.
- Multiple plug-in cards can be used on one assembly.
- The power supply for the plug-in card comes through the Thyro-P.

1.3 RESIDUAL HAZARDS OF THE PRODUCT

Even with intended use it is possible, in the case of an error, that the currents, voltages or power in the load circuit are no longer affected by the Thyro-P Ethernet plug-in card PROFINET.

If the power components are destroyed, for example, the following cases are possible: current interruption, continual flow of energy. If such a case occurs, then the occuring load voltages and currents result from the physical sizes of the overall circuit. Throughout the project planning of the system it must be ensured, that no uncontrolled large currents, voltages or power can occur.

1.4 INCORRECT OPERATION AND THEIR CONSEQUENCES

In the case of incorrect operations, higher power, voltages or currents than intended can reach the Thyro-P Ethernet plug-in card PROFINET, the thyristor power controller or the load. This can cause damage to the Thyro-P Ethernet plug-in card PROFINET, the thyristor power controller or the load. In particular, factory-set parameters may not be altered in such a way that the Thyro-P or the Thyro-P Ethernet plug-in card PROFINET are overloaded.

1.5 SCOPE OF SUPPLY

The supply consists of the following parts:

- Thyro-P Ethernet plug-in card PROFINET
- Operating instructions

1.6 STORAGE

The devices may be stored originally OEM packaged in rooms, which are dry and ventilated.

Permissible ambient temperature: -25 °C to +55 °C

Permissible relative air humidity: max. 85%

For longer storage durations, the devices should be contained in airtight plastic skins with the addition of commercially available drying agents.

1.7 ASSEMBLY

- If stored in cold environments it must be ensured that the device is absolutely dry before commissioning. Therefore allow at least 2 hours acclimatization time before commissioning.
- Ensure sufficient ventilation and deaeration of the cabinet if mounted in a cabinet.
- Observe minimum spacing.
- Ensure that the device cannot be heated up by heat sources below it. (see Technical data).
- Ground the device in accordance with the local regulations.
- Connect the device in accordance with the connection diagrams.

1.8 CONNECTION

Before connection, the indicated voltage on the type plate is to be compared with the mains voltage to make sure they match.

The electrical connection is made at the points labelled on the Thyro-P.

1.9 OPERATION

The Thyro-P Ethernet plug-in card PROFINET may only be started when there is absolutely no danger to persons or system.

- Protect the device against dust and damp.
- Ensure that the ventilation opening is not blocked.

1.10 MAINTENANCE, SERVICE, FAULTS

The symbols used in the following are explained in the chapter on safety requirements.

In order to avoid damage to personnel or property the user must note the following points before all work:

CAUTION

In the case of smoke or smell development, as well as in the case of fire, the device must be disconnected from all external voltage sources.

CAUTION

For maintenance and repair works the device must be disconnected from all external voltage sources and safeguarded against it being switched on again. After switching off wait at least two minutes for the snubber capacitors to discharge. The absence of voltage is to be ascertained using appropriate measurement instruments. The device is to be grounded an short-circuited. Adjacent components under voltage are to be covered or separated off. These activities may only be carried out by an electrically qualified person. The local electro-technical regulations are to be adhered to.

CAUTION

The thyristor controller contains voltages which are hazardous. Repairs are strictly only to be carried out by qualified and trained maintenance personnel.

CAUTION

Hazard of electric shocks. Even after the separation from the mains, capacitors can still contain dangerously high levels of energy.

CAUTION

Hazard of electric shocks. Even with a non-activated thyristor controller the load circuit is not separated from the mains by the thyristor controller.

ATTENTION

Different power components are screwed in place with exact torques according to their function. For safety reasons repairs to power components are to be carried out by Advanced Energy.

1.11 SHUT DOWN, DIS-ASSEMBLY

If shutting down and dis-assembling the device for the reason of venue change or for disposal purposes the following safety rules must be complied with prior to the beginning of all work performed:

ATTENTION MAINS VOLTAGE!

Safety rules for work performed to electrical facilities:

- 1. Disconnect the device from the power supply (establish a voltage free status)
- 2. Secure against re-activation
- 3. Verify by measurement that there is no voltage present
- 4. Ground and short-circuit equipment
- 5. Cover or separate adjacent parts which are under voltage

For dis-assembly, perform the following steps:

- 1. Separate the device from the 230 VAC, respectively 110 VAC, power supply.
- 2. Separate all other connections.

Electrical connections are thus dis-assembled and now, the device can be removed by dis-assembly from the overhead rail.

2. SAFETY REQUIREMENTS

2.1 IMPORTANT INSTRUCTIONS AND EXPLANATIONS

For the protection of personnel and the maintenance of good working order, usage and repairs must be in line with the guidelines, and the safety requirements listed must be adhered to. The personnel who set up/disassemble the devices, start them up, operate them, maintain them, must know and adhere to these safety requirements. All works may only be carried out by specialist personnel trained for the purpose and equipped with faultless tools, appliances, means of testing and material required and intended for that purpose. In these operating instructions, there are important warnings before dangerous actions. These warnings are divided into the following classes of hazards:

DANGER

Hazards that can lead to serious injuries or fatal injuries.

WARNING Hazards that can lead to serious injuries or consicerable damage to property.

CAUTION Hazards that can lead to injuries and damage to property.

CAUTION Hazards that can lead to minor damage to property.

The warnings can also be supplemented with a special danger symbol (e.g. "Electric current" or "Hot device"), e.g.

in case of risk of electric current or

in case of risk of burns.

In addition to the warnings, there is also a general note for useful information.

NOTE Content of note

2.2 GENERAL DANGER INFORMATION

DANGER

Not adhering to the safety requirements in the operating instructions of the power controllers being used can lead to danger of injury/danger of damaging the device or system.

> Adhere to all safety requirements in the chapter "Safety" of the operating instructions of the power controllers being used.

DANGER

ELECTRIC CURRENT Risk of injury from current carrying parts/danger of damaging the plug-in card.

Never operate the device without covering.

Make adjustments and connections disconnected from the power supply.

NOTE

COMMUNICATION ERROR In order to avoid communication errors the following point has to be taken into account: Use shielded cables.

2.3 QUALIFIED PERSONNEL

Only qualified personnel who are familiar with the pertinent safety and installation regulations may perform the following with the the Thyro-P Ethernet plug-in card PROFINET:

- transport
- installation
- connection
- commissioning
- maintenance
- testing
- operation

These operating instructions must be read carefully by all persons working with or on the device prior to installation and initial start-up.

2.4 REQUIREMENTS TO THE OPERATOR

The person responsible for the system must ensure that

- Safety notes and operating instructions are available and adhered to.
- · Operating conditions and technical data are heeded.
- Protective devices are used.
- Maintenance personnel are informed immediately or the Thyro-P Ethernet plug-in card PROFINET or the Thyro-P, respectively, is taken out of action immediately if abnormal voltages or noises, higher temperatures, vibrations or similar occur, in order to identify the cause.
- The accident prevention regulations valid in the respective country of use and the general safety regulations are observed.
- All safety devices (covers, warning signs etc.) are present, in perfect condition and are used correctly.
- The national and regional safety regulations are observed.
- The personnel have access to the operating instructions and safety regulations at all times.

2.5 INTENDED USE

CAUTION

The Thyro-P Ethernet plug-in card PROFINET in connection with the Thyro-P may only be used for the purpose for which it was intended, as persons may otherwise be exposed to dangers (e.g. electric shock, burns) and systems also (e.g. overload).

It is not permitted to make any unauthorised modifications to the Thyro-P Ethernet plug-in card PROFINET or to use any spare parts or replacement parts not approved by Advanced Energy, or to use the device for any other purpose.

These operating instructions contain all the information required by skilled personnel using the device. Additional information and notes for non-qualified persons and for the use of the device outside of industrial assemblies are not contained in these operating instructions.

The warranty obligations of the manufacturer are only applicable if these operating instructions are observed and complied with.

2.6 LIABILITY

No liability is burdened for non-intended by the manufacturer use of the Thyro-P Ethernet plug-in card PROFINET. The operator or user, respectively, shall burden the responsibility for possibly necessary measures for the prevention of people and asset damage. In case of complaints, please contact us immediately and include the following information:

- type designation
- fabrication number /serial number
- complaint description
- duration in operations
- ambient conditions of the device
- mode of operation

3. NOTES ON THESE OPERATING INSTRUCTIONS

3.1 VALIDITY

These operating instructions correspond with the technical status of the Thyro-P Ethernet plug-in card PROFINET at the time of issue. The content is not the subject of the contract, but rather serves to provide information. We reserve the right to make amendments to the details in these operating instructions, in particular to technical data, operation, measurements and weights. Advanced Energy reserves the right to make content amendments and technical alterations to the details in these operating instructions unannounced. Advanced Energy cannot be held responsible for any inaccuracies or incorrect details in these operating instructions as there is no obligation to make ongoing updates to these operating instructions.

These operating instructions serve only as an addition to be used in conjunction with the operating instructions of the Advanced Energy Thyro-P power controllers in the versions of the types indicated on the covering page. The safety instructions contained therein are to be observed in particular.

3.2 HANDLING

These operating instructions for the Thyro-P Ethernet plug-in card PROFINET are structured in a manner so that according expert personnel may perform all work necessary for commissioning, maintenance, and repair. If threats to personnel and material cannot be ruled out for certain work, such tasks are marked with a pictogram, from which the according content may be extracted from the before mentioned chapter "Safety requirements".

3.3 TYPE DESIGNATION

Thyro-P Ethernet plug-in card PROFINET order no. 2000 000 396

3.4 LOSS OF WARRANTY

Our supplies and services are subject to the general conditions of supply for products of the electrical industry, as well as our general sales conditions. Claims in connection with supplied goods must be submitted within eight days upon receipt, along with the packing slip. Claims made later cannot receive consideration.

Advanced Energy will rescind all possible obligations such as warranty agreements, service contracts, etc. entered into by Advanced Energy or its distributors without prior notice if maintenance and repair work is carried out using anything other than original Advanced Energy spare parts or spare parts purchased from Advanced Energy.

3.5 COPYRIGHT

No part of these operating instructions may be transmitted, reproduced and/ or copied by any electronic or mechanical means without the express prior written permission of Advanced Energy.

© Copyright Advanced Energy Industries GmbH 2014. All rights reserved.

3.6 FURTHER INFORMATION ON COPYRIGHT

Thyro-™, Thyro-P[™] are registered trademark of Advanced Energy Industries GmbH.

All other company and product names are (registered) trademarks of the respective owners.

4. CONTACT

4.1 TECHNICAL QUERIES

Do you have any technical queries regarding the subjects dealt with in these operating instructions? If so, please get in touch with our team for power controllers: Phone +49 (0) 2902 763-520

4.2 COMMERCIAL QUERIES

Do you have any commercial queries on power controllers? If so, please get in touch with our team for power controllers. Phone +49 (0) 2902 763-558

4.3 SERVICE

Advanced Energy Industries GmbH Branch Office Warstein-Belecke Emil-Siepmann-Straße 32 D-59581 Warstein Phone +49 (0) 2902 763-0

4.4 INTERNET

Further information about our company or products please see http://www.advanced-energy.com

5. INTRODUCTION

5.1 GENERAL INFORMATION

The Ethernet plug-in card connects a Thyro-P or Thyro-P MC with a master. Several plug-in cards can be used on one system. The power supply of the plug-in card comes from the Thyro-P.

5.2 SPECIAL FEATURES

- The Ethernet plug-in card connects the devices with several Ethernet bus systems. By setting the "Protocol" switch to 0, the Ethernet plug-in card becomes a PROFINET IO-Device.
- Function control via LED
- 3 free digital inputs or local operation of a setpoint

6. INSTALLATION

DANGER

DANGER DURING INSTALLATION Danger of injury/danger of damaging the device or system. Adhere to all safety stipulations in the chapter "Safety".

- 1 Terminal X21 digital inputs
- 2 System and Bus LEDs
- 3 Ethernet Port 1 & 2
- 4 Front cover

FIG. 1 HARDWARE STRUCTURE

- 5 Fastening screw
- 6 USB (Softwareupdate)
- 7 Switch "Protocol"
- 8 Connection to Thyro-P (SSC, 5V)

6.1 SETTING THE PROTOCOL

The Ethernet plug-in card supports various real time Ethernet bus systems. The desired system can be selected using the rotary switch "Protocol". For PROFINET this needs to be set to 0. The rotary switch protocols are:

POSITION	PROTOCOL
0	PROFINET
1	Modbus TCP
2	Ethernet IP
9	Set all default

When position 9 is active the card will be reset to factory defaults for settings and address.

6.2 INSTALLATION OF THE PLUG-IN CARD

The Thyro-P Ethernet plug-in card PROFINET is connected by a 9 pole SUB-D connector X24 to the Thyro-P. The plug-in card is inserted into the front side of the Thyro-P controlling device and is ready to operate immediately following parameterization of the bus system.

CAUTION

The installation of the plug-in card is to be carried out without current.

6.3 CONNECTING THE ETHERNET PLUG-IN CARD TO THE MASTER

The Ethernet plug-in card has two Ethernet ports which are equipped with a switch functionality which allows a line topology to be constructed. A standard patch cable is required for connecting with a switch. For a direct

connection (line topology) a crossover cable is required.

7. DIGITAL INPUTS

The Ethernet plug-in card makes available three digital inputs as well as an input for activating local operation (see chapter 7) via the 8 pole terminal (X21). The status of the inputs can be requested using the "digital inputs" parameter.

PIN	NAME	FUNCTION
1	IN 0	input 0
2	IN 1	input 1
3	IN 2	input 2
4	Loc	input 3
5	Μ	ground for IN 0-3
6	+24	+24 V/internal 24 V supply
7	M24	ground/internal 24 V supply
8	earth	earth

TAB. 1 TERMINAL CONFIGURATION X21

Inputs 0-3 always correlate to the ground (M). To connect simple indicators such as limit switches or similar there is also an additional 24 V supply available. As such, the following connection options are available:

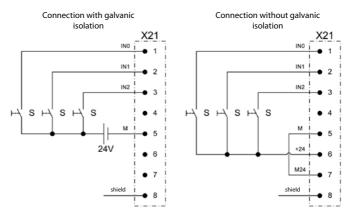
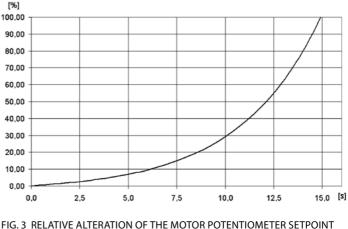



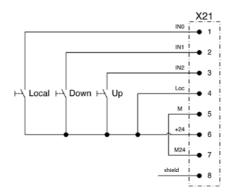
FIG. 2 EXAMPLE FOR INPUT CONNECTIONS

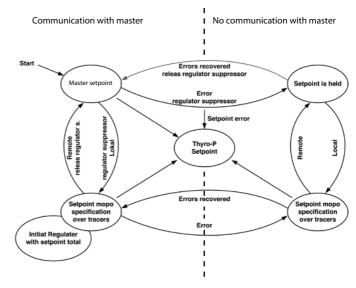
8. LOCAL OPERATION OF A SETPOINT

In certain situations, such as, for example, the Ethernet failing, it may be necessary to change the setpoint quickly. This can in fact be done using the local operating and display unit (LBA-2), however, this may be too time consuming in certain usages. To overcome this shortcoming the option of operating the setpoint locally was created. The local operation can be activated via the input Loc (Pin 4). It is then possible to switch the setpoint SW_ACTIV between remote (open) and local (closed) via input IN0 (Pin 3). Which setpoints are active can be set for remote and local using the start configuration. These configurations are saved on the Ethernet plug-in card so that the functionality is available even after the failure of the Ethernet. If the local setpoint motor potentiometer was selected in a channel, then the motor potentiometer setpoint can be altered via inputs IN1 and IN2. When the switch is pressed the setpoint changes in accor-dance with Fig. 3. For example, the setpoint is increased by 30% if the UP button is pressed for 10 seconds. When simultaneously activating the Up and Down buttons the setpoint is reduced.

OVER THE TIME

For local operation terminal X21 is to be connected as follows.




FIG. 4 LOCAL OPERATION OF THE MOTOR POTENTIOMETER SETPOINT

ATTENTION

When using local operation please be aware of the following points:

- 1. To avoid a volatile alteration of the setpoint when switching from remote to local, please activate the function "motor potentiometer = master".
- 2. In the case of the "local" switch being closed ("4 digital inputs" bit 0 = 0) the process controller is to be deactivated and the "master setpoint" set to be the same as the "total setpoint" to enable a non-volatile switch from local to remote. To do this the total of the setpoint is to be transferred cyclically.
- 3. When switching from local to remote the process controller is to be initialized with the total setpoint and then activated. The above configurations then result in the following process diagram (see. Fig. 5).


```
FIG. 5 STATE DIAGRAM
```

9. PROJECT PLANNING

9.1 SETTING THE DEVICE NAME

Every PROFINET IO device is identified by its device name. The setting of the device name in the device can be undertaken using, for example, the program "Step 7 - HW Config" in the menu "Target system/Ethernet/ Edit Ethernet participant...".

9.2 INSTALLING THE DEVICE DESCRIPTION FILE (GSDML)

For project planning the project planning tool, for example, "Step 7", needs a device description file (GSDML) of the devices which are to be project planned. This must first be installed. This can take place, for example, in the program "Step 7 - HW Config" via the menu "Install Extras/GSD files". Following the installation of the GSDML file the following devices appear in the catalog under PROFINET IO/Additional FIELD DEVICES/General/AEI Thyro-.

Thyro-P bus card A device which actuates one, two or three phases.

Thyro-P bus card MC A device which actuates one phase three times.

By dragging the device onto the PROFINET bus it is added to the project. Finally, the device name, which is listed in chapter 9.1, must also be entered here (double click on the symbol).

9.3 START CONFIGURATIONS (PARAMETERIZATION)

Via the parameterization (in step 7 - HW Config -> double-click on slot 0 of the Thyro-P -> parameter tab) the following settings can be undertaken.

No connection to Master setpoint =: Here you can set which setpoint should be used if the connection to the master is interrupted. Setpoint master error In the case of an error the setpoint master error is used. Its default value is 0. Setpoint master In the case of an error the setpoint master will continue to be used.

Motor potentiometer = master:

This setting activates the writing of the "master setpoint" to the "motor potentiometer setpoint" in remote operation if the "local operation of a setpoint" is used. This prevents a volatile alteration of the setpoint occuring when switching over from remote to local.

Discount all output data in local:

This setting activates the discounting of all output data in local operation. This can, for example, be useful if the control has set the controller inhibit and, in spite of this, the controller needs to be switched locally. If the controller inhibit needs to be set at the time of switching over from remote to local then the motor potentiometer setpoint is set to 0 and the controller inhibit is deactivated.

Averaging actual values:

Here you can enter the number of actual values which flow into the averaging. A new value is calculated once a second. Values from 0-20 can be entered, whereby 0 or 1 deactivates this function.

Quick actual values power:Quick actual values load voltage :Quick actual values current:Quick actual values conductance:Quick actual values load temperature:Quick actual values mains voltage:DeactivateSwitches off the quick cyclical read-out of these actual values.ActivateActivates the quick read-out of these actual values.

Setpoint local Thyro-P: Setpoint local channel 1: Setpoint local channel 2: Setpoint local channel 3: Here you can configure which setpoints are active in local operation (see chapter 9.4). Terminal 10 Only the setpoint from terminal 10 is active. Terminal 11 Only the setpoint from terminal 11 is active. Terminal 10+11 Only the setpoints from terminal 10 and 11 are active. Only the setpoint master is active. Master Only the setpoint motor potentiometer is active. Motor potentiometer

Setpoint remote Thyro-P:

Setpoint remote channel 1:

Setpoint remote channel 2:

Setpoint remote channel 3:

Here you can configure which setpoints are active in remote operation (see chapter 9.4).

Terminal 10	Only the setpoint from terminal 10 is active.
Terminal 11	Only the setpoint from terminal 11 is active.
Terminal 10+11	Only the setpoints from terminal 10 and 11 are
	active.
Master	Only the setpoint master is active.
Motor potentiometer	Only the setpoint motor potentiometer is active.

Use of output data when Bit is set:

The suppression of certain output data can be activated here.

"functions".

DeactivateNew output data are always adopted.ActivateNew output date are only adopted if Bit 2 is set in output

Diag. (diagnosis message):

For each status message (see table 5) you can configure if these should be displayed via the device-specific diagnosis massage system or not.

9.4 CYCLICAL DATA TRANSMISSION (CONFIGURATION)

The configuration of the cyclical data traffic is undertaken by adding modules. The input and output data depend on the device types. The following tables show the input and output data available for each of the devices. In the Slot column is listed in which slot each module can be inserted.

					SLOT
INPUT DATA	DATA TYPE	SIZE	UNIT	Thyro-P	Thyro-P MC
Setpoint active	integer	2	-	5-40	5-29, 35-59, 65-89
Total setpoint	integer	2	16383 == 100[%]	5-40	5-29, 35-59, 65-89
Total setpoint float	float	4	[W,V,A,%]	5-40	5-29, 35-59, 65-89
Setpoint terminal 10	integer	2	16383 == 100[%]	5-40	5-29, 35-59, 65-89
Setpoint terminal 11	integer	2	16383 == 100[%]	5-40	5-29, 35-59, 65-89
OUTPUT DATA	DATA TYPE	SIZE	UNIT	Thyro-P	SLOT Thyro-P MC
Setpoint master	integer	2	16383 == 100[%]	2	2, 32, 62
Setpoint master float	float	4	[W,V,A,%]	2	2, 32, 62
Setpoint master float Setpoint master error	5	4		2	
· · ·	float	-	[W,V,A,%]		2, 32, 62
Setpoint master error	float integer	2	[W,V,A,%] 16383 == 100[%]	3	2, 32, 62 3, 33, 63

TAB. 2 SETPOINTS Thyro-P

					SLOT
INPUT DATA	DATA TYPE	SIZE	UNIT	Thyro-P	Thyro-P MC
Load voltage L1	float	4	[V]	5-40	5-29, 35-59, 65-89
Load voltage L2	float	4	[V]	5-40	5-29, 35-59, 65-89
Load voltage L3	float	4	[V]	5-40	5-29, 35-59, 65-89
Load current L1	float	4	[A]	5-40	5-29, 35-59, 65-89
Load current L2	float	4	[A]	5-40	5-29, 35-59, 65-89
Load current L3	float	4	[A]	5-40	5-29, 35-59, 65-89
Power L1	float	4	[W]	5-40	5-29, 35-59, 65-89
Power L2	float	4	[W]	5-40	-
Power L3	float	4	[W]	5-40	-
Total power L3	float	4	[W]	5-40	-
Conductance L1	float	4	[W]	5-40	5-29, 35-59, 65-89
Conductance L2	float	4	[W]	5-40	-
Conductance L3	float	4	[W]	5-40	-
Mains voltage L1	integer	2	[V]	5-40	5-29, 35-59, 65-89
Mains voltage L2	integer	2	[V]	5-40	-
Mains voltage L3	integer	2	[V]	5-40	-
Load temperature L1	integer	2	[°C]	5-40	5-29, 35-59, 65-89
Load temperature L2	integer	2	[°C]	5-40	-
Load temperature L3	integer	2	[°C]	5-40	-
Energy	integer	2	[kWh]	5-40	5-29, 35-59, 65-89
LED and relays state	integer	2	-	5-40	5-29, 35-59, 65-89
(see table 6)					
Operating hours	integer	2	[h]	5-40	5-29, 35-59, 65-89
Cycle period	integer	2	[µs]	5-40	5-29, 35-59, 65-89
Status (see table 5)	integer	2	-	5-40	5-29, 35-59, 65-89
Switch-on angle alpha	integer	2	[0.01 °el]	5-40	5-29, 35-59, 65-89
Switch-on time Ts	integer	2	[period]	5-40	5-29, 35-59, 65-89
Temperature	integer	2	[°C]	5-40	5-29, 35-59, 65-89

TAB. 3 ACTUAL VALUES Thyro-P

					SLOT
INPUT DATA	DATA TYPE	SIZE	UNIT	Thyro-P	Thyro-P MC
Digital inputs	integer	2	-	5-40	5-29, 35-59, 65-89
Read value 16 bit	integer	2	-	5-40	5-29, 35-59, 65-89
Read value 32 bit	integer	4	-	5-40	5-29, 35-59, 65-89
					SLOT
OUTPUT DATA	DATA TYPE	SIZE	UNIT	Thyro-P	Thyro-P MC
Functions	integer	2	-	4	4, 34, 64
(see table 7)					
Write value 16 bit	integer	2	-	5-40	5-29, 35-59, 65-89

TAB. 4 SEVERAL Thyro-P VALUES

BIT	STATUS
0	SSC fault
1	res.
2	sensor breakage or short circuit
3	Pulse switch-off
4	P limit
5	l limit
6	U limit
7	limit
8	overtemperature
9	controller inhibit
10	undercurrent in load circuit
11	overcurrent in load circuit
12	undervoltage in mains
13	overvoltage in mains
14	SYNC fault
15	MOSI in peak current limitation

TAB. 5 STATUS MESSAGES

BIT	STATUS
0	LED Control
1	LED Limit
2	LED Pulse Lock
3	LED Fault
4	LED Overheat
5	relay K1
6	relay K2
7	relay K3

TAB. 6 LED AND RELAY STATUS

0 control lock 1 ext. fault indication	BIT	STATIC FUNCTIONS
	0	control lock
	1	ext. fault indication
	•••	

BIT	RISING EDGE CONTROLLED
8	acknowledge error
9	reset
10	save
11	reset energy indication

TAB. 7 FUNCTIONS

9.5 ACYCLIC DATA TRANSMISSION (PARAMETERIZATION)

Via the acyclic parameter data transmission, parameters of the devices can be changed or selected. Cyclical and acyclical services can be used in the network simultaneously.

Read data record "RDREC":

For reading access to a data record, the slot, index and length of the data record must be entered. At step 7 and when using the SFB 52 the logical address of the slot is to be entered instead of the slot. However, as multiple slots are occupied by the same controller, here the slot of the master setpoint or its logical address is to be given.

ERROR CODE	MEANING
DE80B000	The unit does not recognize the parameter (invalid index)
DE80B100	The length entry of the parameter is incorrect
DE80B200	The projected slot is not occupied
DE80B300	The actual unit type does not match the set unit type

Write data record "WRREC":

For writing access to a data record, the slot, index, length of the data record and the new value must be entered. At step 7 and when using the SFB 53 the logical address of the slot is to be entered instead of the slot. However, as multiple slots are occupied by the same controller, here the slot of the master setpoint or its logical address is to be given.

ERROR CODE	MEANING
DF80B000	The unit does not recognize the parameter (invalid
	index)
DF80B100	The length entry of the parameter is incorrect
DF80B200	The projected slot is not occupied
DF80B300	The actual unit type does not match the set unit type
DF80B600	The parameter cannot be changed
DF80B700	Invalid range of values of a parameter

9.6 PARAMETER TABLES (ACYCLIC)

You will find the parameter tables (acyclic) of each of the device types in the following table:

Thyro-P ADDRESS	SYMBOL	NAME	DATA TYP	VALUE RANGE	COMBO-OPT.	UNIT	R/W	DEFAULT
5	BETR	operating mode	u16	07	TAKT, VAR, SSSD, res, res, res, VSC_VAR, res		r/w	TAKT
6	MOSI	op. of molybdenum silicide rods	u16	02	OFF, RAMP, STELL		r/w	OFF
7	SCHW_POL	phase shift polarity	u16	01	PLUS, MINUS		r/w	PLUS
8	SEB	service mode	u16	01	OFF, ON		r/w	OFF
9	ASM	automatic synchronization for multiple controller applications	u16	01	OFF, ON		r	OFF
11	ТҮР	number of controlled phases	u16	13			r/w	1
12	AN1	phase angle of the 1st half-wave	u16	018000		0.01 °el	r/w	60 °el
13	SST	soft-start time (setting)	u16	0499		period	r/w	6 period
14	SDN	soft-down time (setting)	u16	0499		period	r/w	6 period
15	ТО	cycle period	u16	1T0_MAX		period	r/w	50 period
16	MP	minimum pause	u16	010		period	r/w	3 period
17	TSMAX	maximum cycle on-time	u16	0T0		period	r/w	50 period
18	TSMIN	minimum cycle on-time	u16	0T0		period	r/w	0 period
19	SYNC_EXT	synchronous cycle internal/external	u16	01	internal, external		r/w	internal
20	SYNC_ADR	synchronous cycle address	u16	065535		period/2	r/w	0 period
22	RE	regulation	u16	08	Uload2, Uload eff, Iload2, Iload eff, active power, res, res, res, without regulation		r/w	Uload2
23	STD_RE	standard controller	u16	01	OFF, ON		r/w	ON
24	TI_1	PID-controller, I-part	u16	0 = OFF 065535			r/w	800
25	KP_1	PID-controller, P-part	u16	165535			r/w	160
26	KR_1	PID-controller, counter P-part	u16	0 = OFF 065535			r/w	1
27	TD_1	PID-controller, D-part	u16	0 = OFF 065535			r/w	OFF
33	SCHW_L1	phase shift L1	u16	036000		0.01 °el	r/w	0 °el
34	SCHW_L2	phase shift L2	u16	036000		0.01 °el	r/w	0 °el
35	SCHW_L3	phase shift L3	u16	036000		0.01 °el	r/w	0 °el
36	UEMI	minimum r.m.s. voltage setpoint	u16	065535		V	r/w	0 V
37	IEMI	minimum r.m.s. current setpoint	u16	065535		A	r/w	0 A
38	PMI	minimum power setpoint	u32	0		W	r/w	0 W

Thyro-P	SYMBOL	NAME	DATA	VALUE	COMBO-OPT.	UNIT	R/W	DEFAULT
ADDRESS			TYP	RANGE				
40	V_IE	front pulse limit position	u16	018000		0.01 °el	r/w	180 °el
41	H_IE	back pulse limit position	u16	018000		0.01 °el	r/w	0 °el
42	SW_INP_IU_10	input voltage/current terminal 10	u16	02	5 V, 10 V, 20 mA		r/w	20 mA
43	SW_INP_IU_11	input voltage/current terminal 11	u16	02	5 V, 10 V, 20 mA		r/w	5 V
44	STA_REGLER	control start controller input	u16	020480		0,3 mV,	r/w	292 uA
		terminal 10				0,6 mV,		(240)
						1,22 uA		
45	STE_REGLER	control end controller input	u16	020480		0,3 mV,	r/w	20 mA
		terminal 10				0,6 mV,		(16383)
						1,22 uA		
46	STA_POTI	control start controller input	u16	020480		0,3 mV,	r/w	72 mV
		terminal 11				0,6 mV,		(240)
						1,22 uA		
47	STE_POTI	control end controller input	u16	020480		0,3 mV,	r/w	5 V
		terminal 11				0,6 mV,		(16383)
						1,22 uA		
48	UEMA	minimum r.m.s. voltage setpoint	u16	065535		V	r/w	440 V
49	IEMA	minimum r.m.s. current setpoint	u16	065535		A	r/w	110 A
50	PMA	minimum power setpoint	u32	0		W	r/w	48400 W
52	SW	setpoint linking	u16	03	_ADD, IADD, _PRO,		r/w	_ADD
					IPRO			
53	STA_MASTER	control start master	u16	016383			r/w	0
54	STE_MASTER	control end master	u16	016383			r/w	16383
55	STA_MOPO	control start motor potentiometer	u16	016383			r/w	0
56	STE_MOPO	control end motor potentiometer	u16	016383			r/w	16383
57	SW_SPRUNG	setpoint jump correction	u16	01	OFF, ON		r/w	ON
59	TEMP_KVE	characteristic number	u16	07	characteristic 07		r/w	characteristic 2
60	0F_1	offset 1	u16	020000		uA	r/w	0 uA
61	OF_2	offset 2 offset 3	u16	020000		uA	r/w	0 uA
62	OF_3 IST_1		u16 u16	01	20 mA, 10 V	uA	r/w r/w	0 uA 20 mA
64	IST_2	actual value output 1 actual value output 2	u16 u16	01	20 mA, 10 V		r/w	20 mA
65	IST_2	actual value output 2	u10 u16	01	20 mA, 10 V		r/w	20 mA
66	I_FA_1	scale end value current actual value output 1	u10	065535	201117, 10 1	A	r/w	150 A
67	I_FA_2	scale end value current actual value output 2	u16	065535		A	r/w	150 A
68	I_FA_3	scale end value current actual value output 3	u10 u16	065535		A	r/w	150 A
69	U_FA_1	scale end value voltage actual value output 3	u16 u16	065535		V N	r/w	500 V
70	U_FA_2	scale end value voltage actual value output 7	u10 u16	065535		v	r/w	500 V
71	U_FA_3	scale end value voltage actual value output 3	u16	065535		V	r/w	500 V
72	P_FA_1	scale end value power actual value output 1	u32	0		W	r/w	50000 W

Thyro-P ADDRESS 74	SYMBOL	NAME	TYP	VALUE RANGE	COMBO-OPT.	UNIT	K/W	DEFAULT
			TYP	RANGE				
74				ININGE				
. T	P_FA_2	scale end value power actual value output 2	u32	0		W	r/w	50000 W
76	P_FA_3	scale end value power actual value output 3	u32	0		W	r/w	50000 W
78	ALPHA_FA_1	scale end value alpha actual value output 1	u16	018000		0.01 °el	r/w	180 °el
79	ALPHA_FA_2	scale end value alpha actual value output 2	u16	018000		0.01 °el	r/w	180 °el
80	ALPHA_FA_3	scale end value alpha actual value output 3	u16	018000		0.01 °el	r/w	180 °el
81	DAC_1_CTRL	configuration register actual value output 1	u16	bitwise			r/w	18
82	DAC_1_CTRL	configuration register actual value output 2	u16	bitwise			r/w	20
83	DAC_1_CTRL	configuration register actual value output 3	u16	bitwise			r/w	22
84	DAC1_VA_U	measuring instrument full-scale	u16	010000		mV	r/w	10 V
		deflection DAC1, voltage						
85	DAC1_VA_I	measuring instrument full-scale	u16	020000		uA	r/w	20 mA
		deflection DAC1, current						
86	DAC2_VA_U	measuring instrument full-scale	u16	010000		mV	r/w	10 V
		deflection DAC2, voltage						
87	DAC2_VA_I	measuring instrument full-scale	u16	020000		uA	r/w	20 mA
		deflection DAC2, current						
88	DAC3_VA_U	measuring instrument full-scale	u16	010000		mV	r/w	10V
		deflection DAC3, voltage						
89	DAC3_VA_I	measuring instrument full-scale	u16	020000		uA	r/w	20 mA
		deflection DAC3, current						
90	I_TYP	power controller rated current	u16	065535		A	r	110 A
91	R_BUERDE_U	load resistor range 0	u16	065535		Ohm	r	1680 Ohm
				0. 65525		0.01		0.01.01
92	R_BUERDE_I	load resistor current	u16	065535		Ohm	r	0,91 Ohm
93	U_TYP	power controller connection voltage	u16	01000		۷	r	400 V
94	SW_ACTIV	setpoint activation	u16	015	Bit 0 = 1 (setpoint		r/w	15
					terminal 10 active)			
					etc.			
95	U_NETZ_ANW	mains voltage user	u16	01000		۷	r	400 V
96	UE_U	voltage converter ratio	u16	01000			r	16
97	UE_I	current converter ratio	u16	065535			r	100
100	IMAB	pulse switch-off on error register	u32	bitwise			r/w	0
102	K1RU	LED & Relays work principle	u16	0255 bitwise	Operating current		r/w	224
					principle, closed current			
					principle			
	I SCHW	current value threshold	u16	065535		0.1 A	r/w	6500 A
104		carrent funce the should	010			0.1 A	1/ 99	3300 A
104	TI FA	potentiometer controller parameter Ti	u16	065535			r/w	0

Thyro-P	SYMBOL	NAME	DATA	VALUE	COMBO-OPT.	UNIT	R/W	DEFAULT
ADDRESS			TYP	RANGE				
107	FREQ_MIN	min. frequency	u16	1428625000, 1/X		Hz	r/w	45 Hz
	_			* 10^6				(22222)
108	FREQ_MAX	max. frequency	u16	1428625000, 1/X		Hz	r/w	66 Hz
				* 10^6				(15151)
109	FREQ_TOL	frequency tolerance	u16	0100		%	r/w	0.1
							.,	
112	NORM_I	scaling factor current	u16	065535			r	847
113	I_TYP_LSB	rated current in LSB	u16	065535			r	847
114	R_TEIL	voltage divider resistor	u16	065535		Ohm	r	36000
115	U_NORM_230	scaling factor 230 V	u16	065535	_		r	958
116	U_NORM_400	scaling factor 400 V	u16	065535			r	993
117	U_NORM_690	scaling factor 500-690 V	u16	065535	-		r	1008
118	U_TYP_LSB	rated voltage in LSB	u16	065535			r	1216
119	P_TYP_LSB	rated power in LSB	u32	0		_	r	1031367
121	P_TYP	nouver controller exted nouver	u32	0		W		25300
121	r_11r	power controller rated power	u52	0		vv	r	23300
					230 V, 400 V, 500-			
123	TYP_BEREICH	voltage range changeover	u16	02	690 V		r	400 V
124	R_BUERDE_U_1	load resistor range 1	u16	065535		Ohm	r	1680 Ohm
125	R_BUERDE_U_2	load resistor range 2	u16	065535		Ohm	r	1680 Ohm
126	SPG_MIN	mains voltage monitoring minimum	u16	01000		V	r/w	180
127	SPG_MAX	mains voltage monitoring maximum	u16	01000		۷	r/w	480
128	UN_S	undercurrent monitoring	u16	01	OFF, ON		r/w	OFF
130	UE_S	overcurrent monitoring	u16	01	OFF, ON		r/w	OFF
132	OUT0_CFG	LED CONTROL Mode	u16	065535 bitwise			r/w	4096
133	OUT1_CFG	LED LIMIT Mode	u16	065535 bitwise			r/w	0
134	OUT2_CFG	LED PULSE LOCK Mode	u16	065535 bitwise			r/w	0
135	OUT3_CFG	LED FAULT Mode	u16	065535 bitwise			r/w	1792
136	OUT4_CFG	LED OVERHEAT Mode	u16	065535 bitwise			r/w	1536
137	OUT5 CFG	Relay K1 Mode	u16	065535 bitwise			r/w	1792
138	OUT6_CFG	Relay K2 Mode	u16	065535 bitwise			r/w	768
139	OUT7_CFG	Relay K3 Mode	u16	065535 bitwise	-		r/w	59392
140	OUT0_STOERM_L	LED CONTROL config. 0	u16	065535 bitwise			r/w	0
141	OUT1_STOERM_L	LED LIMIT config. 0	u16	065535 bitwise			r/w	2048
	OUT2_STOERM_L	LED Elwin coning. 0 LED PULSE LOCK config. 0	u10 u16					
142				065535 bitwise	-		r/w	256
143	OUT3_STOERM_L	LED FAULT config. 0	u16	065535 bitwise			r/w	0
144	OUT4_STOERM_L	LED OVERHEAT config. 0	u16	065535 bitwise			r/w	0
145	OUT5_STOERM_L	Relay K1 config. 0	u16	065535 bitwise			r/w	0
146	OUT6_STOERM_L	Relay K2 config. 0	u16	065535 bitwise			r/w	2048
147	OUT7_STOERM_L	Relay K3 config. 0	u16	065535 bitwise			r/w	1

Thyro-P	SYMBOL	NAME	DATA	VALUE	COMBO-OPT.	UNIT	R/W	DEFAULT
ADDRESS			ТҮР	RANGE				
148	OUTO STOERM H	LED CONTROL config. 1	u16	065535 bitwise			r/w	0
149		LED LIMIT config. 1	u16	065535 bitwise			r/w	0
150		LED PULSE LOCK config. 1	u16	065535 bitwise			r/w	0
150	OUT3_STOERM_H		u10 u16	065535 bitwise			r/w	256
152	OUT4_STOERM_H	-	u16 u16	065535 bitwise			r/w	0
152	OUT5_STOERM_H	-	u10 u16	065535 bitwise			r/w	256
155	OUT6_STOERM_H	Relay K2 config. 1	u16	065535 bitwise			r/w	0
155	OUT7_STOERM_H		u16	065535 bitwise			r/w	0
		icity to compri-		oniososo pictrise			.,	
159	LASTBRUCH_	load interrupt, absolute minimum	u16	065535			r/w	0
	MIN_ABS	value						
160	LASTBRUCH_	load interrupt, absolute maximum	u16	065535			r/w	0
	MAX_ABS	value						
			•					
297	DA_EN	data logger enable register	u32	bitwise			r/w	524288
303	AV_AVERAGE	Average	u16	020	OFF 120		r/w	AUS
311	LASTBRUCH_MIN	load interrupt, minimum value	u16	099		%	r/w	0%
312	LASTBRUCH_MAX	load interrupt, maximum value	u16	0255		%	r/w	0%
313	REL_ABS	load interrupt	u16	01	REL_, ABS		r/w	REL_
			-					
315	NLT	neutral conductor	u16	01	OFF, ON		r/w	OFF
318		ASM total current	u16	165535			* 6	220
310	ASM_SUMM	ASM threshold	u16 u16	165535		A	r/w r/w	220
320		ASM tolerance	u10 u16	165535			r/w	100
321	SYNC_ANZ	number of sync voltages	u16	13			r/w	1
322	SYNC_DREHF	rotating field	u16	01	right, left		r/w	right
323	SCHW	phase shift	u16	01	OFF, ON		r/w	OFF
324	NACHIMP	re-ignitions	u16	01	OFF, ON		r/w	OFF
325	MITTEL	averaging	u16	01000			r/w	25
326	NACHIMP_DAUER	Duration of re-ignitions	u16	118000		0.01 °el	r/w	90°el
333	MESS	meter circuit	u16	05	Aron, 1/2 Aron 1,		r	
					1/2 Aron 2, 1/2			
					Aron 3, asymmet-			
					ric load, symmetric			
					load			
335	TI_3	PID limit controller, I-part	u16	0 = OFF			r/w	800
				065535				
336	KP_3	PID limit controller, P-part	u16	165535			r/w	160

Thyro-P	SYMBOL	NAME	DATA	VALUE	COMBO-OPT.	UNIT	R/W	DEFAULT
ADDRESS			TYP	RANGE				
337	KR_3	PID limit controller, counter P-part	u16	0 = OFF			r/w	1
				065535				
338	TD_3	PID limit controller, D-part	u16	0 = OFF			r/w	OFF
				065535				
339	LoadTempPn_a0	coefficient a0 load temp. pol.	f32				r/w	1.0
	· · ·							
341	LoadTempPn_a1	coefficient a1 load temp. pol.	f32				r/w	1.0
343	LoadTempPn_a2	coefficient a2 load temp. pol.	f32				r/w	1.0
345	LoadTempPn_a3	coefficient a3 load temp. pol.	f32				r/w	1.0
347	LoadTempPn_a4	coefficient a4 load temp. pol.	f32				r/w	1.0
	u							
349	LoadTempPn_a5	coefficient a5 load temp. pol.	f32				r/w	1.0
5.05								
351	T_FA_1_MIN	scale start value load temperature actual value	u16	065535		°C	r/w	0°C
100	I_FA_I_MIIN		uio	003333		C	1/ 1/	00
		output 1						
352	T_FA_1	scale end value load temperature actual value	u16	065535		°C	r/w	1000 °C
		output 1						
353	T_FA_2_MIN	scale start value load temperature actual value	u16	065535		°C	r/w	0°C
		output 2						
354	T_FA_2	scale end value load temperature actual value	u16	065535		°C	r/w	1000 °C
		output 2						
355	T_FA_3_MIN	scale start value load temperature actual value	u16	065535		°C	r/w	0°C
		output 3						
356	T_FA_3	scale end value load temperature actual value	u16	065535		°C	r/w	1000 °C
		output 3						
357	LdTrafoRatio	load transformer ratio	f32				r/w	1.0
		· · · · · · · · · · · · · · · · · · ·						
				0 = OFF				
360	I_PEAK_L1	Fast current monitoring L1	u16	065535		[A]	r/w	AUS
				0 = OFF				
361	I_PEAK_L2	Fast current monitoring L2	u16	065535		[A]	r/w	AUS
362	I_PEAK_L3	Fast current monitoring L3	u16	0 = OFF		[A]	r/w	AUS
262		No ofstagos		065535				
363	VSC_STEPS	No. of stages	u16	23		10/1	r/w	12
364	VSC_OVERLAP	VSC overlapping	u16	050	later 5 :	[%]	r/w	13
365	VSC_EXTERN	External measurement	u16	01	Intern, Extern		r/w	Intern
400		ucor paramotor 0	14	0 65525				0
409	USER_PARA_0	user parameter 0	u16	065535			r/w	0
410	USER_PARA_1	user parameter 1	u16	065535			r/w	1
411	USER_PARA_2	user parameter 2	u16	065535			r/w	2
412	USER_PARA_3	user parameter 3	u16	065535			r/w	3

413	USER_PARA_4	user parameter 4	u16	065535			r/w	4
414	USER_PARA_5	user parameter 5	u16	065535			r/w	5
415	USER_PARA_6	user parameter 6	u16	065535			r/w	6
416	USER_PARA_7	user parameter 7	u16	065535			r/w	7
417	USER_PARA_8	user parameter 8	u16	065535			r/w	8
418	USER_PARA_9	user parameter 9	u16	065535			r/w	9
419	USER_PARA_10	user parameter 10	u16	065535			r/w	10
420	USER_PARA_11	user parameter 11	u16	065535			r/w	11
421	USER_PARA_12	user parameter 12	u16	065535			r/w	12
422	USER_PARA_13	user parameter 13	u16	065535			r/w	13
423	USER_PARA_14	user parameter 14	u16	065535			r/w	14
502	MOSI_IS_FA	factor peak current limitation	u16	050		0.1	r/w	2.5
503	MOSI_WI_GE_1	rate of angular displacement 1	u16	065535		0.02 °el/s	r/w	22 °el/s
								(1100)
504	MOSI_WI_GE_2	rate of angular displacement 2	u16	065535		0.02 °el/s	r/w	1 °el/s
								(50)
505	T0_MAX	cycle period max.	u16	165535		period	r/w	250 period
506	TI_1_STD	PID-controller, I-part, default value	u16	0 = OFF			r	800
				065535				
507	KP_1_STD	PID-controller, P-part, default value	u16	165535			r	160
508	KR_1_STD	PID-controller, counter P-part,	u16	0 = OFF			r	1
		default value		065535				
509	TD_1_STD	PID-controller, D-part, default value	u16	0 = OFF			r	OFF
				065535				
514	TEMP	temperature sensor	u16	03	No, Pt100, PT1000,		r/w	No
	511 00 00				NTC			
515 516	FU_DR_BR	level wire break	u16	04000		Ohm Ohm	r/w r/w	2000 Ohm 800 Ohm
510	FU_KURZ	level short circuit	u16	04000		Unim	1/1/	800 01111
571		ASM time constant	u16	165535			r/w	100
571		ASM delay	u16	165535			r/w	1
600		DAC multiplexer	u16	bitwise			r/w	0
604	KANALTREN	channel separation	u16	01	OFF, ON		r/w	ON
630	L2_ENA	monitoring L2 enable	u16	01	OFF, ON		r/w	OFF
631	L3_ENA	monitoring L3 enable	u16	01	OFF, ON		r/w	OFF
655	NR_GER	device number	u32				r	
			u32				r	
657	NR_LFD	serial number	u16				r	
658	NR_LK	PCB number	u32				r	

662	TEMP_FE_DAU	temperature error duration	u16	11000	period	r/w	10 period
676	RESET	reset trigger on error register	u32	bitwise		r/w	0
679	dASM_UNITS	No. of devices	u16	032		r/w	
680	dASM_LOAD_LI- MIT	Power threshold	u32	0		r/w	
691			u16	0 = OFF			800
091	TI_3_STD	PID limit controller, l-part, default value	ulo	0 = OFF 065535		r	800
692	KP_3_STD	PID limit controller, P-part, default value	u16	165535		r	160
693	KR_3_STD	PID limit controller, counter P-part, default value	u16	0 = OFF 065535		r	1
694	TD_3_STD	PID limit controller, D-part,	u16	0 = OFF 065535		r	OFF
695		measured value multiplexer 1	u16	bitwise		r/w	0
696		measured value multiplexer 2	u16	bitwise		r/w	0
697		measured value multiplexer 3	u16	bitwise		r/w	0
806	VERS_J	version year	u16	09999		r	
807	VERS_M	version month	u16	112		r	
808	VERS_T	version day	u16	131		r	

TAB. 8 CONTROLLER PARAMETER (Thyro-P/Thyro-P MC)

10. DIAGNOSIS

For the analysis of faults there are several LEDs on the plug-in card. They provide a picture of the status of the application and the bus system. Status information on the Thyro-P (MC) is sent to the PROFINET master with diagnosis messages.

LED		COLOR	STATUS	MEANING
System	Run	Green	On	Operating system is running
			Off	Error see error LED
	Error	Red	Flashing at 5 Hz	Hardware error
			Flashing at 1 Hz	Error boot routine
			On	Waiting for boot routine (check
				switch setting
				"Protocol")
			Off	No supply voltage

10.1 LED STATUS INDICATIONS

TAB. 9 OPERATING STATUS OF THE ETHERNET PLUG-IN CARD

LED	COLOR	STATUS	MEANING
Link	Green	On	There is an Ethernet
			connection
Activity	Yellow	On	Data are being exchanged via
			the Ethernet

TAB. 10 STATUS LED OF ETHERNET PORTS 1 AND 2

10.2 DIAGNOSIS MESSAGES

For each message which displays the status word (see table 5) a device-specific diagnosis message (default) is sent to the master. This can be deactivated via the start configurations (see chapter 9.3). The current status can continue to be read out cyclically from the status word.

11. EXTERNAL CONNECTIONS

11.1 ETHERNET INTERFACE

Communication medium	CAT 5e		
Network topology	tree, star and line		
Maximum cable length	100 m		
PROFINET participants	restricted to the maximum supported		
	number of devices by the controller used		
PNO identification number	0x0188		
Device ID	0x0002		
Transmission rate	100 Mbit/s		

12. APPROVALS AND CONFORMITIES

Quality standard in accordance with EN ISO 9001 CE conformity PROFINET conformity RoHS (RoHS compliant 5/6) [RoHS]

DIRECTIVES

The devices of the type series Thyro-P, Thyro-P Ethernet plug-in card PROFI-NET is a part hereof, comply with the currently applicable EN 50178 and EN 60146-1-1. By adhering to VDE 0106, section 100, BGV A2 (VBG4) is covered.

The CE sign attached to the device confirms compliance with the EC directives for 2006/95/EEC for low voltage and 2004/108/EEC for electro-magnetic compatibility, if the installation and commissioning instructions described within the operating instructions are followed.

Regulations and definitions for specialists are included in DIN 57105/VDE 0105 section 1.

Safe separation in accordance with VDE 0160 (EN 50178 chapter 3).

In detail

DEVICE APPLICATION CONDITIONS

PROFINET		IEC 61158, IEC 61784
Built-in device (VDE0160)		DIN EN 50 178
Storage temperature (D)		-25 °C − +55 °C
Transport temperature (E)		-25 °C – +70 °C
Operating temperature (better B)		-10 °C − +55 °C
Humidity class	В	DIN EN 50 178 tab. 7 (EN 60 721)
Degree of contamination	2	DIN EN 50 178 tab. 2
Air pressure		900 mbar * 1000 m above sea level
Degree of protection	IP00	DIN EN 69 529
EMC-testing		EN 61000-6-2 (-4)
Emitted interference		CISPR 16
Radiated immunity		EN/IEC 61000-4-3
Conducted immunity		EN/IEC 61000-4-6
ESD	8 kV(A)	EN/IEC 61000-4-2
Burst control lines	1 kV (A)	EN 61000-4-4

World Headquarters 1625 Sharp Point Drive Fort Collins, CO 80525 USA

970.221.4670 Main 970.221.5583 Fax

www.advanced-energy.com

Specifications are subject to change without notice.

© 2014 Advanced Energy Industries, Inc. All rights reserved. Advanced Energy[®] and Thyro-P[™] are trademarks of Advanced Energy Industries, Inc.