## EMC of HV-Cables and Cords with Triaxial Cell





EMC of HV-Cables and Cords with Triaxial Cell

Rosenberger bedea

# Authors

- Bernhard Mund, bedea Berkenhoff & Drebes GmbH, Asslar
  - Radio&TV-Technician, Radio Brand Marburg, 1971
  - Dipl.-Ing. Telecomm.- & Microprocessor Technologies, FH Giessen, 1984
  - Head of R&D Department cables & RF- & EMC-Measurements,
  - Chairman of UK 412.3, Koaxialkabel, (German NC),
  - Secretary of IEC SC 46A and of CENELEC SC 46XA, Coaxial cables
- Thomas Schmid, Rosenberger HF-Technik, Tittmoning
  - Telecommunications-Technician, Deutsche Bundespost, Traunstein 1988
  - Dipl.-Ing.(FH) Telecommunication Technologies, FH Munich 1995
  - Development of RF-Connectors & Components, RF-&EMC-Measurements
  - Member of UK 412.3, Koaxialkabel, (German NC),
  - Member of IEC TC 46 WG 5, Screening eff. & of WG 6, Intermodulation

Bernhard Mund, *bedea*, **bmund@bedea.com**, Thomas Schmid, Rosenberger Hochfrequenztechnik, **thomas.schmid@rosenberger.de** 3



## Content

- Triaxial test procedure
  - Principle,
  - Tube in tube with cavity,
- Triaxial Cell
  - Cavity, higher order Modes respectively resonances,
  - Measurements with Triaxial Cell
- Matching Conditions Revised IEC 62153-4-3
  - Different matching conditions,
  - Revised IEC 62153-4-3, Transfer Impedance
  - Distribution of currents over cable length
- Discussion

## Principle of the Triaxial test set-up CoMeT



## Higher Order Modes of Cavity





m, n, p: numbers of higher order modes (whole numbered, 2 of 3 >0) a, b, c: size of cavity a = 13.6 cm, b = 13.6 cm, c = 9.9 cm

| m | n | р | f in GHz |
|---|---|---|----------|
| 1 | 1 | 1 | 2,15     |
| 1 | 2 | 0 | 2,40     |
| 0 | 2 | 1 | 2,63     |
| 1 | 2 | 1 | 2,84     |
| 2 | 2 | 0 | 3,04     |
| 0 | 1 | 2 | 3,22     |
| 1 | 1 | 2 | 3,39     |
| 2 | 2 | 1 | 3,40     |
| 0 | 2 | 2 | 3,71     |
| 1 | 2 | 2 | 3,87     |
| 2 | 3 | 0 | 3,87     |

#### Results from Prof. Münzner et al, University of Ulm

Bernhard Mund, bedea, bmund@bedea.com, Thomas Schmid, Rosenberger Hochfrequenztechnik, thomas.schmid@rosenberger.de 7



Results from Prof. Münzner et al, University of Ulm

#### Triaxial Cells (CoMeT angled housings)



Bernhard Mund, *bedea*, **bmund@bedea.com**, Thomas Schmid, Rosenberger Hochfrequenztechnik, **thomas.schmid@rosenberger.de** 9

EMC of HV-Cables and Cords with Triaxial Cell

## Rosenberger bedea

## Higher Order Modes of Cavity

Resonance frequencies:

$$f_{mnp} = \frac{c_0}{2} \sqrt{\left(\frac{M}{a}\right)^2 + \left(\frac{N}{b}\right)^2 + \left(\frac{P}{c}\right)^2}$$



m, n, p: numbers of higher order modes (whole numbered, 2 of 3 >0) a, b, c: size of cavity

| 750          |          |          |          |       | 4000 7-11-    |          |          |       |  |
|--------------|----------|----------|----------|-------|---------------|----------|----------|-------|--|
| 750-er Zelle |          |          |          |       | 1000-er Zelle |          |          |       |  |
|              | a<br>750 | b<br>250 | с<br>250 |       | a<br>1000     | b<br>300 | с<br>300 |       |  |
|              | m        | n        | р        | f/GHz | m             | n        | р        | f/GHz |  |
|              | 1        | 1        | 1        | 0,87  | 1             | 1        | 1        | 0,72  |  |
|              | 1        | 2        | 0        | 1,22  | 1             | 2        | 0        | 1,01  |  |
|              | 0        | 2        | 1        | 1,34  | 0             | 2        | 1        | 1,12  |  |
|              | 1        | 2        | 1        | 1,36  | 1             | 2        | 1        | 1,13  |  |
|              | 2        | 2        | 0        | 1,26  | 2             | 2        | 0        | 1,04  |  |
|              | 0        | 1        | 2        | 1,34  | 0             | 1        | 2        | 1,12  |  |
|              | 1        | 1        | 2        | 1,36  | 1             | 1        | 2        | 1,13  |  |
|              | 2        | 2        | 1        | 1,40  | 2             | 2        | 1        | 1,16  |  |
|              | 0        | 2        | 2        | 1,70  | 0             | 2        | 2        | 1,41  |  |
|              | 1        | 2        | 2        | 1,71  | 1             | 2        | 2        | 1,42  |  |
|              | 2        | 3        | 0        | 1,84  | 2             | 3        | 0        | 1,53  |  |
|              |          |          |          |       |               |          |          |       |  |







EMC of HV-Cables and Cords with Triaxial Cell

# Rosenberger bedea

## CATV power splitter with Triaxial Cell



# Power splitter for HV-cord (Pflitsch)



Bernhard Mund, bedea, bmund@bedea.com, Thomas Schmid, Rosenberger Hochfrequenztechnik, thomas.schmid@rosenberger.de 15

#### EMC of HV-Cables and Cords with Triaxial Cell

## Rosenberger bedea

# Power splitter for HV-cord (Pflitsch)



## Measuring with mismatch (Thomas Schmid)





#### S-Parameter for T-circuit





### Unmatched-Short-Short (with network simulator)

- Impedances of cables: 10 Ohm vs 75 Ohm
- $L_{cable} = 2m, Z_T = 1mOhm$



Bernhard Mund, *bedea*, **bmund@bedea.com**, Thomas Schmid, Rosenberger Hochfrequenztechnik, **thomas.schmid@rosenberger.de** 21



# Rosenberger bedea

#### Matched-Short-Short (with network simulator)

- $L_{cable} = 2m, Z_T = 1mOhm$
- Char. Impedance of cable: 10 Ohm
- Matching network,  $R_s = 44.7$  and  $R_p = 11.2$  Ohm

Matching network resp. matching pad required



#### Unmatched-Matched-Short (with network simulator)

- $L_{cable} = 2m, Z_T = 1mOhm$
- Char. Impedance of cable: 10 Ohm
- R<sub>1</sub> = 10 Ohm

simply realizable with commercial available resistor !



Bernhard Mund, *bedea*, **bmund@bedea.com**, Thomas Schmid, Rosenberger Hochfrequenztechnik, **thomas.schmid@rosenberger.de** 23

EMC of HV-Cables and Cords with Triaxial Cell

Rosenberger bedea

### Current distribution on extended systems



#### Distribution of current vs. length at short circuit, left side, 1m & 2m





#### Test results - open circuit, short circuit & matching





## **Conclusion 2**

- The Standard IEC 62153-4-3 is in revision at IEC TC 46/WG 5 (46/371/CD),
- Different procedures are described:
  - Matched-Matched-Short,
  - Matched-Short-Short,
  - Unmatched-Matched-Short.
- HV-cables and cords for Electric vehicles have a Characteristic impedance of about 10 Ohm to 12 Ohm and are not match to common Networkanalysers.
- At least one side of the DUT shall be matched, (far end).
- Unmatched-Matched-Short procedure is easy to use at 10 Ohm cords.
- The length out of the test set-up shall be as short as possible.
- The changes of IEC 62153-4-3 are already included into the new WinCoMeT Software.
- The considerations above regarding the matching of the different test procedures are valid for both, Tube and Triaxial Cell procedure

Bernhard Mund, *bedea*, **bmund@bedea.com**, Thomas Schmid, Rosenberger Hochfrequenztechnik, **thomas.schmid@rosenberger.de** 29

EMC of HV-Cables and Cords with Triaxial Cell

Rosenberger bedea

## International Standards for Triaxial test procedure

| IEC TR 62153-4-1                   | Introduction to EMC measurements                                                                                                                                                          | 2010-05     |
|------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| IEC 62153-4-3Ed2                   | Surface transfer impedance - Triaxial method                                                                                                                                              | (46/371/CD) |
| IEC 62153-4-4                      | <b>Control Scheduler</b> Shielded screening attenuation, test method for measuring of the screening attenuation "as" up to and above 3 GHz                                                |             |
| IEC 62153-4-7                      | Shielded screening attenuation, test method for measuring the Transfer impedance $Z_T$ and the screening attenuation $a_S$ of RF-Connectors up to and above 3 GHz;<br>Tube in Tube method | 2006-04     |
|                                    |                                                                                                                                                                                           |             |
| IEC 62153-4-9<br>IEC/PAS 62338 Ed1 | Coupling attenuation, triaxial method                                                                                                                                                     | 2008-03     |
| IEC 62153-4-10                     | Shielded screening attenuation test method for measuring<br>the Screening Effectiveness of Feedtroughs and<br>Electromagnetic Gaskets                                                     | 2009-05     |
| EN 50289-1-6                       | Communication cables - Specifications for test methods<br>Part 1-6: Electrical test methods -Electromagnetic<br>performance (includes IEC 62153-4-3 and IEC 62153-4-4)                    | 2002        |

#### Literatur

- [1] Bernhard Mund & Thomas Schmid: Messen der EMV von HV-Leitungen mit der Triaxialen Zelle, 5. Anwenderkongress Steckverbinder 2011, Vogel Verlag, Würzburg,
- [2] Bernhard Mund: EMV von Steckverbindern und Verbindungskabeln, 4. Anwenderkongress Steckverbinder 2010, Vogel Verlag, Würzburg,
- [3] Bernhard Mund & Thomas Schmid: Messen der Schirmdämpfung von Steckverbindern, Kabeldurchführungen und EMV-Dichtungen, 3. Anwenderkongress Steckverbinder 2009, Vogel Verlag, Würzburg
- [4] Bernhard Mund: Measuring the EMC on RF-connectors and connecting hardware, Tube in tube test procedure, IWCS (International wire & cable symposium) 2004, Philadelphia
- [5] Thomas Hähner und Bernhard Mund: Measurement of the screening effectiveness of connectors & cable assemblies: International Wroclaw Symposium on Electromagnetic Compatibility, EMC 2002
- [6] Thomas H\u00e4hner und Bernhard Mund: Background, content and future of the EMC measurement standard prEN 50289-1-6, Open / shielded test methods, International Wroclaw Symposium on Electromagnetic Compatibility, EMC 2000
- [7] Otto Breitenbach, Thomas Hähner und Bernhard Mund: Kabelschirmung im Frequenzbereich von MHz bis GHz, erweiterte Anwendung eines einfachen Meßverfahrens, Frequenz 1-2/1999 S. 18-28.
- [8] Lauri Halme, Rauno Kytönen: "Background and introduction to EM screening (shielding) behaviours and measurements of coaxial and symmetrical cables, cable assemblies and connectors", IEE Colloquium on screening effectiveness measurements, Savoy Place London, 6 May 1998
- [9] F.M. Tesche et al: EMC Analysis Methods, Wiley, 1997
- [10] Prof. Dr. Münzner et. al.: Untersuchungen und Simulation an Triaxialer Zelle, Hochschule Ulm

