

VAV-/CAV-Systemlösung für energieoptimierte Ventilatorenregelung im Raumluftbereich

innaitsverzeichnis	
Systemübersicht	3
Funktionsprinzip	4
Technisches Datenblatt	7
Planung und Schutzeinrichtungen	ę
Anschlüsse	11
Applikationen – Übersicht	20
Applikationsgrundlagen	21
Applikationen	29
Bedienung und Einstellung	39
Betriebsverhalten und Funktionserklärung	47
Optimiserbetrieb mit VRP-M Lösung	49
Formular	51

Inhaltsverzeichnis

Inhalt	Seite
Systemübersicht	
Funktionsprinzip	
Funktionsprinzip	
Kundennutzen	(
Schnittstellen	
Anlagengrösse	
Bedienung und Anzeige	(
Technisches Datenblatt	
Technische Daten	
Sicherheitshinweise	
Abmessungen [mm]	
Planung und Schutzeinrichtungen	
Planung	,
Schutzeinrichtungen und Anschluss	9
Brandfall- und Brandschutzklappensteuerung	9
Druckbegrenzung	1
Anschlüsse	
Klemmenbelegung	11
Speisung, VAV-Regler, Ein- und Ausgänge	12
CAV: Signaleinbindung über VAV-Compact	14
VAV: Raumtemperatur-Regler (z.B. CR24) Einbindung über MP-Bus bzw. VAV-Compact	14
VAV: Reglereinbindung am COU24-A-MP – analoge Reglersignale	15
VAV: Reglereinbindung am COU24-A-MP – DDC als Master	15
Dimensionierung 24 V Speisung, Verkabelung, Topologie, Leitungslängen	10
Toolanschluss	19
Applikationen – Übersicht	20
Applikationsgrundlagen	
Optimiser für Zu- und Abluftsysteme	2
VAV-Regler zusammenschalten	2
Sollwertaufschaltung bei einer Optimiseranlage	2
Zusammenschalten bzw. Mischbetrieb verschiedener Regelsysteme	28
Einschränkung – Reinraum-Anlagen mit Optimiser-geregelten Ventilatoren?	28
Einschränkung – Optimiser für schnelllaufende VAV-Applikationen	2
Applikationen	
System: CAV, mit lokaler Stufenschaltung, ZU / Vmin / Vmax	29
System: VAV, mit Raumregler CR24, ZU / Vmin Vmax	30
System: VAV Parallelschaltung, mit Raumregler CR24, ZU / Vmin Vmax	3
System: VAV, mit Raumregler 0 10 V, V _{min} V _{max}	3:
System: VAV, mit DDC oder Raumregler 0 10 V, V _{min} V _{max}	3
System: VAV Parallelschaltung, mit DDC oder Raumregler 0 10 V, V _{min} V _{max}	34 3!
System: VAV, Optimiser mit DDC als MP-Master System: VAV, Optimiser mit UK24LON/EIB als MP-Master	3(
System: Optimiser, mit Kaskadenschaltung	3
Bedienung und Einstellung	
Optimiser Bedienung	39
MP-Bus – VAV-Regler adressieren	4
Inbetriebnahme	4:
VAV-Regler einstellen – Verwendung PC-Tool	4(
Betriebsverhalten und Funktionserklärung	
Power-ON – Aufstartverhalten	4
Zwangssteuerung – Override Betrieb	4
Busfail-Funktion VAV-Compact	4
VAV-CAV-System im Mischbetrieb mit mechanischen CAV-Boxen	48
Optimiserbetrieb mit VRP-M Lösung	49
Formular	5
· • · · · · • · · · · · · · · · · · · ·	•

Systemübersicht

Funktion	VAV-C	ompact	VA	V-Universal	
	LON-Typen	MP-Typen	VRP-M Systemlösungen	Universal-	Programm
Sensoren	LONMARK®	MP22BUS*	VFP		VFP
Regler		LMV-D2-MP NMV-D2-MP SMV-D2-MP	MP22BUS*	VRD3	VRP VRP-STP
Antriebe	LMV-D2LON NMV-D2LON	LHV-D2-MP	LMQ24A-SRV-ST * NMQ24A-SRV-ST * NM24A-V-ST		LM24A-V NM24A-V SM24A-V LF24A-V AF24A-V mit Sicherheits- funktion
Bus-Integration		In Feld	dbussysteme via MP-Gateway DNWORKS®: Gateway UK24LON onnex: Gateway UK24EIB	* in Verbindung mit (Optimiser nicht zulässig
Ventilator- Optimierung über MP-Bus		ecu65	PLABUS* ptimiser 4-A-MP		
Einstellgerät	274-00 80.46	ZTH-VAV			
Parametrier- und Service-Software			PC-Tool für: VAV-Compact VRP-M		
Raumregler			CR24		
Stellungsgeber				SG	

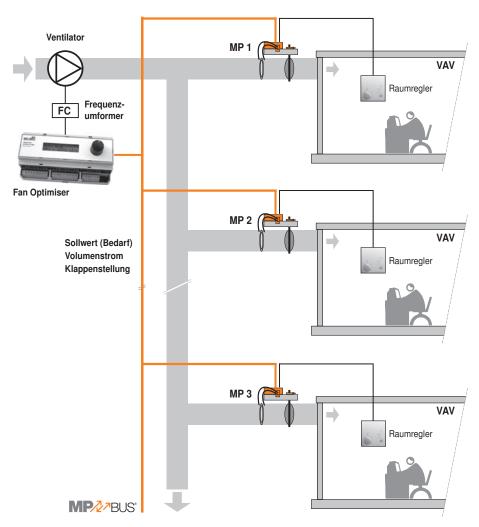
Hinweis: Unterlagen zu VAV-Compact LON-Ausführung, VRP-M System-Lösung, VAV-Universal, Einzelraumregler CR24 sowie Tools und Interfaces sind als separate Dokumente unter www.belimo.eu abrufbar.

BELIMO

Funktionsprinzip

Der Volumenstrom und dessen Transport sind leistungsbestimmende Faktoren für den Energieverbrauch der Ventilatoren.

Bei herkömmlich, druckregulierten Anlagen wird der Vordruck so gewählt, dass die am ungünstigsten gelegene VAV-Box bei Volllastbetrieb genügend Luft erhält. Die restlichen überversorgten Boxen müssen die überschüssige Energie, d.h. den Überdruck durch das Schliessen der Klappen vernichten. Diese Boxen werden vielfach im ungünstigsten Bereich – bezogen auf Regelverhalten, Geräuschbildung


Der **grösste Energieverlust** tritt bei **Teillast** auf, die häufig den grössten Teil der Betriebszeit einer VAV-Anlage ausmacht.

und Druckverlust - betrieben.

Fan Optimierung: Sollvolumen (Raumbedarf), Istvolumen und Klappenstellung werden via MP-Bus erfasst, vom Optimiser verrechnet und dem Frequenzumformer als Sollwert vorgegeben.

Resultat: Die Anlage wird im optimalen Bereich – bezogen auf Regelverhalten, Geräuschbildung und Energieverbrauch – betrieben.

Das **grösste Energiesparpotenzial** liegt im **Teillastbetrieb**, der bei einer VAV-Anlage einen wesentlichen Anteil hat.

Einsatzbereiche

Variable- und konstante Volumenstromsysteme im Komfort-Raumluftbereich mit Frequenzumformer gesteuerten Ventilatoren.

Funktionsweise

Die Anlage wird vom Fan Optimiser – aufgrund der aktuellen Bedarfsignale – mit optimalen Klappenstellungen betrieben. Ziel ist es, den Druckverlust über den VAV-Boxen so tief wie möglich zu halten und damit die Betriebskosten durch Senkung der Ventilatorenleistungen nachhaltig zu reduzieren.

Die Klappenstellungen jeder VAV-Box werden erfasst und über den MP-Bus an den Fan Optimiser übermittelt. Diese Werte bilden die Regelgrösse für die Regulierung des Frequenzumformer gesteuerten Ventilators.

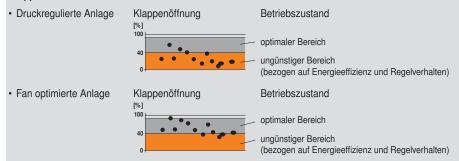
Dank dieser, auf der Belimo MP-Bus basierenden Technologie lassen sich – im Vergleich zu herkömmlichen Systemen mit Kanaldruck regulierten Ventilatoren – bis zu **50% Energieeinsparungen** erzielen.

Proportionalitätsgesetze

Die Proportionalitätsgesetze bilden die Grundsätze für den Volumenstromtransport.

 Volumenstrom ist proportional zur Drehzahl

$$\left(\frac{\dot{V}_1}{\dot{V}_2}\right) = \left(\frac{n_1}{n_2}\right)$$

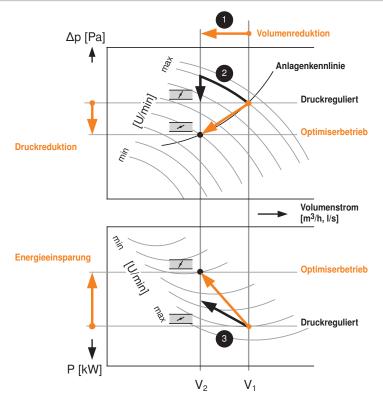

 Druckerhöhungen ändern sich im Quadrat mit dem Volumenstromverhältnis

$$\left(\frac{\Delta p_1}{\Delta p_2}\right) = \left(\frac{\dot{V}_1}{\dot{V}_2}\right)^2 = \left(\frac{n_1}{n_2}\right)^2$$

 Leistungsaufnahme ändert sich mit der 3. Potenz des Volumenstromverhältnisses

$$\left(\frac{P_1}{P_2}\right) = \left(\frac{\dot{V}_1}{\dot{V}_2}\right)^3 = \left(\frac{n_1}{n_2}\right)^3$$

Klappenbilder



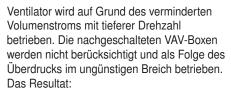
Funktionsprinzip

(Fortsetzung)

Kanaldruckdiagramm mit Anlagenkennlinie

Druckreguliert

Volumenreduktion 1


VAV-Boxen: Klappen schliessen bis Sollvolumen erreicht ist

Reaktion Kanaldruck 2

- Kanaldruck steigt
- Druckregelung korrgiert auf eingestellten Konstantdruck, d.h. Druck bei Volllast
- VAV-Klappen schliessen um den zu hohen Kanaldruck zu kompensieren (vernichten)
- erhöhte Strömungsgeräusche

Energieeinsparung 3

- unnötiger Druckverlust im Kanalnetz
- unnötig hoher Energieverbrauch

Optimiserbetrieb

VAV-Boxen: Klappen schliessen bis Sollvolumen erreicht ist

Optimiser erfasst anhand des geänderten Klappenbildes die neuen Bedingungen und reduziert die Ventilatordrehzahl bis die Klappen der nachgeschalteten VAV-Boxen im optimalen Bereich betrieben werden

- Ventilator wird mit tieferer Drehzahl volumenstrombetrieben
- deutliche Senkung des Kanaldrucks im Vergleich zur Kanaldruckvariante dank reduziertem Druckabfall im Kanalnetz (optimale Klappenstellung)

Kundennutzen

Die Fan Optimierung

DE: DIN V 18599.

- Energieersparnis bis zu fünfzig Prozent tieferer Energieverbrauch der Ventilatoren dank vermindertem Druckabfall über den nachgeschalteten VAV-Boxen.
- Minderkosten Druckreglierungen der Zuluft und Abluft fallen weg.
- Reduzierter Installationsaufwand Standardkabel für dreipoligen MP-Bus.
- Vereinfachte Inbetriebnahme Inbetriebnahme der Druckregelungen entfällt.
- Anlagenkomfort dank tieferen Strömungsgeräuschen durch den tieferen Vordruck sinken die Strömungsgeräusche über den Boxen und im Kanalnetz.
- Erhöhte Betriebssicherheit Druckverluste infolge Filterverschmutzungen werden automatisch ausgeglichen. Reklamationen, das System liefere zu wenig Luft, gehören der Vergangenheit an.
- Optimales Kosten/Nutzen-Verhältnis bereits bei kleinen und mittleren Gebäudegrössen rechnet sich die Investition.
- Flexible Anlagenkonzepte zum Beispiel als:
- CAV-Anlage: Volumenumschaltung Aus / \dot{V}_{min} / \dot{V}_{max} über Bewegungsmelder usw.
- VAV-Anlage: bedarfsreguliert über Raumtemperaturregler CR24-B1
- VAV-Anlage: bedarfsreguliert über Raum-, DDC-Systemregler oder UK24LON/EIB
- gemischte VAV/CAV-Anlage
- Anwendbar für Neuanlagen, Nachrüstungen bei Anlagenoptimierungen und Sanierung bestehender Anlagen – alle VAV-Compact (LMV-D2M / NMV-D2M ab Baujahr 2001) unterstützen die Optimiser-Funktion!
- Einfaches Engineering und effiziente Inbetriebnahme dank Vorkonfiguration, LCD-Anzeige und selbstadaptiver Regelfunktion.

Eine rasche Amortisation

Reduktion der Betriebskosten.

 der Kosten für die Fan Optimierungslösung ist dank des massiven Energiesparpotentials gewährleistet.

· ist eine sinnvolle Massnahme im Hinblick

· bildet eine nachhaltige Massnahme zur

auf die EU-Richtlinie 2002/91/EG über die

Gesamteffizienz von Gebäuden und den dafür

abgeleiteten Umsetzungsmassnahmen, z.B:

Schnittstellen

Ansteuerung

Der Energiebedarf der Einzelraum- bzw. DDC-Regler werden über Analogsignale oder via MP-Bus an den Fan Optimiser COU24-A-MP übermittelt.

Volumenstromregler

Die VAV-Regler bieten – dank der MP-Bus-Technologie – Zugang zu allen relevanten Daten wie aktueller Volumenstromistwert, Klappenstellung usw.

Einstell- und Kontrollfunktionen sind mit dem Belimo PC-Tool jederzeit möglich.

Frequenzumformer

Die Ansteuerung des Frequenzumformers erfolgt über einen 0 ... 10 V-Analogausgang. Bei gemischten Anlagen, mit VAV- und mechanischen CAV-Boxen, kann eine minimale Ventilatordrehzahl eingestellt werden.

Anlagengrösse

Die Anlagengrösse ist unbegrenzt, über den Kaskadenausgang des Fan Optimisers können weitere Fan Optimiser in Folgeschaltung betrieben werden. Anzahl VAV/CAV-Boxen pro Fan Optimiser: 1 bis 8

Bedienung und Anzeige

Alle relevanten Informationen (Gesamt-, Einzel-Istvolumen, Klappenstellungen, Sollwert-Frequenzumformer etc.) werden auf dem LCD-Display angezeigt. Benutzergeführtes Einstell- und Anzeigemenü mit einfacher Bedienung über Encoderknopf.

VAV-Regler

Die VAV-Regler können über den Fan Optimiser adressiert und kontrolliert werden. Zusätzlich zur Ist-Volumenstrom- und Klappenstellungsanzeige können die Betriebsvolumenstromeinstellungen \dot{V}_{min} und \dot{V}_{max} angezeigt und bei Bedarf verstellt werden. Das PC-Tool kann z.B. für Servicearbeiten verwendet werden. Anschluss über zentralen RJ12 Anschluss.

VAV-/CAV Systemlösung für energieoptimierte Ventilatorenregulierungen im Raumluftbereich.

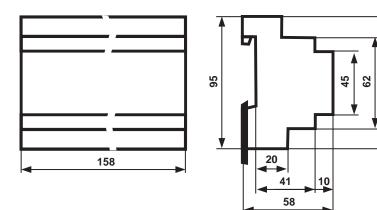
Schnittstellen:

- Eingang Raumregler DDC: 0 ... 10 / 2 ... 10 V / MP-Bus
- Ein-/ Ausgang VAV-Regler: MP-Bus
- Ausgang Frequenzumformer: 0 ... 10V
- LCD Anzeige für Einstellung und Diagnose

Fechnische Daten		
echnische Daten		
Elektrische Daten	Nennspannung	AC 24 V, 50/60 Hz / DC 24 V
	Funktionsbereich	AC ±20% / DC +20% / -10%
	Leistungsverbrauch	15 VA / 7,5 W
	Fine abaltatuana (Antriaba)	(ohne angeschlossenen VAV-Regler)
	Einschaltstrom (Antriebe)	max. 8,3 A @ 5 ms
Anschluss	Ein- und Ausgänge 1 32	Schraubklemmen, 2,5 mm ²
	MP-Bus / Speisung 33 38	Schraubklemmen, 2,5 mm ²
	Bediengeräte MP-Bus	RJ12
	Leitungsdimensionierung	siehe Sektion Anschlüsse – Topologie, Leitungsdimensionierung
Ein- / Ausgänge	Eingänge IN A - CASC	Kaskadeneingang, 0 10 V, Innenwiderstand 200 k
	IN B - IN	Zwangssteuereingang, 0 10 V,
		Innenwiderstand 100 k
	Ausgänge OUT A - FC	Steuerausgang Frequenzumformer (Schutzklasse III), 0 10 V, max. 10 mA
	OUT B - OUT	Reserve
	Controller Analog IN 1 8	Analogeingang Sollwert für VAV-Regler 1 8,
	•	0 10 / 2 10 V (umschaltbar), Innenwiderstand 200 k
	OUT 1 8	Analogausgang Volumenstrom-Istwert VAV-Regle 1 8, 0 10 V / 2 10 V (umschaltbar), max. 10 mA
	Controller MP MP	DDC MP-Interface, MP-Bus Zuschluss,
	Controller Will Will	Speisung AC/DC 24 V
	RJ12	Servicebuchse MP-Bus (PC-Tool)
	Actuators MP	VAV-Regler 1 8, MP-Bus, AC/DC 24 V, max. 5 A
Bedienung	Optimiser Dateneingabe	menügeführte Encoder Bedienung Quittierung über Tasterfunktion
	Datenanzeige	LCD Display 2 x 16 Zeichen
		mit LED-Hinterleuchtung
	VAV Regler Einstellung und Anzeige	über MP-Bus Toolanschluss mit Belimo PC-Tool
Gehäuse	Farbe	Grau RAL 7035
	Montage	Schaltschrankeinbau, schnappbar auf Hutschiene DIN EN 50 022
	Flammklasse	UL94 V0
Sicherheit	Schutzklasse	III Schutzkleinspannung
Cionentic	Schutzart	IP10 (IP20 mit eingesetzten Steckern)
	EMV	CE gemäss 2004/108/EG
	Wirkungsweise	Typ 1 (EN 60730-1)
	Bemessungsstossspannung	0,8 kV (EN 60730-1)
	Verschmutzungsgrad der Umgebung	2 (EN 60730-1)
	Softwareklasse	A (EN 60730-1)
	Umgebungstemperatur	0 50°C
	Lagerbedingungen	–20 +80 °C nicht kondensierend (EN 60730-1)
	Umgebungsfeuchte	+5 95% r.H., nicht kondensierend (EN 60730-1)
	Wartung	wartungsfrei
Abmessungen / Gewicht	Abmessungen	siehe «Abmessungen» auf Seite 8

90

Sicherheitshinweise

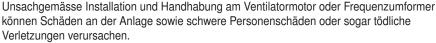


Die Fan Optimiser Systemlösung COU24-A-MP

- darf nicht für Anwendungen ausserhalb des spezifizierten Einsatzbereiches verwendet werden
- funktioniert ausschliesslich mit Belimo MP-Antrieben
- ist durch geschultes Personal zu montieren und in Betrieb zu setzen.
- darf nur im Herstellerwerk geöffnet werden. Die Geräte enthalten keine durch den Anwender austauschbaren oder reparierbaren Teile.
- enthalten elektrische und elektronische Komponenten und dürfen nicht als Haushaltsmüll entsorgt werden. Die örtliche und aktuelle Gesetzgebung ist zu beachten.

Abmessungen [mm]

Massbilder



Planung

WARNUNG!

Bei der Planung und Ausführung sind die einschlägigen landesspezifischen sowie örtlichen Bestimmungen und Sicherheitsvorschriften zu berücksichtigen und einzuhalten.

Sämtliche Elektroinstallationen und Wartungsarbeiten an diesen Anlagenteilen sind von qualifiziertem Fachpersonal auszuführen. Auf keinen Fall dürfen Arbeiten an einem eingeschalteten Frequenzumformer durchgeführt werden. Halten Sie daher unbedingt die Anweisungen des Frequenzumformerherstellers ein.

Schutzeinrichtungen und Anschluss

Personen- und Anlagenschutzeinrichtungen

Ein Belimo Fan Optimisersystem dient der Leistungsregulierung eines Frequenzumformer gesteuerten Zuluft- oder Abluftventilators in Abhängigkeit der Klappenstellung der nachgeschalteten VAV-Boxen.

Die Steuerung (Freigabe, EIN/AUS) und die Einrichtungen zum Schutz von Personen und der Anlage müssen extern, nach Vorgaben der lokalen Gesetzgebungen und des Frequenzumformerherstellers erfolgen.

Anlage- und Personenschutz wie Brandfallsteuerung, Schutzeinrichtungen für Frequenzumformer und Ventilator, der Installation und des Kanalnetzes usw. sind nicht Bestandteil der Fan Optimierungseinrichtung!

Verkabelung

Die Kabel für den Optimiser und die VAV-Regler sind mit Abstand zur Motoranschlussleitung zu verlegen, um Rückkopplungen (Hochfrequenzrauschen) zwischen den Kabeln zu vermeiden. Der grösstmögliche Abstand zwischen den Kabeln ist einzuhalten, inbesondere wenn diese parallel zueinander laufen.

Verdrahtung 0 ... 10 V Steuersignal für Frequenzumformer

Bei der Verkabelung und dem Anschluss des 0 ... 10 V Steuersignals des Optimisers (Klemmen FC) für die Ansteuerung des Frequenzumformers halten Sie sich bitte an die Beschreibung dessen Herstellers. Die Belegung der Klemmen des Frequenzumformers ist den Herstellerunterlagen zu entnehmen. Das 0 ... 10 V Steuersignal des Optmisers ist vom Motorenkabel getrennt zu verlegen.

Inbetriebsetzung Frequenzumformer

Die Frequenzumformereinrichtung darf nur nach korrekt durchgeführter Installation und Einstellung in Betrieb gesetzt werden. Diese Arbeiten sind von qualifiziertem Fachpersonal nach Anweisungen des Frequenzumformerherstellers vorzunehmen.

Brandfall- und Brandschutzklappensteuerung

Hinweis

Die lokalen Sicherheitsvorschriften sind bei der Planung und Ausführung einzuhalten!

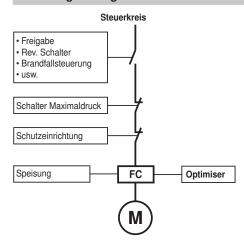
Hinweis

Das Schliessen der BSK bei laufendem Ventilator, d.h., ohne gleichzeitigen Ausschaltbefehl auf den Ventilator oder das Starten des Ventilators gegen geschlossene BSK, kann zu Beschädigungen der Anlage führen! Die Auswirkung der Brandfall- und Brandschutzklappensteuerung, inklusive Funktionstest derselbigen auf die Anlage (Installation und Funktion) muss bei der Planung und Ausführung berücksichtigt werden.

Vorschlag:

Anlage Freigabe über Brandfallsteuerung und Anlagebedarf (Uhr usw.)

- 1. Brandschutzklappen (BSK) AUF Befehl
- 2. Rückmeldung BSK offen → Ventilator EIN

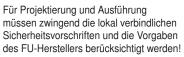

Anlage AUS über Brandfallsteuerung oder BSK Testfunktion

1. BSK Zu und Ventilator AUS

Planung und Schutzeinrichtungen

Druckbegrenzung

Druckregelung

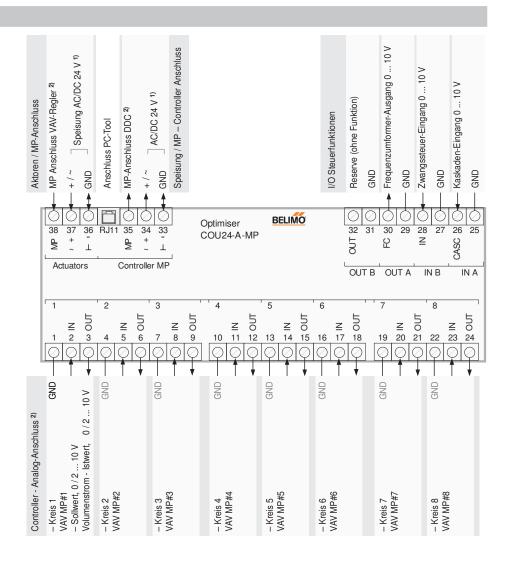

Bei einer Fan Optimiser-Anlage wird der Einsatz einer Kanaldruck-Regelung hinfällig.

Maximale Druckbegrenzung

Der Optimiser ist ein Regelgerät für die Deckung des erforderlichen Volumenstromes. Erfordert ein Anlagenkonzept Sicherheitsfunktionen, z.B. max. Druckbegrenzung, müssen sie extern realisiert werden.

Eine Maximal-Druckbegrenzung kann mit einem einfachen Druckschalter, Funktion EIN-AUS, im Ventilator-Steuerkreis realisiert werden.

Hinweis



COU24-A-MP

Klemmenbelegung

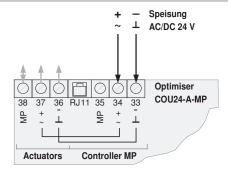
Erklärungen

- 1) Speisung über 24 V Sicherheitstransformer. Die Leistungsdaten der angeschlossenen VAV-Regler sind bei der Dimensionierung des Transformators und der Anschlussleitung zu berücksichtigen. Doppelspeisung des COU24-A-MP ist nicht zulässig. Die Klemmen 33 und 36, bzw. 34 und 37 sind geräteintern verbunden, max. Belastung 5 A!
- 2) MP oder Analog (Ain / AiMP) Betrieb muss im Menü Konfiguration festgelegt werden.

Hinweis

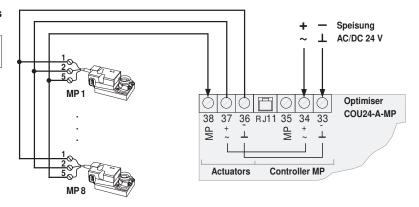
Dies ist eine Anschluss-Beschreibung. Je nach Applikation kann die Klemmenbelegung variieren, bzw. sind Teilbelegungen möglich. Siehe Sektion Anschluss Schema und Applikationsbeispiel für detaillierte Anschluss-Informationen.

Der Anschluss und die Inbetriebsetzung muss durch geschultes Personal erfolgen.

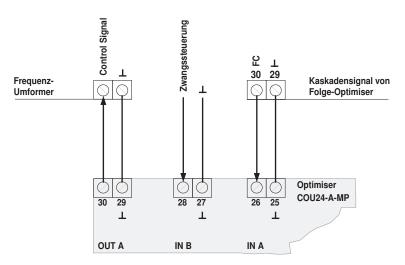


Speisung, VAV-Regler, Ein- und Ausgänge

Speisung


Achtung

 Anschluss 24 V Speisung nur über Sicherheitstransformator erlaubt.
 Max. Belastung Anschluss 36 und 37: 5 A



VAV-Regler - MP-Bus

Topologie und Leitungslänge MP-Bus siehe Seite 16 ... 19

Ein- / Ausgänge

Funktion

Out A

0 ... 10 V Ausgang für Ansteuerung, Frequenzumformer oder Kaskadensignal

IN A

0 ... 10 V Kaskadeneingang von Optimiser in Folgeschaltung. Bei der Verkabelung und dem Anschluss des 0 ... 10 V Steuersignals des Optimisers (Klemmen FC) für die Ansteuerung des Frequenzumformers halten Sie sich bitte an die Beschreibung dessen Herstellers.

IN B

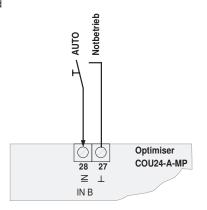
0 ... 10 V Zwangssteuerungeingang

Hinweis

Anschluss Frequenzumformer siehe Seite 9

Speisung, VAV-Regler, Ein- und Ausgänge (Fortsetzung)

Hinweis


Zwangssteuereingang ist während Power-on Initialisierung (Adaption) inaktiv.

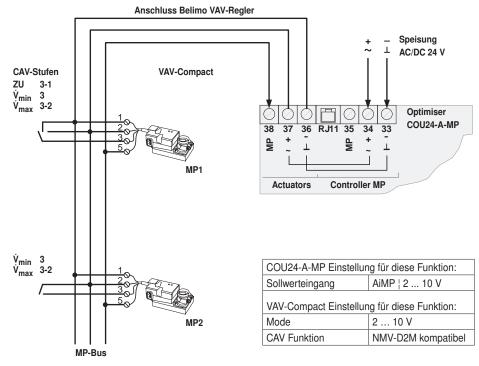
Zwangssteuerung			
Signal auf Eingang IN B			ng wirkend auf
(Klemme 28)		Frequenzumformer (Kl. 30)	VAV-Regler (MP-Bus) 1)
10 V	Aus	Ausgangssignal: 0 V	Klappen ZU
Eingang offen	Auto	Regelbetrieb: 0 10 V	VAV-Betrieb
0 V	Notbetrieb	Ausgangssignal: 10 V	Klappen AUF

¹⁾ Auf alle angeschlossenen VAV-Regler wirkend

Beispiel

mit Stufenschalter: Auto / Notbetrieb (z.B. Unterstützung für Entrauchung)

CAV: Signaleinbindung über VAV-Compact

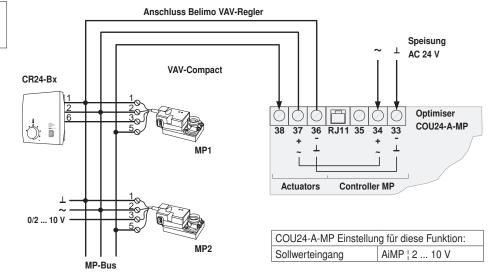

Anschluss von Schaltgeräten für CAV-Anwendungen

Die Signalübertragung erfolgt über die MP-Bus Funktion «externe Sensoreinbindung» des VAV-Compact.

Hinweis

Stufe \dot{V}_{mid} und Auf sind nicht verfügbar.

VAV-Compact Mode Einstellungen 2 ... 10 V

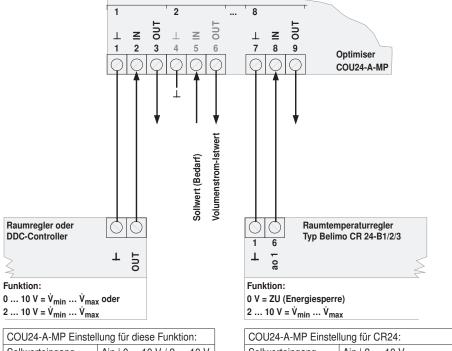


VAV: Raumtemperatur-Regler (z.B. CR24) Einbindung über MP-Bus bzw. VAV-Compact

Anschluss von CR24 Raumregler für VAV-Anwendungen

Die Signalübertragung erfolgt über die MP-Bus Funktion «externe Sensoreinbindung» des VAV-Compact.

HinweisAnwendungen mit CR24 erfordern AC 24 V Speisung.


VAV: Reglereinbindung am COU24-A-MP - analoge Reglersignale

Anschluss «Controller Analog» für Raumtemperaturregler oder DDC-Controller mit 0 ... 10 V / 2 ... 10 V Signal

Hinweis

Folgende Funktionen werden im Menu [Konfiguration] festgelegt:

- DDC oder Analogbetrieb
- -0 ... 10 V / 2 ... 10 V

Sollwerteingang Ain | 0 ... 10 V / 2 ... 10 V Sollwerteingang Ain | 2 ... 10 V

Funktion

1 ... 8 Controller Analog - für Regelkreis 1 → VAV MP#1 ... Regelkreis 8 → VAV MP#8

Ground Anschluss

Eingang 0 ... 10 V / 2 ... 10 V von Raumregler/DDC IN

Funktion: Sollwert für VAV-Regler

OUT Ausgang 0 ... 10 V / 2 ... 10 V

> Funktion: Volumenstrom-Istwert VAV-Regler Bereich: 0 ... 100% V_{nom} (Reglereinstellung)

Anwendung: Führungssignal für Slave-Regler im M/S-Betrieb

VAV: Reglereinbindung am COU24-A-MP - DDC als MP-Master

Anschluss «Controller MP» für DDC-/SPS-Controller, mit integrierter MP-Bus Schnittstelle oder **UK24LON/EIB**

DDC Controller oder **UK24LON als MP-Master** + Speisung Anschluss VAV-Regler Optimiser 34 COU24-A-MP 35 37 36 33 ₫ Actuators Controller MP

COU24-A-MP Einstellung für diese Funktion: Sollwerteingang MP

Hinweis

Der Volumenstrom-Istwert kann bei jeder Anwendung an der Klemmen «Controller Analog» als 0 ... 10 V Signal abgegriffen werden (siehe «Anschluss Controller Analog»)

OUT Ausgang 0 ... 10 V / 2 ... 10 V

Funktion:

Volumenstrom-Istwert VAV-Regler

Bereich:

 $0 \dots 100\% \ \dot{V}_{nom}$ (Reglereinstellung)

Anwendung:

Führungssignal für Slave-Regler im M/S-Betrieb

Dimensionierung 24 V Speisung, Verkabelung, Topologie, Leitungslängen

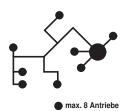
Speisung, Controller MP-Anschluss

Für die 24 V Speisung ist ein Sicherheitstransformator zu verwenden. Die Leistungsdaten der angeschlossenen VAV-Regler sind bei der Dimensionierung des Transformators und der Anschlussleitung zu berücksichtigen.

Die Dimensionierungsleistungen [VA] der verwendeten VAV-Regler sind zu addieren und zu den 15 VA des COU24-A-MP hinzuzuzählen.

MP-Bus - Anschluss VAV-Regler

Der MP-Anschluss, ein Netzwerk für 1...8 Belimo VAV-Regler besteht aus einer 3-poligen Verbindung für MP-Kommunikation und 24 V Speisung.

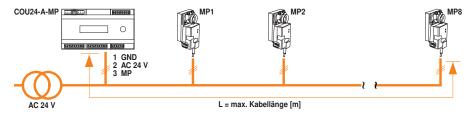

Für die Verkabelung sind weder Spezialkabel noch Abschlusswiderstände erforderlich.

Die Leitungslängen (Berechnung nachfolgend) sind limitiert:

- durch die Summe der Leistungsdaten der angeschlossenen VAV-Regler
- durch die Art der Speisung (AC 24 V über den Bus oder DC 24 V)
- durch den Leitungsquerschnitt

MP-Bus - Topologie

Für die Leitungsführung der maximal 8 VAV-Regler kann die Bus-Topologie frei bestimmt werden, es bestehen keine Einschränkungen. Folgende Topologien können angewendet werden: Stern-, Ring-, Baum- bzw. Mischformen.



MP-Bus - Leitungslängen

Die Leitungslängen (Berechnung nachfolgend) sind limitiert:

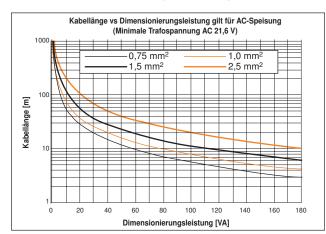
- durch die Summe der Leistungsdaten der angeschlossenen VAV-Regler, z.B. LMV-D2-MP 5 VA / 3 W
- durch die Art der Speisung (AC 24 V oder DC 24 V)
- durch den Leitungsquerschnitt

Leitungslänge MP-Bus bei AC 24V-Speisung über Bus-Kabel

Bestimmung der maximalen Leitungslängen (AC 24 V)

Die Dimensionierungsleistungen (VA) der verwendeten VAV-Regler, sind zu addieren. Im Diagramm können die entsprechenden Leitungslängen herausgelesen werden.

Beispiel:

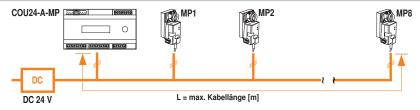

MP-Bus mit 4 Stück LMV-D2-MP

Dimensionierungsleistung total: 4 x 5 VA = 20 VA

In der Kurvenschar herauszulesen:

- Kabel mit Ader-Ø 0,75 mm² ergibt: Kabellänge 28 m
- Kabel mit Ader-Ø 1.0 mm² ergibt: Kabellänge 40 m
- Kabel mit Ader-Ø 1,5 mm² ergibt: Kabellänge 54 m
- Kabel mit Ader-Ø 2,5 mm² ergibt: Kabellänge 90 m

Gesamt-Dimensioniertungsleistung VAV-Regler [VA]



Dimensionierung 24 V Speisung, Verkabelung, Topologie, Leitungslängen

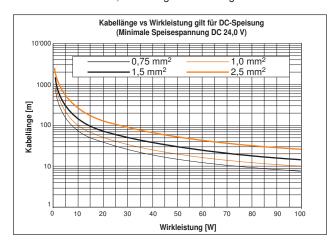
(Fortsetzung)

Leitungslänge MP-Bus bei DC 24 V-Speisung über Bus-Kabel

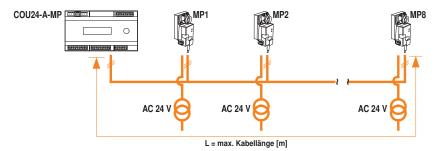
Bestimmung der maximalen Leitungslängen (DC 24 V)

Die Leistungsverbrauche [W] der verwendeten VAV-Regler sind zu addieren. Im Diagramm können die entsprechenden Leitungslängen herausgelesen werden.

Beispiel: MF


MP-Bus mit 4 Stück LMV-D2-MP

Dimensionierungsleistung total: 4 x 3 W = 12 W


In der Kurvenschar herauszulesen:

- Kabel mit Ader-Ø 0,75 mm² ergibt: Kabellänge 60 m
 Kabel mit Ader-Ø 1,0 mm² ergibt: Kabellänge 80 m
 Kabel mit Ader-Ø 1,5 mm² ergibt: Kabellänge 115 m
- Kabel mit Ader-Ø 2,5 mm² ergibt: Kabellänge 200 m

Gesamt-Dimensionierungsleistung VAV-Regler [W]

Leitungslänge MP-Bus bei lokaler Speisung AC 24 V vor Ort

Wenn die VAV-Regler lokal über einen separaten Transformator mit AC 24 V versorgt werden, können die Leitungslängen markant erhöht werden. Unabhängig von den Leistungsangaben der angeschlossenen Antriebe gelten die Leitungslängen gemäss Tabelle.

Maximale Leitungslänge Bus-Kabel bei lokaler Speisung AC 24 V vor Ort

Ader-Ø mm²	L = Max. Leitungslänge [m]	
0,75		
1	800	
1,5		

Dimensionierung 24 V Speisung, Verkabelung, Topologie, Leitungslängen

(Fortsetzung)

Ein- / Ausgänge – Verkabelung

Zwangssteuer-Eingang IN [0 ... 10 V]

Max. Leitungslänge bei ungestörter Umgebung: $0,75~\text{mm}^2~\text{max}$. 150~m

Bei Bedarf können die Zwangssteuersignale mehrerer COU24-A-MP parallel z.B. mit einem gemeinsamen Schalter angesteuert werden.

Kaskaden-Eingang CASC [0 ... 10 V]

Max. Leitungslänge bei ungestörter Umgebung: 0,75 mm² max. 150 m

Frequenzumformer-Ausgang FC [0 ... 10 V]

Max. Leitungslänge bei ungestörter Umgebung: 0,75 mm² max. 100 m Anschluss und Verkabelung nach Angaben Fu-Hersteller, siehe Seite 9

Analog Controller - Verkabelung

Eingang IN [0 ... 10 / 2 ... 10 V]

Bei der Auslegung der Kabeldimensionierung sind die Leistungsdaten und die

Installationsrichtlinien des verwendeten Raumtemperaturreglers mit zu berücksichtigen!

Max. Leitungslänge bei ungestörter Umgebung: 0,75 mm² max. 150 m

Bei Bedarf können die IN Eingänge mehrerer COU24-A-MP parallel mit einem gemeinsamen

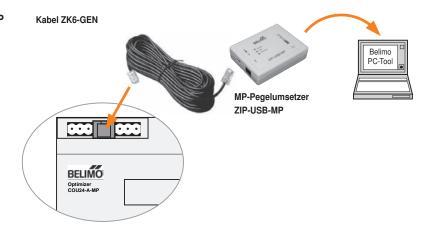
Regelsignal angesteuert werden.

Anwendung: Parallel Ansteuerung der ZUL- & der ABL-VAV-Box von einem gemeinsamen

Raumtemperaturregler.

Ausgang OUT [0 ... 10 / 2 ... 10 V]

Max. Leitungslänge bei ungestörter Umgebung: 0,75 mm² max. 150 m

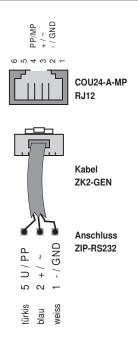

Toolanschluss

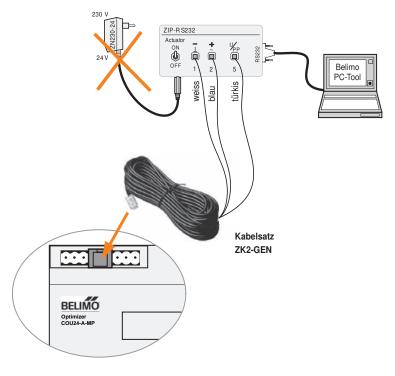
Einstellgerät ZTH-VAV (ZEV)

Die Verwendung des ZTH-VAV über den RJ12 Stecker des Optimisers ist nicht zulässig, da das ZTH-VAV nicht MP-, sondern nur PP fähig ist. Für die Einstellung und Diagnose der angeschlossenen VAV-Regler können diese – dank der MP-Bus Technologie – einfach und schnell mit dem Belimo PC-Tool überprüft und eingestellt werden.

Am RJ12 wird das Kabel ZK6-GEN eingesteckt und mit einem MP-Bus Pegelumsetzer für das Belimo PC-Tool verbunden.

Anschluss mit ZIP-USB-MP




Anschluss mit ZIP-RS232

Bei der Verwendung des Pegelumsetzers ZIP-RS232 ist der Anschluss gemäss nachfolgender Anschlussbelegung auszuführen.

Achtung: Das ZIP-RS232 darf in Verbindung mit dem Optimiser COU24-A-MP nicht mit 24 V gespiesen werden!

Die Speisung des Optimisers COU24-A-MP über den RJ12 Anschluss ist unzulässig!

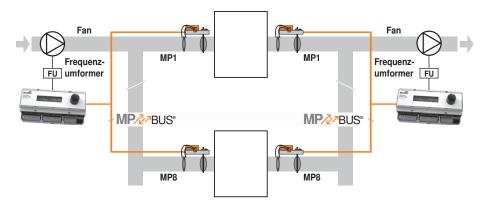
Applikationsgrundlagen, Einschränkungen			
Applikationsgrundlagen		Тур	Seite
Optimiser für Zu- und Abluft Systeme	Grundlage		21
VAV-Regler zusammenschalten	Grundlage — Parallelschaltung Zu-/ Abluftbox — Master/Slave Zu-/ Abluftbox		22
Sollwertaufschaltung bei einer Optimiseranlage	Grundlage Optimiser		23
Sollwertaufschaltung auf VAV-Regler	Master/Slave Parallelschaltung	AiMP	24
Sollwertaufschaltung Analogsignal auf Optimiser	Master/Slave Parallelschaltung	Ain	26
Sollwertaufschaltung von einem MP-Master	DDC mit MP-Interface / UK24LON/EIB	Controller MP	27
Zusammenschalten bzw. Mischbetrieb verschiedener Regelsysteme		Cascade	28

Einschränkungen	Seite
Reinraumanlagen – Anlagen mit Optimiser-geregelten Ventilatoren?	28
Optimiser für schnelllaufende VAV-Applikationen	28

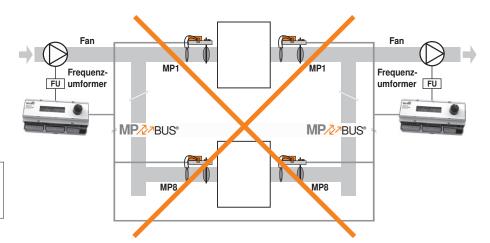
Applikationen - Verzeichnis

Bei den nachfolgend gezeigten Applikationen handelt es sich um Beispiele von Optimiser Anwendungen. Die Funktion, Grösse und Topologie können entsprechend den in diesem Dokument beschriebenen Möglichkeiten und Systemeigenschaften variieren.

Die nachfolgenden Applikationsbeispiele mit dem VAV-Compact können grundsätzlich auch mit der VRP-M mit Standardantrieb NM24A-V-ST realisiert werden.


System	Funktion / Regelung	Anschluss	Тур	Seite
System: CAV	mit lokaler Stufenschaltung	auf VAV-Compact	AiMP	29
System: VAV	mit Raumregler CR24	auf VAV-Compact	AiMP	30
System: VAV Parallelschaltung	mit Raumregler CR24	auf VAV-Compact	AiMP	31
System: VAV	mit Raumregler 0 10 V	auf VAV-Compact	AiMP	32
System: VAV	mit DDC-/Raumregler 0 10 V	auf Optimiser Analogeingang	Ain	33
System: VAV Parallelschaltung	mit DDC-/Raumregler 0 10 V	auf Optimiser Analogeingang	Ain	34
System: VAV	mit DDC als MP-Master	auf Optimiser Controller MP	MP	35
System: VAV	mit UK24LON/EIB als MP-Master	auf Optimiser Controller MP	MP	36
System: Optimiser	mit Kaskadenfunktion		AiMP / Ain / MP	37

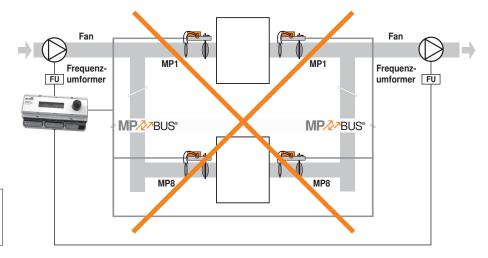
Optimiser für Zu- und Abluftsysteme


Unabhängiger Betrieb

Das Zu- und Abluftsystem muss von zwei unabhängig voneinander funktionierenden Optimisern betrieben werden.

Optimiser-System mit Zu- und Abluft-Boxen am selben MP-Bus

Der MP-Bus muss für das Zuluft- und für das Abluftsystem separat geführt werden. Das Verbinden der beiden Stränge ist **nicht möglich**.



Hinweis

Das Zusammenfassen der VAV-Regler des Zuund des Abluftstrangs in einen gemeinsamen MP-Strang ist nicht erlaubt!

Optimiser-System mit einem Optimiser für Zu- und Abluftventilator

Die Ansteuerung von Zu- und Abluftventilator über ein gemeinsames Optimisersignal ist **nicht zulässig**.

Hinweis

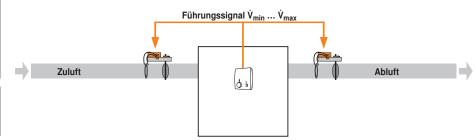
Das parallele Ansteuern des Zu- und des Abluftventilators durch einen Optimiser ist nicht erlaubt!

VAV-Regler zusammenschalten

Parallel- oder Master-Slave Schaltung

Hinweis

In der Praxis zeigt sich, dass die Parallelschaltung einfacher ist in der Handhabung (Bestellung, Parametereinstellung und Verdrahtung) als eine Master-Slaveschaltung.

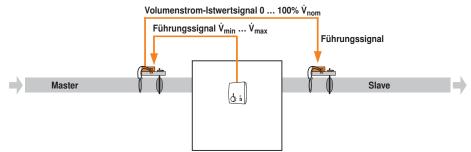

Um das Anlagenkonzept einer Optimiseranlage zu vereinfachen wird daher das parallele Aufschalten des Führungssignals z.B. von einem Raumtemperaturregler, auf Zu- und Abluft VAV-Regler empfohlen. Die Sollwertsignale für den ZU- und ABL-VAV-Regler können, bei bei einer VAV-Anlage als Parallel- oder als Master-Slave Schaltung – auch Folgeschaltung genannt – realisiert werden.

Parallel Schaltung

Bei der Parallelschaltung wird das Führungssignal \dot{V}_{min} \dot{V}_{max} , beispielsweise von einem Raumtemperaturregler 0 ... 10 V Ausgangssignal, parallel auf den Zu- und den Abluftregler geschaltet.

Einstellung VAV-Regler		
Zuluft-Box		
V _{min}	z.B. 250 m ³ /h	
V _{max}	z.B. 500 m ³ /h	

Abluft-Box		
V _{min}	z.B. 250 m ³ /h	
V _{max}	z.B. 500 m ³ /h	



Master-Slave (M/S) Schaltung

Bei der Master-Slave Schaltung wird das Führungssignal \dot{V}_{min} \dot{V}_{max} , beispielsweise von einem Raumtemperaturregler 0 ... 10 V Ausgangssignal, auf den Master-Regler geschaltet. Das resultierende Volumenstrom-Istwertsignal des Master-Reglers bildet das Führungssignal des Slave-Reglers.

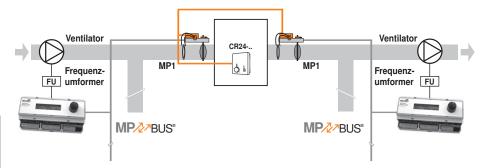
Slave-B	Box
V _{min}	0 m ³ /h
V _{max}	Vnom der Master-Box!

Grundlage Optimiser

Im Prinzip funktioniert die Sollwertaufschaltung bei einer Optimiser System wie vorgängig beschrieben. Je nach Applikation wird das Führungssignal

- direkt am VAV-Regler aufgeschaltet oder aber
- direkt am Optimiser augeschaltet und an den VAV-Regler übertragen.

Um das Anlagenkonzept einer Optimiseranlage zu vereinfachen wird die Parallel Schaltung, z.B. parallel Aufschalten des Führungssignales von einem Raumtemperaturregler, auf den Zu- und den Abluft VAV-Regler empfohlen.

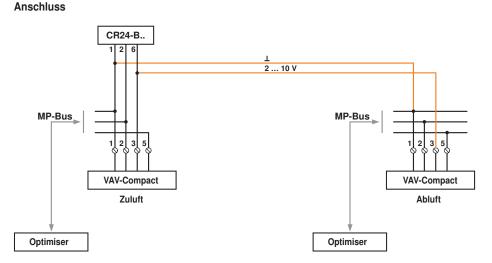

Master-Slave Schaltungen sind grundsätzlich möglich, sind jedoch komplexer.

Das Volumenstrom-Istwertsignal steht an der Klemme OUT (Klemmen Controller Analog) als Analogsignal $0\dots 10$ / $2\dots 10$ V zur Verfügung.

Sollwertaufschaltung auf VAV-Regler – Parallelschaltung von Zu- und Abluft-Box

Bei der Parallel-Schaltung der Zu- und der Abluft-VAV-Box wird das Führungssignal parallel an den Sollwerteingang der beiden VAV-Regelkreise verdrahtet.

Parallelschaltung: AiMP - Systemlösung mit CR24-B..



COU24-A-MP Sollwerteingang AiMP 2 ... 10 V

Einstellung VAV-Regler Zuluft- und Abluft-Box V min V max gemäss Raumauslegung

Hinweis

Das Volumenstrom-Istwertsignal steht am Optimiser (Klemme OUT – Controller Analog) als Analogsignal zur Verfügung, unabhängig von der Optimiser-Betriebseinstellung (Sollwerteingang), inkl. Controller MP Betrieb.

(Fortsetzung)

Sollwertaufschaltung auf VAV-Regler -

Master-Slave Schaltung Zu- und Abluft-Box

Hinweis

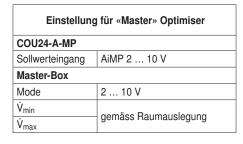
Um das Anlagenkonzept einer Optimiseranlage zu vereinfachen wird das parallel Aufschalten des Führungssignales z.B. von einem Raumtemperaturregler, auf Zu- und Abluft VAV-Regler empfohlen.

Hinweis

Das Volumenstrom-Istwertsignal des Volumenstromreglers steht am Optimiser (Klemme OUT - Controller Analog) zur Verfügung.

Bei der Master-Slave (M/S) Schaltung der Zu- und der Abluft-VAV-Box wird das Führungssignal exklusiv auf den Sollwerteingang des Masters (ZUL- oder ABL-Box) verdrahtet. Das resultierende Volumenstrom-Istwertsignal des Master-Reglers bildet das Führungssignal für den Slaveregler.

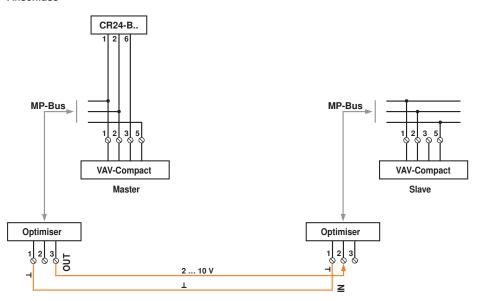
Volumenstrom-Istwertsignal OUT


An den Klemmen OUT der Optimiser Anschlüsse «Controller Analog» stehen die Volumenstrom-Istwertsignale jedes angeschlossenen VAV-Reglers zur Verfügung. Dieses Signal entspricht dem U5 Signal z.B. eines Belimo VAV-Compact Reglers:

0 ... 10 bzw. 2 ... 10 V entsprechen 0 ... 100% Nominalvolumenstrom.

Beispiel mit Mode 0 ... 10 V:

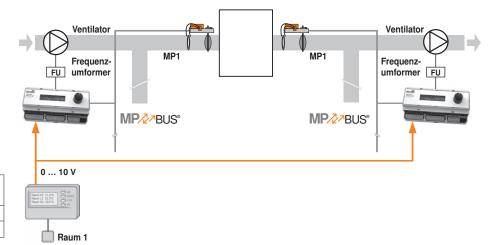
- $-\dot{V}_{nom}$: 500 m³/h
- Klemme 3 (MP1): 3.4 V
- der resultierende Volumenstrom beträgt (500 / 10) * 3.4 = 170 m³/h


Master-Slave Schaltung: AiMP - Systemlösung mit CR24-B..

Ventilator	Master	CR24	Slave	Ventilator
Frequenz- FU umformer	MP1	dy is	MP1	Frequenz- umformer FU
	MP.2. BUS°	2 10 V	MP2 BUS	

Einstellung für «Slave» Optimiser COU24-A-MP Ain 2 ... 10 V Sollwerteingang Slave-Box Mode 2 ... 10 V \dot{V}_{min} 0 m³/s bzw. l/s! \dot{V}_{max} \dot{V}_{nom} Wert der Master-Box!

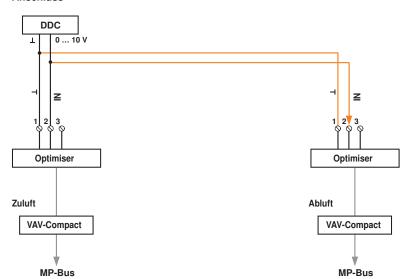
Anschluss



(Fortsetzung)

Sollwertaufschaltung auf Optimiser – Parallelschaltung von Zu- und Abluft-Box

Bei der Parallel-Schaltung der Zu- und der Abluft-VAV-Box wird das Führungssignal parallel an die beiden Sollwerteingänge des Zu- und des Abluft-Optimisers verdrahtet. Der Sollwert wird vom Optimiser in ein MP-Comand gewandelt und an den entsprechenden VAV-Regler gesandt.


Parallelschaltung: Ain – 0 ... 10 V Anschluss über Optimisereingang

Einstellung für beide Optimiser COU24-A-MP Sollwerteingang Ain 0 ... 10 V

Einstellung VAV-Regler	
Zu- und Abluft-Box	
Mode	0 10 V
	gemäss Raumauslegung

Anschluss

(Fortsetzung)

Sollwertaufschaltung auf Optimiser -Master-Slave Schaltung von Zu- und

Abluft-Box

Hinweis

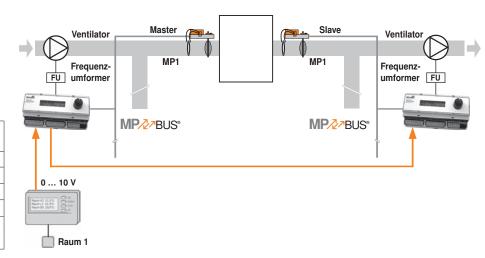
Um das Anlagenkonzept einer Optimiseranlage zu vereinfachen, wird das parallele Aufschalten des Führungssignales empfohlen.

Hinweis

Das Volumenstrom-Istwertsignal des Volumenstromreglers steht am Optimiser (Klemme OUT - Controller Analog) zur Verfügung.

Bei der Master-Slave (M/S) Schaltung der Zu- und der Abluft-VAV-Box wird das Führungssignal exklusiv auf den Sollwerteingang des Optimisers geschaltet, an dem der Master hängt (ZULoder ABL-Box). Das resultierende Volumenstrom-Istwertsignal des Master-Reglers, abgegriffen an der Klemme OUT des «Master Optimisers», bildet das Führungssignal für den Slaveregler.

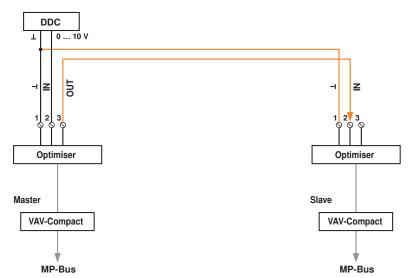
Volumenstrom-Istwertsignal OUT


An den Klemmen OUT der Optimiser Anschlüsse «Controller Analog» stehen die Volumenstrom-Istwertsignale jedes angeschlossenen VAV-Reglers zur Verfügung. Dieses Signal entspricht dem U5 Signal z.B. eines Belimo VAV-Compact Reglers:

0 ... 10 bzw. 2 ... 10 V entsprechen 0 ... 100% Nominalvolumenstrom.

Beispiel mit Mode 0 ... 10 V:

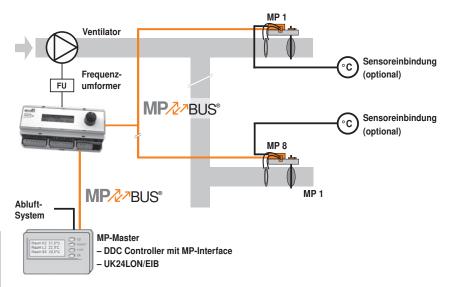
- $-\dot{V}_{nom}$: 700 m³/h
- Klemme 3 (MP1): 5.0 V
- der resultierende Volumenstrom beträgt (700 / 10) * 5.0 = 350 m³/h


Master-Slave Schaltung: Ain - 0 ... 10 V Anschluss über Optimisereingang

	Einstellung für «Master» Optimiser	
COU24-A-MP		
	Sollwerteingang	Ain 0 10 V
VAV-Compact		
	Mode	0 10 V
	\dot{V}_{min}	gomäna Paumaualagung
	\dot{V}_{max}	gemäss Raumauslegung

Einstellung für «Slave» Optimiser		
COU24-A-MP		
Sollwerteingang Ain 0 10 V		
VAV-Compact		
Mode	0 10 V	
V _{min}	0 m ³ /s bzw. l/s!	
V _{max}	V _{nom} Wert der Master-Box!	

Anschluss



(Fortsetzung)

Sollwertaufschaltung von einem MP-Master (DDC mit MP-Interface oder UK24LON/EIB)

Bei einem MP-Master System werden die Sollwerte für die VAV-Regler und die Verknüpfung der ZU- und Abluftsysteme vom entsprechenden MP-Master (DDC oder UK24LON/EIB) generiert.

Einstellung		
COU24-A-MP		
Sollwerteingang	MP	
Master-Box		
Mode	2 10 V / 0 10 V	
V _{min}	gomäna Daumaualagung	
V _{max}	gemäss Raumauslegung	

MP-Master - Sensoreinbindung

Die bei einem MP-Bus System verfügbare Funktion «Sensoreinbindung» steht auch bei einem Optimiser mit aufgeschaltetem MP-Master zur Verfügung.

Der Optimiser besitzt zwei MP-Schnittstellen:

- Controller MP
- Actuator MP

Die Kommunikation MP-Master zu MP-Slave (VAV-Regler) läuft über den Optimiser. Alle im MP-Master eingebundenen Datenpunkte des VAV-Reglers stehen zur Verfügung.

Der Optimiser führt ein Abbild der relevanten Daten der angeschlossenen VAV-Regler. Werden nicht im Abbild geführt Daten angefordert, leitet der Optimiser die entsprechenden Commands an den angesprochenen VAV-Regler weiter.

Die Ansteuerung des Frequenzumformers erfolgt in dieser Betriebsart über den Optimiser. Werden zusätzliche Steuer- oder Sicherheitsfunktionen geplant, sind diese entsprechend zu berücksichtigen (siehe Planung, Schutzeinrichtung Seite 9+10).

Zusammenschalten bzw. Mischbetrieb verschiedener Regelsysteme

Die Einstellung für den Sollwerteingang (Konfiguration | 3 Sollwerteing) ist für alle acht angeschlossenen Regelkreise eines Optimisers gültig.

Der Mischbetrieb von z.B. einem DDC-Regler mit 0 ... 10 V Ausgang und einem Raumregler mit 2 ... 10 V Ausgang auf einen gemeinsamen Optimiser ist somit nicht möglich.

Workaround:

zwei Optimiser einsetzen und mit der Kaskadenfunktion verbinden.

- Optimiser 1 für DDC 0 ... 10 V
- Optimiser 2 für Raumregler 2 ... 10 V

Siehe Optimiser Kaskadenfunktion Seite 37

Einschränkung – Reinraum-Anlagen mit Optimiser-geregelten Ventilatoren?

Hinweise

Das Anfahrverhalten einer Optimiseranlage kann das Betriebsverhalten eines Reinraumes beeinträchtigen! Das Anfahrverhalten des Optimisers kann nicht verändert werden. (Power-up Verhalten: Klappenantrieb: Adaption, FU-Ausgang: 1,0 V). Das Einsatzgebiet des Optimisers ist auf variable- und konstante Volumenstromsysteme im Komfort-Raumluftbereich festgelegt. Bei diesen Anwendungen stehen Komfort und Betriebskosten (Energieeinsparung) im Vordergrund.

In Reinraum-Anlagen sind Betriebskosten sicher auch ein Thema, die Prioritäten liegen jedoch klar auf dem Aufrechterhalten der erforderlichen Raumkonditionen (Raumüberdruck). Die Anwendung des Optimisers in einer Reinraum-Anlage liegt definitiv ausserhalb dem von Belimo definierten und freigegebenen Einsatzgebiet des Fan Optimisers, dem Komfort-Raumluftbereich. Ein Einsatz liegt somit klar im Verantwortungsbereich der verantwortlichen Stellen in der Projektplanung und Projektausführung.

Einschränkung – Optimiser für schnelllaufende VAV-Applikationen

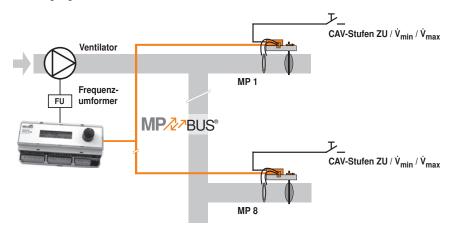
Hinweise

Der VRP-M darf **nicht** in Kombination mit den schnelllaufenden Antrieben:

- NMQB24-SRV-ST
- LMQ24A-SRV-ST
- NMQB24-SRV-ST

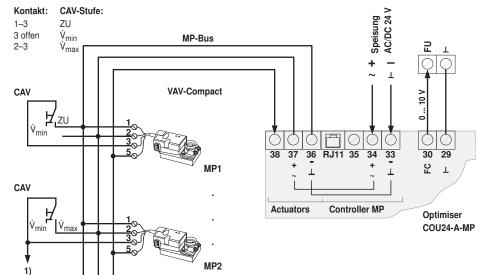
am Fan Optimiser COU24-A-MP betrieben werden!

Die in diesem Dokument beschrieben Applikationen können grundsätzlich auch mit der VRP-M Systemlösung realisiert werden, jedoch nur in der Kombination VRP-M mit Standard-Antrieb NM24A-V-ST.

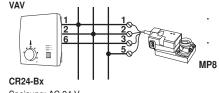

Die Verwendung von schnelllaufenden VAV-Lösungen in Optimiseranlagen ist nicht zulässig!

System	Funktion, Regelung	Anschluss	Тур
CAV	lokale Stufenschaltung, ZU / Vmin / Vmax	auf VAV-Compact	AiMP

Die CAV-Stufenschaltung ZU / \dot{V}_{min} / \dot{V}_{max} wird direkt am VAV-Regler aufgeschaltet und steuert den Volumenstrom in der gewünschten Stufe, z.B. nach Raumbelegung.


Der Optimiser erfasst die Klappenposition und reguliert die Ventilatorleistung über den 0....10 V FU-Ausgang.

Anschluss und Einstellung


COU24-A-MP	
Sollwerteingang	AiMP 2 10 V

VAV-Compact	
Mode	2 10 V
CAV-Fkt.	NMV-D2M komp.

Kombinierbar mit AiMP CR24-Einbindung

VAV-Compact	
Mode	2 10 V

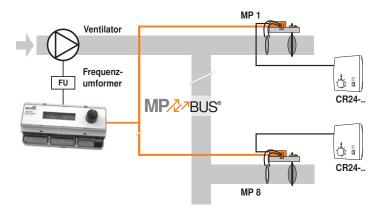
Speisung: AC 24 V Mode: 2 ... 10 V

Einschränkungen

- Klappe AUF und Zwischenstufe \dot{V}_{mid} stehen nicht zur Verfügung! Bei Kombination mit CR24 ist Speisung mit DC 24 V nicht möglich!

Applikationshinweis

1) Kombination Zu- und Abluftsystem: Parallelverdrahtung des VAV-Compact Anschlusses 3 (Y) auf den Abluft VAV-Compact. Beispiel siehe Seite 31

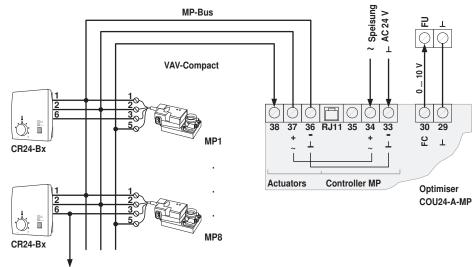

System	Funktion, Regelung	Anschluss	Тур
VAV	Raumregler CR24, ZU / Vmin Vmax	auf VAV-Compact	AiMP

Der Raumtemperaturregler CR24-B.. wird direkt am VAV-Regler aufgeschaltet und führt den Volumenstrom im Bereich \dot{V}_{min} ... \dot{V}_{max} .


Optional lässt sich die Raumlösung mit

- Energiesperrung,
- Stand-by,
- Boostbetrieb oder
- So-/Wi-Kompensation beschalten.

Der Optimiser erfasst den Lüftungsbedarf über die Klappenposition und reguliert die Ventilatorleistung über den 0 ... 10 V FU-Ausgang.



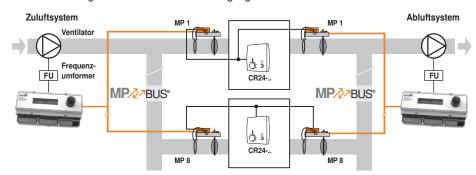
Anschluss und Einstellung

VAV-Compact	
Mode	2 10 V

Applikationshinweis

1)

 Kombination Zu- und Abluftsystem: Parallelverdrahtung des VAV-Compact Anschlusses 3 (Y) auf den Abluft VAV-Compact. Beispiel siehe Seite 31


System	Funktion, Regelung	Anschluss	Тур
VAV Parallelschaltung	Raumregler CR24, ZU / Vmin Vmax	auf VAV-Compact	AiMP

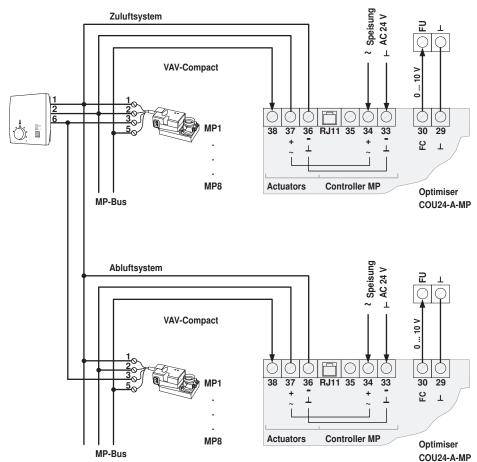
Der Raumtemperaturregler CR24-B.. wird direkt auf den VAV-Regler aufgeschaltet und führt den Volumenstrom im Bereich \dot{V}_{min} ... \dot{V}_{max} .

Optional lässt sich die Raumlösung mit

- Energiesperrung,
- Stand-by,
- Boostbetrieb oder
- So-/Wi-Kompensation beschalten.

Der Optimiser erfasst den Lüftungsbedarf über die Klappenposition und reguliert die Ventilatorleistung über den 0 ... 10 V FU-Ausgang.

Anschluss und Einstellung

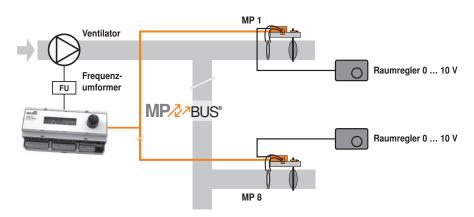

Optimiser Zuluft		
COU24-A-MP		
Sollwerteingang	AiMP 2 10 V	

VAV-Compact	
Mode	2 10 V

Optimiser Abluft	
COU24-A-MP	
Sollwerteingang	AiMP 2 10 V

VAV-Compact	
Mode	2 10 V

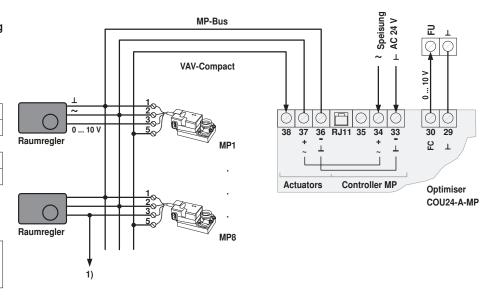
Hinweis CR24 benötigt AC 24 V Speisung.


Applikationshinweis

System	Funktion, Regelung	Anschluss	Тур
VAV	Raumregler 0 10 V, V _{min} V _{max}	auf VAV-Compact	AiMP

Der Raumregler mit 0 ... 10 V Ausgang wird direkt auf den VAV-Regler aufgeschaltet und führt den Volumenstrom im Bereich \dot{V}_{min} ... \dot{V}_{max} .

Der Optimiser erfasst den Lüftungsbedarf über die Klappenposition und reguliert die Ventilatorleistung über den 0 ... 10 V FU-Ausgang.


Anschluss und Einstellung

COU24-A-MP	
Sollwerteingang	AiMP 0 10 V

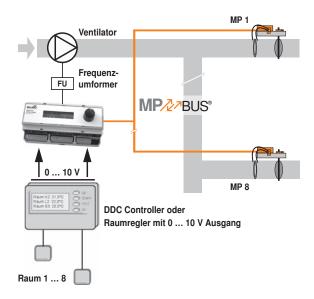
VAV-Compact	
Mode	0 10 V

Hinweis

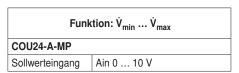
Anschluss Raumregler gemäss Unterlagen des Herstellers.

Applikationshinweis

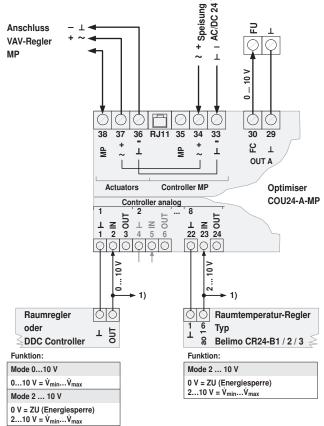
1) Kombination Zu- und Abluftsystem: Parallelverdrahtung des VAV-Compact Anschlusses 3 (Y) auf den Abluft VAV-Compact. Beispiel siehe Seite 31



System	Funktion, Regelung	Anschluss	Тур
VAV	DDC / Raumregler 0 10 V, V _{min} V _{max}	Optimiser Analogeingang	Ain

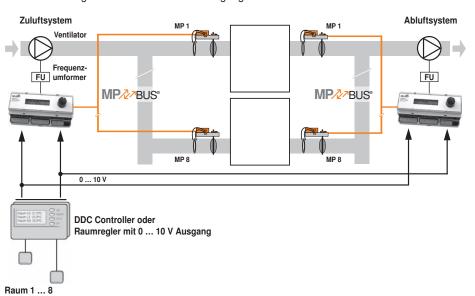

Anschluss auf Optimiser Analogeingang Typ: Ain Die 0 ... 10 / 2 ... 10 V Bedarfssignale einer DDC oder von Einzelraumreglern werden auf den Optimiser verdrahtet und führen den Volumenstrom im Bereich \dot{V}_{min} ... \dot{V}_{max} .

Durch Beschaltung des Optimisereingangs (Mode 2 ... 10 V) lässt sich die Klappe mit einem 0 V Signal absperren.

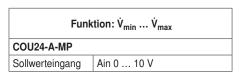

Der Optimiser erfasst den Lüftungsbedarf über die Klappenposition und reguliert die Ventilatorleistung über den 0 ... 10 V FU-Ausgang.

Anschluss und Einstellung

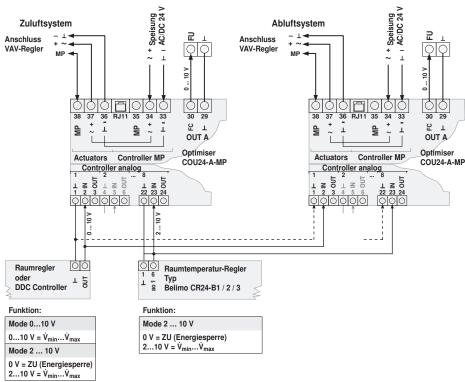
Funktion: ZU / V _{min} V _{max}		
COU24-A-MP		
Sollwerteingang	Ain 2 10 V	


Applikationshinweis

 Kombination Zu- und Abluftsystem: Parallelverdrahtung des Reglersignals auf ZUL- und ABL-Optimiser. Beispiel siehe Seite 31



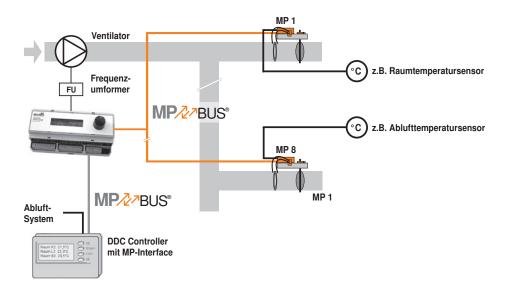
System	Funktion, Regelung	Anschluss	Тур
VAV Parallelschaltung	DDC / Raumregler 0 10 V, Vmin Vmax	Optimiser Analogeingang	Ain


Anschluss auf Optimiser Analogeingang Typ: Ain Die Bedarfssignale einer DDC oder von Einzelraumreglern werden als 0 ... 10 V Signale auf den Optimiser verdrahtet und führen den Volumenstrom im Bereich \dot{V}_{min} ... \dot{V}_{max} . Der Optimiser erfasst den Lüftungsbedarf über die Klappenposition und reguliert die Ventilatorleistung über den 0 ... 10 V FU-Ausgang.

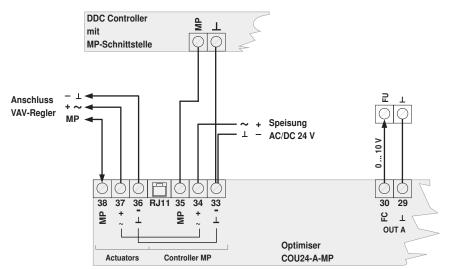
Anschluss und Einstellung

Funktion: ZU / \dot{V}_{min} \dot{V}_{max}	
COU24-A-MP	
Sollwerteingang	Ain 2 10 V

Applikationshinweis


System	Funktion, Regelung	Anschluss	Тур
VAV	Optimiser mit DDC als MP-Master	Optimiser Controller MP	MP

Anschluss auf Optimiser Controller MP Typ: MP Das Führungssignal für die VAV-Regler wird von dem – als MP-Master funktionierenden – DDC-Regler via den MP-Bus an die VAV-Compact übermittelt.


Über den Optimiser sind alle Daten der

- VAV-Regler (Istwert, V_{min}, V_{max}, usw.)
- Sensoreinbindung (Schalter, Sensor) verfügbar.

Unabhängig von der DDC-Einbindung erfasst der Optimiser die Klappenposition der VAV-Boxen und reguliert die Ventilatorleistung über den 0....10 V FU-Ausgang.

Anschluss und Einstellung

COU24-A-MP
Sollwerteingang MP

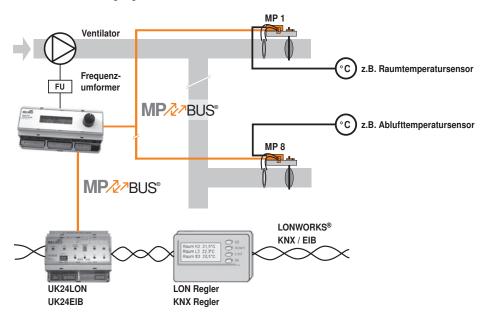
Applikationshinweis

Kombination Zu- und Abluftsystem:

- das Abluftsystem wird über einen separaten Optimiserkreis geführt.
- die Verbindung Zu- / Abluftsystem erfolgt in dem DDC-Regelsystem.

System	Funktion, Regelung	Anschluss	Тур
VAV	Optimiser mit UK24LON/EIB als MP-Master	Optimiser Controller MP	MP

Anschluss auf Optimiser Controller MP Typ: MP Das Führungssignal für die VAV-Regler wird von dem – als MP-Master funktionierenden – UK24LON via den MP-Bus an die VAV-Compact übermittelt.


Via UK24LON sind alle Daten der beiden LonMark® Profile

- Damper Actuator Object #8110
- Sensor Open Loop Object #1 verfügbar.

Unabhängig von der LON-Einbindung erfasst der Optimiser die Klappenposition und reguliert die Ventilatorleistung über den 0 ... 10 V FU-Ausgang.

EIB/Konnex Anwendungen

Für diese Anwendung steht die gleiche Funktionalität – bei Verwendung des EIB/KNX Gateway UK24EIB – zur Verfügung.



Anschluss und Einstellung

Hinweis

Der Optimiser benötigt keine MP-Adresse.

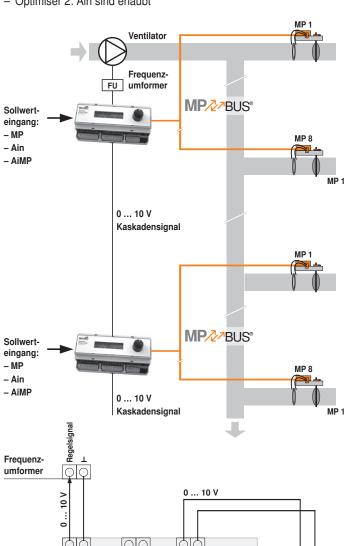
COU24-A-MP	
Sollwerteingang	MP

Applikationshinweis

Kombination Zu- und Abluftsystem:

- das Abluftsystem wird über einen separaten Optimiserkreis geführt.
- die Verbindung Zu- / Abluftsystem erfolgt im übergeordneten Regelsystem LON bzw. Konnex.

System	Funktion, Regelung	Anschluss	Тур
Optimiser	Kaskadenschaltung	Klemmen CASC/FC	AiMP/Ain/MP

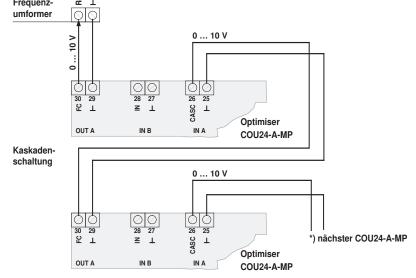

Anschluss auf Klemmen CASC / FC Typ: AiMP / Ain / MP Erfordert die Anlagengrösse den Einsatz von mehreren Optimisern, werden diese über das 0 ... 10 V Kaskadensignal verbunden. Die Kaskadenverbindung dient den angeschlossenen Optimisern zur Übermittlung der Bedarfssignale.

Sollwerteinstellung 1) in Kaskadenfunktion

Alle Applikationen bzw. Sollwerteingangseinstellungen können in Kaskadenschaltung betrieben werden.

Auch gemischte Anlagen, z.B.

- Optimiser 1: AiMP
- Optimiser 2: Ain sind erlaubt

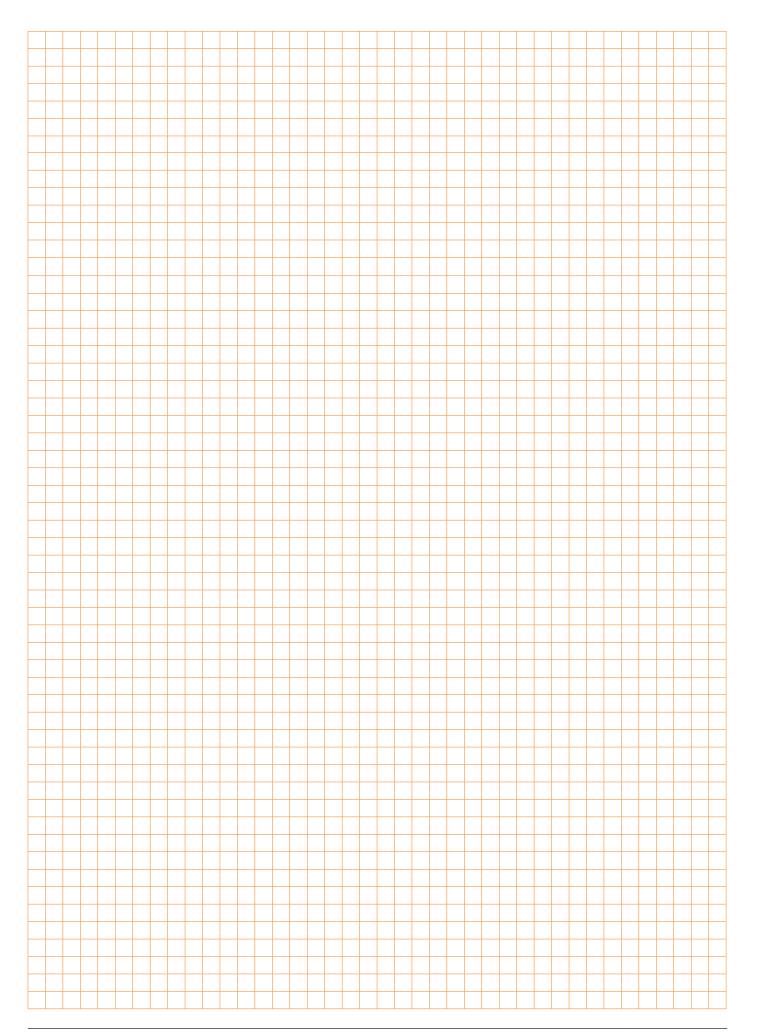


Kaskadenanschluss und Einstellung

Erster Opti	miser mit FU-Anschluss
COU24-A-MP	
Sollwerteingang	1)
Kaskade	EIN

we	eitere Optimiser
COU24-A-MP	
Sollwerteingang	1)
Kaskade	EIN

1	etzter Optimiser
COU24-A-MP	
Sollwerteingang	1)
Kaskade	AUS

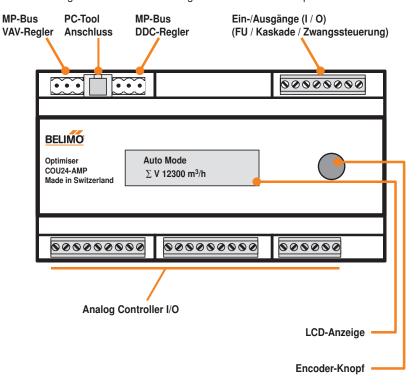


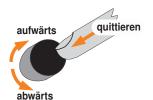
Einschränkungen

Die Verbindung vom Zu- und Abluftsystem über die Kaskadenfunktion ist nicht möglich!

Applikationshinweis

Kombination Zu- und Abluftsystem: Beispiele siehe Seite 23 und folgende



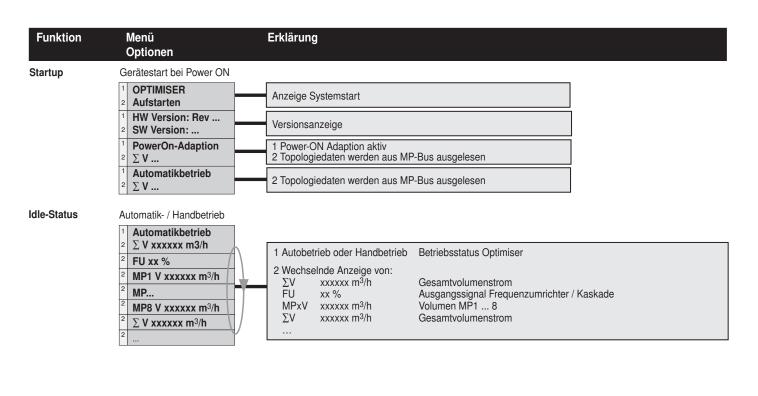

Optimiser Bedienung

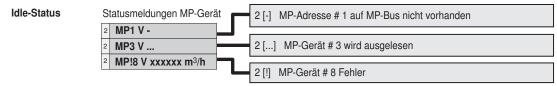
Die Bedienung des COU24-A-MP erfolgt mit dem Encoder-Knopf und der 2-Zeilen LCD-Anzeige.

Bedien- und Anzeigeelemente

Bedienung Encoder-Knopf

Der Encoder-Knopf des COU24-A-MP besitzt eine dreifach Funktion:


- Verstellen und auswählen (up / down)
- Bestätigen (quittieren)


Symbol LCD	Bedeutung	
•	Anzeige:Aktionen:	aktuelle Position (Cursor) Auswahl aktueller Position durch Quittieren (Drücken) des Encoder-Knopfes z.B. Sub-Menü anwählen
A	Scrollbar:	weitere Menüpunkte verfügbar – Up
•	Scrollbar:	weitere Menüpunkte verfügbar – Down
•	Aktion:	Feld/Wert ändern mit Down z.B. Wert verkleinern
•	Aktion:	Feld/Wert ändern mit Up z.B. Wert erhöhen

Fehler Fehlerverlauf

Optimiser Bedienung (Fortsetzung) Menü Struktur Startup Submenü Konfiguration 1 Sprache 2 Einheiten Idle State (Default Anzeige) Anzeige Automatikbetrieb Submenü Σ V 16231 m³/h Betriebsdaten Details MP1 FU 65 % Details MP2 MP1 V 4211 m³/h MP2 V 1023 m³/h **Fehlerliste** Submenü

Optimiser Bedienung (Fortsetzung)

Sprache Sprache Sprache Active English new German new English 1 Sprache Einheiten Einheit m³/h Neu I/s Neu m³/h Sollwerteingang SWE Auto (Ain) Neu Automatik Neu Hand Ain L→ Weiter L→ Al Bereich xxx L→ Neu C-10V Einstellung für CR24-B 0/2 10 V = V_min V_max Neu Hand AinP L→ Weiter L→ Al alle EIN L→ Neu C-10V Einstellung für CR24-B 0/2 10 V = V_min V_max L→ Neu G-10V Einstellung für CRV / CR24-B 0/2 10 V = V_min V_max L→ Neu G-10V Einstellung für CRV / CR24-B 0/2 10 V = V_min V_max L→ Neu G-10V Einstellung für CRV / CR24-B 0/2 10 V = V_min V_max L→ Neu G-10V Einstellung für CRV / CR24-B 0/2 10 V = V_min V_max L→ Neu G-10V Einstellung für CRV / CR24-B 0/2 10 V = V_min V_max L→ Neu G-10V Einstellung für CRV / CR24-B 0/2 10 V = V_min V_max L→ Neu G-10V Einstellung für CRV / CR24-B 0/2 10 V = V_min V_max L→ Neu G-10V Einstellung für CRV / CR24-B 0/2 10 V = V_min V_max L→ Neu G-10V Einstellung für CRV / CR24-B 0/2 10 V = V_min V_max L→ Neu G-10V Einstellung für CRV / CR24-B 0/2 10 V = V_min V_max L→ Neu G-10V Einstellung für CRV / CR24-B 0/2 10 V = V_min V_max L→ Neu G-10V Einstellung für CRV / CR24-B 0/2 10 V = V_min V_max L→ Neu G-10V Einstellung für CRV / CR24-B 0/2 10 V = V_min V_max L→ Neu G-10V Einstellung für CRV / CR24-B 0/2 10 V = ZU / V_min V_max L→ Neu G-10V Einstellung für CRV / CR24-B 0/2 10 V = ZU / V_min V_max L→ Neu G-10V Einstellung für CRV / CR24-B 0/2 10 V = ZU / V_min V_max L→ Neu G-10V Einstellung für CRV / CR24-B 0/2 10 V = ZU / V_min V_max L→ Neu G-10V Einstellung für CRV / CR24-B 0/2 10 V = ZU / V_min V_max
Sprache Active English new German Deutsch Deutsch Einheiten Einheit m³/h Neu I's I's Neu m³/h Neu I's Neu m4/h m³/h Neu Hand MP Sollwerteingang auf Funktion *Auto-Detektion* stellen Neu Hand MP Neu Hand Ain L→ Weiter L→ Alalle EIN L→ Alale EIN L→ Alle Al EIN alle Al Aktivieren Alle Al EIN alle Al Aktivieren Alle Al Alle Al Aus Al einzeln EIn/ Aus schalten L→ Weiter L→ Alalle EIN L→ Neu 1-0 VE instellung für CR24-B 0/2 10 V = V/min V/max Neu Hand Ain Sollwerteingang auf Analogeingang stellen L→ Weiter L→ Alalle EIN L→ Alle Al EIN alle Al Aus Al einzeln EIn/ Aus Schalten L→ Weiter L→ Alalle EIN L→ Neu 2-10V Einstellung für CR24-B 0/2 10 V = ZU / Vmin Vmax L→ Neu 2-10V Einstellung für CR24-B 0/2 10 V = ZU / Vmin Vmax Neu Hand AiMP L→ Weiter L→ Alalle EIN L→ Ala
Sollwerteingang SWE Auto (Ain) Neu Hand Ain L→ Weiter L→ All alle EIN L→ Neu 0-10V Einstellung für CAV / Raumregler mit 0 10 V = Vmin Vmax Neu Hand AiMP Sollwerteingang für Sollwerteingang stellen L→ Weiter L→ All alle EIN L→ Neu 2-10V Einstellung für CAV / Raumregler mit 0 10 V = Vmin Vmax L→ OK L→ And Aim Sollwerteingang für Signalaufschaltung über VAV-Compact stellen Alle Al Alle Al Alle Al Alle Alle Alle
Sollwerteingang SWE Auto (Ain) Neu Automatik Neu Hand MP Sollwerteingang auf Funktion «Auto-Detektion» stellen Neu Hand Ain Sollwerteingang auf Analogeingang stellen L→ Weiter L→ Al alle EIN L→ OK L→ Aendern L→ Weiter L→ Albereich xxx L→ Neu 0-10V Einstellung für CR24-B 0/2 10 V = Vmin Vmax Neu Hand AiMP Sollwerteingang auf Analogeingang stellen Alle Al Aus alle Al deaktivieren Alle Al EIN alle Al aktivieren Alle Al EIN alle Al einzeln EIN / Aus schalten L→ Weiter L→ Albereich xxx L→ Neu 0-10V Einstellung für CR24-B 0/2 10 V = Vmin Vmax Neu Hand AiMP L→ Weiter L→ Al alle EIN L→ OK Alle Al Aus alle Al deaktivieren Alle Al Aus alle Al deaktivieren Alle Al EIN alle Al Aus alle Al deaktivieren Alle Al EIN alle Al Aus alle Al deaktivieren Alle Al EIN alle Al Aus Al einzel EIN / Aus schalten Alle Al EIN alle Al Aus Al einzel EIN / Aus schalten L→ Weiter L→ Alalleerich xxx L→ Neu 0-10V Einstellung für CAV / Raumregler mit 0 10 V = Vmin Vmax
L→ Weiter L→ Al alle EIN L→ OK Alle Al EIN Alle Al EIN Alle Al AuS Alle Al aktivieren Alle Al einzeln EIN / AuS schalten L→ Weiter L→ AlBereich xxx L→ Neu 0-10V Einstellung für Raumregler mit 0 10 V = Vmin Vmax L→ Neu 2-10V Einstellung für CR24-B 0/2 10 V = ZU / Vmin Vmax Neu Hand AiMP Sollwerteingang für Signalaufschaltung über VAV-Compact stellen L→ Weiter L→ Al alle EIN L→ OK Alle Al AUS Alle Al AuS Alle Al deaktivieren Alle Al EIN Alle Al AuS Alle Alle Alle Alle Alle Alle Alle Alle
SWE Auto Sollwerteingang Auto-Detekt Funktion Bei dieser Einstellung erkennt der Optimiser automatisch, ob ein PC-Tool oder eine DDC mit MP-Schnittstelle angeschlossen ist. SWE Auto (Ain)/(MP) Anzeige der Detektion: (Ain) = analoge Ansteuerung (MP) = PC-Tool oder MP-Master SWE Hand () Mit dieser Einstellung wird der Eingang auf eine Funktion fixiert. Bei Einstellung auf SWE Hand kann der RJ12 Anschluss (PC-Tool Anschluss) nicht verwendet werden. Ausnahme: Hand MP

- Antriebe
- 4 5 Applikation
- FreqUmrichter Kaskade
- Handbetrieb
- Defaultwerte
- 10 Advanced

Hinweis

Alle Einstellungen mit Ausnahme der Einstellungen des Submenüs 8 Handbetrieb werden gespeichert und stehen auch nach einem Ausfall der Speisespannung zur Verfügung.

1) Mit dieser Option können einzelne oder alle Analog-Eingänge aktiviert bzw. deaktiviert werden.

Optimiser Bedienung (Fortsetzung)

	Menü Optionen	Erklärung
1 Sprache 2 Einheiten 3 Sollwerteingang		
4 Antriebe	Antriebe MP1 Gefunden MP2 Gefunden L⇒ 00xxxxxxxxxxxxx L⇒ De-AdressMP2 MP3 MP6 MP7 Fehlt MP8 Fehlt L⇒ Drucke MP8 L⇒ Drücke L⇒ SerNrMP8 L⇒ SerNrMP2Eingeb	MP-Bus Topologie wird ausgelesen Gerät mit Adresse MP1 erkannt dito MP2 Anzeige der Seriennummer von MP2 Gerät mit Adresse MP2 de-adressieren (Rücksetzung auf PP) MP 7 nicht vorhanden dito MP8 VAV-Regler über Adresstaste adressieren VAV-Regler wird durch Drücken dessen Adresstaste auf MP8 gesetzt VAV-Regler über Seriennummer adressieren Eingabe der Seriennummer des gewünschten VAV-Reglers für MP8 Die Serienummer ist auf jedem VAV-Regler angebracht.
5 Applikation	Applikation VAV Applikation Neu PosRegel Appl. Neu VAV Appl Weiter L⇒ Min/Max MP1 xxx m³/h L⇒ Maximum MP1 xxx m³/h L⇒ ok L⇒ Min/Max MP2 L⇒ Min/Max MP3	Aktive Optimiser Applikation Positionsregelung (Anwendung ist nicht Bestandteil dieser Dokumentation) AV Anwendung – Fan Optimiser MP1 – \dot{V}_{min} / \dot{V}_{max} Einstellung MP1 – \dot{V}_{min} MP1 – \dot{V}_{min} ändern MP1 – \dot{V}_{max} MP1 – \dot{V}_{max} MP1 – \dot{V}_{max} ändern Einstellung übernehmen
6 FreqUmrichter	FreqUmrichter Ber 0.0-10.0V Setze FU Min Setze FU Max	Hinweis: Für gemischte Anwendung mit mechanischen Volumenstrom- reglern kann das FU Führungssignal mit einem Minimalwert (Set FU Min) begrenzt werden. eingestellter Arbeitsbereich für FU-Ausgang Minmal Begrenzung des Ausgangsignals Maximal Begrenzung des Ausgangsignals
7 Kaskade	Kaskade Kaskade AUS Kaskade einschalt Kaskade ausschalt	aktive Einstellung Kaskadeneingang Kaskadeneingang aktivieren Kaskadeneingang de-aktivieren
8 Handbetrieb 9 Defaultwerte 10 Adwanced		

Funktion

Bedienung und Einstellung

Menü

FU max xx,x V

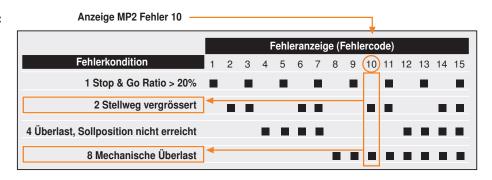
Optimiser Bedienung (Fortsetzung)

	Optionen	
Betriebsdaten anzeigen Details MP1	Detail MPx	
Details MP 8	- MPx V xxxxx m3/h - Position xx % - Vmin xxxxx m³/h	(aktueller Volumenstrom) (Klappenwinkel) (V min Einstellung)
FU / Kaskade	- Vmax xxxxx m ³ /h	(V _{max} Einstellung)
	FU / Kaskade - FU xx,x V - Kaskade xx,x V - FU min xx,x V	(Freq.Umfomer-Ausgang) (Kaskadeneingang) (Ausgangsbegrenzung)

Erklärung

(Max. Ausgangsbegrenzung)

Fehlerliste anzeigen


erliste anzeigen		
Fehler	- Fehlerliste	Anzeige der aktiv anstehenden Fehler. Anstehende Fehler werden vom Optimiser zyklisch geprüft, automatisch
Fehlerverlauf		gelöscht und in die Fehlerverlaufsliste eingetragen.
	Fehler	
	L► MP1 ok L► MP	VAV-Regler MP1 – kein Fehler anstehend
	L► MP2 Fehler 10	VAV-Regler MP2 – Fehler 10 anstehend
	L► MP8 ok (nv)	VAV-Regler mit Adresse MP8 nicht auf MP-Bus vorhanden
	Fehlerverlauf	Anzeige der letzen 10 Meldungen
	L ► 1	neuste Meldung
	L►	*10
	└► 10	älteste Meldung
		Maximal 10 Meldungen werden in der Fehlerverlaufsliste geführt.
		Beim elften Eintrag wird die älteste Meldung gelöscht.
	L► LoescheVerlauf	Verlaufliste löschen

Fehleranzeige

Die Fehler werden mit einem Nummercode dargestellt, Detailbeschreibung siehe Produktinformation VAV-Compact

				F	ehle	eran	zeiç	je (F	ehle	erco	de)				
Fehlerkondition	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1 Stop & Go Ratio > 20%															
2 Stellweg vergrössert															
4 Überlast, Sollposition nicht erreicht															
8 Mechanische Überlast															-

Beispiel:

Bedienung und Einstellung

MP-Bus - VAV-Regler adressieren

Der MP-Bus ist der Belimo Master-Slave Bus. An ein MP-Mastergerät, wie den COU24-A-MP können bis zu 8 Slaves (VAV-Compact Regler NMV-D2M, L/N/SMV-D2-MP, VRP-M) angeschlossen werden. Jedem MP-Slave muss für den MP-Bus Betrieb eine eindeutige MP-Adresse im Bereich MP1 ... 8 zugewiesen werden.

Die Belimo VAV-Regler werden ab Werk mit der Adresseinstellung PP (point-to-point) ausgeliefert. Die PP Einstellung wird für konventionelle Ansteuerung für CAV-/VAV-Funktion über 0 ... 10 / 2 ... 10 V Signale benötigt.

Voradressierung mit Belimo PC-Tool V3.1

Adressierung mit DDC als MP-Master

über den Optimiser nicht adressiert / de-

den MP-Master zu adressieren.

Anzeige: «Optimiser nicht Adress-Master!»

adressiert werden.

Bei der Einstellung des Optimisers Sollwert-

eingang auf SWE Auto (MP) oder SWE Hand

(MP) können die angeschlossenen VAV-Regler

Die VAV-Regler sind in dieser Anwendung über

Die Adressierung der VAV-Regler kann vorgängig mit dem PC-Tool erfolgen (Teilnehmer adressieren / de-adressieren). Nach dem Anschluss der voradressierten VAV-Regler an den Optimiser COU24-A-MP werden diese automatisch erkannt und ausgelesen.

Adressierung mit COU24-A-MP

Der Optimiser COU24-A-MP verfügt über zwei Adressierfunktionen:

- Adresszuweisung über Adressiertaste
- Adressierung über Serienummer

Sowie eine De-adressier Funktion für die Rücksetzung auf PP Betrieb.

Adresszuweisung über Adressiertaste

Menü-Option: Konfiguration | 4 Antriebe

Bei Aufruf dieser Menüoption wird MP-Bus Topologie ausgelesen (Suche Antriebe...) und

angezeigt:

Anzeige Bedeutung

MP1 gefunden Gerät mit Adresse MP1 gefunden MP2 fehlt Gerät mit Adresse MP2 nicht vorhanden

MP...

Vorgehen

a) MP2 fehlt selektieren – Druecke MP2 anwählen

- SerNrMP2

b) Adressiertaste am VAV-Regler drücken

Anzeige: Erfolgreich MP2

Bereits adressierte VAV-Regler können mit dieser Funktion einfach umadressiert werden.

Adresszuweisung über Serienummer

Menu-Option: Konfiguration | 4 Antriebe

Bei Aufruf dieser Menuoption wird MP-Bus Topologie ausgelesen (Suche Antriebe...) und angezeigt:

Anzeige Bedeutung

MP1 gefunden Gerät mit Adresse MP1 gefunden MP2 fehlt Gerät mit Adresse MP2 nicht vorhanden

MP...

Vorgehen

a) MP2 fehlt selektieren

- Druecke MP2

SerNrMP2 anwählenb) SerNrMP2Eingeb anwählen

Anzeige:

- SerNrMP2 ►0◄

- c) die am VAV-Regler aufgeklebete Serienummer eingeben (links/rechts Zahl auswählen; Bestätigung durch Drücken) z.B: 0054810027146142
- d) Setze Adr MP2 anwählen

Inbetriebnahme

Voraussetzung

Montage- und Anschlusskontrolle aller Komponenten:

- MSR-Anlage, inkl. Schaltgerätekombination (Schaltschrank)
- FU und Ventilatoren inkl. deren Schutzeinrichtungen
- Brandfallsteuerung (Freigabe, Brandschutzklappen)
- VAV-Boxen inkl. Raumregelung
- CAV-Boxen inkl. Stufensteuerung
 - Sicherstellen dass bei analoger Ansteuerung die Signale der DDC-/Raumregler an den entsprechenden Klemmen (Controller Analog MPx = Klemmengruppe x) anliegen.
- Elektrische Inbetriebsetzung obiger Komponenten und Systemteile
- Inbetriebsetzung bzw. Funktionskontrolle obiger Komponenten und Systemteile

Optimiser COU24-A-MP Parametereinstellung prüfen und gegebenfalls modifizieren

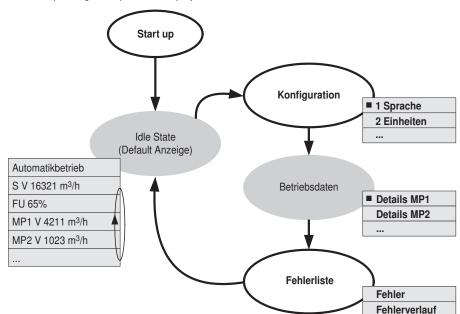
Menü [Konfiguration] anwählen

- Sprache und Einheiten prüfen, ggf. einstellen

- Sollwerteingang prüfen, ggf. Anpassung auf Analogsignal 0 ... 10 oder 2 ... 10 V

Antriebe
 Applikation
 MP-Adressen gemäss Topologie vergeben prüfen, gegebenfalls auf VAV stellen

FreqUmrichter pr
üfen, bei Bedarf Signalbegrenzung einstellen


KaskadeKaskadenfunktion benötigt?

Falls ja, EIN wählen

Handbetrieb pr
üfen, ggf. auf Automatik stellen

Funktionsprüfung am Optimiser Display

Funktionsprüfung am Optimiser Display

Optimiser Handbetrieb

(Menu: Konfiguration | 8 Handbetrieb)
Nach einem Power-down werden die
Einstellungen im Menu Handbetrieb zurück auf
Automatikbetrieb gesetzt.

Optimiser Power-up Verhalten

Nach dem Einschalten der 24 V Speisung erfolgt automatisch eine Power-ON Adaption. Der FU Ausgang ist während diesem Vorgang fix auf 10% gesetzt.

VAV-Regler Betriebsvolumenstromeinstellung $\dot{V}_{min}\,/\,\dot{V}_{max}$ ändern

(Menu: Konfiguration | 5 Applikation) VAV Applikation bestätigen, anschliessend nach unten scrollen. MP-Adresse wählen, \dot{V}_{min} / \dot{V}_{max} Einstellungen überprüfen und gegebenfalls ändern.

Bedienung und Einstellung

VAV-Regler einstellen – Verwendung PC-Tool

VAV-Compact L/NMV-D2M / VRP-M Systemlösung

Bei diesen Geräten steht die lokale On-Board Servicebuchse im MP-Bus Betrieb nicht zur Verfügung.

Vorgehen:

- Geräte vom MP-Bus trennen (MP-Anschluss)
- PC-Tool anschliessen

PC-Tool Anschluss

- a) am Optimiser (RJ12)
 - Sollwerteingang muss auf Hand MP gestellt werden.
 - Zugriff auf alle 8 MP-Teilnehmer.
 - Sollwerteingang muss anschliessend auf die korrekte Einstellung zurückgesetzt werden.

Grundsätzlich müssen an den VAV-Reglern – ausser der Zuweisung der MP-Adresse – keine weiteren Parameter eingestellt werden. Bei der Fabrikation der VAV-/CAV-Boxen werden die VAV-Regler durch den Boxenhersteller auf die Anlagewerte geeicht und eingestellt. Die Adressierung der VAV-Regler sowie eine allfällige Überprüfung und Korrektur der

Betriebsvolumenstromeinstellung \dot{V}_{min} / \dot{V}_{max} kann direkt am Optimiser vorgenommen werden.

Für weitere Einstellungen steht das Belimo PC-Tool zur Verfügung. Der Anschluss erfolgt lokal

b) am VAV-Compact L/N/SMV-D2-MP / LHV-D2-MP

am VAV-Compact Regler oder direkt am Optimiser.

Wird das PC-Tool lokal an der Servicebuchse des VAV-Compact angeschlossen, kann dieser MP-Teilnehmer mit dem PC-Tool bearbeitet werden. Der Zugriff auf die weiteren MP-Teilnehmer ist nicht möglich.

c) am L/NMV-D2M / VRP-M Regler

Achtung: Die Benutzung der Servicebuchse am VAV-Regler ist bei laufendem Betrieb nicht möglich (Bus-Kollision).

Der VAV-Regler muss vorgängig vom MP-Bus abgetrennt werden. Entweder am VAV-Regler oder am Optimiser MP-Anschluss. Wird der MP-Anschluss am Optimiser aufgetrennt, hat man Zugriff auf alle 8 MP-Teilnehmer.

Verfügbare Funktionen

- Parameter anzeigen/verstellen
 - Lesen, schreiben und Protokollierung aller Einstellparameter des angeschlossenen VAV-Reglers
- Simulation Soll- / Istwertanzeige / Trendfunktion

Durch das Eingreifen eines Tools auf den am Optimiser laufenden VAV-Regler kann eine Beeinträchtigung des laufenden Optimiserbetriebs auftreten z.B. durch Übersteuerung der vorgegebenen Betriebsstufe respektive des Sollwertes im Betrieb. Dies ist keine Fehlfunktion des Tools oder VAV-Reglers.

Das Interpretieren der Anzeige ist in diesem Fall sehr komplex. Aus diesem Grund wird empfohlen im laufenden Optimiserbetrieb mit dem PC-Tool keine Simulationfunktion zu aktivieren.

Hinweis

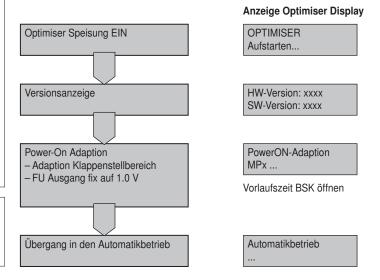
Der Optimiser bzw. die Ventilatorregulierung wird durch die Unterbrechung des MP-Bus beeinträchtigt!

Hinweis ZTH-VAV (ZEV)

Die Verwendung des VAV-Einstellgerätes ZTH-VAV (ZEV) in einer MP-Bus Installation (Optimiser, Bus-Leitung) ist nicht möglich, da dieses nur PP fähig ist. Der Vor-Ort Anschluss an der Tool Buchse des L/N/SMV-D2-MP ist jeodch möglich, nicht aber bei dessen Vorgängermodel L/NMV-D2M.

Power-ON - Aufstartverhalten

Hinweis


Die Power-ON Adaption ist eine Funktion des Optimisers und kann nicht augeschaltet werden. Nutzen:

- Vorlaufszeit für Öffnen der BSK nach einem Stromausfall
- Initialisierung und Abgleich des Klappenabbildes
 Die Klappenstellung ist eine der Regelgrössen für die Optimiserfunktion und demzufolge eine wichtige Information.

Das im VAV-Compact einstellbare Adaptionsverhalten hat keinen Einfluss auf die vom Optimiser benutzte Power-ON Funktion. Während der Power-ON Adaption ist der Zwangssteuereingang inaktiv!

Hinweis

Die Menüoption Konfiguration kann während der Power-ON Adaption für die Einstellung / Überprüfung der Optimiser Parameter verwendet werden. Um die Funktion der Klappenpositionsregulierung zu gewährleisten ist beim Aufstarten (Power-ON) der VAV-Systemlösung ist im Optimiser eine definierte Power-ON Funktion hinterlegt. Das Aufstartverhalten des Optimisers und der VAV-Regler sieht wie folgt aus:

Zwangssteuerung – Override Betrieb

Hinweis

Während der Power-ON Adaption ist der Zwangssteuereingang ausser Betrieb um Fehlfunktionen zu verhindern.

Für die Realisation von übergeordneten Steuerfunktionen (z.B. Notbetrieb zur Unterstützung im Entrauchungsfall, Zwang AUS Funktion) verfügt der Optimiser über einen Zwangssteuereingang (IN B – Klemme 28). Die Beschaltung des Einganges erfolgt mit einem 0 ... 10 V Signal anhand der nachfolgenden Tabelle.

Funktion

Signal auf Eingang IN B	Funktion	Zwangssteuerung	g wirkend auf
(Klemme 28)		Frequenzumformer (Kl. 30)	VAV-Regler (MP-Bus) 1)
10 V	Aus	Ausgangssignal: 0 V	Klappen ZU
Eingang offen	Auto	Regelbetrieb: 0 10 V	VAV-Betrieb
0 V	Notbetrieb	Ausgangssignal: 10 V	Klappen AUF

1) Auf alle angeschlossenen VAV-Regler wirkend

Funktion Zwangsteuereingang während Power-On Adaption

Während der Power-On Adaption ist der Zwangssteuereingang deaktiviert.

Busfail-Funktion VAV-Compact

Beim Unterbruch des MP-Busses (Ausfall, Ausstecken der MP-Bus Leitung) verhält sich der VAV-Compact gemäss dem eingestellten Busfail-Verhalten.

Verhalten bei Unterbruch

Jedem VAV-Compact lässt sich das Verhalten bei Unterbruch des MP-Bus, Wartungsarbeit, Störung usw. einstellen. Die Einstellung kann mit dem PC-Tool ab Version V 3.1 angezeigt oder verändert werden.

Folgende Funktionen stehen zur Verfügung:

- ZU
- V_{min}
- V_{max}
- AUF
- letzter Sollwert

(Default-Einstellung, letztes Sollwert-Comand, das vom Bus-Master empfangen wurde).

Betriebsverhalten und Funktionserklärung

VAV-CAV-System im Mischbetrieb mit mechanischen CAV-Boxen

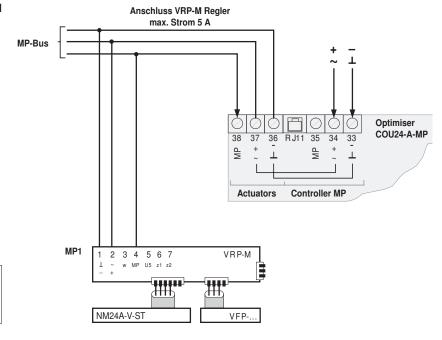
Für Anlagen mit einer Mischbestückung, VAV-Boxen mit VAV-Compact und mechanischen CAV-Boxen, kann bei Bedarf am Optimiser eine minimale Ausgangsspannung eingestellt werden, um die Versorgung der CAV Boxen zu gewährleisten.

Einstellung:

Menu: Konfiguration | 6 FreqUmricht | Setzte FU Min

Einstellbereich: 0.0 ... 10.0 V

Optimiserbetrieb mit VRP-M Lösung


VRP-M im Optimiserbetrieb

Die Integration eines VRP-M in eine Optimiser COU24-A-MP Anwendung ist ab der VRP-M Firmware Version V3.x (ab 3.Q/2006) möglich. VRP-M Versionsanzeige:

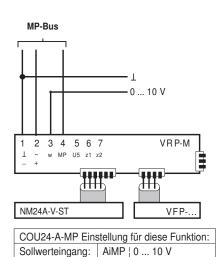
- Geräterückseite
- VRP-M Tool | Experte | System-Info VRP-M Firmware > 03xx

Die VRP-M Systemlösung als VAV-Anwendung kann ebenfalls in den Optimiser COU24-A-MP integriert werden. Die Anwendung funktioniert – bis auf einige systembedingte Abweichungen – grundsätzlich gleich wie die der VAV-Compact Regler. Die Verwendung von VRP-M mit schnelllaufenden Antrieben ist für die Optimiserfunktion nicht zulässig! Nachfolgend werden diese Abweichungen und Systemmerkmale beschrieben. Die Funktion und Anwendung der VRP-M Lösung ist in der separat erhältlichen VRP-M Produktinformation beschrieben (www.belimo.com).

Anschluss VRP-M

Topologie und Leitungslänge MP-Bus

siehe Seite 16 ... 18

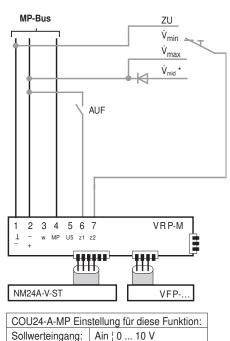

Die Dimensionierungsdaten der Antriebe und der Drucksensor sind zu berücksichtigen!

Anwendungen

VAV Anwendung über Direkt-Einbindung 0 ... 10 V Signal

Funktion:

 $0 \dots 10 \text{ V} = \dot{V}_{min} \dots \dot{V}_{max}$


* Funktion steht bei DC 24 V-Speisung nicht zur

Verfügung!

CAV Anwendung mit direkter Signalaufschaltung am VRP-M Einbindung

unktion:

ZU, \dot{V}_{min} , \dot{V}_{max} , \dot{V}_{mid} , AUF

Optimiserbetrieb mit VRP-M Lösung

Optimiserbetrieb mit VRP-M Lösung

(Fortsetzung)

Mischbetrieb mit VAV-Compact

Anwendungen mit Mischbestückung sind grundsätzlich möglich. Die Ansteuerung der VAV-Compact, der VRP-M Lösung und die Sollwerteingang Einstellung des COU24-A-MP muss berücksichtigt werden.

Antrieb

Hinweis

Die Verwendung von schnelllaufenden Klappenstellantrieben LMQ24A-SRV-ST / NMQ24A-SRV-ST / NMQB24-SRV-ST mit einem VRP-M mit Optimisereinbindung ist nicht zulässig! Für die klappenstellungsbezogene Optimiserlösung können ausschliesslich Antriebe mit Stellungsrückmeldung (mit vier Anschlüssen), z.B. NM24A-V-ST verwendet werden. Die dreiadrigen Antriebe L/N/SM24-V-ST, sowie L/AF24-V können demzufolge nicht verwendet werden.

PC-Tool Benutzung in Optimiser-**VRP-M Anwendungen**

Toolanschluss an VRP-M

bei der Benutzung des VRP-M Toolanschluss muss der VRP-M temporär vom MP-Bus getrennt werden (Anschluss 4)

Achtung!

Die manuelle Umschaltung des Sollwerteinganges hat einen direkten Einfluss auf die Funktion der Fan Optimimierung und der angeschlossenen VAV-Regler.

Wird die Einstellung des Sollwerteinganges temporär verändert, z.B. für den Anschluss eines Tools, muss die Einstellung anschliessend wieder der Applikation entsprechend eingestellt werden.

Das PC-Tool - Modul VRP-M kann auf zwei Arten verwendet werden:

- a) lokal am Toolanschluss des VRP-M Reglers:
- Um Datenkollisionen auf dem MP-Bus zu verhindern (zwei Bus-Master) muss der VRP-M während der Dauer der Toolbenutzung vom MP-Bus getrennt werden.
- b) am RJ12 Toolanschluss des Optimisers:

Einstellung Sollwerteingang des Optimisers für die Toolbenutzung: Hand MP Die Verwendung des Tools am RJ12 Anschluss ist bei Einstellung des Sollwerteinganges auf Hand Ain / Hand AiMP nicht möglich.

Dazu kann der Sollwerteingang temporär auf Hand MP umgeschaltet werden.

Hinweis: die \dot{V}_{min} / \dot{V}_{max} Einstellung des VRP-M können direkt an der LCD Anzeige des Optimisers angezeigt und verändert werden.

MP-Adressierung

Adressierung mit DDC als MP-Master

Bei der Sollwerteingang Einstellung des Optimisers auf SWE Auto (MP) oder SWE Hand (MP) können die angeschlossenen VRP-M nicht am Optimiser adressiert / de-adressiert werden. Anzeige: «Optimiser nicht Adress-Master!» Die VAV-Regler sind in dieser Anwendung direkt am MP-Master zu adressieren oder mit dem PC-Tool.

Die Adressierung der VRP-M Regler erfolgt anlog zum VAV-Compact. Die Quittierfunktion für die Adresszuweisung über die Quittiertaste erfolgt über die Set Taste des VRP-M, rechts vom Drucksensoranschluss.

Fan (Fan Optimiser COU24-A-MP	.4-A-MP	VAV-Anwendung	vendung				Eins	Einstelldaten			
Projekt:				Sol	Schlaltschrank:	1				Datum / Visum:		
Anlage:				Fre	Frequenzumrichter:	ter:				Funktion:	Zuluft-Ventilator Abluft-Ventilator	entilator entilator
Menü	Menü Konfiguration	Defaulteinstellung	Einstelloption			Ber	Bemerkungen	u				
-	Sprache	EN	DE		EN EN							
7	Einheiten	m³/h	m³/h		s/I							
ო	Sollwerteingang	Automatik, 0 10 V	Automatik									
			☐ Hand MP		0 10 V							
			Hand Ain		2 10 V							
			Hand AiMP									
4	Antriebe	ı			MP-Bus Belegung	gunga			Volumenstr	Volumenstromeinstellung		
			Bezeichnung		LMV-D2M	NMV-D2M	CHA-D5-MP	MMV-D2-MP	SMV-D2-MP	Ýmin	·	Funktion
					MP1							
					MP2							
					MP3							
					MP4							
					MP5							
					MP6							
					MP7							
					MP8							
2	Applikation	VAV-Applikation	■ VAV-Applikation									
9	Frequenzumrichter	0 10 V	– FU Minimum – FU Maximum] 0 10 V V Start V Stopp								
7	Kaskade	AUS	□ AUS	EIN								
8	Handbetrieb	1	1		Einstellungen werden nicht gespeichert!	werden nici	nt gespeicl	hert!				
6	Defaultwerte	I	1		Rücksetzen auf Grundeinstellung (Default)	ıf Grundein	stellung (D	efault)				
10	Advanced	1	1									

Alles inklusive.

Schweiz

BELIMO Automation AG Verkauf Schweiz

Brunnenbachstrasse 1 CH-8340 Hinwil Tel. +41 (0)43 843 62 12 Fax +41 (0)43 843 62 66 verkch@belimo.ch www.belimo.ch

Benelux

BELIMO Servomotoren BV BENELUX

Postbus 300, NL-8160 AH Epe Radeweg 25, NL-8171 MD Vaassen Tel. +31 (0)578 57 68 36 Fax +31 (0)578 57 69 15 info@belimo.nl www.belimo.nl

Deutschland

BELIMO Stellantriebe Vertriebs GmbH

Welfenstrasse 27 D-70599 Stuttgart Tel. +49 (0)711 1 67 83-0 Fax +49 (0)711 1 67 83-73 info@belimo.de www.belimo.de

Gebührenfrei

Bestellung: Tel. **0711 1 67 83-83** Technische Beratung: Tel. **0711 1 67 83-84** Fax **0711 1 67 83-73**

Persönliche Beratung durch Gebietsverkaufsleiter in:

Berlin, Hannover, Düsseldorf Leipzig, Frankfurt, München Hamburg, Stuttgart

Österreich

BELIMO Automation Handelsgesellschaft m.b.H.

Geiselbergstrasse 26-32 A-1110 Wien Tel. +43 (0)1 749 03 61-0 Fax +43 (0)1 749 03 61-99 info@belimo.at www.belimo.at

Österreich West

Tel. +43 (0)644 14 26 365 Fax +43 (0)732 70 10 51 dietmar.niederhametner@belimo.at

Ungarn

Tel. +36 (06)20/920 46 16 Fax +36 (06)23/37 77 30 gabor.koeves@belimo.at

Slowakei

Tel. +43 (0)1 749 03 61-0 Fax +43 (0)1 749 03 61-99 info@belimo.at

Slowenien/Kroatien/Bosnien

Tel. +386-(0)41-75 89 63 Fax +386-(0)4-2342-761 samo.smid@belimo.at

Serbien/Montenegro/ Mazedonien/Bosnien

Tel./Fax +381-(0)11 311-9127 branimir.petrovic@belimo.at

