

# CC-Link Interface Card "OPC-F1-CCL"

# **↑** CAUTION

Thank you for purchasing our CC-Link Interface Card OPC-F1-CCL.

- This product is designed to connect the FRENIC-Eco series of inverters to CC-Link. Read through this
  instruction manual and be familiar with the handling procedure for correct use.
- · Improper handling blocks correct operation or causes a short life or failure.
- Deliver this manual to the end user of the product. The end user should keep this manual in a safe place until the CC-Link Interface Card is discarded.
- For the usage of inverters, refer to the instruction manual prepared for the FRENIC-Eco series of inverters.



## Preface

Thank you very much for purchasing CC-Link interface option "OPC-F1-CCL".

Use this instruction manual to connect CC-Link master (a sequencer manufactured by Mitsubishi Electric Co., Ltd., etc.) and the FRENIC-Eco through the CC-Link. Please, read through this manual carefully prior to use of the product to familiarize yourself with correct use. Improper handling may result in malfunction, shorter service life or failure.

Attestation logo mark CC-Link

☐ This manual is designed to serve as a quick guide to the installation and operation of the CC-Link Interface Card. For the FRENIC-Eco and other optional functions, refer to the FRENIC-Eco User's Manual (MEH456□). RS-485 User's Manual (MEH448□).

If you have any questions about the product or this instruction manual, please contact the store or our nearest sales office.

## How this manual is organized

This manual is made up of chapters 1 through 14.

#### Chapter 1 Features

Gives an overview of the main features of the CC-Link Interface Card.

#### Chapter 2 Acceptance Inspection

Lists points to be checked upon delivery of the Card and precautions for transportation and storage of the Card. Also presents the appearance of the Card and provides information on how to obtain an EDS file.

#### Chapter 3 Installation

Provides instructions and precautions for installing the Card.

#### Chapter 4 Wiring and Cabling

Provides wiring and cabling instructions around the pluggable connector for the Card. Also gives the specifications for the cables.

### Chapter 5 Procedure for Instruction of the Option

The procedure for introducing CC-Link option is described here.

#### Chapter 6 Function Code

Lists the inverter's function codes which are specific to CC-Link.

## Chapter 7 Protective Operation

Operation when an abnormal telecommunication line is generated while operation command and the speed command given by way of CC-Link.

#### Chapter 8 Link Functions

Set content when the driving operation of the inverter is done by way of CC-Link.

#### Chapter 9 Communication bitween Sequencer

The buffer memory use address of the CC-Link master unit used by the inverter communication.

#### Chapter 10 Communication Specification

I/O signal and a remote register.

#### Chapter 11 Link Number / Data Format

Lists the CC-Link communication No and the communication data format.

#### Chapter 12 Aprication Program examples

The program example of controlling the inverter by the sequence program.

#### Chapter 13 Troubleshooting

Provides troubleshooting instructions for certain problems, e.g., when the inverter does not operate as ordered or when an alarm condition has been recognized.

#### Chapter 14 Specifications

Lists the general specifications and communications specifications.

#### Icons

The following icons are used throughout this manual.



Note This icon indicates information which, if not heeded, can result in the product not operating to full efficiency, as well as information concerning incorrect operations and settings which can result in



This icon indicates information that can prove handy when performing certain settings or operations.

This icon indicates a reference to more detailed information.

## **Table of Contents**

| Chapter2       Acceptance Inspection       4       10.1       Input/output signal list         Chapter3       Installation       5       10.2       Assigning remote registers         Chapter4       Wiring and Cabling       6       10.3       Description of remote registers | 23 s                    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| Chapter4 Wiring and Cabling 6 10.3 Description of remote registers                                                                                                                                                                                                                | s 25<br>t 27<br>ples 37 |
|                                                                                                                                                                                                                                                                                   | t 27<br>ples 37         |
| Objects E. December 6 - 1-1-1-1 - 15 - 15 - 15 - 15 - 15 -                                                                                                                                                                                                                        | ples 37                 |
| Chapter5 Procedure for Introduction of the Option8 Chapter11 Link Number / Data Format                                                                                                                                                                                            |                         |
| Chapter6 Function Codes 9 Chapter12 Application program examp                                                                                                                                                                                                                     | 37                      |
| 6.1 Standard function codes                                                                                                                                                                                                                                                       |                         |
| 6.2 Function codes exclusive to communication 9 12.2 Outline of master unit                                                                                                                                                                                                       | 37                      |
| 6.3 Function codes exclusive to the option9 12.3 CC-Link startup program                                                                                                                                                                                                          | 39                      |
| Chapter7 Protective Operation                                                                                                                                                                                                                                                     | on status . 40          |
| 7.1 Protective Operation function codes10 12.5 Procedure for setting the operation                                                                                                                                                                                                | ation mode41            |
| Chapter8 Link Functions                                                                                                                                                                                                                                                           | and setting42           |
| 8.1 Enabling link operation                                                                                                                                                                                                                                                       | 43                      |
| 8.2 Confirmation and writing of function code15 12.8 Procedure for reading function                                                                                                                                                                                               | codes 44                |
| Chapter9 Communication between Sequencer . 16 12.9 Procedure for writing function of                                                                                                                                                                                              | codes 45                |
| 9.1 Outline of the communication 16 12.10 Procedure for setting the command                                                                                                                                                                                                       | frequency 46            |
| 9.2 Reliability of data exchanged through link17 12.11 Procedure for reading alarm di                                                                                                                                                                                             | ifinition 47            |
| 9.3 Using area of buffer memory                                                                                                                                                                                                                                                   | erter 48                |
| 9.4 Using addresses of buffer memory19 Chapter13 Troubleshooting                                                                                                                                                                                                                  | 49                      |
| Chapter14 Specification                                                                                                                                                                                                                                                           | 51                      |

## Chapter1 Features

CC-Link is FA opening field network system that means Control&Communication Link. It is transmission speed 156kbps~10Mbps the CC-Link master unit is connected with the FRENIC-Eco CC-Link option card with a special cable. And the total extension are 100m~1,200m. Because the system from which the distance is demanded by the system from which the speed are demanded can use it in a wide area, a flexible system configuration becomes possible. This option card corresponds to Ver2.00 (enactment in January, 2003) that can send and receive not only profile Ver1.10 (communications protocol) that the CC-Link society is enacting so far but also more data. (The master bureau should also be doing for Ver2.00 when using it with Ver2.00.)

Installing this option card in FRENIC-Eco can do the following from the CC-Link master unit:

- Inputting operation and stop signals can be monitored.
- · The frequency instruction can be set.
- · State of driving can be monitored.
  - Forward operation, reverse operation,Y1~Y5 State of terminal, batch alarm, monitoring, Frequency setting completion, command code execution completed, alarm state, remote station ready, etc.
- Various states of inverter driving can be monitored.
   Frequency instruction, output frequency, torque operation value, output current, output voltage, integrated operation time, etc.
- · Each function code can be referred and be changed.

## Chapter2 Acceptance Inspection

Unpack the package and check that:

- (1) A CC-Link Card is contained in the package.
- (2) The DeviceNet Card has not been damaged during transportation--no defective electronic devices, dents, or warp.
- (3) The model name "OPC-F1-CCL" is printed on the DeviceNet Card. (See Figure 1.)

If you suspect the product is not working properly or if you have any questions about your product, contact your Fuji Electric representative.

This card corresponds to a soft version since 1300 of the FRENIC-Eco series inverters.

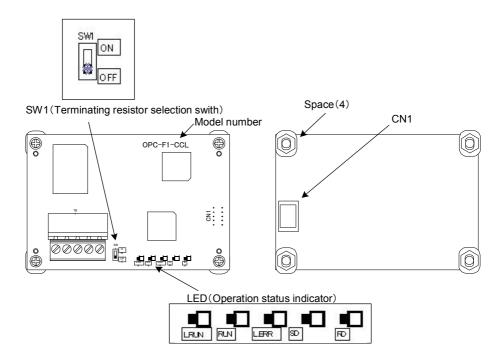



Figure1 Front of the Card

Figure 2Back of the Card

## Chapter3 Installation

# **MWARNING**

Turn the power off and wait for at least five minutes for models of 30 kW or below, or ten minutes for models of 37 kW or above, before starting installation. Further, check that the LED monitor is unlit, and check the DC link circuit voltage between the P (+) and N (-) terminals to be lower than 25 VDC.

Otherwise, electric shock could occur.

# **∆CAUTION**

Do not touch any metallic part of the connector for the main unit (CN1) or any electronic component. Otherwise, electronic components may be damaged by static electricity. Also, the stain or adhesion of sweat or dust may adversely affect the contact reliability of the connector in the long run.

An accident could occur.

- (1) Remove the covers from the inverter to expose the control printed circuit (Figure 3).
  - For the removal instructions, refer to the FRENIC-Eco Instruction Manual (INR-SI47-0852), Chapter 2, Section 2.3 "Wiring." (For ratings of 37 kW or above, also open the keypad enclosure.)
- (2) Insert four spacers and connector CN1 on the back of the OPC-F1-CCL (Figure 2) into the four spacer holes and Port A (CN4) on the inverter's control printed circuit board (PCB) (Figure 4), respectively.

Note Make sure, visually, that the spacers and CN1 are firmly inserted (Figure 5).

- (3) Install the wires for the OPC-F1-CCL.
  - For wiring instructions, see Chapter 4.
- (4) Put the covers back to its original position.
  - For the installation instructions, refer to the FRENIC-Eco Instruction Manual (INR-SI47-1059-E), Chapter 2, Section 2.3 "Wiring." (For ratings of 37 kW or above, also close the keypad enclosure.)

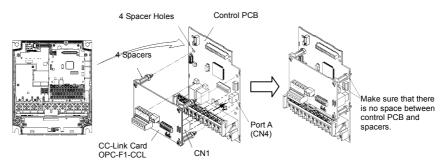



Figure 3 FRN7.5F1S-2J -FRN15F1S-2J (example)

Figure 4 Mounting the Card

Figure 5 Mounting Completed

## Chapter4 Wiring and Cabling

The wiring and cabling diagram is shown on the page that follows. Observe the following precautions when connecting the product.

#### When one inverter is connected:

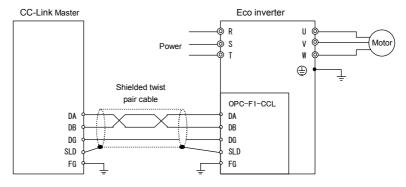



Figure 6 Inverter connection diagram (One unit)

Set SW1 to ON (With terminating resistor) .

When two or more inverters are connected:...... For the number of connected units, refer to chapter 14.

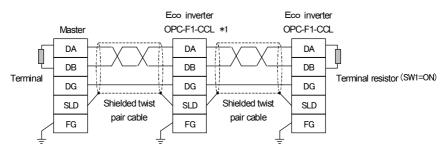



Figure 7 Inverter connection diagram (Two or more units)

<sup>\*1)</sup> For the unit in the middle, set SW1 to OFF(Without terminating resistor).

#### [Precautions about connection]

- (1) Use a special cable for the product. (Refer to chapter 14.)
  - Never use a soldered cable because it may cause disconnection or wire break.
- (2) Wiring around the CC-Link pluggable connector

Terminal block TB1

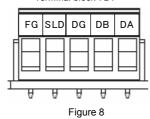



Table 1 Terminal board specifications

| Table 1 Territoria pedia operitoria |                                                  |                                         |  |  |  |  |  |
|-------------------------------------|--------------------------------------------------|-----------------------------------------|--|--|--|--|--|
| Terminal designation                | Description                                      | Remark                                  |  |  |  |  |  |
| DA                                  | Used for communication data                      |                                         |  |  |  |  |  |
| DB                                  | uala                                             |                                         |  |  |  |  |  |
| DG                                  |                                                  |                                         |  |  |  |  |  |
| SLD                                 | Used for connecting the shield wire of the cable | The SLD and FG are connected each other |  |  |  |  |  |
| FG                                  | Used for connecting the earthing wire            | in the unit.                            |  |  |  |  |  |

[Wiring around the grounding terminal (FG)]

Connecting the grounding terminal (  $\bigoplus G$  )  $\;$  on the inverter.

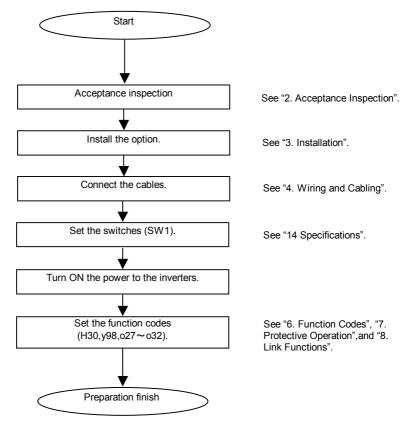
Applicable wire size :  $AWG24 \sim 12 (0.2 \text{mm}^2 \sim 2.5 \text{mm}^2)$ 

Tightening torque : 0.5~0.6 [Nm]

Note For protection against external noise and prevention of failures, be sure to connect a grounding wire.

A typical pluggable connector meeting the specifications is MSTB 2.5/5-ST-5.08-AU made by Phoenix Contacts.

#### (3) Terminating resistor switch (SW1)


By ON or OFF of SW1, internal terminating resistor can be set.

| SW1 | Description                  |
|-----|------------------------------|
| OFF | Without terminating resistor |
| ON  | 110Ω                         |

- (4) Use the terminating resistors supplied with the PLC.
- (5) Please refer to connected number in Chapter 14 for the maximum, connected number.

## Chapter 5 Procedure for Introduction of the Option

The procedure for introducing CC-Link option is described here. Please prepare in the following steps:



After the above steps have been done, the preparation for operating the inverters is complete.

Confirm the communication is normal after confirming the master side set with LED lit.

Refer to operation status indicate LED in Chapter 14 for lighting LED.

After the master side has been prepared, the inverters can be operated via CC-Link by setting RUN.

## Chapter6 Function Codes

## **↑** CAUTION

If the data of a function code is incorrect, the system may fall into a dangerous status. Recheck data whenever you have finished setting or writing data. An accident may occur.

#### 6.1 Standard function codes

There are restrictions on the standard function codes that can be accessed from CC-Link. For further information, refer to the Link No. in chapter 8

#### 6.2 Function codes exclusive to communication

A common data format (S-code, M-code, W-code, X-code and Z-code) can be used as the specifications exclusive to communication. The data relating to the command / monitoring are difined other than the standard function codes. For the details of the communication-exclusive function codes, refer to Chapter 5 of FRENIC-Eco RS485 User's Manual (MEH448 $\square$ ). However, the following communication-exclusive function codes prohibit writing via CC-Link (allows reading).

Table2 Communication-exclusive function codes that prohibit writing

| No. | Function code name       | Reason                                               |  |  |  |  |
|-----|--------------------------|------------------------------------------------------|--|--|--|--|
| S01 | Frequency command (p.u.) | Because the same data can be written from the remote |  |  |  |  |
| S05 | Frequency command        | output and the remote register. (Refer to "10.       |  |  |  |  |
| S06 | Operation command        | Communication Specifications".)                      |  |  |  |  |

#### 6.3 Function codes exclusive to the option

In the software exclusive to CC-Link option, the operations o27,o28 and o30 in addition to the standard function codes, are available as the function codes exclusive to the option.

Table3 Function codes exclusive to the option

| No. | Function code name                                | Setting range       | Setting if a failure has occurred                                                       |
|-----|---------------------------------------------------|---------------------|-----------------------------------------------------------------------------------------|
| o27 | Operation when a failure has occurred             | <u>0</u> ∼15        | The operation when the error is detected is selected.                                   |
| o28 | Communication failure when a failure has occurred | <u>0.0</u> ∼60.0sec | Time set by the timer for continuing operation if a communication failure has occurred. |
|     |                                                   | <u>0,</u> 5∼255     | non operation                                                                           |
|     | Extended setting                                  | 1                   | Occupying one station (CC-Link Ver.1.1)                                                 |
| o30 | (Multiple setting)                                | 2                   | Occupying one station double (CC-Link Ver.2)                                            |
|     | 3,                                                | 3                   | Occupying one station quadrople (CC-Link Ver.2)                                         |
|     |                                                   | 4                   | Occupying one station octuple (CC-Link Ver.2)                                           |
| o31 | CC-Link option station number setting             | <u>0</u> ~64        | Sets station number (address) (Setting value "0" is station number "1".)                |
|     | station number setting                            | 65~255              | Invalidity                                                                              |
|     |                                                   | 0                   | 156kbps                                                                                 |
|     |                                                   | 1                   | 625kbps                                                                                 |
| 032 | CC-Link option Transmission Baud rate             | 2                   | 2.5Mbps                                                                                 |
| 032 | setting                                           | 3                   | 5Mbps                                                                                   |
|     | 3                                                 | 4                   | 10Mbps                                                                                  |
|     |                                                   | 5~255               | Invalidity                                                                              |

For the details of the function code o27 and o28, refer to "7. Protective Operation".

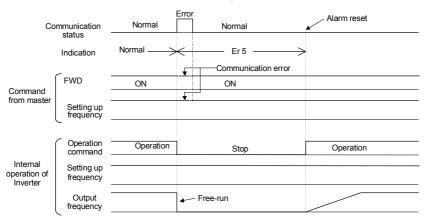
## Chapter7 Protective Operation

## 7.1 Protective Operation function codes

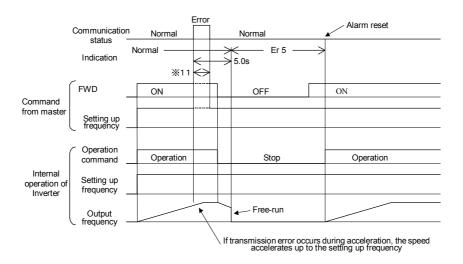
This section describes how to operate if a failure of communication line occurs when the system is being operated by operation command and speed command given through the CC-Link.

(1) The inverter operation to be performed if a CC-Link communication error occurs(o27).

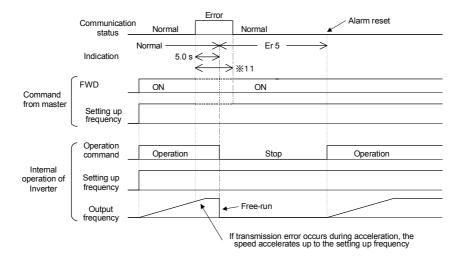
| o27   | Inverter Operation in the Event of an Error                                                                                                                                                                                 |                                              | Note                                           |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|------------------------------------------------|
| 0     | Put the motor immediately in trip.                                                                                                                                                                                          | Er5                                          |                                                |
| 1     | Immediately trip the inverter by force, when the time set by o28 (Timer) has expired.                                                                                                                                       | Er5                                          |                                                |
| 2     | Operating is continued to the return of the communication according to the last command. If the communication doesn't return to the end at the time of the timer of o28, the compulsion trip mode.                          | Er5                                          |                                                |
| 3     | Operating is continued to the return of the communication, and after it returns, it follows the instruction in the communication.                                                                                           | Automatic return after communication returns |                                                |
| 4~9   | Same as for [o27=0]                                                                                                                                                                                                         |                                              |                                                |
| 10    | Immediately decelerate the motor by force. When the motor has stopped, turn on er5.                                                                                                                                         | Er5                                          | The forced deceleration period is specified by |
| 11    | When the time set by o28 (Timer) has expired, immediately decelerate the motor by force, when the motor has stopped, turn on er5.                                                                                           | Er5                                          | F08.                                           |
| 12    | Operating is continued to the return of the communication according to the last command.  After decelerate the motor by force, turn on er5, if the communication doesn't return to the end at the time of the timer of o28. | Er5                                          |                                                |
| 13-15 | Operating is continued to the return of the communication, and after it returns, it follows the instruction in the communication.                                                                                           | Automatic return after communication returns |                                                |


<sup>\*1</sup> Communication line failure factor: Time over error

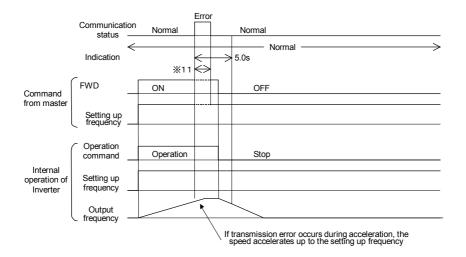
Option failure: When the MFP3 access error or the main body of the inverter and the communication error occurs, Er4 is generated. It doesn't relate to the setting value of o27.


<sup>\*2</sup> Setting value of transmission Baud rate setting (o32) is reflected at the reset input (RST) or next power supply ON.

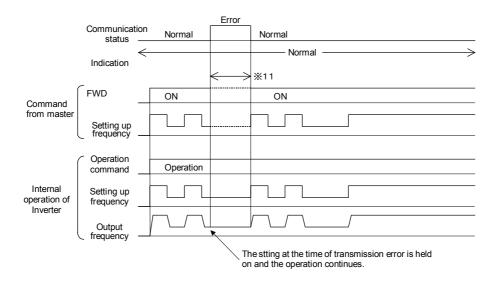
<sup>\*3</sup> The factory values are all "0".


- (2) Communication failure when a failure has occurred (o28)
  - 0.0~60.0 sec
- ●When the function code o27=0 (Mode in which the inverter is forced to immediately in trip in case of communication failure)



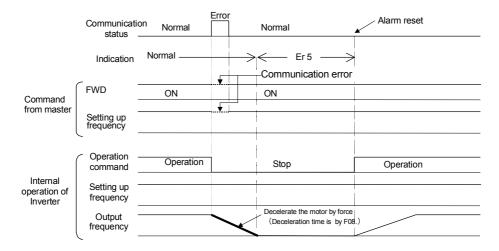

 When the function code o27=1 and o28=5.0 (Mode in which the inverter is forced to stop five seconds after a communication failure occurred)



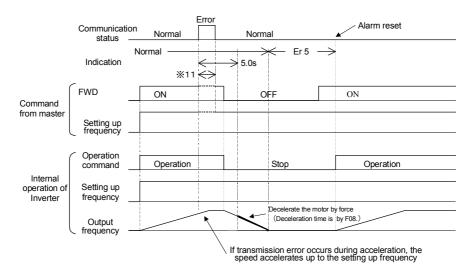

●When the function code o27=2 and o28=5.0 (When communications is not recovered although five seconds elapsed from the occurrence of a communications failure , and an er8 trip occurs)



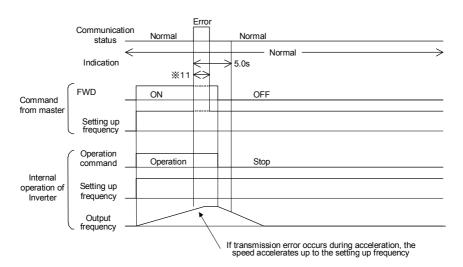
- ※ 1 1 For the period until communications is recovered, the command (command data, operation data) executed just before the communications failure had occurred is retained.
- When the function code o27=2 and o28=5.0 (When a communications failure occurred but communications
  was recovered within five seconds)




 When the function code o27=3,13 ~ 15 (Mode in which the inverter continues operating when a communication failure occurs)




※ 1 1 For the period until communications is recovered, the command (command data, operation data) executed just before the communications failure had occurred is retained.


•When the function code o27=10 (Mode in which the inverter is forced to immediately stop when a communication failure occurs)



●When the function code o27=11 and o28=5.0 (Mode in which the inverter is forced to stop in 5 seconds when a communication failure occurs)



 When the function code o27=12 and o28=5.0 (Mode in which the communication returned within five seconds, when a communication failure occurs)



## Chapter8 Link Functions

The function code y98 "Bus Link function (Mode selection)" and the X function "24: operation selection through link [LE]" switch the validity (REM · LOC/COM) of command data (S area). Familiarize yourself with it together with the control block (Chapter 4 in the FRENIC-Eco User's Manual (MET456□)).

#### 8.1 **Enabling link operation**

When the inverter is operated through the CC-Link, the operation must be switched to "Operation through link enable" mode and "command through communication (other than 0)" must be selected by y98 "Bus Link function (Mode selection)". (Such a flexible system configuration as operation command sent from the terminal board and speed command sent through communication is enabled by selecting the value of y98 "Bus Link function (Mode selection)".)

|                                                                                          | Mode     |                                                      |                                       |
|------------------------------------------------------------------------------------------|----------|------------------------------------------------------|---------------------------------------|
| Assigning "24 : operation selection through link [LE]" to E01~E05 "X function selection" | Not      | Command code FB <sub>H</sub><br>(operation mode) = 0 | "Operation through link enable" mode  |
|                                                                                          | assigned | Command code FB <sub>H</sub><br>(operation mode) = 1 | "Operation through link disable" mode |
|                                                                                          | Assigned | Corresponding X terminal ON                          | "Operation through link enable" mode  |
|                                                                                          | Assigned | Corresponding X terminal OFF                         | "Operation through link disable" mode |

| y98 setting | "Operation through | link enable" mode | "Operation through link disable" mode |                   |  |
|-------------|--------------------|-------------------|---------------------------------------|-------------------|--|
| value       | Command data       | Operation command | Command data                          | Operation command |  |
| 0           | ×                  | ×                 | ×                                     |                   |  |
| 1           | 0                  | ×                 | ×                                     |                   |  |
| 2           | ×                  | 0                 | ×                                     |                   |  |
| 3           | 0                  | 0                 |                                       | ×                 |  |

O:Command through communication is valid. x:Command through communication is invalid (Operation is enabled by the command from the terminal board or the keypad.)



Note Even in "Operation through link disable" mode, S codes (command data, operation data) can be

#### 8.2 Confirmation and writing of function code

The change (writing) and the confirmation (reading) in the function code from CC-Link are always effective.

## Chapter9 Communication between Sequencer

## 9.1 Outline of the communication

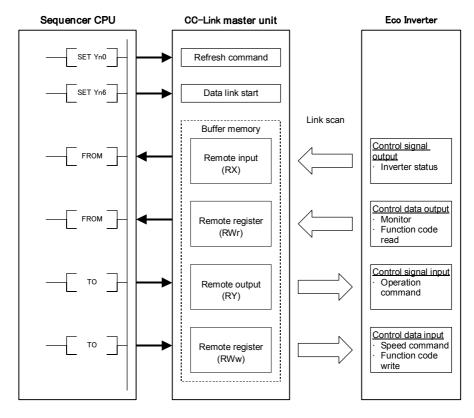
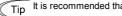



Figure 9

## CC-Link master station

## (1) CPU with automatic refresh function installed (Example: QnA-CPU)


Communication between the CC-Link master station and the remote device is performed by exchanging data through the sequence ladder and by automatically refreshing the refresh buffer of the master station with END command.

#### (2) CPU without automatic refresh function installed (Example: AnA-CPU)

Communication between the CC-Link master station and the remote device is performed by exchanging data directly with the refresh buffer of the master station through the sequence ladder.

#### 9.2 Reliability of data exchanged through link

- · Consistency between the bit data and word data exchanged through link is established by the data configuration in which bit data of different timing from word data can not be included in a word data when bit data changes.
- The buffer operation commands of master unit (FROM, TO), different from normal inputs/outputs, are not updated in batch, but processed through interrupt during execution of the program. The input/output operation through link are executed at the timing of the command. So, note the following three points:
  - (1) Execute data acquisition by FROM command at the start of the program.
  - (2) Execute update of output by TO command after all the related internal processing has finished.
  - (3) Execute update of output buffers of a unit at a same time (in one row).



It is recommended that all the link buffers are updated in batch..

## 9.3 Using area of buffer memory

#### (1) Remote input signal (Inverter → Master)

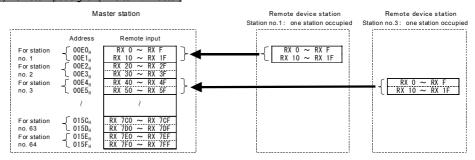



Figure 10

#### (2) Remote output signal (Master → Inverter)

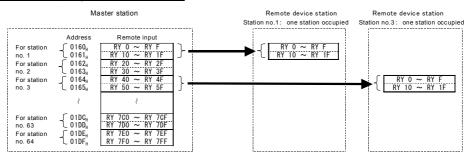



Figure 11

#### (3) Remote register (Master → Inverter)

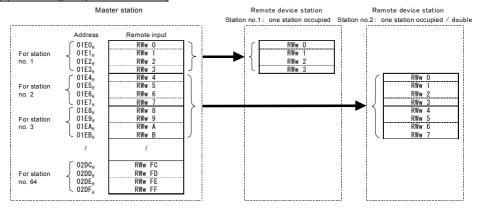



Figure 12

#### \_(4) Remote register (Inverter → Master)

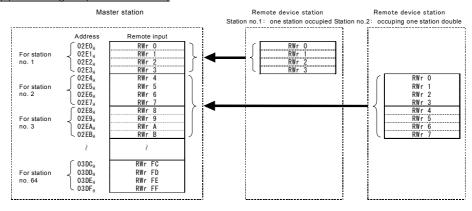



Figure 13

## 9.4 Using addresses of buffer memory

Table 4 Conversion formula of buffer memory address

| Master                                                      |              | Conversion formula (Derive register number divided by buffer memory address from station no.) |                                                       |  |
|-------------------------------------------------------------|--------------|-----------------------------------------------------------------------------------------------|-------------------------------------------------------|--|
|                                                             |              | Remote input/output signal Remote register                                                    |                                                       |  |
| CPU with automatic refresh function installed (QnA type)    | Register no. | (Station no1) × 20 <sub>H</sub>                                                               | (Station no1) × 4 <sub>H</sub>                        |  |
| CPU without automatic refresh function installed (AnA type) | Address      | Buffer memory top address $+$ (station no1) $\times$ 2 <sub>H</sub>                           | Buffer memory top address $+(station no1) \times 4_H$ |  |

Table 5 Buffer memory address assignment

| Station | Remote input/output signal |                                      |              | Remote register                      |                    |                                      |              |                                      |
|---------|----------------------------|--------------------------------------|--------------|--------------------------------------|--------------------|--------------------------------------|--------------|--------------------------------------|
| no.     | Input (Inverte             | Input (Inverter → Master)            |              | Output (Master → Inverter)           |                    | Master → Inverter                    |              | → Master                             |
|         | Register no.               | Address                              | Register no. | Address                              | Register no.       | Address                              | Register no. | Address                              |
| 1       | RX 0~RX 1F                 | 00E0 <sub>H</sub> ~00E1 <sub>H</sub> | RY 0~RY 1F   | 0160 <sub>H</sub> ~0161 <sub>H</sub> | RWw 0∼RWw 3        | 01E0 <sub>H</sub> ~01E3 <sub>H</sub> | RWr 0∼RWr 3  | 02E0 <sub>H</sub> ~02E3 <sub>H</sub> |
| 2       | RX 20~RX 3F                | 00E2 <sub>H</sub> ∼00E3 <sub>H</sub> | RY 20~RY 3F  | 0162 <sub>H</sub> ~0163 <sub>H</sub> | RWw 4∼RWw 7        | 01E4 <sub>H</sub> ~01E7 <sub>H</sub> | RWr 4~RWr 7  | 02E4 <sub>H</sub> ~02E7 <sub>H</sub> |
| 3       | RX 40~RX 5F                | 00E4 <sub>H</sub> ~00E5 <sub>H</sub> | RY 40~RY 5F  | 0164 <sub>H</sub> ~0165 <sub>H</sub> | RWw 8∼RWw B        | 01E8 <sub>H</sub> ∼01EB <sub>H</sub> | RWr 8∼RWr B  | 02E8 <sub>H</sub> ∼02EB <sub>H</sub> |
| 4       | RX 60~RX 7F                | 00E6 <sub>H</sub> ~00E7 <sub>H</sub> | RY 60~RY 7F  | 0166 <sub>H</sub> ~0167 <sub>H</sub> | RWw C∼RWw F        | 01EC <sub>H</sub> ∼01EF <sub>H</sub> | RWr C∼RWr F  | 02EC <sub>H</sub> ∼02EF <sub>H</sub> |
| 5       | RX 80~RX 9F                | 00E8 <sub>H</sub> ~00E9 <sub>H</sub> | RY 80~RY 9F  | 0168 <sub>H</sub> ~0169 <sub>H</sub> | RWw10~RWw13        | 01F0 <sub>H</sub> ~01F3 <sub>H</sub> | RWr10~RWr13  | 02F0 <sub>H</sub> ~02F3 <sub>H</sub> |
| 6       | RX A0~RX BF                | 00EA <sub>H</sub> ~00EB <sub>H</sub> | RY A0~RY BF  | 016A <sub>H</sub> ~016B <sub>H</sub> | RWw14~RWw17        | 01F4 <sub>H</sub> ~01F7 <sub>H</sub> | RWr14~RWr17  | 02F4 <sub>H</sub> ~02F7 <sub>H</sub> |
| 7       | RX CO~RX DF                | 00EC <sub>H</sub> ∼00ED <sub>H</sub> | RY CO~RY DF  | 016C <sub>H</sub> ~016D <sub>H</sub> | RWw18~RWw1B        | $01F8_{H}\sim 01FB_{H}$              | RWr18~RWr1B  | $02F8_H \sim 02FB_H$                 |
| 8       | RX E0~RX FF                | 00EE <sub>H</sub> ~00EF <sub>H</sub> | RY E0~RY FF  | 016E <sub>H</sub> ~016F <sub>H</sub> | RWw1C~RWw1F        | 01FC <sub>H</sub> ∼01FF <sub>H</sub> | RWr1C~RWr1F  | 02FC <sub>H</sub> ∼02FF <sub>H</sub> |
| 9       | RX100~RX11F                | 00F0 <sub>H</sub> ~00F1 <sub>H</sub> | RY100~RY11F  | 0170 <sub>H</sub> ~0171 <sub>H</sub> | RWw20~RWw23        | 0200 <sub>H</sub> ~0203 <sub>H</sub> | RWr20~RWr23  | 0300 <sub>H</sub> ~0303 <sub>H</sub> |
| 10      | RX120~RX13F                | 00F2 <sub>H</sub> ~00F3 <sub>H</sub> | RY120~RY13F  | 0072 <sub>H</sub> ~0173 <sub>H</sub> | RWw24~RWw27        | 0204 <sub>H</sub> ~0207 <sub>H</sub> | RWr24~RWr27  | 0304 <sub>H</sub> ~0307 <sub>H</sub> |
| 11      | RX140~RX15F                | 00F4 <sub>H</sub> ~00F5 <sub>H</sub> | RY140~RY15F  | 0074 <sub>H</sub> ~0175 <sub>H</sub> | RWw28~RWw2B        | 0208 <sub>H</sub> ~020B <sub>H</sub> | RWr28~RWr2B  | 0308 <sub>H</sub> ~030B <sub>H</sub> |
| 12      | RX160~RX17F                | 00F6 <sub>H</sub> ~00F7 <sub>H</sub> | RY160~RY17F  | 0076 <sub>H</sub> ~0177 <sub>H</sub> | RWw2C~RWw2F        | 020C <sub>H</sub> ~020F <sub>H</sub> | RWr2C~RWr2F  | 030C <sub>H</sub> ~030F <sub>H</sub> |
| 13      | RX180~RX19F                | 00F8 <sub>H</sub> ~00F9 <sub>H</sub> | RY180~RY19F  | 0078 <sub>H</sub> ~0179 <sub>H</sub> | RWw30~RWw33        | 0210 <sub>H</sub> ~0213 <sub>H</sub> | RWr30~RWr33  | 0310 <sub>H</sub> ~0313 <sub>H</sub> |
| 14      | RX1A0~RX1BF                | 00FA <sub>H</sub> ∼00FB <sub>H</sub> | RY1A0~RY1BF  | 007A <sub>H</sub> ~017B <sub>H</sub> | RWw34~RWw37        | 0214 <sub>H</sub> ~0217 <sub>H</sub> | RWr34~RWr37  | 0314 <sub>H</sub> ~0317 <sub>H</sub> |
| 15      | RX1C0~RX1DF                | 00FC <sub>H</sub> ∼00FD <sub>H</sub> | RY1C0~RY1DF  | 007C <sub>H</sub> ~017D <sub>H</sub> | RWw38~RWw3B        | 0218 <sub>H</sub> ~021B <sub>H</sub> | RWr38∼RWr3B  | 0318 <sub>H</sub> ~031B <sub>H</sub> |
| 16      | RX1E0~RX1FF                | 00FE <sub>H</sub> ∼00FF <sub>H</sub> | RY1E0~RY1FF  | 007E <sub>H</sub> ~017F <sub>H</sub> | RWw3C~RWw3F        | 021C <sub>H</sub> ~021F <sub>H</sub> | RWr3C~RWr3F  | 031C <sub>H</sub> ~031F <sub>H</sub> |
| 17      | RX200~RX21F                | 0100 <sub>H</sub> ~0101 <sub>H</sub> | RY200~RY21F  | 0180 <sub>H</sub> ~0181 <sub>H</sub> | RWw40~RWw43        | 0220 <sub>H</sub> ~0223 <sub>H</sub> | RWr40~RWr43  | 0320 <sub>H</sub> ∼0323 <sub>H</sub> |
| 18      | RX220~RX23F                | 0102 <sub>H</sub> ~0103 <sub>H</sub> | RY220~RY23F  | 0182 <sub>H</sub> ~0183 <sub>H</sub> | RWw44~RWw47        | 0224 <sub>H</sub> ~0227 <sub>H</sub> | RWr44~RWr47  | 0324 <sub>H</sub> ~0327 <sub>H</sub> |
| 19      | RX240~RX25F                | 0104 <sub>H</sub> ~0105 <sub>H</sub> | RY240~RY25F  | 0184 <sub>H</sub> ~0185 <sub>H</sub> | RWw48 $\sim$ RWw4B | $0228_{H} \sim 022B_{H}$             | RWr48∼RWr4B  | $0328_{H} \sim 032B_{H}$             |
| 20      | RX260~RX27F                | 0106 <sub>H</sub> ~0107 <sub>H</sub> | RY260~RY27F  | 0186 <sub>H</sub> ~0187 <sub>H</sub> | RWw4C∼RWw4F        | 022C <sub>H</sub> ~022F <sub>H</sub> | RWr4C~RWr4F  | 032C <sub>H</sub> ∼032F <sub>H</sub> |
| 21      | RX280~RX29F                | 0108 <sub>H</sub> ~0109 <sub>H</sub> | RY280~RY29F  | 0188 <sub>H</sub> ~0189 <sub>H</sub> | RWw50~RWw53        | 0230 <sub>H</sub> ~0233 <sub>H</sub> | RWr50∼RWr53  | 0330 <sub>H</sub> ~0333 <sub>H</sub> |

|             |                | Remote input                          | /output signal |                                       |                      | Remote                                | register          |                                       |
|-------------|----------------|---------------------------------------|----------------|---------------------------------------|----------------------|---------------------------------------|-------------------|---------------------------------------|
| Station no. | Input (Inverte | <u>er</u> → Master)                   | Output (Mast   | er → <u>Inverter</u> )                | Master -             | → <u>Inverter</u>                     | <u>Inverter</u> - | → Master                              |
|             | Register no.   | Address                               | Register no.   | Address                               | Register no.         | Address                               | Register no.      | Address                               |
| 22          | RX2A0~RX2BF    | $010A_H \sim 010B_H$                  | RY2A0~RY2BF    | 018A <sub>H</sub> ~018B <sub>H</sub>  | RWw54~RWw57          | 0234 <sub>H</sub> ~0237 <sub>H</sub>  | RWr54~RWr57       | 0334 <sub>H</sub> ~0337 <sub>H</sub>  |
| 23          | RX2C0~RX2DF    | $010C_{H} \sim 010D_{H}$              | RY2C0~RY2DF    | 018C <sub>H</sub> ~018D <sub>H</sub>  | $RWw58\!\sim\!RWw5B$ | 0238 <sub>H</sub> ~023B <sub>H</sub>  | RWr58∼RWr5B       | 0338 <sub>H</sub> ~033B <sub>H</sub>  |
| 24          | RX2E0~RX2FF    | $010E_{H}\sim010F_{H}$                | RY2E0~RY2FF    | 018E <sub>H</sub> ∼018F <sub>H</sub>  | RWw5C~RWw5F          | 023C <sub>H</sub> ∼023F <sub>H</sub>  | RWr5C~RWr5F       | 033C <sub>H</sub> ∼033F <sub>H</sub>  |
| 25          | RX300~RX31F    | 0110 <sub>H</sub> ~0111 <sub>H</sub>  | RY300~RY31F    | 0190 <sub>H</sub> ~0191 <sub>H</sub>  | RWw60∼RWw63          | 0240 <sub>H</sub> ~0243 <sub>H</sub>  | RWr60~RWr63       | 0340 <sub>H</sub> ~0343 <sub>H</sub>  |
| 26          | RX320~RX33F    | 0112 <sub>H</sub> ~0113 <sub>H</sub>  | RY320~RY33F    | 0192 <sub>H</sub> ~0193 <sub>H</sub>  | RWw64~RWw67          | 0244 <sub>H</sub> ~0247 <sub>H</sub>  | RWr64~RWr67       | 0344 <sub>H</sub> ~0347 <sub>H</sub>  |
| 27          | RX340~RX35F    | 0114 <sub>H</sub> ~0115 <sub>H</sub>  | RY340~RY35F    | 0194 <sub>H</sub> ~0195 <sub>H</sub>  | RWw68~RWw6B          | 0248 <sub>H</sub> ~024B <sub>H</sub>  | RWr68∼RWr6B       | 0348 <sub>H</sub> ~034B <sub>H</sub>  |
| 28          | RX360~RX37F    | 0116 <sub>H</sub> ~0117 <sub>H</sub>  | RY360~RY37F    | 0196 <sub>H</sub> ~0197 <sub>H</sub>  | RWw6C∼RWw6F          | 024C <sub>H</sub> ~024F <sub>H</sub>  | RWr6C∼RWr6F       | 034C <sub>H</sub> ~034F <sub>H</sub>  |
| 29          | RX380~RX39F    | 0118 <sub>H</sub> ~0119 <sub>H</sub>  | RY380~RY39F    | 0198 <sub>H</sub> ~0199 <sub>H</sub>  | RWw70∼RWw73          | 0250 <sub>H</sub> ~0253 <sub>H</sub>  | RWr70~RWr73       | 0350 <sub>H</sub> ~0353 <sub>H</sub>  |
| 30          | RX3A0~RX3BF    | $011A_{H} \sim 011B_{H}$              | RY3A0~RY3BF    | 019A <sub>H</sub> ~019B <sub>H</sub>  | RWw74~RWw77          | 0254 <sub>H</sub> ~0257 <sub>H</sub>  | RWr74~RWr77       | 0354 <sub>H</sub> ~0357 <sub>H</sub>  |
| 31          | RX3C0~RX3DF    | $011C_H \sim 011D_H$                  | RY3C0~RY3DF    | 019C <sub>H</sub> ~019D <sub>H</sub>  | RWw78~RWw7B          | 0258 <sub>H</sub> ~025B <sub>H</sub>  | RWr78~RWr7B       | 0358 <sub>H</sub> ∼035B <sub>H</sub>  |
| 32          | RX3E0~RX3FF    | 011E <sub>H</sub> ~011F <sub>H</sub>  | RY3E0~RY3FF    | 019E <sub>H</sub> ∼019F <sub>H</sub>  | RWw7C~RWw7F          | 025C <sub>H</sub> ∼025F <sub>H</sub>  | RWr7C~RWr7F       | 035C <sub>H</sub> ∼035F <sub>H</sub>  |
| 33          | RX400~RX41F    | 0120 <sub>H</sub> ~0121 <sub>H</sub>  | RY400~RY41F    | 01A0 <sub>H</sub> ~01A1 <sub>H</sub>  | RWw80~RWw83          | 0260 <sub>H</sub> ~0263 <sub>H</sub>  | RWr80~RWr83       | 0360 <sub>H</sub> ~0363 <sub>H</sub>  |
| 34          | RX420~RX43F    | 0122 <sub>H</sub> ~0123 <sub>H</sub>  | RY420~RY43F    | 01A2 <sub>H</sub> ~01A3 <sub>H</sub>  | RWw84~RWw87          | 0264 <sub>H</sub> ~0267 <sub>H</sub>  | RWr84~RWr87       | 0364 <sub>H</sub> ~0367 <sub>H</sub>  |
| 35          | RX440~RX45F    | 0124 <sub>H</sub> ~0125 <sub>H</sub>  | RY440~RY45F    | 01A4 <sub>H</sub> ~01A5 <sub>H</sub>  | RWw88~RWw8B          | 0268 <sub>H</sub> ~026B <sub>H</sub>  | RWr88~RWr8B       | 0368 <sub>H</sub> ∼036B <sub>H</sub>  |
| 36          | RX460~RX47F    | 0126 <sub>H</sub> ~0127 <sub>H</sub>  | RY460~RY47F    | 01A6 <sub>H</sub> ~01A7 <sub>H</sub>  | RWw8C~RWw8F          | 026C <sub>H</sub> ~026F <sub>H</sub>  | RWr8C~RWr8F       | 036C <sub>H</sub> ∼036F <sub>H</sub>  |
| 37          | RX480~RX49F    | 0128 <sub>H</sub> ~0129 <sub>H</sub>  | RY480~RY49F    | 01A8 <sub>H</sub> ~01A9 <sub>H</sub>  | RWw90~RWw93          | 0270 <sub>H</sub> ~ 0273 <sub>H</sub> | RWr90~RWr93       | 0370 <sub>H</sub> ∼0373 <sub>H</sub>  |
| 38          | RX4A0~RX4BF    | $012A_H \sim 012B_H$                  | RY4A0~RY4BF    | 01AA <sub>H</sub> ~01AB <sub>H</sub>  | RWw94~RWw97          | 0274 <sub>H</sub> ~0277 <sub>H</sub>  | RWr94~RWr97       | 0374 <sub>H</sub> ~0377 <sub>H</sub>  |
| 39          | RX4C0~RX4DF    | $012C_H \sim 012D_H$                  | RY4C0~RY4DF    | $01AC_H \sim 01AD_H$                  | RWw98~RWw9B          | 0278 <sub>H</sub> ~ 027B <sub>H</sub> | RWr98~RWr9B       | 0378 <sub>H</sub> ∼037B <sub>H</sub>  |
| 40          | RX4E0~RX4FF    | 012E <sub>H</sub> ~012F <sub>H</sub>  | RY4E0~RY4FF    | 01AE <sub>H</sub> ∼01AF <sub>H</sub>  | RWw9C~RWw9F          | 027C <sub>H</sub> ∼027F <sub>H</sub>  | RWr9C~RWr9F       | 037C <sub>H</sub> ∼037F <sub>H</sub>  |
| 41          | RX500~RX51F    | 0130 <sub>H</sub> ~0131 <sub>H</sub>  | RY500~RY51F    | 01B0 <sub>H</sub> ~01B1 <sub>H</sub>  | RWwA0~RWwA3          | 0280 <sub>H</sub> ~0283 <sub>H</sub>  | RWrA0~RWrA3       | 0380 <sub>H</sub> ∼0383 <sub>H</sub>  |
| 42          | RX520~RX53F    | 0132 <sub>H</sub> ~0133 <sub>H</sub>  | RY520~RY53F    | 01B2 <sub>H</sub> ∼01B3 <sub>H</sub>  | RWwA4~RWwA7          | 0284 <sub>H</sub> ~0287 <sub>H</sub>  | RWrA4~RWrA7       | 0384 <sub>H</sub> ~0387 <sub>H</sub>  |
| 43          | RX540~RX55F    | 0134 <sub>H</sub> ~0135 <sub>H</sub>  | RY540~RY55F    | 01B4 <sub>H</sub> ~01B5 <sub>H</sub>  | RWwA8~RWwAB          | 0288 <sub>H</sub> ~028B <sub>H</sub>  | RWrA8~RWrAB       | 0388 <sub>H</sub> ~038B <sub>H</sub>  |
| 44          | RX560~RX57F    | 0136 <sub>H</sub> ~0137 <sub>H</sub>  | RY560~RY57F    | 01B6 <sub>H</sub> ∼01B7 <sub>H</sub>  | RWwAC~RWwAF          | 028C <sub>H</sub> ~028F <sub>H</sub>  | RWrAC~RWrAF       | 038C <sub>H</sub> ~038F <sub>H</sub>  |
| 45          | RX580~RX59F    | 0138 <sub>H</sub> ~0139 <sub>H</sub>  | RY580~RY59F    | 01B8 <sub>H</sub> ∼01B9 <sub>H</sub>  | RWwB0~RWwB3          | 0290 <sub>H</sub> ~0293 <sub>H</sub>  | RWrB0~RWrB3       | 0390 <sub>H</sub> ∼0393 <sub>H</sub>  |
| 46          | RX5A0~RX5BF    | $013A_H \sim 013B_H$                  | RY5A0~RY5BF    | $01BA_H \sim 01BB_H$                  | RWwB4~RWwB7          | 0294 <sub>H</sub> ~0297 <sub>H</sub>  | RWrB4~RWrB7       | 0394 <sub>H</sub> ~0397 <sub>H</sub>  |
| 47          | RX5C0~RX5DF    | 013C <sub>H</sub> ~013D <sub>H</sub>  | RY5C0~RY5DF    | $01BC_{H} \sim 01BD_{H}$              | RWwB8~RWwBB          | 0298 <sub>H</sub> ~029B <sub>H</sub>  | RWrB8~RWrBB       | 0398 <sub>H</sub> ∼039B <sub>H</sub>  |
| 48          | RX5E0~RX5FF    | $013E_{H} \sim 013F_{H}$              | RY5E0~RY5FF    | 01BE <sub>H</sub> ∼01BF <sub>H</sub>  | RWwBC~RWwBF          | 029C <sub>H</sub> ~029F <sub>H</sub>  | RWrBC~RWrBF       | 039C <sub>H</sub> ∼039F <sub>H</sub>  |
| 49          | RX600~RX61F    | 0140 <sub>H</sub> ~0141 <sub>H</sub>  | RY600~RY61F    | 01CO <sub>H</sub> ~01C1 <sub>H</sub>  | RWwC0~RWwC3          | 02A0 <sub>H</sub> ~02A3 <sub>H</sub>  | RWrC0~RWrC3       | 03A0 <sub>H</sub> ∼03A3 <sub>H</sub>  |
| 50          | RX620~RX63F    | 0142 <sub>H</sub> ~0143 <sub>H</sub>  | RY620~RY63F    | 01C2 <sub>H</sub> ~ 01C3 <sub>H</sub> | RWwC4~RWwC7          | $02A4_{H} \sim 02A7_{H}$              | RWrC4~RWrC7       | $03A4_{H}\sim03A7_{H}$                |
| 51          | RX640~RX65F    | 0144 <sub>H</sub> ~0145 <sub>H</sub>  | RY640~RY65F    | 01C4 <sub>H</sub> ~01C5 <sub>H</sub>  | RWwC8~RWwCB          | $02A8_{H} \sim 02AB_{H}$              | RWrC8~RWrCB       | 03A8 <sub>H</sub> ~03AB <sub>H</sub>  |
| 52          | RX660~RX67F    | 0146 <sub>H</sub> ~0147 <sub>H</sub>  | RY660~RY67F    | 01C6 <sub>H</sub> ~01C7 <sub>H</sub>  | RWwCC~RWwCF          | 02AC <sub>H</sub> ~02AF <sub>H</sub>  | RWrCC~RWrCF       | 03AC <sub>H</sub> ∼03AF <sub>H</sub>  |
| 53          | RX680~RX69F    | 0148 <sub>H</sub> ~0149 <sub>H</sub>  | RY680~RY69F    | 01C8 <sub>H</sub> ~01C9 <sub>H</sub>  | RWwD0~RWwD3          | 02B0 <sub>H</sub> ~ 02B3 <sub>H</sub> | RWrD0~RWrD3       | 03B0 <sub>H</sub> ∼03B3 <sub>H</sub>  |
| 54          | RX6A0~RX6BF    | 014A <sub>H</sub> ~014B <sub>H</sub>  | RY6A0~RY6BF    | 01CA <sub>H</sub> ∼01CB <sub>H</sub>  | RWwD4~RWwD7          | 02B4 <sub>H</sub> ~ 02B7 <sub>H</sub> | RWrD4~RWrD7       | 03B4 <sub>H</sub> ∼03B7 <sub>H</sub>  |
| 55          | RX6C0~RX6DF    | 014C <sub>H</sub> ~014D <sub>H</sub>  | RY6C0~RY6DF    | 01CC <sub>H</sub> ~01CD <sub>H</sub>  | RWwD8~RWwDB          | 02B8 <sub>H</sub> ~ 02BB <sub>H</sub> | RWrD8~RWrDB       | 03B8 <sub>H</sub> ~03BB <sub>H</sub>  |
| 56          | RX6E0~RX6FF    | 014E <sub>H</sub> ~014F <sub>H</sub>  | RY6E0~RY6FF    | 01CE <sub>H</sub> ∼01CF <sub>H</sub>  | RWwDC~RWwDF          | 02BC <sub>H</sub> ~02BF <sub>H</sub>  | RWrDC~RWrDF       | 03BC <sub>H</sub> ~03BF <sub>H</sub>  |
| 57          | RX700~RX71F    | 0150 <sub>H</sub> ~0151 <sub>H</sub>  | RY700~RY71F    | 01D0 <sub>H</sub> ~01D1 <sub>H</sub>  | RWwE0~RWwE3          | 02CO <sub>H</sub> ~02C3 <sub>H</sub>  | RWrE0~RWrE3       | 03CO <sub>H</sub> ~03C3 <sub>H</sub>  |
| 58          | RX720~RX73F    | 0152 <sub>H</sub> ~ 0153 <sub>H</sub> | RY720~RY73F    | 01D2 <sub>H</sub> ~01D3 <sub>H</sub>  | RWwE4~RWwE7          | 02C4 <sub>H</sub> ~02C7 <sub>H</sub>  | RWrE4~RWrE7       | 03C4 <sub>H</sub> ~03C7 <sub>H</sub>  |
| 59          | RX740~RX75F    | 0154 <sub>H</sub> ~0155 <sub>H</sub>  | RY740~RY75F    | 01D4 <sub>H</sub> ~01D5 <sub>H</sub>  | RWwE8~RWwEB          | 02C8 <sub>H</sub> ~02CB <sub>H</sub>  | RWrE8~RWrEB       | 03C8 <sub>H</sub> ~03CB <sub>H</sub>  |
| 60          | RX760~RX77F    | 0156 <sub>H</sub> ~0157 <sub>H</sub>  | RY760~RY77F    | 01D6 <sub>H</sub> ~01D7 <sub>H</sub>  | RWwEC~RWwEF          | 02CC <sub>H</sub> ~02CF <sub>H</sub>  | RWrEC~RWrEF       | 03CC <sub>H</sub> ~03CF <sub>H</sub>  |
| 61          | RX780~RX79F    | 0158 <sub>H</sub> ~0159 <sub>H</sub>  | RY780~RY79F    | 01D8 <sub>H</sub> ~01D9 <sub>H</sub>  | RWwF0~RWwF3          | 02D0 <sub>H</sub> ~02D3 <sub>H</sub>  | RWrF0~RWrF3       | 03D0 <sub>H</sub> ~ 03D3 <sub>H</sub> |
| 62          | RX7A0~RX7BF    | 015A <sub>H</sub> ∼015B <sub>H</sub>  | RY7A0~RY7BF    | 01DA <sub>H</sub> ∼01DB <sub>H</sub>  | RWwF4~RWwF7          | 02D4 <sub>H</sub> ~ 02D7 <sub>H</sub> | RWrF4~RWrF7       | 03D4 <sub>H</sub> ∼03D7 <sub>H</sub>  |
| 63          | RX7C0~RX7DF    | 015C <sub>H</sub> ∼015D <sub>H</sub>  | RY7C0~RY7DF    | 01DC <sub>H</sub> ∼01DD <sub>H</sub>  | RWwF8~RWwFB          | 02D8 <sub>H</sub> ~02DB <sub>H</sub>  | RWrF8~RWrFB       | 03D8 <sub>H</sub> ∼03DB <sub>H</sub>  |
| 64          | RX7E0~RX7FF    | 015E <sub>H</sub> ∼015F <sub>H</sub>  | RY7E0~RY7FF    | $01DE_{H} \sim 01DF_{H}$              | RWwFC~RWwFF          | $02DC_H \sim 02DF_H$                  | RWrFC~RWrFF       | $03DC_H \sim 03DF_H$                  |

## Chapter 10 Communication specification

## 10.1 Input/output signal list

Table 6 Output signals (Master → Inverter)

| Device no.     | Signal name                              | Description                                                                                                                                                                                                                                                                                                            |                                                                  |  |  |
|----------------|------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|--|--|
| RYn0           | Forward command                          | OFF: Stop command ON: Forward rotation                                                                                                                                                                                                                                                                                 | Simultaneous<br>turn-on of<br>RYn0 and                           |  |  |
| RYn1           | Reverse command                          | OFF: Stop command ON: Reverse rotation                                                                                                                                                                                                                                                                                 | RYn1 makes<br>stop<br>command.                                   |  |  |
| RYn2           | X1 terminal function                     | Uses it as a self-maintenance signal when the three-wire is operated.  (HLD) is ON、(FWD) or (REV)signal is self-maintained, and this maintenance is released by turning off.                                                                                                                                           | Function of                                                      |  |  |
| RYn3           | X2 terminal function                     | Turning this On works as the free-run command (BX). (Secondary side output is cut off)                                                                                                                                                                                                                                 | each X<br>terminal (E01                                          |  |  |
| RYn4           | X3 terminal function                     | Turing this ON works as the abnormal rest (RST).                                                                                                                                                                                                                                                                       | ~ E05) can<br>be changed                                         |  |  |
| RYn5           | X4 terminal function                     | Turning this On works as selected frequency setting 2(Hz2/Hz1).                                                                                                                                                                                                                                                        | by setting X-terminal                                            |  |  |
| RYn6           | X5 terminal function                     | Turning this On works as the operation command and the frequency setting from the touch panel become effective(LOC).                                                                                                                                                                                                   |                                                                  |  |  |
| RYn7           | Unused                                   | -                                                                                                                                                                                                                                                                                                                      |                                                                  |  |  |
| RYn8           | Unused                                   | -                                                                                                                                                                                                                                                                                                                      |                                                                  |  |  |
| RYn9           | Secondary side output is<br>cut off (BX) | Turning this On works as the free-run command (BX). (Secondary side output is cut off )                                                                                                                                                                                                                                |                                                                  |  |  |
| RYnA           | Unused                                   | -                                                                                                                                                                                                                                                                                                                      |                                                                  |  |  |
| RYnB           | Unused                                   | -                                                                                                                                                                                                                                                                                                                      |                                                                  |  |  |
| RYnC<br>*1     | Monitor command                          | By turning ON the monitor command (RYnC), the monito RWrn, and the monitoring (RXnC) is turned ON.                                                                                                                                                                                                                     |                                                                  |  |  |
| RYnD<br>*2     | Speed setting command (RAM)              | By turning ON the frequency setting command (RYnD), th command (RWwn+1) is written in the volatile memory (R inverter. Note2 After the writing has finished, "frequency set (RXnD) is turned ON. If a frequency setting error occurs, than 0 is set to the response code (RWrn+2).                                     | AM) of the ting complete"                                        |  |  |
| RYnE           | Unused                                   | -                                                                                                                                                                                                                                                                                                                      |                                                                  |  |  |
| RYnF<br>*3     | Command code execution request           | By turning ON the command code request command (RY processing corresponding to the command code set to the code (RW wn+2) is executed. Note <sup>3</sup> After the command code executed, "command code execution complete" (RXnF) is a command code execution error occurs, a value other the response code (RWrn+2). | ne command<br>ode has been<br>s turned ON. If<br>nan 0 is set to |  |  |
| RY(n+1)A<br>*4 | Alarm reset request flag                 | If an inverter alarm occurs, turning ON the alarm reset resets the inverter, and turns OFF the alarm state flag                                                                                                                                                                                                        |                                                                  |  |  |

## n: Value determined by setting station number

- \*1 During the time when the monitor command (RYnC) is ON, the monitor value is constantly updated.
- \*2 During the frequency setting command (RYnD) is ON, , the value of the frequency command (RWwn+1) is constantly reflected on the speed.
- \*3 During the time when "command code execution request" is ON, the command code is constantly executed. (With read request the read value is constantly updated, and with write request the write value is constantly reflected on the writing.) However, the function codes (except S code) are written only once.
- \*4 During the time when the alarm reset request flag (RY(n+1)A) is ON, alarm reset is constantly executed. So, turn OFF the flag after an alarm has been reset. Alarm reset is always possible irrespective of operation mode.

Table 7 Input signals (Inverter → Master)

| Device no. | Signal name                      | Description                                                                                                                                                                                                                                                                                                                                                                           |
|------------|----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RXn0       | Rotating in forward direction    | OFF: Other than rotating in forward direction (stop or rotating in reverse direction) ON: Rotating in forward direction                                                                                                                                                                                                                                                               |
| RXn1       | Rotating in reverse direction    | OFF: Other than rotating in reverse direction (stop or rotating in forward direction) ON: Rotating in reverse direction                                                                                                                                                                                                                                                               |
| RXn2       | Y1 terminal function             | Turned ON with inverter running (RUN)  Output signal                                                                                                                                                                                                                                                                                                                                  |
| RXn3       | Y2 terminal function             | Turned ON with frequency arrival signal (FAR) can be                                                                                                                                                                                                                                                                                                                                  |
| RXn4       | Y3 terminal function             | Turned ON with frequency detected (FDT) changed by                                                                                                                                                                                                                                                                                                                                    |
| RXn5       | Unused                           | _ setting                                                                                                                                                                                                                                                                                                                                                                             |
| RXn6       | Y5 terminal function             | Turned ON with select AX terminal function (AX)  Y-terminal function selection (E20, E 21, E22, E24).                                                                                                                                                                                                                                                                                 |
| RXn7       | Failure relay output (ABC)       | Turned ON when inverter protection function works and output stops.                                                                                                                                                                                                                                                                                                                   |
| RXnC       | Monitoring                       | By turning ON the monitor command (RYnC), the monitor value is set to the remote register RWrn (see 10.2) and the monitoring (RXnC) is turned ON. When the monitor command (RYnC) is turned OFF, the monitoring (RXnC) is turned OFF.                                                                                                                                                 |
| RXnD       | Frequency setting complete (RAM) | By turning ON the frequency setting command (RYnD), the frequency command is written in the volatile memory (RAM) and this signal is turned ON. When the frequency setting command (RYnD) is turned OFF, "frequency setting complete" (RXnD) comes OFF.                                                                                                                               |
| RXnE       | Unused                           | -                                                                                                                                                                                                                                                                                                                                                                                     |
| RXnF       | Command code execution complete  | By turning ON the command code execution request (RYnF), the processing corresponding to the command code (RWwn+2) is executed, and when the processing has been finished, this signal is turned ON. When the command code execution request (RYnF) is turned OFF, the "command code execution complete" comes OFF.                                                                   |
| RX(n+1)A   | Alarm status flag                | Turned ON when an inverter alarm (alarm other than Er3) occurs.                                                                                                                                                                                                                                                                                                                       |
| RX(n+1)B   | Remote station ready             | After the power has been turned on, or after the hardware has been reset, and when the initial data setting has been finished and the inverter has become ready, this signal is turned ON. (This signal is used for interlock with read/write from the master unit.) If an inverter alarm occurs, this signal is turned OFF simultaneously with the alarm status flag (RX (n+1)A) ON. |

n: Value determined by setting station number

- \*1 If the operation condition setting switch of the master unit, "input data status of station with data link failure (SW4)", is set to ON, the input data from the station with data link failure holds its value received just before the failure has occurred. So, note that, even if an inverter alarm has occurred, the signal "remote station ready" remains ON.
- \*2 Note that, if the master outputs an operation command when commands through communication are set invalid (H30 = 0, 1 or [LE] command OFF), the inverter does not operate but the signals "speed setting complete" and "command code execution complete" are turned ON. Also, if the commands through communication are set invalid, whether the input signal from the link (COM) is coming in or not can be checked with "I/O check" on the keypad.

## 10.2 Assigning remote registers

Table 8 Remote registers (Master → Inverter)

| Address                                             | Signal                                                          | Description                                                                                                                                                                                                                                                                                                                                                        | Remark                                                                 |
|-----------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|
|                                                     | name                                                            |                                                                                                                                                                                                                                                                                                                                                                    |                                                                        |
| RWwn                                                | Monitor code 1 / 2                                              | Sets the monitor code (see Table 10) to be referred to. After<br>the setting has been finished, the data of specified monitor<br>is set to RWrn by turning ON RYnC signal.                                                                                                                                                                                         |                                                                        |
| RWwn+1                                              | Frequency command                                               | Sets Frequency command. After the command has been set to this register, the frequency is written by turning ON the RYnD mentioned previously. After the writing the frequency has been finished, RXnD comes ON.                                                                                                                                                   | Every 0.01Hz                                                           |
| RWwn+2                                              | Command code                                                    | Sets the command code (see Table 11 or, it accesses each function code by formatting the data of page 26.) for rewriting operation mode, reading and writing function code, referring to alarm record, resetting alarm, etc. After the register has been set, the set command is executed by turning ON RYnF. After the command has been executed, RXnF comes ON.  |                                                                        |
| RWwn+3                                              | Write data                                                      | Sets the data specified by the above command code. Turn ON RYnF after the above command code and this register have been set (as required). If writing data is not necessary, set the data to 0.                                                                                                                                                                   |                                                                        |
| RWwn+4                                              | Monitor code 3                                                  | Set the monitor code to be monitored. By switching on the RYC signal after setting, the specified monitored data is                                                                                                                                                                                                                                                |                                                                        |
| RWwn+5                                              | Monitor code 4                                                  | stored to RWrn□. (□ indicates a register number. (RWrn4~7))                                                                                                                                                                                                                                                                                                        |                                                                        |
| RWwn+6                                              | Monitor code 5                                                  |                                                                                                                                                                                                                                                                                                                                                                    |                                                                        |
| RWwn+7                                              | Monitor code 6                                                  |                                                                                                                                                                                                                                                                                                                                                                    |                                                                        |
| RWwn+8                                              | Alarm<br>definition<br>No                                       | Set how many alarm definitions in past to be read. Back to eight alarm definitions in past can be read. (lower 8bits is H00)                                                                                                                                                                                                                                       | Latest 0000<br>Once ahead 0100<br>Twice ahead 0200<br>Three ahead 0300 |
| RWwn+9                                              | PID set point                                                   | Set the PID set point.                                                                                                                                                                                                                                                                                                                                             |                                                                        |
| RWwn+A                                              | Unused                                                          | -                                                                                                                                                                                                                                                                                                                                                                  |                                                                        |
| RWwn+B                                              | Unused                                                          | -                                                                                                                                                                                                                                                                                                                                                                  |                                                                        |
| RWwn+10<br>RWwn+12<br>RWwn+14<br>RWwn+16<br>RWwn+18 | Link<br>parameter<br>extension<br>setting /<br>Command<br>codes | Set the instruction code for execution of operation mode rewrite, Pr.read/write, error clear, etc. The corresponding instruction is executed in order of RWw2, 10, 12, 14, 16, 18 by switching on RYF after completion of register setting, then, RXF switches on completion of instruction execution of RWw18. Set HFFFF to disable an instruction by RWw10 to18. |                                                                        |
| RWwn+11<br>RWwn+13<br>RWwn+15<br>RWwn+17<br>RWwn+19 | Write data                                                      | Set the specified by the instruction code of RWw10, 12, 14, 16, and 18. (when required.) RWw10 and 11, 12 and 13, 14 and 15, 16 and 17, and 18 and 19 correspond each other. After setting this register corresponding to the instruction code of RWw10, 12, 14, 16, and 18, switch on RYF. Set zero when the write code is not required.                          |                                                                        |

n: Value determined by setting station number

CC-Link extension setting is, at CC-Link Ver1.10, [RWwn~RWwn+3] can be used.

at CC-Link Ver2.00 double,  $[RWwn \sim RWwn +7]$  can be used.

at CC-Link Ver2.00 quadrople, [RWwn~RWwn+F] can be used.

at CC-Link Ver2.00 octuple,  $[RWwn \sim RWwn + 1F]$  can be used.

## [Reading of function · Writing · Reading of link extended setting · Writing data format]

| 15       | 14 | 13 | 12   | 11      | 10     | 9                 | 8             | 7             | 6   | 5       | 4    | 3 | 2 | 1 | 0 |
|----------|----|----|------|---------|--------|-------------------|---------------|---------------|-----|---------|------|---|---|---|---|
| Reserved |    |    | Func | tion co | de gro | up (0~            | <b>~</b> 31)  | 0:Read        | Fun | ction o | code |   |   |   |   |
|          |    |    | 00H( | =0) :   | Fcode  | F00~              | F99)          | 1:Write 00~99 |     |         |      |   |   |   |   |
|          |    |    | 01H( | =1) :   | Ecode  | (E00~             | ~E99)         |               |     |         |      |   |   |   |   |
|          |    |    | 02H( | =2) :   | Ccode  | (C00              | ~C99)         |               |     |         |      |   |   |   |   |
|          |    |    | 03H( | =3) :   | Pcode  | (P00 <sup>-</sup> | ~P99)         |               |     |         |      |   |   |   |   |
|          |    |    | 04H( | =4) :   | Hcode  | (H00-             | ~H99)         |               |     |         |      |   |   |   |   |
|          |    |    | 06H( | =6) :   | ocode  | (o00~             | ·o99)         |               |     |         |      |   |   |   |   |
|          |    |    | 07H( | =7) :   | Scode  | (S00 <sup>-</sup> | ~S99)         |               |     |         |      |   |   |   |   |
|          |    |    | 08H( | =8) :   | Mcode  | (M00              | <b>∼</b> M99) |               |     |         |      |   |   |   |   |
|          |    |    | 0DH( | =13):   | Jcode  | (J00~             | ·J99)         |               |     |         |      |   |   |   |   |
|          |    |    | 0EH( | =14):   | ycode  | (y00∼             | y99)          |               |     |         |      |   |   |   |   |
|          |    |    | 0FH( | =15):   | Wcode  | (W00              | <b>∼</b> W99) |               |     |         |      |   |   |   |   |
|          |    |    | 10H( | =16):   | Xcode  | (X00~             | ×X99)         |               |     |         |      |   |   |   |   |
|          |    |    | 11H( | =17):   | Zcode  | (Z00~             | ·Z99)         |               |     |         |      |   |   |   |   |

### Table 9 Remote registers (Inverter → Master)

| Address                 | Signal name                          | Description                                                                                                                                                                                                | Remark |
|-------------------------|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| RWrn                    | Monitor value 1                      | The monitor value specified by the monitor code RWwn is set.                                                                                                                                               |        |
| RWrn+1                  | Monitor value 2                      | The monitor value specified by the monitor code RWwn is set.                                                                                                                                               |        |
| RWrn+2                  | Response code                        | Set reply code corresponds to the command code of RWwn+2. (see table12) For correct response "0" is set, and for data error other than "0" is set.                                                         |        |
| RWrn+3                  | Read data                            | With correct response, the response data for the command specified by the command code is set in this register.                                                                                            |        |
| RWrn+4                  | Monitor value 3                      | When RYC is on, the monitor value specified to the monitor code                                                                                                                                            |        |
| RWrn+5                  | Monitor value 4                      | (RWw□) is stored. (□ indicates a register number (RWw 4 to                                                                                                                                                 |        |
| RWrn+6                  | Monitor value 5                      | 7))                                                                                                                                                                                                        |        |
| RWrn+7                  | Monitor value 6                      | 7                                                                                                                                                                                                          |        |
| RWrn+8                  | Alarm definition (alarm data)        | The alarm data of alarm definition No. specified by RWw8 is stored in the lower 8bits. Alarm definition No. specified is echo backed to the upper 8bits.                                                   |        |
| RWrn+9                  | Alarm definition (output frequency)  | Output frequency of the alarm definition No. specified in RWw8 is stored.                                                                                                                                  |        |
| RWrn+A                  | Alarm definition (output current)    | Output current of the alarm definition No. specified in RWw8 is stored.                                                                                                                                    |        |
| RWrn+B                  | Alarm definition (output voltage)    | Output voltage of the alarm definition No. specified in RWw8 is stored.                                                                                                                                    |        |
| RWrn+C                  | Alarm definition (energization time) | Energization time of the alarm definition No. specified in RWw8 is stored.                                                                                                                                 |        |
| RWrn+10<br>~<br>RWrn+19 | Reply code                           | Turning on RYnF stores the reply code corresponds to the instruction code of RWw10, 12, 14, 16, and 18. The value "0" is set for a normal reply and other than "0" is set for data fault, mode error, etc. |        |
|                         | Read data                            | With correct response, the response data for the command specified by the command code is set in this register.                                                                                            |        |

## n: Value determined by setting station number

CC-Link extension setting is, at CC-Link Ver1.10, [RWrn∼RWrn +3] can be used.

at CC-Link Ver2.00 double, [RWrn~RWrn +7] can be used.

at CC-Link Ver2.00 quadrople, [RWrn~RWrn+F] can be used.

at CC-Link Ver2.00 octuple, [RWrn~RWrn+1F] can be used.

## 10.3 Description of remote registers

Table 10 Monitor codes

| Code No.                                       | Second Monitor Description (the first 8 bits) | First Monitor<br>Description<br>(the first 8 bits) | Unit             | Remark                         |
|------------------------------------------------|-----------------------------------------------|----------------------------------------------------|------------------|--------------------------------|
| 00 <sub>H</sub>                                | No monitor (monitor valu                      | ie fixed to 0)                                     |                  |                                |
| 01 <sub>H</sub>                                | Output frequency                              |                                                    | 0.01Hz           | Output in increments of 0.1 Hz |
| 02 <sub>H</sub>                                | Output current                                |                                                    | 0.01A/0.1A       | *1                             |
| 03 <sub>H</sub>                                | Output voltage                                |                                                    | 0.1V             |                                |
| 04 <sub>H</sub>                                | No monitor (monitor valu                      | ie fixed to 0)                                     | ı                |                                |
| 05 <sub>H</sub>                                | Set frequency                                 |                                                    | 0.01Hz           |                                |
| 06 <sub>H</sub>                                | Running speed                                 |                                                    | 1r/min           |                                |
| 07 <sub>H</sub>                                | Calculated output torque                      | !                                                  | 0.1%             |                                |
| 08 <sub>H</sub>                                | DC intermediate voltage                       |                                                    | 0.1V             | Output in increments of 1 V    |
| 09 <sub>H</sub>                                | No monitor (monitor valu                      | ue fixed to 0)                                     |                  |                                |
| OC <sub>H</sub>                                |                                               |                                                    | 0.041344/0.41344 | . 4                            |
| 0D <sub>H</sub>                                | Input power                                   |                                                    | 0.01kW/0.1kW     | *1                             |
| 0E <sub>H</sub>                                | Output power                                  |                                                    | 0.01kW/0.1kW     | *1                             |
| 0F <sub>H</sub>                                | Input terminal status                         |                                                    | _                |                                |
| 10 <sub>H</sub>                                | Output terminal status                        |                                                    | _                |                                |
| 11 <sub>H</sub>                                | Load factor                                   |                                                    | 0.1%             |                                |
| 12 <sub>H</sub><br> <br> <br>  13 <sub>H</sub> | No monitor (monitor valu                      | ie fixed to 0)                                     |                  |                                |
| 14 <sub>H</sub>                                | Integrated operation time                     | )                                                  | 1hr              |                                |
| 15 <sub>H</sub><br> <br>16 <sub>H</sub>        | No monitor (monitor valu                      |                                                    |                  |                                |
| 17 <sub>H</sub>                                | Actual operation time                         |                                                    | 1hr              |                                |
| 18 <sub>H</sub>                                | Output current effect value                   | ue                                                 | 0.1%             |                                |
| 19 <sub>H</sub>                                | Cumulative power                              |                                                    | 1kWhr            |                                |
| 1A <sub>H</sub>                                | No monitor (monitor valu                      | ue fixed to 0)                                     |                  |                                |
| 33 <sub>H</sub>                                |                                               |                                                    |                  |                                |
| 34 <sub>H</sub>                                | PID set point                                 |                                                    | 0.1%             |                                |
| 35 <sub>H</sub>                                | PID measured value                            |                                                    | 0.1%             |                                |
| 36 <sub>H</sub>                                | PID deviation                                 |                                                    | 0.1%             |                                |
| 37 <sub>H</sub>                                | No monitor (monitor valu                      | ue fixed to 0)                                     |                  |                                |

<sup>\*1</sup> The setting depends on the inverter capacity.(55kWor less/75 kW or more)

## ◆Detailed explanation of Input terminal status

| b15 |   |   |   |   |   |   | b8 | b7 |    |    |    |    |    |     | b0  |
|-----|---|---|---|---|---|---|----|----|----|----|----|----|----|-----|-----|
| 1   | 1 | ı | - | - | - | - | -  | -  | Х5 | Х4 | Х3 | Х2 | Х1 | REV | FWD |

Figure 14

## ◆Detailed explanation of output terminal status

| b15 |   |   |   |   |   |   | b8 | b7 |   |   |     |   |    |    | b0 |
|-----|---|---|---|---|---|---|----|----|---|---|-----|---|----|----|----|
|     | - | - | - | - | - | - | 30 | -  | - | - | Y5A | - | Y3 | Y2 | Y1 |

<sup>&</sup>quot;-": Vacant (fixed to 0)

Figure 15

Table 11 Command codes

| Item                            | Code No.                                 | Description of data                                                                                                                                                              | Remark                                                                                                                                                                                                       |
|---------------------------------|------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Operation mode read             | 007B <sub>H</sub>                        | 0000 <sub>H</sub> : Link operation (CC-Link)<br>0001 <sub>H</sub> : External operation<br>(Terminal board)<br>0002 <sub>H</sub> : Keypad operation<br>0003 <sub>H</sub> : Others |                                                                                                                                                                                                              |
| Operation mode write            | 00FB <sub>H</sub>                        | 0000 <sub>H</sub> : Link operation (CC-Link)<br>0001 <sub>H</sub> : External operation<br>(Terminal board)<br>0002 <sub>H</sub> : Keypad operation                               | Change to "y98=3" Change to "y98=0","F02=1" Change to "y98=0","F02=0","F01=0" Caution) It doesn't return to former setting when the power supply is turned on again. [LE] The terminal becomes top priority. |
| Alarm record No.1 and No.2 read | 0074 <sub>H</sub>                        | Record No.1 and No.2 read                                                                                                                                                        | L byte:Latest alarm<br>H byte:First alarm in past                                                                                                                                                            |
| Alarm record No.3 and No.4 read | 0075 <sub>н</sub>                        | Record No.3 and No.4 read                                                                                                                                                        | L byte: Second alarm in past<br>H byte: Third alarm in past                                                                                                                                                  |
| Frequency command read          | 006D <sub>н</sub>                        | Reading frequency command                                                                                                                                                        | 0~±20000 (Nmax. at ±20000)<br>Accessible from remote register                                                                                                                                                |
| Frequency command write         | 00ED <sub>H</sub>                        | Writing frequency command                                                                                                                                                        | When "y=1,3" is set, it is possible to write it.                                                                                                                                                             |
| Function code read              | 0000 <sub>H</sub> ∼<br>0063 <sub>H</sub> | Function code is read or written in combination with the link parameter extension setting.                                                                                       | For the link No. and data format, refer to Chapter 11.                                                                                                                                                       |
| Function code write             | 0080 <sub>H</sub> ∼<br>00E3 <sub>H</sub> |                                                                                                                                                                                  |                                                                                                                                                                                                              |
| Batch alarm definition clear    | 00F4 <sub>H</sub>                        | 9696 <sub>H</sub> :Batch-clears the alarm history                                                                                                                                |                                                                                                                                                                                                              |
| Alarm reset                     | 00FD <sub>H</sub>                        | 9696 <sub>H</sub> :Resets the alarm                                                                                                                                              | Even not link operation, reset can be made,                                                                                                                                                                  |

Table 12 Response codes

| Code No.          | Item                       | Description                                                                                                                                                                                                                                                |
|-------------------|----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0000 <sub>H</sub> | Normal (no error)          | Command code has been normally executed.                                                                                                                                                                                                                   |
| 0001 <sub>н</sub> | Write mode error           | <ul> <li>Function code has been written during inverter operation.</li> <li>Function code has been written during EEPROM write.<br/>(Prohibition while it changes with keypad)</li> <li>Function code has been written with transmission error.</li> </ul> |
| 0002 <sub>H</sub> | Function code select error | An inaccessible link No. has been set.                                                                                                                                                                                                                     |
| 0003н             | Setting range error        | The set data is out of the changeable range.                                                                                                                                                                                                               |

# Chapter11 Link Number / Data Format

Link No of each function code is described. Understand together with refer to Chapter 5 of RS-485 user's manual (MEH448\*) for the data format form).

| F:Fu | ındamental Functions                                           |      | Attribu | te            |
|------|----------------------------------------------------------------|------|---------|---------------|
| Code | Name                                                           | CC L | ink No  | Communication |
| Code | Name                                                           | READ | WRITE   | data format   |
| F00  | Data protection                                                | 0000 | 0080    | 1             |
| F01  | Frequency command 1                                            | 0001 | 0081    | 1             |
| F02  | Run Command                                                    | 0002 | 0082    | 1             |
| F03  | Maximum frequency                                              | 0003 | 0083    | 3             |
| F04  | Base frequency                                                 | 0004 | 0084    | 3             |
| F05  | Rated Voltage at Base Frequency                                | 0005 | 0085    | 1             |
| F07  | Acceleration time                                              | 0007 | 0087    | 12            |
| F08  | Deceleration time                                              | 0008 | 0088    | 12            |
| F09  | Torque boost                                                   | 0009 | 0089    | 3             |
| F10  | Electronic thermal (Select motor characteristics)              | 000A | 008A    | 1             |
| F11  | Overload Protection for (Overload detection level)             | 000B | 008B    | 24            |
| F12  | Motor (Thermal time constant)                                  | 000C | 008C    | 3             |
| F14  | Restart mode after momentary power failure (Mode selection)    | 000E | 008E    | 1             |
| F15  | Frequency limiter (High)                                       | 000F | 008F    | 3             |
| F16  | (Low)                                                          | 0010 | 0090    | 3             |
| F18  | Bias (Frequency command1)                                      | 0012 | 0092    | 6             |
| F20  | DC Braking (Braking start frequency)                           | 0014 | 0094    | 3             |
| F21  | (Braking level)                                                | 0015 | 0095    | 1             |
| F22  | (Braking time)                                                 | 0016 | 0096    | 5             |
| F23  | Starting frequenc                                              | 0017 | 0097    | 3             |
| F25  | Stop frequency                                                 | 0019 | 0099    | 3             |
| F26  | Motor sound (Carrier frequency)                                | 001A | 009A    | 1             |
| F27  | ( tone)                                                        | 001B | 009B    | 1             |
| F29  | Analog Output [FMA] (Mode selection)                           | 001D | 009D    | 1             |
| F30  | (Output adjustment)                                            | 001E | 009E    | 1             |
| F31  | (Function)                                                     | 001F | 009F    | 1             |
| F33  | Pulse Output [FMP] (Pulse rate)                                | 0021 | 00A1    | 1             |
| F34  | (Duty))                                                        | 0022 | 00A2    | 1             |
| F35  | (Function)                                                     | 0023 | 00A3    | 1             |
| F37  | Load Selection/Auto Torque Boost /Auto Energy Saving Operation | 0025 | 00A5    | 1             |
| F43  | Current Limiter (Mode selection)                               | 002B | 00AB    | 1             |
| F44  | (Level)                                                        | 002C | 00AC    | 1             |

| E:E  | E:Extension Terminal Functions                  |       |        |               |  |  |  |  |  |  |  |
|------|-------------------------------------------------|-------|--------|---------------|--|--|--|--|--|--|--|
| Code | Name                                            | CC Li | ink No | Communication |  |  |  |  |  |  |  |
| Code | Name                                            | READ  | WRITE  | data format   |  |  |  |  |  |  |  |
| E01  | Command Assignment to: [X1]                     | 0101  | 0181   | 1             |  |  |  |  |  |  |  |
| E02  | [X2]                                            | 0102  | 0182   | 1             |  |  |  |  |  |  |  |
| E03  | [X3]                                            | 0103  | 0183   | 1             |  |  |  |  |  |  |  |
| E04  | [X4]                                            | 0104  | 0184   | 1             |  |  |  |  |  |  |  |
| E05  | [X5]                                            | 0105  | 0185   | 1             |  |  |  |  |  |  |  |
| E20  | Signal Assignment to: [Y1]                      | 0114  | 0194   | 1             |  |  |  |  |  |  |  |
| E21  | (Transistor signal) [Y2]                        | 0115  | 0195   | 1             |  |  |  |  |  |  |  |
| E22  | [Y3]                                            | 0116  | 0196   | 1             |  |  |  |  |  |  |  |
| E24  | (Relay contact signal) [Y5A/C]                  | 0118  | 0198   | 1             |  |  |  |  |  |  |  |
| E27  | [30A/B/C]                                       | 011B  | 019B   | 1             |  |  |  |  |  |  |  |
| E31  | Frequency Detection (FDT) (Detection level)     | 011F  | 019F   | 3             |  |  |  |  |  |  |  |
| E34  | Overload Early Warning (Level)                  | 0122  | 01A2   | 24            |  |  |  |  |  |  |  |
| E35  | /Current Detection (Timer)                      | 0123  | 01A3   | 5             |  |  |  |  |  |  |  |
| E40  | PID Display coefficient A                       | 0128  | 01A8   | 12            |  |  |  |  |  |  |  |
| E41  | PID Display coefficient B                       | 0129  | 01A9   | 12            |  |  |  |  |  |  |  |
| E43  | LED Monitor (Item selection)                    | 012B  | 01AB   | 1             |  |  |  |  |  |  |  |
| E45  | LCD Monitor (Item selection)                    | 012D  | 01AD   | 1             |  |  |  |  |  |  |  |
| E46  | (Language selection)                            | 012E  | 01AE   | 1             |  |  |  |  |  |  |  |
| E47  | (Contrast control)                              | 012F  | 01AF   | 1             |  |  |  |  |  |  |  |
| E48  | LED Monitor (Speed monitor item)                | 0130  | 01B0   | 1             |  |  |  |  |  |  |  |
| E50  | Coefficient for Speed Indication                | 0132  | 01B2   | 5             |  |  |  |  |  |  |  |
| E51  | Display Coefficient for Input Watt-hour Data    | 0133  | 01B3   | 45            |  |  |  |  |  |  |  |
| E52  | Keypad                                          | 0134  | 01B4   | 1             |  |  |  |  |  |  |  |
| E61  | Analog Input for (Extension function selection) | 013D  | 01BD   | 1             |  |  |  |  |  |  |  |
| E62  | [C1]                                            | 013E  | 01BE   | 1             |  |  |  |  |  |  |  |
| E63  | [V2]                                            | 013F  | 01BF   | 1             |  |  |  |  |  |  |  |
| E64  | Saving Digital Reference Frequency              | 0140  | 01C0   | 1             |  |  |  |  |  |  |  |
| E65  | Command Loss Detection                          | 0141  | 01C1   | 1             |  |  |  |  |  |  |  |
| E80  | Detect Low Torque (Detection level)             | 0150  | 01D0   | 1             |  |  |  |  |  |  |  |
| E81  | (Timer)                                         | 0151  | 01D1   | 5             |  |  |  |  |  |  |  |
| E98  | Command Assignment to: [FWD]                    | 0162  | 01E2   | 1             |  |  |  |  |  |  |  |
| E99  | [REV]                                           | 0163  | 01E3   | 1             |  |  |  |  |  |  |  |

| C:C  | ontrol Functions of Frequency                | ,              |       |        |               |
|------|----------------------------------------------|----------------|-------|--------|---------------|
| Code | Name                                         |                | CC Li | ink No | Communication |
| Oouc |                                              |                | READ  | WRITE  | data format   |
| C01  | Jump Frequency 1                             |                | 0201  | 0281   | 3             |
| C02  | 2                                            |                | 0202  | 0282   | 3             |
| C03  | 3                                            |                | 0203  | 0283   | 3             |
| C04  |                                              | (Band)         | 0204  | 0284   | 3             |
|      | Multistep Frequency 1                        |                | 0205  | 0285   | 5             |
| C06  | 2                                            |                | 0206  | 0286   | 5             |
| C07  | 3                                            |                | 0907  | 0987   | 5             |
| C08  | 4                                            |                | 0208  | 0288   | 5             |
| C09  | 5                                            |                | 0209  | 0289   | 5             |
| C10  | 6                                            |                | 020A  | 028A   | 5             |
| C11  | 7                                            |                | 020B  | 028B   | 5             |
| C30  | Frequency Command 2                          |                | 021E  | 029E   | 1             |
| C32  | Analog Input Adjustment for [12]             | (Gain)         |       | 02A0   | 5             |
| C33  |                                              | time constant) |       | 02A1   | 5             |
| C34  | ,                                            | ference point) |       | 02A2   | 5             |
| C37  | Analog Input Adjustment for [C1]             | (Gain)         |       | 02A5   | 5             |
| C38  | `                                            | time constant) |       | 02A6   | 5             |
| C39  | 1                                            | ference point) |       | 02A7   | 5             |
| C42  | Analog Input Adjustment for [V2]             | (Gain)         | 022A  | 02AA   | 5             |
| C43  | `                                            | time constant) |       | 02AB   | 5             |
| C44  |                                              | ference point) | 022C  | 02AC   | 5             |
| C50  | · · · · · · · · · · · · · · · · · · ·        | y command 1)   | 0232  | 02B2   | 5             |
| C51  | Bias for PID command 1                       | (Bias value)   |       | 02B3   | 6             |
| C52  | ,                                            | ference point) | 0234  | 02B4   | 5             |
| C53  | Selection of Normal/ Inverse Oper (Frequence | y command 1)   | 0235  | 02B5   | 1             |

| P:M  | P:Motor Parameters  |        |        |               |  |  |  |  |  |
|------|---------------------|--------|--------|---------------|--|--|--|--|--|
| Code | Name                | CC L   | ink No | Communication |  |  |  |  |  |
| Couc | Name                | READ   | WRITE  | data format   |  |  |  |  |  |
| P01  | Motor (No. of poles | 0301   | 0381   | 1             |  |  |  |  |  |
| P02  | (Rated capacity     | 0302   | 0382   | 11            |  |  |  |  |  |
| P03  | (Rated curren       | 0303   | 0383   | 24            |  |  |  |  |  |
| P04  | (Auto-tuning        | ) 0304 | 0384   | 21            |  |  |  |  |  |
| P06  | (No-load curren     | 0306   | 0386   | 24            |  |  |  |  |  |
| P07  | (%R <sup>2</sup>    | ) 0307 | 0387   | 5             |  |  |  |  |  |
| P08  | (%>                 | 0308   | 0388   | 5             |  |  |  |  |  |
| P99  | Motor Selection     | 0363   | 03E3   | 1             |  |  |  |  |  |

| Code       | Name                                                                      | CC Link No   |              | Communication |  |
|------------|---------------------------------------------------------------------------|--------------|--------------|---------------|--|
| Code       | Name                                                                      | READ         | WRITE        | data format   |  |
| H03        | Data Initialization                                                       | 0403         | 0483         | 1             |  |
| H04        | Auto-resetting (Times)                                                    | 0404         | 0484         | 1             |  |
| H05        | (Reset interval)                                                          | 0405         | 0485         | 3             |  |
| H06        | Cooling Fan ON/OFF Control                                                | 0406         | 0486         | 1             |  |
| H07        | Acceleration/Deceleration Pattern                                         | 0407         | 0487         | 1             |  |
| H09        | Select Starting Characteristics (Auto search time for idling motor st     | 0409         | 0487         |               |  |
| H11        | Deceleration Mode                                                         | 040B         | 048B         | 1             |  |
| H12        | Instantaneous Overcurrent Limiting (Mode selection)                       | 040C         | 048C         | 1             |  |
| H13        | Restart Mode after (Restart time)                                         | 040D         | 048D         | 3             |  |
| H14<br>H15 | (Frequency fall rate)<br>(Continuous running level)                       | 040E<br>040F | 048E<br>048F | 5<br>1        |  |
| H16        | (Continuous running lever) (Allowable momentary power failure time)       | 040F         | 048F         | 3             |  |
| H17        | Select Starting Characteristics (Frequency for idling motor speed)        | 0410         | 0490         | 3             |  |
| H26        | PTC Thermistor (Mode selection)                                           | 041A         | 0491<br>049A | 1             |  |
| H27        | (Level)                                                                   | 041B         | 049A         | 5             |  |
| H30        | Communications Link Function (Mode selection)                             | 041E         | 049E         | 1             |  |
| H42        | Capacitance of DC Link Bus Capacitor                                      | 042A         | 04AA         | 1             |  |
| H43        | Cumulative Run Time of Cooling Fan                                        | 042B         | 04AB         | 1             |  |
| H47        | Initial Capacitance of DC Link Bus Capacitor                              | 042F         | 04AF         | 1             |  |
| H48        | Cumulative Run Time of Capacitors on the Printed Circuit Board            | 0430         | 04B0         | 1             |  |
| H49        | Select Starting Characteristics (Auto search time for idling motor speed) | 0431         | 04B1         | 3             |  |
| H50        | Non-linear V/f Pattern (Frequency)                                        | 0432         | 04B2         | 3             |  |
| H51        | (Voltage)                                                                 | 0433         | 04B3         | 1             |  |
| H56        | Deceleration Time for Forced Stop                                         | 0438         | 04B8         | 12            |  |
| H63        | Low Limiter (Mode selection)                                              | 043F         | 04BF         | 1             |  |
| H64        | (Lower limiting frequency)                                                | 0440         | 04C0         | 3             |  |
| H69        | Automatic Deceleration (Mode selection)                                   | 0445         | 04C5         | 1             |  |
| H70        | Overload Prevention Control                                               | 0446         | 04C6         | 5             |  |
| H71        | Deceleration Characteristics                                              | 0447         | 04C7         | 1             |  |
| H80        | Gain for Suppression of Output Current Fluctuation for Motor              | 0450         | 04D0         | 5             |  |
| H86        | Reserved                                                                  | 0456         | 04D6         | 1             |  |
| H87        | Reserved                                                                  | 0457         | 04D7         | 3             |  |
| H88<br>H89 | Reserved Reserved                                                         | 0458         | 04D8         | 1             |  |
|            | Reserved                                                                  | 0459         | 04D9<br>04DA | 1             |  |
| H90<br>H91 | Reserved                                                                  | 045A<br>045B | 04DA<br>04DB | 1             |  |
| H91<br>H92 | Continue to Run (P-component: gain)                                       | 045B         | 04DB<br>04DC | 7             |  |
| H93        | (I-component: time)                                                       | 045C         | 04DC<br>04DD | 7             |  |
| H94        | Cumulative Run Time of Motor                                              | 045D<br>045E | 04DD<br>04DE | 1             |  |
| H95        | DC Braking (Braking response mode)                                        | 045E         | 04DE<br>04DF | 1             |  |
| H96        | STOP Key Priority/Start Check Function                                    | 0460         | 04DF<br>04E0 | 1             |  |
| H97        | Clear Alarm Data                                                          | 0460         | 04E0         | 1             |  |
| H98        | Protection/Maintenance Function (Mode selection)                          | 0462         | 04E1         | 1             |  |

| J:A  | J:Application                       |            |       |               |  |  |  |  |  |
|------|-------------------------------------|------------|-------|---------------|--|--|--|--|--|
| Code | Name                                | CC Link No |       | Communication |  |  |  |  |  |
| Code | Name                                | READ       | WRITE | data format   |  |  |  |  |  |
| J01  | PID Control (Mode selection)        | 0D01       | 0D81  | 1             |  |  |  |  |  |
| J02  | (Remote process command)            | 0D02       | 0D82  | 1             |  |  |  |  |  |
| J03  | P (Gain)                            | 0D03       | 0D83  | 7             |  |  |  |  |  |
| J04  | I (Integral time)                   | 0D04       | 0D84  | 3             |  |  |  |  |  |
| J05  | D (Differential time)               | 0D05       | 0D85  | 5             |  |  |  |  |  |
| J06  | (Feedback filter)                   | 0D06       | 0D86  | 3             |  |  |  |  |  |
| J10  | (Anti reset windup)                 | 0D0A       | 0D8A  | 1             |  |  |  |  |  |
| J11  | (Select alarm output)               | 0D0B       | 0D8B  | 1             |  |  |  |  |  |
| J12  | (Upper limit alarm (AH))            | 0D0C       | 0D8C  | 2             |  |  |  |  |  |
| J13  | (Lower limit alarm (AL))            | 0D0D       | 0D8D  | 2             |  |  |  |  |  |
| J15  | (Stop frequency for slow flowrate)  | 0D0F       | 0D8F  | 1             |  |  |  |  |  |
| J16  | (Slow flowrate level stop latency)  | 0D10       | 0D90  | 1             |  |  |  |  |  |
| J17  | (Starting frequency)                | 0D11       | 0D91  | 1             |  |  |  |  |  |
| J18  | (Upper limit of PID process output) | 0D12       | 0D92  | 1             |  |  |  |  |  |
| J19  | (Lower limit of PID process output) | 0D13       | 0D93  | 1             |  |  |  |  |  |
| J21  | Dew Condensation Prevention (Duty)  | 0D15       | 0D95  | 1             |  |  |  |  |  |
| J22  | Commercial Power Switching Sequence | 0D16       | 0D96  | 1             |  |  |  |  |  |

| y: Link Functions |                                                  |            |       |               |  |  |  |  |
|-------------------|--------------------------------------------------|------------|-------|---------------|--|--|--|--|
| Code              | Name                                             | CC Link No |       | Communication |  |  |  |  |
| Code              | Name                                             | READ       | WRITE | data format   |  |  |  |  |
| y01               | RS485 Communication (Standard) (Station address) | 0E01       | 0E81  | 1             |  |  |  |  |
| y02               | (Communications error processing)                | 0E02       | 0E82  | 1             |  |  |  |  |
| y03               | (Error processing timer)                         | 0E03       | 0E83  | 3             |  |  |  |  |
| y04               | (Transmission speed)                             | 0E04       | 0E84  | 1             |  |  |  |  |
| y05               | (Data length)                                    | 0E05       | 0E85  | 1             |  |  |  |  |
| y06               | (Parity check)                                   | 0E06       | 0E86  | 1             |  |  |  |  |
| y07               | (Stop bits)                                      | 0E07       | 0E87  | 1             |  |  |  |  |
| y08               | (No-response error detection time)               | 0E08       | 0E88  | 1             |  |  |  |  |
| y09               | (Response latency time)                          | 0E09       | 0E89  | 5             |  |  |  |  |
| y10               | (Protocol selection)                             | 0E0A       | 0E8A  | 1             |  |  |  |  |
| y11               | RS485 Communication (Option) (Station address)   | 0E0B       | 0E8B  | 1             |  |  |  |  |
| y12               | (Communications error processing)                | 0E0C       | 0E8C  | 1             |  |  |  |  |
| y13               | (Error processing timer)                         | 0E0D       | 0E8D  | 3             |  |  |  |  |
| y14               | (Transmission speed)                             | 0E0E       | 0E8E  | 1             |  |  |  |  |
| y15               | (Data length)                                    | 0E0F       | 0E8F  | 1             |  |  |  |  |
| y16               | (Parity check)                                   | 0E10       | 0E90  | 1             |  |  |  |  |
| y17               | (Stop bits)                                      | 0E11       | 0E91  | 1             |  |  |  |  |
| y18               | (No-response error detection time)               | 0E12       | 0E92  | 1             |  |  |  |  |
| y19               | (Response latency time)                          | 0E13       | 0E93  | 5             |  |  |  |  |
| y20               | (Protocol selection)                             | 0E14       | 0E94  | 1             |  |  |  |  |
| y98               | Bus Link Function (Mode selection)               | 0E62       | 0EE2  | 1             |  |  |  |  |
| y99               | Loader Link Function (Mode selection)            | 0E63       | 0EE3  | 1             |  |  |  |  |

| O:C  | O:Option Functions                                |      |                       | Attribute     |  |  |
|------|---------------------------------------------------|------|-----------------------|---------------|--|--|
| Code | Name                                              |      | CC Link No Communicat |               |  |  |
| aue  | Ivaire                                            | READ | WRITE                 | n data format |  |  |
| o27  | Operation when a failure has occurred             | 061B | 069B                  | 1             |  |  |
| o28  | Communication failure when a failure has occurred | 061C | 069C                  | 3             |  |  |
| 030  | CC Link extended setting                          | 061E | 069E                  | 1             |  |  |
| 031  | CC-Link option station number setting             | 061F | 069F                  | 1             |  |  |
| 032  | CC-Link optionTransmission Baud ratesetting       | 0620 | 06A0                  | 1             |  |  |

S:Communications Dedicated Function Codes(public)(Command data)

|     | Name                | Cotting range | ng range CC Link No READ WRITE |      | Communication | Display |
|-----|---------------------|---------------|--------------------------------|------|---------------|---------|
|     | Name                | Setting range |                                |      | NO            | form    |
| S07 | Universal DU        | 0000H~FFFFH   | 0707                           | 0787 | 15            | HEX     |
| S08 | Acceleration time   | 0.0~3600.0    | 0708                           | 0788 | 3             | 0.1     |
| S09 | Deceleration time   | 0.0~3600.0    | 0709                           | 0789 | 3             | 0.1     |
| S12 | Universal AU        | -32/68~32/6/  | 070C                           | 078C | 29            | HEX     |
| S13 | PID command         | -32768~32767  | 070D                           | 078D | 29            | HEX     |
| S14 | Alarm reset command | 0~65535       | 070F                           | 078F | 1             | HEX     |

M:Communications Dedicated Function Codes(public)(Monitor data)

| IVI. C | communications Dedicated Fundament                   | ction codes(           |      |                |               |             |
|--------|------------------------------------------------------|------------------------|------|----------------|---------------|-------------|
|        | Name                                                 | Setting range          | READ | nk No<br>WRITE | Communication | Display     |
| M01    | Frequency command (p.u.) (final command)             | -32768~32767           | 0801 | WRITE          | NO<br>29      | form<br>HEX |
| M05    | Frequency command (p.u.) (imal command)              | 0.00~655.35            | 0805 | -              | 29            | 0.01        |
| M06    | Output frequency 1 (p.u.)                            | -32768~32767           | 0806 |                | 29            | HEX         |
| M07    | Output torque                                        | -327.68~327.67         | 0807 | -              | 6             | 0.01        |
| M09    | Output frequency 1                                   | -655.35~655.35         | 0809 | -              | 23            | 0.01        |
| M10    | Input power                                          | 0.00~399.99            | 080A |                | 5             | 0.01        |
| M11    | Output current effective value                       | 0.00~399.99            | 080B |                | 5             | 0.01        |
| M12    | Output voltage effective value                       | 0.0~1000.0             | 080C | -              | 3             | 0.1         |
| M13    | Operation command (final command)                    | 0000H~FFFFH            | 080D |                | 14            | HEX         |
| M14    | Operation status                                     | 0000H~FFFFH            | 080E |                | 16            | HEX         |
| M15    | General-purpose output terminal information          | 0000H~FFFFH            | 080F | -              | 15            | HEX         |
| M16    | Latest alarm contents                                | 0~127                  | 0810 |                | 10            | 1           |
| M17    | Last alarm contents                                  | 0~127                  | 0811 |                | 10            | 1           |
| M18    | Second last alarm contents                           | 0~127                  | 0812 |                | 10            | 1           |
| M19    | Third last alarm contents                            | 0~127                  | 0813 |                | 10            | 1           |
| M20    | Cumulative operation time                            | 0~65535                | 0814 |                | 10            | HEX         |
| M21    | DC link circuit voltage                              | 0~1000                 | 0815 | -              | 1             | 1           |
| M23    | Model code                                           |                        | 0817 | -              | 17            | HEX         |
| M24    | Capacity code                                        | 0000H~FFFFH<br>0~65535 | 0818 | -              | 11            | HEX         |
|        | ROM version                                          |                        |      |                |               |             |
| M25    |                                                      | 0~9999                 | 0819 | -              | 35<br>20      | 1           |
| M26    | Transmission error transaction code                  | 0~127                  | 081A | -              |               | 1           |
| M27    | Frequency command on alarm (p.u.) (final command)    | -32768~32767           | 081B |                | 29            | HEX         |
| M31    | Frequency command on alarm (final command)           | 0.00~655.35            | 081F | -              | 22            | 0.01        |
| M32    | Output frequency 1 on alarm (p.u.)                   | -32768~32767           | 0820 | -              | 29            | HEX         |
| M33    | Output torque on alarm                               | -327.68~327.67         | 0821 | -              | 6             | 0.01        |
| M35    | Output frequency 1 on alarm                          | -655.35~655.35         | 0823 | -              | 23            | 0.01        |
| M36    | Input power on alarm                                 | 0.00~399.99            | 0824 | -              | 5             | 0.01        |
| M37    | Output current effective value on alarm              | 0.00~399.99            | 0825 | -              | 5             | 0.01        |
| M38    | Output voltage effective value on alarm              | 0.0~1000.0             | 0826 | -              | 3             | 0.1         |
| M39    | Operation command on alarm                           | 0000H~FFFFH            | 0827 | -              | 14            | HEX         |
| M40    | Operation status on alarm                            | 0000H~FFFFH            | 0828 | -              | 16            | HEX         |
| M41    | General-purpose output terminal information on alarm | 0000H~FFFFH            | 0829 | -              | 15            | HEX         |
| M42    | Cumulative operation time on alarm                   | 0~65535                | 082A | -              | 1             | HEX         |
| M43    | DC link circuit voltage on alarm                     | 0~1000                 | 082B | -              | 1             | 1           |
| M44    | Inverter internal air temperature on alarm           | 0~255                  | 082C | -              | 1             | 1           |
| M45    | Heat sink temperature on alarm                       | 0~255                  | 082D | -              | 1             | 1           |
| M46    | Life of main circuit capacitor                       | 0.0~100.0              | 082E | -              | 3             | HEX         |
| M47    | Life of PC board electrolytic capacitor              | 0~65535                | 082F | -              | 1             | HEX         |
| M48    | Life of heat sink                                    | 0~65535                | 0830 | -              | 1             | HEX         |
| M49    | Input terminal voltage ([12])                        | -32768~32767           | 0831 | -              | 29            | HEX         |
| M50    | Input terminal current ([C1])                        | 0~32767                | 0832 | -              | 29            | HEX         |
| M54    | Input terminal voltage ([V2])                        | -32768~32767           | 0836 | -              | 29            | HEX         |
| M61    | Inverter internal air temperature                    | 0~255                  | 083D | -              | 1             | 1           |
| M62    | Heat sink temperature                                | 0~255                  | 083E | -              | 1             | 1           |
| M63    | Load rate                                            | -327.68~327.67         | 083F | -              | 6             | HEX         |
| M64    | Motor output                                         | -327.68~327.67         | 0840 | -              | 6             | HEX         |
| M65    | Motor output on alarm                                | -327.68~327.67         | 0841 | -              | 6             | HEX         |
| M68    | PID final command                                    | -32768~32767           | 0844 | -              | 29            | HEX         |
| M69    | Inverter rated current                               | 0.00~9999              | 0845 | -              | 24            | 1           |
| M70    | Operation status 2                                   | 0000H~FFFFH            | 0846 | -              | 44            | HEX         |
| M71    | Input terminal information                           | 0000H~FFFFH            | 0847 | -              | 14            | HEX         |
| M72    | PID feedback                                         | -32768~32767           | 0848 | -              | 29            | HEX         |
| M73    | PID output                                           | -32768~32767           | 0849 | -              | 29            | HEX         |

# W:Communications Dedicated Function Codes

|           | N.                                                                 | 0 111         | CCL   | ink No | Communication | Display |
|-----------|--------------------------------------------------------------------|---------------|-------|--------|---------------|---------|
|           | Name                                                               | Setting range | READ  | WRITE  | NO            | form    |
| W/O1      | Operation status                                                   | 0000H~FFFFH   | 0F01  | -      | 16            | HEX     |
|           |                                                                    | 0.00~655.35   | 0F02  | _      | 22            | 0.01    |
|           | Output frequency (before slip compensation)                        | 0.00~655.35   | 0F03  | -      | 22            | 0.01    |
| VV 0.5    | Catput requeries (before slip compensation)                        | 0.00~9999     | 01 03 | _      | 24            | 0.01    |
| W05       | Output current                                                     | 0.00~655.35   | 0F05  |        | 24            | 0.01    |
| VV 0.5    | Output current                                                     | /0.0~6553.5   | 01 03 | -      | 19            | 0.01    |
| WOS       | Output voltage                                                     | 0.0~1000.0    | 0F06  | _      | 3             | 0.1     |
|           | Torque operation value                                             | -999~999      | 0F07  | -      | 2             | 1       |
|           | Motor speed                                                        | 0.00~99990    | 0F07  | _      | 37            | 0.01    |
|           | Load rotation speed                                                | 0.00~99990    | 0F09  | -      | 37            | 0.01    |
|           | PID process command                                                | -999~9990     | 0F0B  |        | 12            | 0.01    |
|           | PID feedback value                                                 | -999~9990     | 0F0C  | -      | 12            | 0.01    |
|           | Motor speed set value                                              | 0.00~99990    | 0F10  |        | 37            | 0.01    |
|           | Load speed set value                                               | 0.00~99990    | 0F10  | -      | 37            | 0.01    |
|           |                                                                    |               | 0F15  | -      | 24            | 0.01    |
|           | Input power                                                        | 0.00~9999     |       | -      | 24            | 0.01    |
|           | Motor output power                                                 | 0.00~9999     | 0F16  |        | 2             | 1       |
|           | Load factor                                                        | -999~999      | 0F17  | -      |               |         |
|           | Operation command source                                           | 0~22          | 0F1C  | -      | 1             | 67      |
|           | Frequency, PID command source                                      | 0~35          | 0F1D  | -      | 1             | 68      |
|           | Speed (unit: %)                                                    | 0.00~100.00   | 0F1E  | -      | 5             | 0.01    |
|           | Speed setting (unit: %)                                            | 0.00~100.00   | 0F1F  | -      | 5             | 0.01    |
|           | PID output                                                         | 0~150.0       | 0F20  | -      | 4             | 0.1     |
|           | Analog input monitor                                               | -999~9990     | 0F21  | -      | 12            | 0.01    |
|           | Control circuit terminal (input)                                   | 0000H~FFFFH   | 0F28  | -      | 43            | HEX     |
|           | Control circuit terminal (output)                                  | 0000H~FFFFH   | 0F29  | -      | 15            | HEX     |
|           | Communications control signal (input)                              | 0000H~FFFFH   | 0F2A  | -      | 14            | HEX     |
|           | Communications control signal (output)                             | 0000H~FFFFH   | 0F2B  | -      | 15            | HEX     |
|           | Terminal [12] input voltage                                        | 0.0~12.0      | 0F2C  | -      | 4             | 0.1     |
|           | Terminal [C1] input current                                        | 0.0~30.0      | 0F2D  | -      | 4             | 0.1     |
|           | FMA output voltage                                                 | 0.0~12.0      | 0F2E  | -      | 3             | 0.1     |
|           | FMP output voltage                                                 | 0.0~12.0      | 0F2F  | -      | 3             | 0.1     |
|           | FMP output voltage                                                 | 0~6000        | 0F30  | -      | 1             | 1       |
|           |                                                                    | 0.0~12.0      | 0F31  | -      | 4             | 0.1     |
|           | FMA output current                                                 | 0.0~30.0      | 0F32  | -      | 3             | 0.1     |
|           | FMI output current                                                 | 0.0~30.0      | 0F41  | -      | 3             | 0.1     |
|           | Cumulative operation time                                          | 0~65535       | 0F46  | -      | 1             | 0.001   |
|           | DC link circuit voltage                                            | 0~1000        | 0F47  | -      | 1             | 1       |
|           | Maximum temperature of internal air                                | 0~255         | 0F48  | -      | 1             | 1       |
|           | Maximum temperature of heat sink                                   | 0~255         | 0F49  | -      | 1             | 1       |
|           | Maximum effective current value                                    | 0.00~9999     | 0F4A  | -      | 24            | 0.01    |
| W75       | Capacitor of the DC bus capacitor                                  | 0.00~100.0    | 0F4B  | -      | 3             | 0.1     |
| W76       | Cumulative operation time of electrolytic<br>capacitor on PC board | 0~65535       | 0F4C  | -      | 1             | 0.001   |
| W77       | Cumulative operation time of cooling fan                           | 0~65535       | 0F4D  | -      | 1             | 0.001   |
| W78       | Number of startups                                                 | 0~65535       | 0F4E  |        | 1             | 0.001   |
|           | Cumulative operation time of motor                                 | 0~65535       | 0F4F  | -      | 1             | 0.001   |
|           | Standard fan life                                                  | 0~65535       | 0F50  | -      | 1             | 0.001   |
| W81       | Integral electric power consumption                                | 0.001~9999    | 0F51  | -      | 45            | 0.001   |
| W82       | Integral electric power consumption data                           | 0.001~9999    | 0F52  | -      | 45            | 0.001   |
| W83       | Number of RS485 Ch1 errors                                         | 0~9999        | 0F53  | -      | 1             | 1       |
|           | Contents of RS485 Ch1 error                                        | 0~127         | 0F54  | -      | 20            | 1       |
|           | Number of RS485 Ch2 errors                                         | 0~9999        | 0F55  | -      | 1             | 1       |
|           | Inverter's ROM version                                             | 0~9999        | 0F57  | -      | 35            | 1       |
|           | Remote/multi-function keypad ROM version                           | 0~9999        | 0F59  | -      | 35            | 1       |
|           | Option ROM version                                                 | 0~9999        | 0F5A  | -      | 35            | 1       |
| W94       | Content of RS485 Ch2 error                                         | 0~127         | 0F5E  | -      | 20            | 1       |
|           | Number of option communications errors                             | 0~9999        | 0F5F  | -      | 1             | 1       |
| V V 3 3 1 |                                                                    |               |       |        |               |         |

# X:Communications Dedicated Function Codes

|            |                                                                         |                             | CCTi         | nk No       | Communication | Display |
|------------|-------------------------------------------------------------------------|-----------------------------|--------------|-------------|---------------|---------|
|            | Name                                                                    | Setting range               | READ         | WRITE       | NO            | form    |
| X00        | Alarm history (latest)                                                  | 0000H~FFFFH                 | 1000         | -           | 41            | HEX     |
|            | Multiple alarm 1                                                        | 0000H~FFFFH                 | 1001         | -           | 40            | HEX     |
|            | Multiple alarm 2                                                        | 0000H~FFFFH                 | 1002         | -           | 40            | HEX     |
|            | Sub-code                                                                | 0~9999                      | 1003         | -           | 1             | 1       |
|            | Alarm history (last)                                                    | 0000H~FFFFH                 | 1005         | -           | 41            | HEX     |
|            | Multiple alarm 1                                                        | 0000H~FFFFH                 | 1006         | -           | 40            | HEX     |
|            | Multiple alarm 2                                                        | 0000H~FFFFH                 | 1007         | -           | 40            | HEX     |
|            | Sub-code                                                                | 0~9999                      | 1008         | -           | 1             | 1       |
|            | Alarm history                                                           | 0000H~FFFFH                 | 100A         | -           | 41            | HEX     |
| X11        | Multiple alarm 1                                                        | 0000H~FFFFH                 | 100B         | -           | 40            | HEX     |
| X12        | Multiple alarm 2                                                        | 0000H~FFFFH                 | 100C         | -           | 40            | HEX     |
|            | Sub-code                                                                | 0~9999                      | 100D         | -           | 1             | 1       |
|            | Alarm history                                                           | 0000H~FFFFH                 | 100F         | -           | 41            | HEX     |
|            | Multiple alarm 1                                                        | 0000H~FFFFH                 | 1010         | -           | 40            | HEX     |
|            | Multiple alarm 2                                                        | 0000H~FFFFH                 | 1011         | -           | 40            | HEX     |
|            | Sub-code                                                                | 0~9999                      | 1012         | -           | 1             | 1       |
|            | output frequency                                                        | 0.00~655.35                 | 1014         | -           | 22            | 0.01    |
| 7120       | output modulinos                                                        | 0.00~9999                   |              |             | 24            | 0.01    |
| X21        | output current                                                          | 0.00~655.35                 | 1015         |             |               | 0.01    |
| Λ.         | output ourront                                                          | /0.0~6553.5                 | 1010         |             | 19            |         |
| X22        | output voltage                                                          | 0~1000                      | 1016         | -           | 1             | 1       |
|            | torque operation value                                                  | -999~999                    | 1017         | <del></del> | 2             | 1       |
|            |                                                                         | 0.00~655.35                 | 1017         | <del></del> | 22            | 1       |
|            | operation status                                                        | 0.001~035.35<br>0000H~FFFFH | 1019         | -           | 16            | HEX     |
|            | cumulative operation time                                               | 0~65535                     | 1019         |             | 1             | 0.001   |
|            |                                                                         | 0~65535                     | 101A         | -           | 1             | 0.001   |
|            | DC link circuit voltage                                                 | 0~1000                      | 101D         |             | 1             | 1       |
|            | 9                                                                       |                             |              |             |               |         |
| X29        | internal air temperature                                                | 0~255                       | 101D         | -           | 1             | 1       |
| X30        | heat sink temperature                                                   | 0~255                       | 101E         | -           | 1             | 1       |
|            | control circuit terminal (input)                                        | 0000H~FFFFH                 | 101F         | -           | 43            | HEX     |
|            | control circuit terminal (output)                                       | 0000H~FFFFH                 | 1020         | -           | 15            | HEX     |
|            | communications control signal (input)                                   | 0000H~FFFFH                 | 1021         | -           | 14            | HEX     |
|            | communications control signal (output)                                  | 0000H~FFFFH                 | 1022         | -           | 15            | HEX     |
|            | Input power on alarm                                                    | 0.00~9999                   | 1023         | -           | 24            | 0.01    |
|            | output frequency                                                        | 0.00~655.35                 | 103C         | -           | 22            | 0.01    |
|            |                                                                         | 0.00~9999                   | 1            | -           | 24            |         |
| X61        | output current                                                          | 0.00~655.35                 | 103D         |             |               | 0.01    |
|            |                                                                         | /0.0~6553.5                 |              |             | 19            |         |
| X62        | output voltage                                                          | 0~1000                      | 103E         | -           | 1             | 1       |
|            | torque operation value                                                  | -999~999                    | 103E         | -           | 2             | 1       |
|            | set frequency                                                           | 0.00~655.35                 | 1040         | -           | 22            | 1       |
|            | operation status                                                        | 0000H~FFFFH                 | 1041         | -           | 16            | HEX     |
|            | cumulative operation time                                               | 0~65535                     | 1042         | -           | 1             | 0.001   |
|            | number of startups                                                      | 0~65535                     | 1043         | -           | 1             | 0.001   |
|            | DC link circuit voltage                                                 | 0~1000                      | 1044         | -           | 1             | 1       |
|            | internal air temperature                                                | 0~255                       | 1045         | -           | 1             | 1       |
|            | heat sink temperature                                                   | 0~255                       | 1046         | -           | 1             | 1       |
|            | control circuit terminal (input)                                        | 0000H~FFFFH                 | 1047         | -           | 43            | HEX     |
|            |                                                                         |                             |              |             |               |         |
| X71        |                                                                         | 0000H~FFFFH                 | 1048         | -           | 15            | HEX     |
| X71<br>X72 | control circuit terminal (output) communications control signal (input) | 0000H~FFFFH<br>0000H~FFFFH  | 1048<br>1049 | -           | 15<br>14      | HEX     |

# **Z:Communications Dedicated Function Codes**

|     | Name                                   | Setting range | CC L | nk No | Communication | Display |
|-----|----------------------------------------|---------------|------|-------|---------------|---------|
|     | Name                                   | Setting range | READ | WRITE | NO            | form    |
| Z00 | output frequency                       | 0.00~655.35   | 1100 | -     | 22            | 0.01    |
|     |                                        | 0.00~9999     | 1101 | -     | 24            |         |
| Z01 | output current                         | 0.00~655.35   |      |       | 19            | 0.01    |
|     |                                        | /0.0~6553.5   |      |       | 19            | 0.01    |
| Z02 | output voltage                         | 0~1000        | 1102 | -     | 1             | 1       |
| Z03 |                                        | -999~999      | 1103 | -     | 2             | 1       |
| Z04 | set frequency                          | 0.00~655.35   | 1104 | -     | 22            | 1       |
| Z05 | operation status                       | 0000H~FFFFH   | 1105 | -     | 16            | HEX     |
| Z06 | cumulative operation time              | 0~65535       | 1106 | -     | 1             | 0.001   |
| Z07 | number of startups                     | 0~65535       | 1107 | -     | 1             | 0.001   |
| Z08 | DC link circuit voltage                | 0~1000        | 1108 | -     | 1             | 1       |
| Z09 | internal air temperature               | 0~255         | 1109 | -     | 1             | 1       |
| Z10 | heat sink temperature                  | 0~255         | 110A | -     | 1             | 1       |
| Z11 | control circuit terminal (input)       | 0000H~FFFFH   | 110B | -     | 43            | HEX     |
| Z12 | control circuit terminal (output)      | 0000H~FFFFH   | 110C | -     | 15            | HEX     |
| Z13 | communications control signal (input)  | 0000H~FFFFH   | 110D | -     | 14            | HEX     |
| Z14 | communications control signal (output) | 0000H~FFFFH   | 110E | -     | 15            | HEX     |
| Z50 | output frequency                       | 0.00~655.35   | 1132 | -     | 22            | 0.01    |
|     |                                        | 0.00~9999     |      | -     | 24            |         |
| Z51 | output current                         | 0.00~655.35   | 1133 | -     | 19            | 0.01    |
|     |                                        | /0.0~6553.5   |      |       |               |         |
| Z52 | output voltage                         | 0~1000        | 1134 | -     | 1             | 1       |
| Z53 | torque operation value                 | -999~999      | 1135 | -     | 2             | 1       |
| Z54 | set frequency                          | 0.00~655.35   | 1136 | -     | 22            | 1       |
| Z55 | operation status                       | 0000H~FFFFH   | 1137 | -     | 16            | HEX     |
| Z56 | cumulative operation time              | 0~65535       | 1138 | -     | 1             | 0.001   |
| Z57 | number of startups                     | 0~65535       | 1139 | -     | 1             | 0.001   |
| Z58 | DC link circuit voltage                | 0~1000        | 113A | -     | 1             | 1       |
| Z59 | internal air temperature               | 0~255         | 113B | -     | 1             | 1       |
| Z60 | heat sink temperature                  | 0~255         | 113C | -     | 1             | 1       |
| Z61 | control circuit terminal (input)       | 0000H~FFFFH   | 113D | -     | 43            | HEX     |
| Z62 | control circuit terminal (output)      | 0000H~FFFFH   | 113E | -     | 15            | HEX     |
| Z63 | communications control signal (input)  | 0000H~FFFFH   | 113F | -     | 14            | HEX     |
| Z64 | communications control signal (output) | 0000H~FFFFH   | 1140 | -     | 15            | HEX     |

### Chapter12 Application program examples

### 12.1 System configuration

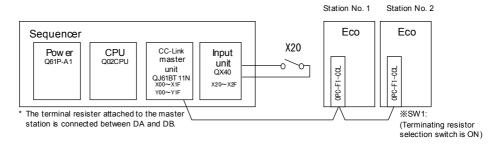



Figure16

### 12.2 Outline of master unit

This section describes outline of the CC-Link master unit which is needed to execute the application program examples. For the details, refer to CC-Link System Master/Local Unit User's Manual (Detail Version) published by Mitsubishi Electric Co., Ltd.

- · CC-Link master unit is a special 32-point unit.
- The master unit, installed at the top of the base units, uses X00~X1F and Y00~Y1F for the input/output for starting/stopping the link and other functions. This example uses the following shaded X and Y for the link to the inverter.

Table 13 Input / output allocation of master unit

| X00 | Unit failure (ON: failure→unit operation disabled)    |
|-----|-------------------------------------------------------|
| X01 | Self-station linking                                  |
|     | (OFF before start and with all stations in failure)   |
| X02 | Parameter failure (ON: bad setting→start disabled)    |
| X03 | ON: some stations in failure                          |
| X04 | Unit reset completed                                  |
| X06 | Startup normally finished (buffer memory)             |
| X07 | Startup finished in failure (buffer memory)           |
| X08 | Startup normally finished (EEPROM)                    |
| X09 | Startup finished in failure (EEPROM)                  |
| X0A | EEPROM write normally finished                        |
| X0B | EEPROM write finished in failure                      |
| X0F | Unit ready (OFF: failure→unit operation disabled)     |
| Y00 | Transmit-bit permit                                   |
|     | (OFF: transmit with all output bit OFF)               |
| Y04 | Unit reset                                            |
| Y06 | Link start (parameters of buffer memory are employed) |
| Y08 | Link start (parameters of EEPROM are employed)        |
| Y0A | Start parameters are written from buffer to EEPROM.   |

# Manuals of CC-Link master station AJ61BT11/A1SJ61QBT11-type CC-Link System Master/Local Unit User's Manual (Detail Version) SH-3603 AJ61QBT11/A1SJ61QBT11-type CC-Link System Master/Local Unit User's Manual (Detail Version) SH-3604 QJ61BT11-type CC-Link System Master/Local Unit User's Manual (Detail Version) SH-080017

Table 14 Master unit start parameters

| Address                          | Item                                                | Description                                                                                                                                               | Default           |
|----------------------------------|-----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 01 <sub>H</sub>                  | Number of connected units                           | Sets number of units in connected remote/local stations.                                                                                                  | 64                |
| 02 <sub>H</sub>                  | Number of times<br>of retry                         | Sets number of times of retry to the station in communication failure.                                                                                    | 3                 |
| 03 <sub>H</sub>                  | Number of units to be automatically set in parallel | Sets number of units that can be set in parallel in remote/local stations                                                                                 | 1                 |
| 06 <sub>H</sub>                  | Specifying operation in CPU down                    | Specifies data link status during failure of sequencer CPU of master station.                                                                             | 0 (Stop)          |
| 10 <sub>H</sub> ~13 <sub>H</sub> | Setting reserved stations                           | Sets reserved stations.                                                                                                                                   | 0 (Not specified) |
| 14 <sub>H</sub> ~17 <sub>H</sub> | Setting error-free stations                         | Sets error-free stations.                                                                                                                                 | 0 (Not specified) |
| 20 <sub>H</sub> ~5F <sub>H</sub> | Station information                                 | Sets type of connected remote/local stations.<br>11 $\square\square_H$ : Station number is entered in $\square$ .<br>(110 $A_H$ if station number is 10.) | _                 |

<sup>·</sup> Network parameter are set as below.

Table 15 Network parameter setting of the master station

|                                           | Item        | Setting Conditions   |  |  |
|-------------------------------------------|-------------|----------------------|--|--|
| Start I/O No                              | ).          | 0000                 |  |  |
| Data link alarm Operation station setting |             | Input clear          |  |  |
| setting Setting at CPU stop               |             | Refresh              |  |  |
| Туре                                      |             | Master               |  |  |
| Mode                                      |             | Remote net Ver.1mode |  |  |
| All connect                               | count       | 2                    |  |  |
| Remote inp                                | ut (RX)     | X1000                |  |  |
| Remote out                                | put (RY)    | Y1000                |  |  |
| Remote res                                | ister (RWr) | W0                   |  |  |
| Remote res                                | ister (RWw) | W100                 |  |  |
| Special rela                              | ıy (SB)     | SB0                  |  |  |
| Special res                               | ster (SW)   | SW0                  |  |  |
| Retry count                               |             | 3                    |  |  |
| Automatic r                               | econnection | 1                    |  |  |
| station cour                              | nt          |                      |  |  |
| CPU down                                  | select      | Stop                 |  |  |
| Scan mode                                 | setting     | Asynchronous         |  |  |

### 12.3 CC-Link startup program

The following is an example of the CC-Link startup program for ACPU.

It is not necessary to program the start because it is done by setting the network parameter of the master unit in QCPU.

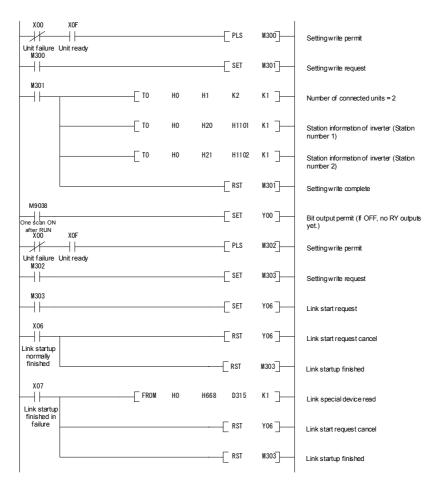



Figure 17

### 12.4 Procedure for reading operation status

The following program turns on Y00 of the output unit when station1 FRENIC-Eco is running.

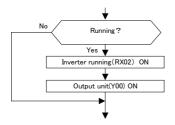



Figure 18



Figure 19

### 12.5 Procedure for setting the operation mode

The following explains a program to change the operation mode of station 1 FRENIC-Eco to network operation.

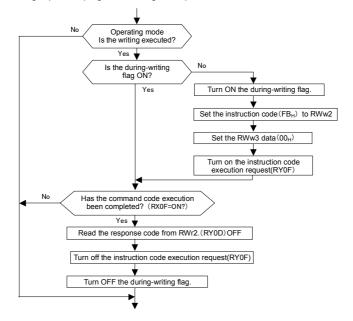



Figure 20

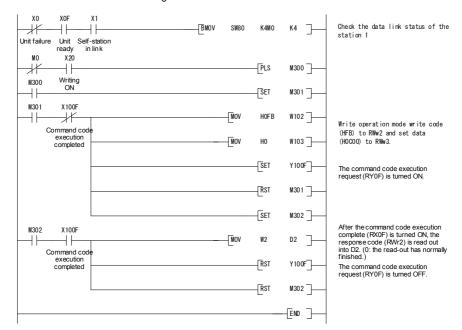



Figure 21

### 12.6 Procedure for operation command setting

When writing forward rotation command into FRENIC-Eco of station no. 1:

Table16 Assigning functions

| Bit device | Device No. | Function                       |
|------------|------------|--------------------------------|
| M100       | RY00       | Forward rotation command       |
| M101       | RY01       | Reverse rotation command       |
| M102       | RY02       | X1 terminal function           |
| M103       | RY03       | X2 terminal function           |
| M104       | RY04       | X3 terminal function           |
| M105       | RY05       | X4 terminal function           |
| M106       | RY06       | X5 terminal function           |
| M107       | RY07       |                                |
| M108       | RY08       |                                |
| M109       | RY09       | X6 terminal function           |
| M110       | RYOA       |                                |
| M111       | RY0B       |                                |
| M112       | RYOC       | X8 terminal function           |
| M113       | RYOD       | X7 terminal function           |
| M114       | RY0E       | Unused                         |
| M115       | RYOF       | Monitor command                |
| M116       | RY10       |                                |
| 1          | I          | Speed setting command          |
| M125       | RY19       |                                |
| M126       | RY1A       | Unused                         |
| M127       | RY1B       |                                |
| I          | I          | Command code execution request |
| M131       | RY1F       |                                |



Figure 22

### 12.7 Monitoring procedure

When reading out the output frequency of FRENIC-Eco of station no. 1 into D1:

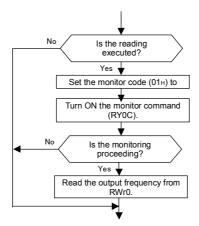



Figure 23

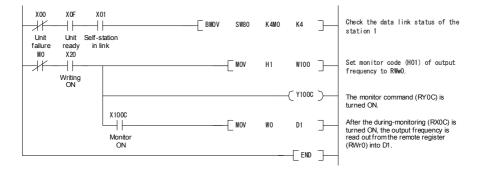



Figure 24

### 12.8 Procedure for reading function codes

When reading out "F07 acceleration time 1" of FRENIC-Eco of station no. 1:

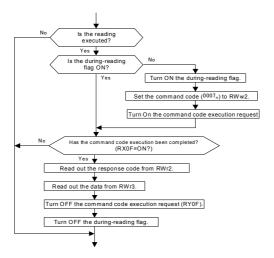



Figure 25

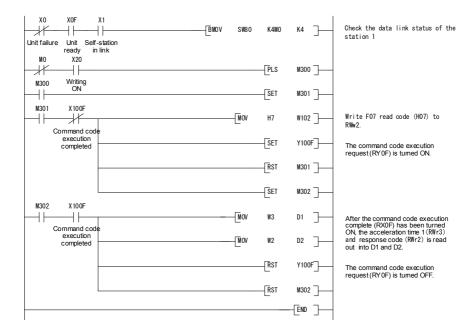



Figure 26

### 12.9 Procedure for writing function codes

Following program change the setting of F07 acceleration time of station 1 RENIC-Eco to 3.0s.

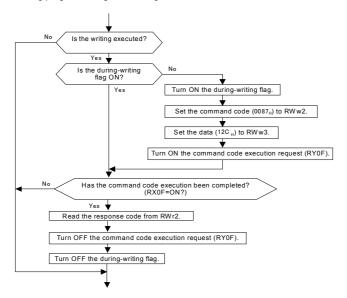



Figure 27

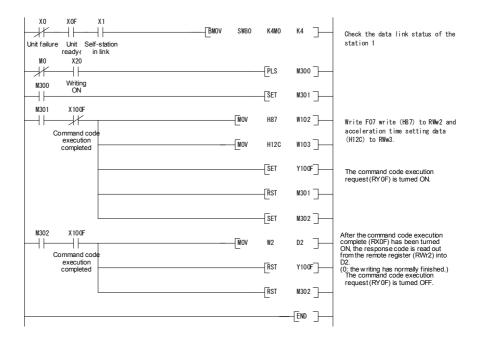



Figure 28

### 12.10 Procedure for setting the command frequency

Following program example changes the command frequency of station 1 RENIC-Eco to 50.00Hz.

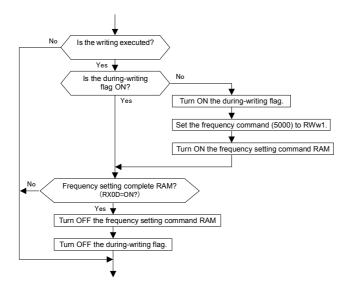



Figure 29

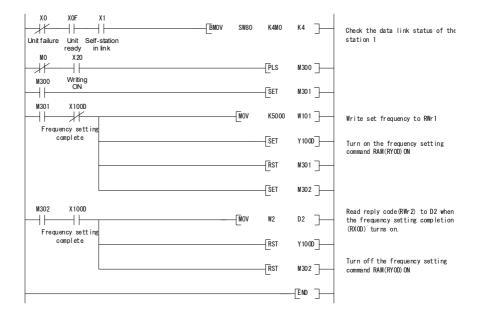



Figure 30

### 12.11 Procedure for reading alarm difinition

The following program reads alarm difinitions of station 1 FRENIC-Eco to D1

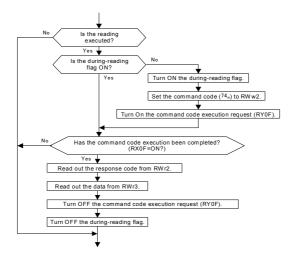



Figure 31

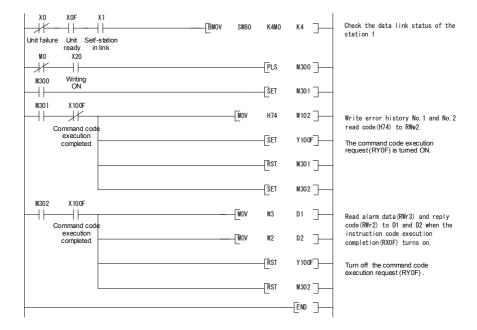



Figure 32

### 12.12 Procedure for resetting the inverter

The following is a example for resetting station 1 FRENIC-Eco

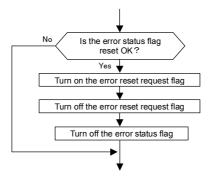
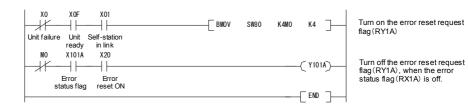
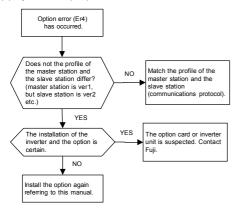
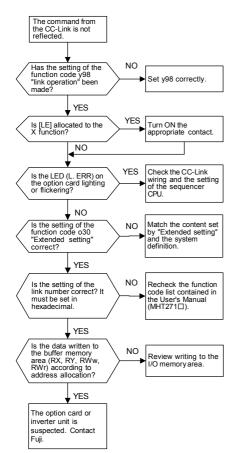


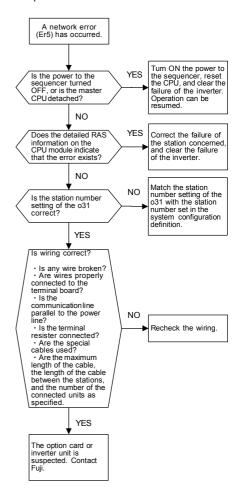

Figure 33



Figure 34

### Chapter13 Troubleshooting

### (1) Option error (Er4)




### (3) The command from the CC-Link is not reflected.



### (2) Network error (Er5)

In case of a network error (CC-Link error), analyze the cause of the failure by referring to the RAS information on the sequencer CPU. For the procedure for referring to the RAS information and its contents, see the Sequencer User's Manual.



### (4) Noise measures

The operation status indicate LED (L. ERR) on the option card is lighting or flickering frequently, there is a possibility that the communication abnormality by the influence of the noise has been generated. For this case, following measures are effective. Refer to "Appendix A" of "FRENIC-Eco user's manual (MEH456)" for details.

- 1) Separate the earth pole of the inverter and the earth pole of other equipment.
- 2) Separate the power supply system of other equipment and the inverter with the insulation transformer.
- 3) Separate the main circuit wiring of the inverter with the wiring for the control signal line and other equipment.
- 4) Use the equipment for the noise measures shown in Figure 35.

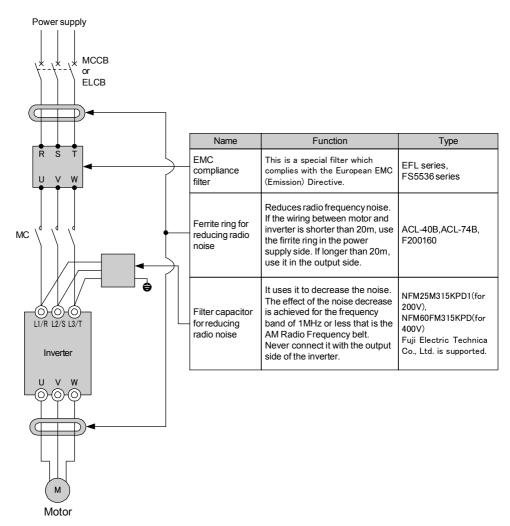



Figure 35

### Chapter14 Specifications

# **∆CAUTIO**N

- The system does not operate if the setting of the station number (o31) is not correct. Confirm the following settings, and set the switches to the proper settings.
- · Set the option functions with the power to the inverter turned OFF.

### Table 16 Hardware specifications

| Item                | Specifications                                                               |  |  |  |  |  |
|---------------------|------------------------------------------------------------------------------|--|--|--|--|--|
| Name                | CC-Link interface option                                                     |  |  |  |  |  |
| Station type        | Remote device station                                                        |  |  |  |  |  |
| Number of           | 42 units max, compatible with other options                                  |  |  |  |  |  |
| connectable units   |                                                                              |  |  |  |  |  |
|                     | Unused                                                                       |  |  |  |  |  |
| Number of stations  | One station is exclusively occupied (CC-Link Ver1.1)····· o30=1              |  |  |  |  |  |
| occupied            | One station is exclusively occupied /double(CC-Link Ver2) · · · · · · o30=2  |  |  |  |  |  |
| occupied            | One station is exclusively occupied / quadrople(CC-Link Ver2)···· o30=3      |  |  |  |  |  |
|                     | One station is exclusively occupied / octuple (CC-Link Ver2) · · · · · o30=4 |  |  |  |  |  |
| Connection terminal | 5-terminal board (M3 × 5 screws)                                             |  |  |  |  |  |
| board               |                                                                              |  |  |  |  |  |
| Connection cable    | Use CC-Link dedicated cables (FANC-SBH)                                      |  |  |  |  |  |
|                     | For further information, see the CC-Link catalogue or Mitsubishi FA device   |  |  |  |  |  |
|                     | technical information service MELFANS web site                               |  |  |  |  |  |
|                     | (http://www.nagoya.melco.co.jp/).                                            |  |  |  |  |  |
| o31                 | Sets station number (address). An arbitrary station number 1 to 64 can be    |  |  |  |  |  |
|                     | assigned.                                                                    |  |  |  |  |  |
| o32                 | Sets communication speed (Baud rate), 10M / 5M / 2.5M / 625k / 156kbps       |  |  |  |  |  |
| Operation status    | L.RUNTurned on when refresh data is normally received. Turned off            |  |  |  |  |  |
| indication LED      | when the data stops for a certain period of time.                            |  |  |  |  |  |
|                     | L.ERRTurned on when communication error of the self-station occurs.          |  |  |  |  |  |
|                     | Flickers if the rotary switch is operated during the power on.               |  |  |  |  |  |
|                     | RUNIt lights normally, and it blinks CC-Link Ver set by mistake.             |  |  |  |  |  |
|                     | SDTurned on during transmission.                                             |  |  |  |  |  |
|                     | RDTurned on during reception.                                                |  |  |  |  |  |

\* Number of connectable units ...... Because the number of occupied stations differ according to the number of other units (remote I/O station, remote device station) and mixed other profiles, the number of connectable units is required to meet both of the following formulas:

### CC-LinkVer 1.10

- ♦ Formula 1:  $(1 \times a) + (2 \times b) + (3 \times c) + (4 \times d) \le 64$ 
  - a: Number of stations occupying one station, b: Number of stations occupying two station,
  - c: Number of stations occupying three station, d: Number of stations occupying four station
- ♦ Formula 2:  $(16 \times A) + (54 \times B) + (88 \times C) \le 2304$ 
  - A: number of the units in the remote I/O stations 64 units max.

  - C: number of the units in the local stations, waiting master stations,

### CC-Link Ver 2.00

```
◆Formula 1 : { (a + a2 + a4 + a8) + (b + b2 + b4 + b8) × 2 + (c + c2 + c4 + c8) × 3 + (d + d2 + d4 + d8) × 4 } ≤ 64
```

♦ Formula 3: 
$$\{(a \times 4 + a2 \times 8 + a4 \times 16 + a8 \times 32) + (b \times 8 + b2 \times 16 + b4 \times 32 + b8 \times 64) + (c \times 12 + c2 \times 24 + c4 \times 16 + c4 \times 18 \times 18)\}$$
 ≤ 2048

- a1: Number of single setting devices occupying one station.
- b1: Number of single setting devices occupying two stations.
- c1: Number of single setting devices occupying three stations.
- d1: Number of single setting devices occupying four stations.
- a2: Number of double setting devices occupying one station.
- b2: Number of double setting devices occupying two stations.
- c2: Number of double setting devices occupying three stations.
- d2: Number of double setting devices occupying four stations.
- a3: Number of quadruple setting devices occupying one station.
- b3: Number of quadruple setting devices occupying two stations.
- c3: Number of quadruple setting devices occupying three stations.
- d3: Number of quadruple setting devices occupying four stations.
- a4: Number of octuple setting devices occupying one station.
- b4: Number of octuple setting devices occupying two stations.
- c4: Number of octuple setting devices occupying three stations.
- d4: Number of octuple setting devices occupying four stations.

### ♦ Formula 4: $(16 \times A) + (54 \times B) + (88 \times C) \leq 2304$

- C: number of the units in the local stations, waiting master stations,
  - and intelligent device stations 26 units max.

### Setting of station number (o31)

After turning on the power to the inverter, set the station number of the inverter from 1 to 64.

Table 17 station number specifications

| No.                                             | station number                                  |  |  |
|-------------------------------------------------|-------------------------------------------------|--|--|
| 0 Setting error (The LED of the L. ERR comes Of |                                                 |  |  |
| 1~64 1~64                                       |                                                 |  |  |
| 65~255                                          | Setting error (The LED of the L. ERR comes ON.) |  |  |

- **Note 1)** Do not change the setting of the station number while the inverter is energized. If the station number is changed while energized, data communication can not be made with the changed station number.
- Note 2) If the station number is set to a number already used or out of the range, normal communication can not be made. (The LED of the L. ERR comes ON.)
- Note 3) Set the station number consecutively in order of connections. (If the station number is discontinued,

### Transmission Baud rate (o32)

Set the transmission Baud rate from 0 to 4, after turning on the power to the inverter.

Table 18 Baud rate specifications

| No.                                               | Baud rate               |  |  |
|---------------------------------------------------|-------------------------|--|--|
| 0                                                 | 156kbps (Initial value) |  |  |
| 1                                                 | 625kbps                 |  |  |
| 2                                                 | 2.5Mbps                 |  |  |
| 3                                                 | 5Mbps                   |  |  |
| 4                                                 | 10Mbps                  |  |  |
| 5~255 Setting error (the LED of L. ERR comes on.) |                         |  |  |

Note 1) Do not change the setting of the station number while the inverter is energized. If the station number is changed while energized, data communication can not be made with the changed station number.

### Operation status indication LED

The link status of the CC-Link can be confirmed with five LED's.

Table 19 Specifications of the operating status indication LED's

| Status |               |     |    |    | Performance                                                                                                                                       |
|--------|---------------|-----|----|----|---------------------------------------------------------------------------------------------------------------------------------------------------|
| L.RUN  | L.ERR         | RUN | SD | RD | r enormance                                                                                                                                       |
| •      | 0             | •   | *  | •  | Normally communicating                                                                                                                            |
| •      | *             | •   | *  | •  | Normally communicating, but CRC error occurs from time to time due to noise.                                                                      |
| •      | *             | •   | 0  | •  | The received data is CRC error, and no response can be made.                                                                                      |
| •      | 0             | •   | 0  | •  | Data to the self-station do not come.                                                                                                             |
| 0      | *             | •   | *  | •  | Making the polling response, but received refresh data is CRC error.                                                                              |
| 0      | *             | •   | 0  | •  | Data to the self-station is CRC error.                                                                                                            |
| 0      | 0             | •   | 0  | •  | There is no data to the self-station, or data to the self-station cannot be received due to noise.                                                |
| 0      | •             | •   | 0  | •0 | Incorrect setting of Baud rate or station number、error of writing outside range                                                                   |
| •      | (0.8s period) | •   | *  | •  | Baud rate or station number has changed halfway.                                                                                                  |
| 0      | 0             | •   | *  | •  | No link startup                                                                                                                                   |
| 0      | 0             | •   | 0  | 0  | Data cannot be received due to broken wire, etc., the power is off, hardware is being reset, Er3 has occurred, or the power supply is in failure. |
| 0      | 0             | *   | 0  | 0  | Master station is connected to CC-Link Ver.1 and self station is connected to CC-Link Ver.2. CC-Link extended setting is 0,5~255.                 |

● : ON, O : OFF, ★ : Flicker (may look like turned on depending on the transmission Baud rate.)

Note 1)If the LED's comes on in other patterns than the above, it can be considered as hardware failure. Please contact our company.

Table 20 Software specifications

| ltem          |                   | Specifications                                                                |
|---------------|-------------------|-------------------------------------------------------------------------------|
|               | Operation command | Forward/Reverse rotation commands, alarm reset command, X1~X5                 |
|               |                   | commands                                                                      |
| Operation     | Speed command     | 16-bit binary data                                                            |
|               | Operation status  | Bit data, such as running, braking, torque limitation, and alarm relay output |
|               | output            | Word data, such as motor speed and torque current commands                    |
| Function co   | de                | Function codes assigned to the link numbers of the function code list can     |
|               |                   | be referred to and changed.                                                   |
|               |                   | (Refer to Chapter 11.)                                                        |
| Option funct  | ion code          | o27, o28, o30, o31, o32 · · · · The factory-shipped value is 0.               |
|               |                   | Er5: CC-Link error                                                            |
| Protective fu | ınction           | Option failure (the method of stopping the option can be selected with the    |
|               |                   | function code o27 or o28.)                                                    |

### CC-Link Interface Card "OPC-F1-CCL"

### **Instruction Manual**

First Edition, June 2006
Fuji Electric FA Components & Systems Co., Ltd.

The purpose of this manual is to provide accurate information in the handling, setting up and operating of CC-Link Interface Card "OPC-F1-CCL" for the FRENIC-Eco series of inverters. Please feel free to send your comments regarding any errors or omissions you may have found, or any suggestions you may have for generally improving the manual.

In no event will Fuji Electric FA Components & Systems Co., Ltd. be liable for any direct or indirect damages resulting from the application of the information in this manual.

# Fuji Electric FA Components & Systems Co., Ltd. Mitsui Sumitomo Bank Ningyo-cho Bldg., 5-7, Nihonbashi, Odemma-cho, Chuo-ku, Tokyo, 103-0011, Japan Phone: +81 3 5847 8011 Fax: +81 3 5847 8172 URL http://www.fujielectric.co.jp/fcs/