

LIBADX
Programming Interface (ActiveX Control) for

bmcm DAQ system drivers

Installation and
Programming Guide

Version 4.6

 Contents

© BMC Messsysteme GmbH Page iii

Contents

1 Overview 7

1.1 Introduction 7
1.2 BMC Messsysteme GmbH 8
1.3 Copyrights 9
1.4 Quickstart 10

2 Installation and Integration 11

2.1 General 11
2.2 LibadX Installation 12
2.3 Integration in Programming Languages 15

2.3.1 Integration in Visual Basic® 4.0 - 6.0 15
2.3.2 Integration in Delphi® 3.01 - 5.0 17
2.3.3 Integration in Visual C++® 5.0/6.0 19
2.3.4 Integration in Visual C#®.NET 20
2.3.5 Integration in VB.NET (Microsoft®) 21

2.4 Example Programs 23

3 Basics 25

3.1 General 25
3.2 Connect to the Data Acquisition System 26

3.2.1 Channel Numbers and Measuring Ranges 26
3.2.2 iM-AD25a / iM-AD25 / iM3250T / iM3250 27
3.2.3 LAN-AD16fx / LAN-AD16f 28
3.2.4 PCIe-BASE / PCI-BASEII/300/1000 / PCI-PIO 29

3.2.4.1 Digital Ports and Counters 29
3.2.4.2 MAD12/12a/12b/12f/16/16a/16b/16f 30
3.2.4.3 MADDA16/16n 31
3.2.4.4 MDA12/12-4/16/16-2i/16-4i/16-8i 31

3.2.5 meM-AD /-ADDA /-ADf / -ADfo 32
3.2.6 meM-PIO / meM-PIO-OEM 33
3.2.7 USB-AD 34

Contents

Page iv © BMC Messsysteme GmbH

3.2.8 USB-AD14f / USB-AD12f 36
3.2.9 USB-AD16f 37
3.2.10 USB-OI16 38
3.2.11 USB-PIO / USB-PIO-OEM 39

4 Interfaces and Functions 41

4.1 The LibadX Interface 41
4.1.1 Overview 41
4.1.2 Open 42
4.1.3 Close 43
4.1.4 GetVersion 43
4.1.5 LastError 44
4.1.6 LastErrorString 44
4.1.7 ScanPrepare 45
4.1.8 ScanAnalogIn 46
4.1.9 ScanDigitalIn 47
4.1.10 Scan 47
4.1.11 ScanSave 48
4.1.12 FileOpen 48
4.1.13 FileCreatePrepare 49
4.1.14 FileCreateAnalogIn 50
4.1.15 FileCreateDigital 50
4.1.16 FileCreate 51
4.1.17 AnalogIn 52
4.1.18 AnalogOut 52
4.1.19 DigitalIn 53
4.1.20 DigitalOut 54
4.1.21 DigitalInLine 54
4.1.22 DigitalOutLine 55
4.1.23 DigitalDirection 55
4.1.24 Sample 56
4.1.25 AboutBox 57

4.2 The INvxFile interface 58
4.2.1 Overview 58
4.2.2 Open 58
4.2.3 Create 59
4.2.4 Close 59

 Contents

© BMC Messsysteme GmbH Page v

4.2.5 SignalCount 60
4.2.6 Signal 60

4.3 The INvxSignal Interface 61
4.3.1 Overview 61
4.3.2 Name 62
4.3.3 GroupName 63
4.3.4 Comment 63
4.3.5 xStart 64
4.3.6 xEnd 64
4.3.7 xDelta 65
4.3.8 xUnit 65
4.3.9 xSetUsing 66
4.3.10 xGetUsing 67
4.3.11 yMin 68
4.3.12 yMax 68
4.3.13 yDefaultMin 69
4.3.14 yDefaultMax 69
4.3.15 yDelta 70
4.3.16 yUnit 70
4.3.17 ySetUsing 71
4.3.18 yGetUsing 72
4.3.19 ScanStart 73
4.3.20 SampleCount 73
4.3.21 ScaleX 74
4.3.22 ScaleY 74
4.3.23 ResetDataPosition 75
4.3.24 GetNextScaled 75
4.3.25 GetNextScaledDigital 76
4.3.26 Unscale 76
4.3.27 NextSample 77
4.3.28 NextDigitalSample 77
4.3.29 GetSampleAt 78
4.3.30 GetSampleAtOffset 78
4.3.31 IsAnalog 79
4.3.32 IsDigital 79

5 Index 81

 Overview - Introduction

© BMC Messsysteme GmbH Page 7

1 Overview

1.1 Introduction

LibadX is a common programming interface to all data acquisition systems from
BMC Messsysteme GmbH. This interface can be accessed by all programming
environments in which ActiveX components can be loaded (e.g. C++®, Visual
C++®, Visual C#®, Visual Basic®, Visual Basic® .NET, Delphi®).

• LibadX is a 32-bit interface. If programming on a 64-bit system, the

application must be created as a 32-bit application.

• Please note that these code extracts as well as all the other examples in
this manual consciously skip any error handling to simplify matters. Of
course, this has to be realized in self written programs.

• The integration of an ActiveX Control is done by the programming
environment used. Because every programming environment realizes the
integration in a different way, this manual can only give an overview
about how to use the LibadX in different programming environments.
For more information about the integration of ActiveX components,
please see the documentation of your programming environment.

Normally, the programming environment imports the ActiveX components and
generates the source code for a utility class used to call the functions of the
component. This utility class eventually defines the proper calling convention of
the functions.

Depending on the programming environment, the functions described in this
manual may be available under another name or with slightly changed parameters.
For this reason, the documentation of the relevant programming environment
should be consulted to get information about the respective conventions when
importing ActiveX components.

Overview - BMC Messsysteme GmbH

Page 8 © BMC Messsysteme GmbH

1.2 BMC Messsysteme GmbH

BMC Messsysteme GmbH stands for innovative measuring technology made in
Germany. We provide all components required for the measuring chain, from
sensor to software.

Our hardware and software components are perfectly tuned with each other to
produce an extremely user-friendly integrated system. We put great emphasis on
observing current industrial standards, which facilitate the interaction of many
components.

Products by BMC Messsysteme are applied in industrial large-scale enterprises, in
research and development and in private applications. We produce in compliance
with ISO-9000-standards because standards and reliability are of paramount
importance to us - for your profit and success.

Please visit us on the web (http://www.bmcm.de/) for detailed information and
latest news.

http://www.bmcm.de/�

 Overview - Copyrights

© BMC Messsysteme GmbH Page 9

1.3 Copyrights

The programming interface LibadX with all extensions has been developed and
tested with utmost care. BMC Messsysteme GmbH does not provide any guarantee
in respect of this manual, the hard- and software described in it, its quality, its
performance or fitness for a particular purpose. BMC Messsysteme GmbH is not
liable in any case for direct or indirect damages or consequential damages, which
may arise from improper operation or any faults whatsoever of the system. The
system is subject to changes and alterations which serve the purpose of technical
improvement.

The programming interface LibadX, the manual provided with it and all names,
brands, pictures, other expressions and symbols are protected by law as well as by
national and international contracts. The rights established therefrom, in particular
those for translation, reprint, extraction of depictions, broadcasting,
photomechanical or similar way of reproduction - no matter if used in part or in
whole - are reserved. Reproduction of the programs and the manual as well as
passing them on to others is not permitted. Illegal use or other legal impairment
will be prosecuted by criminal and civil law and may lead to severe sanctions.

Copyright © 2014
Updated: 12/09/2014

BMC Messsysteme GmbH
Hauptstrasse 21
82216 Maisach
GERMANY
Phone: +49 8141/404180-1
Fax: +49 8141/404180-9
E-mail: info@bmcm.de

Overview - Quickstart

Page 10 © BMC Messsysteme GmbH

1.4 Quickstart

Install the hardware as described in your documentation before installing the
LibadX and verify in the Windows® device manager if the hardware is
recognized by the PC.

 To check the correct installation of the measurement hardware, open the

Windows® Device Manager displaying the current PC configuration:
- Windows® 8: Start / Control Panel / System and Security / System /

Device Manager
- Windows® 7: Right-click screen corner bottom left (keyboard

"Windows+X") / Device Manager
- Windows® XP: Start / Control Panel / System / TAB "Hardware" / button

"Device Manager"
 If the installation was successful (data acquisition system must be connected

and operational!), the newly installed hardware has been added to the entry
"Data Acquisition (BMC Messsysteme GmbH)". A double-click on the device
shows its properties and any existing conflicts.

 If the hardware is recognized by the PC and working properly, install the
LibadX by means of the included "Software Collection" CD. Change to the
product page of the bmcm hardware used ("Products / <Product name>") and
click the item "STR-LIBADX" in the section "API (Programming)" for
programming on Windows®.

 The installation can be opened directly. If your browser does not allow this,
please first save the file libad-actx.exe on hard disk and then start the
installation by clicking the icon.

 You only need to enter the directory path before the available storage capacity
is calculated and files are copied to disk. The required ActiveX component is
copied to the Windows® system directory.

 After installation, the LibadX ActiveX Control is available to be used in own
programs. The integration may be different depending on the programming
environment (see "Integration in Programming Languages", p. 15).

 Installation and Integration - General

© BMC Messsysteme GmbH Page 11

2 Installation and Integration

2.1 General

The hardware driver must be installed before installing LibadX!

For installation, insert the bmcm "Software Collection" CD included with delivery
into your CD-ROM drive.

The programming interface LibadX is implemented as an ActiveX Control , which
is registered in the system by the installation program. This, however, is not
sufficient for the LibadX functions to be available in most of the programming
environments. The following chapters give an overview about the necessary
integration for some selected programming environments. For detailed information
about integrating an ActiveX Control, please see the documentation of your
programming environment.

Installation and Integration - LibadX Installation

Page 12 © BMC Messsysteme GmbH

2.2 LibadX Installation

When inserting the "Software Collection" CD, a CD starter is opened. If the
AutoPlay function of your CD-ROM is not selected, please open the file
openhtml.exe.

Change to the product overview of the bmcm hardware by selecting the category
"Products" and then the data acquisition system used. For programming on
Windows® XP/7/8, click the item "STR-LIBADX" in the section "API
(Programming)" to start the installation.

Figure 1

If using the CD starter in HTML format, you can decide to directly open the
installation program or to save it to disk. Both options are possible.

Some browsers require saving the installation program to hard disk before. In this
case, you must start the installation program libad-actx.exe explicitly after
copying.

 Installation and Integration - LibadX Installation

© BMC Messsysteme GmbH Page 13

Fig. 1

An installation wizard will guide you through the installation step by step. The
button "Next" will lead you to the next dialog box, with "Back" you go one step
backwards. The installation can always be stopped early without saving anything
by pressing "Cancel".

If you do not want to use default settings, you can uncheck this option in the first
window of the installation program and decide where to install the driver package.

Fig. 2

Installation and Integration - LibadX Installation

Page 14 © BMC Messsysteme GmbH

The suggested default directory path can be modified as desired, of course. To
switch to another installation directory, uncheck the checkbox for to activate the
boxes below.

After all information is given, the size of the available disk space is determined and
the files required to install the LibadX ActiveX Control are copied to disk.

Restart your computer if necessary for these changes to take effect..

Figure 2

 Installation and Integration - Integration in Programming Languages

© BMC Messsysteme GmbH Page 15

2.3 Integration in Programming
Languages

2.3.1 Integration in Visual Basic® 4.0 - 6.0

Start Visual Basic® and click the option "Standard EXE" in the start screen (or
menu item "File / New Project").

Like any other ActiveX Control, the LibadX is integrated in Visual Basic® by
selecting the entry "Components" of the "Project" menu. In the following dialog
box "Components", check the item "LibadX Object Library 4.0".

Figure 3

Installation and Integration - Integration in Programming Languages

Page 16 © BMC Messsysteme GmbH

The LibadX icon is included in the toolbar of Visual Basic® now and available to
be integrated in a form. Like the timer control, it is invisible while the program is
executed.

Figure 4

Click the icon as usual and draw a frame on the form where the hardware is to be
used. After adding the object, this frame is reduced to its original icon size.

Create the following routine Form_Load() in the code window of the project:

VB Private Sub Form_Load()

 LIBADX1.AboutBox
End Sub

To make sure the LibadX is correctly installed and available in Visual Basic®, we
recommend to start this program. It must display the form without any errors on
the screen.

• For compatibility reasons, the icon of the former programming interface

BMCSAD is also integrated in the toolbar. LibadX users do not need this
icon or the former programming interface.

 Installation and Integration - Integration in Programming Languages

© BMC Messsysteme GmbH Page 17

• Please note that these code extracts as well as all the other examples in
this manual consciously skip any error handling to simplify matters. Of
course, this has to be realized in self written programs.

• Other example programs (see "Example Programs", p. 23") with source
code can be installed from the LibadX product page of the "Software
Collection" CD.

2.3.2 Integration in Delphi® 3.01 - 5.0

Start Delphi® and open a new project (menu item "File / New project").

Figure 5

Installation and Integration - Integration in Programming Languages

Page 18 © BMC Messsysteme GmbH

In the "Components" menu, call the command "Import ActiveX...". Then select
"LibadX Object Library 4.0" in the displayed dialog box. Press the button
"Install..." to import the LibadX in Delphi® and register the ActiveX control as a
component.

In the following dialog, choose the package which the new component is to be
installed in and confirm with OK.

The selected package is rebuilt and installed to integrate the information about the
new ActiveX Control. When compilation is finished, the changes done are
reported.

Figure 6

The LibadX icon is provided in the tab "ActiveX" of the Delphi® toolbar now.
Add the object to the form of the new project.

Create an event handler for the OnCreate() event of the form and proceed as
follows:

Delphi procedure TForm1.FormCreate(Sender: TObject);

begin
 LibadX.AboutBox ();
end;

To make sure the LibadX is correctly installed and available in Delphi®, we
recommend to start this program. It must display the form without any errors on
the screen.

• For compatibility reasons, the icon of the former programming interface

BMCSAD is also integrated in the toolbar. LibadX users do not need this
icon or the former programming interface.

 Installation and Integration - Integration in Programming Languages

© BMC Messsysteme GmbH Page 19

• Please note that these code extracts as well as all the other examples in
this manual consciously skip any error handling to simplify matters. Of
course, this has to be realized in self-written programs.

• Other example programs (see "Example Programs", p. 23") with source
code can be installed from the LibadX product page of the "Software
Collection" CD.

2.3.3 Integration in Visual C++® 5.0/6.0
By means of the preprocessor command #import Visual C++® 5.0/6.0 provides
for the possibility to integrate COM interfaces into a C++® program. The following
code examples demonstrate this procedure:

C++ #include <windows.h>

#import "c:\LibadX\LibadX.ocx"

LIBADX::_DLibadXPtr libadx;

int
main (int argc, char **argv)
{
 HRESULT result = CoInitialize (NULL);
 if (FAILED (result))
 return FALSE;

 libadx.CreateInstance (__uuidof(LIBADX::LIBADX));
 libadx->AboutBox ();

 return 0;
}

• For further details about #import, __uuidof() and the compiler

support classes for COM see the article "Microsoft Visual C++® Compiler
Native COM Support" from Microsoft® as well as the relating Microsoft®
compiler documentation.

Installation and Integration - Integration in Programming Languages

Page 20 © BMC Messsysteme GmbH

• Please note that these code extracts as well as all the other examples in
this manual consciously skip any error handling to simplify matters. Of
course, this has to be realized in self written programs.

• Other example programs (see "Example Programs", p. 23") with source
code can be installed from the LibadX product page of the "Software
Collection" CD.

2.3.4 Integration in Visual C#®.NET

The "managed code" of a .NET program does not contain any direct support to call
ActiveX Controls. For this reason, a DLL serving as a "bridge" between "managed
code" and ActiveX Control must be generated before using the ActiveX Control. In
this case, only a reference to this "bridge" is passed to the Visual C#® program.

Although Visual Studio® supports the automatic import of ActiveX Controls, this
procedure involves restrictions (see MSDN documentation). It is recommended to
generate the respective bridge by calling the program tlbimp of the .NET SDK.

Figure 7

Start a "Microsoft Visual Studio Command Prompt" and enter the following
command (make sure to replace libadx.ocx by the complete path to the
ActiveX component).

tlbimp libadx.ocx /out:libadxTypeLib.dll /namespace:LIBADX

 Installation and Integration - Integration in Programming Languages

© BMC Messsysteme GmbH Page 21

Then a reference to libadxTyleLib.dll can be added to each .NET program
and the functionality of the ActiveX Control is available to Visual C#®.

A batch file to create the "bridge" and to compile a Visual C#® program is
provided in the example programs for the LIBADX ActiveX Control (see
"Example Programs, p. "23).

The proper calling conventions of the generated "bridge" DLL can be looked up
with the Visual Studio® Object Browser.

2.3.5 Integration in VB.NET (Microsoft®)

Figure 8

Start Visual Studio® and create a new project in Visual Basic® (e.g. click menu
item "File / New Project") as a Windows® Application (s. Figure 8).

Installation and Integration - Integration in Programming Languages

Page 22 © BMC Messsysteme GmbH

Open the context menu of the tool box with a right click and select the command
"Choose Items…".

Check the COM component "LibadX Object Library 4.0" to integrate the LibadX
ActiveX Control in the programming environment.

Figure 9

The LibadX icon is included in the toolbar of Visual Basic® now and available to
be integrated in a form.

Click the icon as usual and draw a frame on the form where the hardware is to be
used. After adding the object, this frame is reduced to its original icon size.

 Installation and Integration - Example Programs

© BMC Messsysteme GmbH Page 23

Figure 10

2.4 Example Programs

The "Software Collection" CD provides example programs demonstrating how to
use the LibadX ActiveX Control. They can be installed from the respective
product page of the DAQ system used.

To start the installation program, select the item "STR-LIBADX-EX" in the section
"Programming on Windows® XP/7/8" listed under "API (Application
Programming Interface)" on the product page.

Installation and Integration - Example Programs

Page 24 © BMC Messsysteme GmbH

Figure 11

The example programs are provided in the directory chosen during installation
(e.g. "Programs \ BMC Messsysteme \ ActiveX \ LibadX Examples") differentiated
by programming language.

Programming language Folder

Visual Basic® vb

Delphi® delphi

Visual C++® vc5

Visual C#® .net

Please note that all example programs are intended to be very simple and do
not contain any error handling. Therefore, they cannot be considered a full
application.

 Basics - General

© BMC Messsysteme GmbH Page 25

3 Basics

3.1 General

Figure 12

The LibadX ActiveX control is the programming interface to the LIBAD4 library,
which is an interface to all data acquisition systems of BMC Messsysteme GmbH
to read and write single values, read in an analog channel or set a value of an
analog output.

In addition to the input and output of single values, a scan can be carried out with
the LibadX. Scanning of the input channels takes place in the corresponding driver
so that it is time decoupled from the application allowing for the input channels to
be scanned fast and without any loss of measuring values.

Besides that, you have got access to the measuring files of the data acquisition and
analysis software NextView®4.

Basics - Connect to the Data Acquisition System

Page 26 © BMC Messsysteme GmbH

3.2 Connect to the Data Acquisition System

The LibadX ActiveX control provides two functions for opening or closing the
connection to a data acquisition system.

With the Open() function a data acquisition system is opened, with Close() the
connection is closed. The following example demonstrates the basic procedure:

 if (LIBADX1.Open ("usb-pio"))

 ...
 LIBADX1.Close
else
 MsgBox "Could not open USB-PIO device"

The name of the data acquisition system is passed to the function Open(). This
string is not case-sensitive, i.e. "usb-pio" and "USB-PIO" both open a USB-PIO /
USB-PIO. If a connection to a data acquisition system has been opened, Open()
returns the value TRUE, and FALSE if an error occurs.

It is not possible, to use one object for opening several devices at the same time.
However, several (different) data acquisition systems can be opened with several
objects. The following example opens a PCIe-BASE / PCI-BASEII/300/1000 /
PCI-PIO and a USB-PIO / USB-PIO:

 if (LIBADX1.Open ("pcibase")

 AND LIBADX2.Open ("usb-pio"))
 ...
endif

3.2.1 Channel Numbers and Measuring Ranges
In LibadX, input and output channels are identified by their channel number. The
channel number depends on the data acquisition system used and is explained in
the relating chapters. The first analog input of a USB-AD14f / USB-AD12f, for
example, is channel 1.

In addition to the channel number, analog channels require information about the
measuring range (or output range) used to scan (or to output). Like the channel

 Basics - Connect to the Data Acquisition System

© BMC Messsysteme GmbH Page 27

number, the measuring range depends on the data acquisition system and is
documented in the following chapters.

3.2.2 iM-AD25a / iM-AD25 / iM3250T / iM3250
To open the iM-AD25a, iM-AD25, iM3250T or iM2350 with the LibadX, the
string "im:<ip-addr>" must be passed to Open(). Here <ip-addr> must be
replaced by the relating IP address. The string "im:192.168.1.1", for example,
opens the iM device with the IP address 192.168.1.1. When opening the driver, no
difference is made between different iM device types.

DAQ syst. Analog Channel number Meas. range Range Digital

iM-AD25a 16 inputs 1..16 ±10.24V
±5.12V

1
0

1: output
(bit 0..3)

iM-AD25 16 inputs 1..16 ±5.12V 0 1: output
(bit 0..3)

iM3250T 32 inputs 17..48 ±5.12V 0 -

iM3250 32 inputs AIn 1..16:
1..16 (with 1 BPL)
17..32 (with 2 BPL)
AIn 17..32: 33..48

±5.00V 0 -

Please note that MAL measuring amplifiers installed in the iM3250T might
change the measuring range of the corresponding channels.

Basics - Connect to the Data Acquisition System

Page 28 © BMC Messsysteme GmbH

3.2.3 LAN-AD16fx / LAN-AD16f
Open the LAN-AD16f(x) (also: AMS42/84-LAN16f, AMS42/84-LAN16fx) with
the LIBAD4 by passing the string "lanbase:<ip-addr>" to Open(). Here
<ip-addr> must be replaced by the relating IP address. The string
"lanbase:192.168.1.1", for example, opens the LAN device with the IP
address 192.168.1.1.

DAQ
system

Analog Channel
number

Measuring
range

Output
range

Digital Direction

LAN-
AD16fx

16 inputs
 2 outputs

1..16
1 .. 2

0 (±1.024V)
1 (±2.048V)
2 (±5.120V)
3 (±10.240V)

0 (±10.24V)

2 ports
(16 bit
each)

1: port A
2: port B

LAN-
AD16f

16 inputs
 2 outputs

1..16
1 .. 2

0 (±1.024V)
1 (±2.048V)
2 (±5.120V)
3 (±10.240V)

0 (±10.24V)

2 ports
(16 bit
each)

1: input
(bit 0..15)
2: output
(bit 0..15)

The 16 analog inputs of a LAN-AD16f(x) are addressed via the channel numbers
1-16. The 2 analog outputs are reached via channel numbers 1 and 2.

The LAN-AD16f(x) provides two 16-bit digital ports. The digital ports of the
LAN-AD16fx are bidirectional (see "DigitalDirection", p. 55) and are
configured in groups of 8, the lines of the LAN-AD16f, in contrast, are hard-wired.
After boot-up, 16 lines of the first port (DIO1, channel number: 1) are set to input,
the 16 lines of the second port (DIO2, channel number: 1) to output.

The counters of the LAN-AD16f(x) can only be programmed with the
LIBAD4 SDK.

 Basics - Connect to the Data Acquisition System

© BMC Messsysteme GmbH Page 29

3.2.4 PCIe-BASE / PCI-BASEII/300/1000 / PCI-PIO
To open the PCIe-BASE, PCI-BASEII, PCI-BASE300, PCI-BASE1000 or PCI-
PIO with the LibadX, the string "pcibase" (or "pci300") must be passed to
Open(). When opening the driver, no difference is made between different
versions of the PCI(e) data acquisition card.

To distinguish between several cards, the card number is explicitly used (1. card
with "pcibase:0", 2. card with "pcibase:1", etc.).

A DAQ card is also directly accessible via its serial number. The card with the
serial number 157 can be addressed with "pcibase:@157", for example.

3.2.4.1 Digital Ports and Counters

The PCIe-BASE / PCI-BASEII/300/1000 / PCI-PIO features two 16-bit digital
ports.

The digital lines of the PCIe-BASE, PCI-BASEII und PCI-PIO are bidirectional
and are configured in groups of 8. Their direction can be changed in groups of 8.
After boot-up, the default direction of the first port is input and output of the
second.

The ports of the PCI-BASE300/1000 are hard-wired. The first port is set to input,
the second port to output.

In addition, some versions (PCIe-BASE, PCI-BASEII, PCI-PIO) are provided with
three 32-bit counters.

The counters of the PCIe-BASE, PCI-BASEII, and PCI-PIO can only be
programmed with the LIBAD4 SDK.

Basics - Connect to the Data Acquisition System

Page 30 © BMC Messsysteme GmbH

3.2.4.2 MAD12/12a/12b/12f/16/16a/16b/16f

The first analog input channel of a MAD12/12a/12b/12f/16/16a/16b/16f starts with
1. If there is a second analog module on the PCI(e) multi-function card (not: PCI-
PIO), the first input of the second module is addressed by the number 257
(0x100+1).

Of course, one input module can be operated in differential (not MAD12b/16b) and
the other in single-ended mode, thus providing for 24 input channels.

The measuring ranges of the input channels depend on the module. If different
analog input modules are plugged on the PCI(e) data acquisition card (not PCI-
PIO), the measuring ranges of the channel 1..16 may differ from the measuring
ranges of the channels 17..32.

Module Analog Channel number Meas. range Range

MAD12,
MAD16

16 inputs
(single-ended)

8 inputs
(differential)

1..16
(se)

17..24
(diff)

±1.024V
±2.048V
±5.120V
±10.240V

0.06V..5.06V

0
1
2
3
4

MAD12a,
MAD12f,
MAD16a,
MAD16f

16 inputs
(single-ended)

8 inputs
(differential)

1..16
(se)

17..24
(diff)

±1.024V
±2.048V
±5.120V
±10.240V

0
1
2
3

MAD12b,
MAD16b

16 inputs
(single-ended)

1..16 ±1.024V
±2.048V
±5.120V
±10.240V

0
1
2
3

 Basics - Connect to the Data Acquisition System

© BMC Messsysteme GmbH Page 31

3.2.4.3 MADDA16/16n

The first analog input or output channel of a MADDA16/16n starts with 1. If there
is a second analog module on the PCI(e) multi-function card (not: PCI-PIO), the
first input of the second module is addressed by the number 257 (0x100+1).

The measuring ranges of the input channels depend on the module. If different
analog input modules are plugged on the PCI(e) data acquisition card (not PCI-
PIO), the measuring ranges of the channel 1..16 may differ from the measuring
ranges of the channels 17..32.

Module Analog Channel number Meas. range Output range

MADDA16,
MADDA16n

16 inputs
2 outputs

1..16
1..2

0 (±1.024V)
1 (±2.048V)
2 (±5.120V)
3 (±10.240V)

0 (±10.24V)

3.2.4.4 MDA12/12-4/16/16-2i/16-4i/16-8i

Corresponding to the MAD12/12a/12b/12f/16/16a/16b/16f, the channels of a
second analog output module are accessible from number 257 (0x100+1) on.

Module Analog Channel number Output range Range

MDA12,
MDA16

2 outputs 1..2 ±10.24V
±5.12V

0
1

MDA12-4 4 outputs 1..4 ±10.24V
±5.12V

0
1

MDA16-2i 2 outputs 1..2 ±10.24V 0

MDA16-4i 4 outputs 1..4 ±10.24V 0

MDA16-8i 8 outputs 1..8 ±10.24V 0

The output ranges of the output modules MDA12/MDA12-4 and MDA16 are
configured on the hardware. The user must ensure that the passed measuring range
complies with the configuration set on the module.

Basics - Connect to the Data Acquisition System

Page 32 © BMC Messsysteme GmbH

3.2.5 meM-AD /-ADDA /-ADf / -ADfo
Open the meM-AD/-ADDA/-ADf/-ADfo with the LibadX by passing the string
"memadusb" (meM-AD), "memaddausb" (meM-ADDA), "memadfusb"
(meM-ADf) or "memadfpusb" (meM-ADfo) to Open(). To distinguish between
several USB data acquisition systems, the device number is explicitly used (e.g. 1st
device with "memadusb:0", 2nd device with "memadusb:1", etc.). The device
order results from the order of connecting.

As USB data acquisition systems can be plugged and unplugged during operation,
it may happen that the device numbers are not assigned consecutively. For
example, if the second of three connected meM-ADDA devices is removed, the
remaining meM-ADDA devices are addressed with "memaddausb:0" and
"memaddausb:2".

To avoid managing the order of connecting, a device is also accessible via its serial
number. The device with the serial number 157 can be addressed with
"memadfpusb:@157", for example.

DAQ
system

Analog Channel
number

Input/Output
range

Range Digital Channel
number

meM-AD 16 inputs 1..16 ±5.12V 0 - -

meM-ADDA,
meM-ADf

16 inputs
 1 output

1..16
1

±5.12V 0 2 ports
(4 bit each)

1: input
(bit 0..3)
2: output
(bit 0..3)

meM-ADfo 16 inputs
 1 output

1..16
1

±5.12V 0 2 ports
(8 bit each)

1: input
(bit 0..7)
2: output
(bit 0..7)

The 16 analog inputs of a meM-AD/-ADDA/-ADf/-ADfo are addressed via the
channel numbers 1-16. The analog output is reached via channel number 1.

The direction of the digital ports is hard-wired. The 4 (meM-ADfo: 8) lines of the
first port (DIO1, channel number: 1) are set to input, the 4 (meM-ADfo: 8) lines of
the second port (DIO2, channel number: 2) to output.

 Basics - Connect to the Data Acquisition System

© BMC Messsysteme GmbH Page 33

3.2.6 meM-PIO / meM-PIO-OEM
Open the meM-PIO/meM-PIO-OEM with the LibadX by passing the string
"mempiousb" to Open(). To distinguish between several USB data acquisition
systems, the device number is explicitly used (e.g. 1st device with
"mempiousb:0", 2nd device with "mempiousb:1", etc.). The device order
results from the order of connecting.

As USB data acquisition systems can be plugged and unplugged during operation,
it may happen that the device numbers are not assigned consecutively. For
example, if the second of three connected meM-PIO devices is removed, the
remaining meM-PIO devices are addressed with "mempiousb:0" and
"mempiousb:2".

To avoid managing the order of connecting, a device is also accessible via its serial
number. The device with the serial number 157 can be addressed with
"mempiousb:@157", for example.

DAQ system Digital Channel number

meM-PIO,
meM-PIO-OEM

3 ports
(8 bit each)

1..3
(bit 0..7)

The line direction is set for each port separately in groups of eight (see
"DigitalDirection", S. 55). The first port (DIO1) has channel number 1, the
second port (DIO2) channel number 2 and the third port (DIO3) channel number 3.

Basics - Connect to the Data Acquisition System

Page 34 © BMC Messsysteme GmbH

3.2.7 USB-AD
Open the USB-AD with the LibadX by passing the string "usb-ad" to Open().
To distinguish between several USB data acquisition systems, the device number is
explicitly used (e.g. 1. device with "usb-ad:0", 2. device with "usb-ad:1",
etc.). The device order results from the order of connecting.:

As USB data acquisition systems can be plugged and unplugged during operation,
it may happen that the device numbers are not assigned consecutively. For
example, if the second of three connected USB-AD devices is removed, the
remaining USB-AD devices are addressed with "usb-ad:0" and "usb-ad:2".

To avoid managing the order of connecting, a device is also accessible via its serial
number. The device with the serial number 157 can be addressed with "usb-
ad:@157", for example.

DAQ
system

Analog Channel
number

Measuring
range

Output
range

Digital Direction

USB-AD 16 inputs
 1 output

1..16
1

0 (±5.12V) 0 (±5.12V) 2 ports
(4 bit
each)

1: input
(bit 0..3)
2: output
(bit 0..3)

The 16 analog inputs of a USB-AD are addressed via the channel numbers 1-16.
The analog output is reached via channel number 1.

For compatibility reasons, the measuring range 33 can be used for analog
inputs and the output range 1 for the analog output.

The direction of the digital ports is hard-wired. The 4 lines of the first port (DIO1,
channel number: 1) are set to input, the 4 lines of the second port (DIO2, channel
number: 2) to output.

 Basics - Connect to the Data Acquisition System

© BMC Messsysteme GmbH Page 35

Example:

VB If LIBADX1.Open("usb-ad:0") Then

 Dim tmp As Integer
 tmp = LIBADX1.DigitalIn(1)

 Dim bool As Boolean
 ' reads the state of the first line of port 1
 bool = LIBADX1.DigitalInLine(1, 0)

 ' delete all lines
 LIBADX1.DigitalOut(2) = 0
 ' line 2 high
 LIBADX1.DigitalOutLine(2, 1) = True

 Dim val As Double
 ' reads the value of Analog In 1 with measuring range 0
 val = LIBADX1.AnalogIn(1, 0)

 ' set Analog Out 1 to 4.5 Volt
 LIBADX1.AnalogOut(1, 0) = 4.5

 LIBADX1.Close
 End If

Basics - Connect to the Data Acquisition System

Page 36 © BMC Messsysteme GmbH

3.2.8 USB-AD14f / USB-AD12f
Open the USB-AD14f / USB-AD12f with the LibadX by passing the string
"usbad14f" or "usbad12f" to Open(). To distinguish between several USB
data acquisition systems, the device number is explicitly used (e.g. 1st USB-AD14f
with "usbad14f:0", 2nd USB-AD14f with "usbad14f:1", etc.). The device
order results from the order of connecting.

As USB data acquisition systems can be plugged and unplugged during operation,
it may happen that the device numbers are not assigned consecutively. For
example, if the second of three connected USB-AD14f devices is removed, the
remaining USB-AD14f devices are addressed with "usbad14f:0" and
"usbad14f:2".

To avoid managing the order of connecting, a device is also accessible via its serial
number. The USB-AD14f with the serial number 157 can be addressed with
"usbad14f:@157", for example.

DAQ
system

Analog Channel
number

Measuring
range

Output
range

Digital Direction

USB-
AD14f

16 inputs
 1 output

1..16
1

0 (±10.24V) 0 (±5.12V) 2 ports
(8 bit
each)

1: input
(bit 0..7)
2: output
(bit 0..7)

USB-
AD12f

16 inputs
 1 output

1..16
1

0 (±10.24V) 0 (±5.12V) 2 ports
(4 bit
each)

1: input
(bit 0..3)
2: output
(bit 0..3)

The 16 analog inputs of a USB-AD14f / USB-AD12f are addressed via the channel
numbers 1-16. The analog output is reached via channel number 1.

The direction of the digital ports is hard-wired. The 8 (USB-AD14f) or 4 (USB-
AD12f) lines of the first port (DIO1) are set to input, the 8 (USB-AD14f) or 4
(USB-AD12f) lines of the second port (DIO2) to output..

14f12fThe first digital input (bit 1) can be used as a 16-bit counter. It is treated like
an analog channel by the LibadX. In this case, the channel number of the counter
must be extended by the counter channel type (hex 0x08000000) in the analog
functions AnalogIn (see p. 52), AnalogOut (see p. 52) and ScanAnalogIn

 Basics - Connect to the Data Acquisition System

© BMC Messsysteme GmbH Page 37

(see p. 46) so that the counter has channel number 0x08000001 in hexadecimal
notation. The range parameter to be passed is always '0'. Passing the value 0 with
the command AnalogOut resets the counter.

3.2.9 USB-AD16f
Open the USB-AD16f (also: AMS42-USB, AMS84-USB) with the LibadX by
passing the string "usbbase" to Open(). To distinguish between several USB-
AD16f data acquisition systems, the device number is explicitly used (1. device
with "usbbase:0", 2. device with "usbbase:1", etc.). The device order results
from the order of connecting.AD16f:O

As USB data acquisition systems can be plugged and unplugged during operation,
it may happen that the device numbers are not assigned consecutively. For
example, if the second of three connected USB-AD16f devices is removed, the
remaining USB-AD16f devices are addressed with "usbbase:0" and
"usbbase:2".

To avoid managing the order of connecting, a device is also accessible via its serial
number. The device with the serial number 157 can be addressed with
"usbbase:@157", for example.

DAQ
system

Analog Channel
number

Measuring
range

Output
range

Digital Direction

USB-
AD16f

16 inputs
 2 outputs

1..16
1 .. 2

0 (±1.024V)
1 (±2.048V)
2 (±5.120V)
3 (±10.240V)

0 (±10.24V) 2 ports
(4 bit
each)

1: input
(bit 0..3)
2: output (bit
0..3)

The 16 analog inputs of a USB-AD16f are addressed via the channel numbers 1-
16. The 2 analog outputs are reached via channel number 1 and 2.

The direction of the ports is hard-wired. The 4 lines of the first port (DIO1, channel
number: 1) are set to input, the 4 lines of the second port (DIO2, channel number:
1) to output.

The USB-AD16f additionally features a counter input, which is treated like an
analog channel by the LibadX. In this case, the channel number of the counter
must be extended by the counter channel type (hex 0x08000000) in the analog

Basics - Connect to the Data Acquisition System

Page 38 © BMC Messsysteme GmbH

functions AnalogIn (see p. 52), AnalogOut (see p. 52) and ScanAnalogIn
(see p. 46) so that the counter has channel number 0x08000001 in hexadecimal
notation. The range parameter to be passed is always '0'. Passing the value 0 with
the command AnalogOut resets the counter.

3.2.10 USB-OI16
Open the USB-OI16 with the LibadX by passing the string "usb-oi16" to
Open(). To distinguish between several USB devices, the device number is
explicitly used (e.g. 1st device with "usb-oi16:0", 2nd device with "usb-
oi16:1", etc.). The device order results from the order of connecting.

As USB data acquisition systems can be plugged and unplugged during operation,
it may happen that the device numbers are not assigned consecutively. For
example, if the second of three connected USB-OI16 devices is removed, the
remaining USB-OI16 devices are addressed with "usb-oi16:0" and "usb-
oi16:2".

To avoid managing the order of connecting, a device is also accessible via its serial
number. The device with the serial number 157 can be addressed with "usb-
oi16:@157", for example.

DAQ system Digital Channel number

USB-OI16 2 ports
(16 bit each)

1: input
2: output

The USB-OI16 provides two 16-bit digital ports. The direction of the digital ports
is hard-wired. The 16 lines of the first port (DIO1) are set to input, the 16 lines of
the second port (DIO2) to output.

The counters of the USB-OI16 can only be programmed with the LIBAD4
SDK.

 Basics - Connect to the Data Acquisition System

© BMC Messsysteme GmbH Page 39

3.2.11 USB-PIO / USB-PIO-OEM
Open the USB-PIO / USB-PIO-OEM with the LibadX by passing the string
"usb-pio" to Open(). To distinguish between several USB data acquisition
systems, the device number is explicitly used (e.g. 1. device with "usb-pio:0",
2. device with "usb-pio:1", etc.). The device order results from the order of
connecting.

As USB data acquisition systems can be plugged and unplugged during operation,
it may happen that the device numbers are not assigned consecutively. For
example, if the second of three connected USB-PIO / USB-PIO-OEM devices is
removed, the remaining USB-PIO / USB-PIO-OEM devices are addressed with
"usb-pio:0" and "usb-pio:2".

To avoid managing the order of connecting, a device is also accessible via its serial
number. The device with the serial number 157 can be addressed with "usb-
pio:@157", for example.

DAQ system Digital Channel number

USB-PIO,
USB-PIO-OEM

3 ports
(8 bit each)

1..3
(bit 0..7)

The line direction is set for each port separately in groups of eight (see
"DigitalDirection", S. 55). The first port (DIO1) has channel number 1, the
second port (DIO2) channel number 2 and the third port (DIO3) channel number 3.

Basics - Connect to the Data Acquisition System

Page 40 © BMC Messsysteme GmbH

Example:

VB If LIBADX1.Open("usb-pio:0") Then

 LIBADX1.DigitalDirection(1) = &H0 ' all output
 LIBADX1.DigitalDirection(2) = &HFF ' all input
 LIBADX1.DigitalDirection(3) = &H0 ' all output

 Dim tmp As Integer
 ' reads the state of all lines of port 2
 tmp = LIBADX1.DigitalIn(2)

 Dim bool As Boolean
 ' reads the state of the first line of port 2
 bool = LIBADX1.DigitalInLine(2, 0)

 ' delete all lines
 LIBADX1.DigitalOut(1) = 0
 ' line 8 of port 1 high
 LIBADX1.DigitalOutLine(1, 7) = True

 ' set port 3 to &H15 = line 1, 3, 5 high
 LIBADX1.DigitalOut(3) = &H15

 LIBADX1.Close
 End If

 Interfaces and Functions - The LibadX Interface

© BMC Messsysteme GmbH Page 41

4 Interfaces and Functions

4.1 The LibadX Interface

The LibadX interface is directly imported by the LibadX ActiveX Control. It
provides the connection to the measurement data server.

4.1.1 Overview

Function Description

Open opens the connection to a data acquisition system
Close closes the connection to a data acquisition system
GetVersion returns the version number of the LIBAD4.dll
LastError returns the last error code
LastErrorString returns a description of the last error
ScanPrepare prepares a scan
ScanAnalogIn adds an analog input to the scan list
ScanDigitalIn adds a digital input to the scan list
Scan starts a prepared scan
ScanSave saves a performed scan
FileOpen creates a file object used to get access to stored measuring files
FileCreatePrepare prepares the creation of a scan file
FileCreateAnalogIn adds an analog input to the channel list
FileCreateDigital adds a digital input to the channel list
FileCreate creates a prepared scan file
AnalogIn returns the current value of an analog input
AnalogOut returns the current value of an analog output
DigitalIn returns the current value of a digital input channel
DigitalOut returns the current value of a digital output channel

Interfaces and Functions - The LibadX Interface

Page 42 © BMC Messsysteme GmbH

DigitalInLine returns the current value of a digital input line
DigitalOutLine returns the current value of a digital output line
DigitalDirection set/returns the direction of a digital channel
Sample reads the value of a sample in a scan
AboutBox displays the AboutBox of LibadX

4.1.2 Open

C++ VARIANT_BOOL Open (_bstr_t path)

BASIC Function Open (path As String) As Boolean

Delphi function Open (const path: WideString): WordBool

The Open() function provides a connection to the data acquisition system by
passing the name of the data acquisition system. The passed string is not case-
sensitive, i.e. "pcibase" and "PCIBASE" both open the PCIe-BASE / PCI-
BASEII/300/1000 / PCI-PIO.

If the connection to the data acquisition has been opened, Open returns the value
TRUE, and FALSE in case of an error. For a detailed description of the Open()
command see chapter "Connect to the Data Acquisition System", p. 26.

A list of all possible commands is provided in chapter "Overview", p. 41.

 Interfaces and Functions - The LibadX Interface

© BMC Messsysteme GmbH Page 43

4.1.3 Close

C++ HRESULT Close ()

BASIC Sub Close ()

Delphi procedure Close

The Close() function shuts the connection to the data acquisition system.

A list of all possible commands is provided in chapter "Overview", p. 41.

4.1.4 GetVersion

C++ long GetVersion ()

BASIC Function GetVersion () As Long

Delphi function GetVersion: Integer

The GetVersion() function returns the version of the LIBAD4.dll used by the
LibadX.

A list of all possible commands is provided in chapter "Overview", p. 41.

Interfaces and Functions - The LibadX Interface

Page 44 © BMC Messsysteme GmbH

4.1.5 LastError

C++ long LastError ()

BASIC Function LastError () As Long

Delphi function LastError: Integer

Returns the number of the last error. If no errors occurred, the function is 0.

A list of all possible commands is provided in chapter "Overview", p. 41.

4.1.6 LastErrorString

C++ _bstr_t LastErrorString ()

BASIC Function LastErrorString () As String

Delphi function LastErrorString: WideString

Edits a description of the last error. If no errors occurred, the function returns "".

A list of all possible commands is provided in chapter "Overview", p. 41.

 Interfaces and Functions - The LibadX Interface

© BMC Messsysteme GmbH Page 45

4.1.7 ScanPrepare

C++ HRESULT ScanPrepare (float sample_rate, long samples)

BASIC Sub ScanPrepare (sample_rate As Single, samples As Long)

Delphi procedure ScanPrepare (sample_rate: Single;
 samples: Integer)

Before starting a scan, ScanPrepare() must be called first. It prepares the
LibadX for a scan and sets the sample rate to sample_rate and the number of
values to be stored to samples.

To add a channel to the scan channel list, call ScanAnalogIn() or
ScanDigitalIn(). The scan is started by calling the Scan() command.

The following Visual Basic® sample code demonstrates the procedure:

VB ' 1000 measuring values, 100Hz (0.01 sec.)

LIBADX1.ScanPrepare 0.01, 1000

' Save channel 1 & 2
LIBADX1.ScanAnalogIn 1, 0
LIBADX1.ScanAnalogIn 2, 0

' Save counter 1
LIBADX1.ScanDigitalIn &h08000001

' Save digital port 1
LIBADX1.ScanDigitalIn 1

' Start scan
LIBADX1.Scan

' Save scan
LIBADX1.ScanSave "scan.lfx"

A list of all possible commands is provided in chapter "Overview", p. 41.

Interfaces and Functions - The LibadX Interface

Page 46 © BMC Messsysteme GmbH

4.1.8 ScanAnalogIn

C++ HRESULT ScanAnalogIn (long index, long range)

BASIC Sub ScanAnalogIn (index as Long, range as Long)

Delphi procedure ScanAnalogIn (index, range: Integer)

With ScanAnalogIn() the analog channel or counter with the number index
and the range range is added to the scan channel list . The function throws an
exception if the scan has not previously been prepared with ScanPrepare()
(see p. 44).

• Due to restrictions of most of the data acquisition cards, it is essential to

add the input channels in ascending order to the channel list! If both
analog inputs and counter or digital inputs are sampled, first the analog
channels, then the counters and finally the digital channels must be
specified!

• If using counters, the index number has to be extended by the counter
channel type (hex 0x08000000). For example, the index number
0x08000001 in hexadecimal notation is assigned to counter 1.

A list of all possible commands is provided in chapter "Overview", p. 41.

 Interfaces and Functions - The LibadX Interface

© BMC Messsysteme GmbH Page 47

4.1.9 ScanDigitalIn

C++ HRESULT ScanDigitalIn (long index)

BASIC Sub ScanDigitalIn (index as Long)

Delphi procedure ScanDigitalIn (index: Integer)

With ScanDigitalIn() digital channel with the number index is added to
the scan channel list. The function throws an exception if the scan has not
previously been prepared with ScanPrepare() (see p. 44).

Due to restrictions of most of the data acquisition cards, it is essential to add
the input channels in ascending order to the channel list! If both analog inputs
and counter or digital inputs are sampled, first the analog channels, then the
counters and finally the digital channels must be specified!

A list of all possible commands is provided in chapter "Overview", p. 41.

4.1.10 Scan

C++ VARIANT_BOOL Scan ();

BASIC Function Scan () As Boolean

Delphi function Scan : WordBool

With Scan() a scan prepared with ScanPrepare(), ScanAnalogIn() and
ScanDigitalIn() is started. The execution is returned to the program not until
the scan is finished.

Interfaces and Functions - The LibadX Interface

Page 48 © BMC Messsysteme GmbH

The function throws an exception if the scan has not previously been prepared with
ScanPrepare() (see p. 44).

A list of all possible commands is provided in chapter "Overview", p. 41.

4.1.11 ScanSave

C++ VARIANT_BOOL ScanSave (_bstr_t path);

BASIC Function ScanSave (path As String) As Boolean

Delphi function ScanSave (const path: WideString): WordBool

With ScanSave() a scan carried out with the Scan() function is saved.

The function throws an exception if a scan has not previously been performed with
Scan().

A list of all possible commands is provided in chapter "Overview", p. 41.

4.1.12 FileOpen

C++ INvxFilePtr FileOpen (_bstr_t path)

BASIC Function FileOpen (path As String) As INvxFile

Delphi function FileOpen (const path: WideString): INvxFile

Opens the specified measurement file. If the file does not exist or cannot be
opened, the function throws an exception.

A list of all possible commands is provided in chapter "Overview", p. 41.

 Interfaces and Functions - The LibadX Interface

© BMC Messsysteme GmbH Page 49

4.1.13 FileCreatePrepare

C++ HRESULT FileCreatePrepare (long samples)

BASIC Sub FileCreatePrepare (samples As Long)

Delphi procedure FileCreatePrepare (samples: Integer)

The creation of a measurement file is the same as of a scan. First the
FileCreatePrepare() function containing the number of values to be stored
has to be called.

To add a channel to the file channel list, call FileCreateAnalogIn() or
FileCreateDigital(). The file is then created by calling FileCreate().

The following Visual Basic® sample code demonstrates the procedure:

VB ' 1000 measuring values

LIBADX1.FileCreatePrepare 1000

' 2 analog channels
LIBADX1.FileCreateAnalogIn
LIBADX1.FileCreateAnalogIn

' 1 counter
Const AD_CHA_TYPE_COUNTER as Integer = &h08000000
LIBADX1.FileCreateDigital AD_CHA_TYPE_COUNTER

' 1 digital channel with 16 lines
LIBADX1.FileCreateDigital 16

' create file
LIBADX1.FileCreate "scan.lfx"

A list of all possible commands is provided in chapter "Overview", p. 41.

Interfaces and Functions - The LibadX Interface

Page 50 © BMC Messsysteme GmbH

4.1.14 FileCreateAnalogIn

C++ long FileCreateAnalogIn ()

BASIC Function FileCreateAnalogIn () As Long

Delphi function FileCreateAnalogIn: Integer;

With FileCreateAnalogIn() an analog channel or counter is added to the
channel list of a file to be created. The return value is the channel index in the file.
The function throws an exception if a measurement file has not previously been
prepared with FileCreatePrepare() (see p. 48).

A list of all possible commands is provided in chapter "Overview", p. 41.

4.1.15 FileCreateDigital

C++ long FileCreateDigital (long lines)

BASIC Function FileCreateDigital (lines As Long) As Long

Delphi function FileCreateDigital(lines: Integer): Integer;

With FileCreateDigital() a digital channel is added to the channel list of a
file to be created.

Concerning digital channels, lines is the number of lines to be stored and must
not exceed 32. The return value is the channel index in the file.

 Interfaces and Functions - The LibadX Interface

© BMC Messsysteme GmbH Page 51

Before writing data to the file, the signal parameters (see chapter "The
INvxSignal", p. 61) "yMax" (see p. 68) and "yMin" (see p. 68) must be passed
first. Otherwise the data might not be written correctly. The y-using (see
chapter "ySetUsing", p. 71) should also be adjusted accordingly.

The function throws an exception if a measurement file has not previously been
prepared with FileCreatePrepare() (see p. 48).

A list of all possible commands is provided in chapter "Overview", p. 41.

4.1.16 FileCreate

C++ INvxFilePtr FileCreate (_bstr_t path)

BASIC Function FileCreate (path As String) As INvxFile

Delphi function FileCreate (const path: WideString): INvxFile

FileCreate() creates a measurement file prepared with
FileCreatePrepare(), FileCreateAnalogIn() and
FileCreateDigital().

The function throws an exception if a measurement file has not previously been
prepared with FileCreatePrepare() (see p. 48) or if no channel has been
added to the channel list.

A list of all possible commands is provided in chapter "Overview", p. 41.

Interfaces and Functions - The LibadX Interface

Page 52 © BMC Messsysteme GmbH

4.1.17 AnalogIn

C++ __declspec(property(get=GetAnalogIn))

 float AnalogIn[][]

BASIC Property AnalogIn (index As Long, range as Long) As Single

Delphi property AnalogIn [index, range: Integer]: Single readonly

Returns the currently measured value of the analog input with the number index
within the measuring range range. The value can only be read.

If using counters, the index number has to be extended by the counter channel type
(hex 0x08000000). For example, the index number 0x08000001 in hexadecimal
notation is assigned to counter 1.

The function throws an exception if the connection to a data acquisition system has
not previously been established with Open().

A list of all possible commands is provided in chapter "Overview", p. 41.

4.1.18 AnalogOut

C++ __declspec(property(get=GetAnalogOut,put=PutAnalogOut))

 float AnalogOut[][]

BASIC Property AnalogOut (index As Long, range as Long) As Single

Delphi property AnalogOut [index, range: Integer]: Single

Sets or returns the current value of the output channel with the number index
within the output range range.

 Interfaces and Functions - The LibadX Interface

© BMC Messsysteme GmbH Page 53

If using counters, the index number has to be extended by the counter channel type
(hex 0x08000000). For example, the index number 0x08000001 in hexadecimal
notation is assigned to counter 1.

The function throws an exception if the connection to a data acquisition system has
not previously been established with Open().

A list of all possible commands is provided in chapter "Overview", p. 41.

4.1.19 DigitalIn

C++ __declspec(property(get=GetDigitalIn))

 long DigitalIn[]

BASIC Property DigitalIn (index As Long) As Long

Delphi property DigitalIn [index: Integer]: Integer readonly

Returns the currently measured value of the digital input with the number index.
The value of this property can only be read.

The function throws an exception if the connection to a data acquisition system has
not previously been established with Open().

A list of all possible commands is provided in chapter "Overview", p. 41.

Interfaces and Functions - The LibadX Interface

Page 54 © BMC Messsysteme GmbH

4.1.20 DigitalOut

C++ __declspec(property(get=GetDigitalOut,put=PutDigitalOut))

 long DigitalOut[];

BASIC Property DigitalOut (index As Long) As Long

Delphi property DigitalOut [index: Integer]: Integer

Sets or returns the current value of the digital output channel with the number
index.

The function throws an exception if the connection to a data acquisition system has
not previously been established with Open().

A list of all possible commands is provided in chapter "Overview", p. 41.

4.1.21 DigitalInLine

C++ __declspec(property(get=GetDigitalInLine))

 VARIANT_BOOL DigitalInLine[][];

BASIC Property DigitalInLine (index As Long, line As Long)
 As Boolean

Delphi property DigitalInLine [index, line: Integer]:
 WordBool readonly

Returns the currently measured value of the line number line of the digital input
channel with the number index. The value of this property can only be read.

The function throws an exception if the connection to a data acquisition system has
not previously been established with Open().

A list of all possible commands is provided in chapter "Overview", p. 41.

 Interfaces and Functions - The LibadX Interface

© BMC Messsysteme GmbH Page 55

4.1.22 DigitalOutLine

C++ __declspec(property(get=GetDigitalOutLine,

 put=PutDigitalOutLine))
 VARIANT_BOOL DigitalOutLine[][];

BASIC Property DigitalOutLine (index As Long, line As Long)
 As Boolean

Delphi property DigitalOutLine [index, line: Integer]: WordBool

Sets or returns the current value of the line number line of the digital output
channel with the number index.

The function throws an exception if the connection to a data acquisition system has
not previously been established with Open().

A list of all possible commands is provided in chapter "Overview", p. 41.

4.1.23 DigitalDirection

C++ __declspec(property(get=GetDigitalDirection,

 put=PutDigitalDirection))
 long DigitalDirection[];

BASIC Property DigitalDirection (index As Long) As Long

Delphi property DigitalDirection [index: Integer]: Integer

Sets or returns the direction (input/output) of the digital channel with the number
index. This property passes a bitmask describing the direction of the digital line.
A high bit ("1") represents an input line, a low bit ("0") an output line. Bit #0
defines the direction of the first line of the digital port.

Interfaces and Functions - The LibadX Interface

Page 56 © BMC Messsysteme GmbH

The function throws an exception if the connection to a data acquisition system has
not previously been established with Open().

A list of all possible commands is provided in chapter "Overview", p. 41.

4.1.24 Sample

C++ __declspec(property(get=GetSample,put=PutSample))

 float Sample[][]

BASIC Property Sample (index As Long, pos As Long) As Single

Delphi property Sample [index, pos: Integer]: Single

Sets of returns the sample of the channel index at the position pos of the
executed scan.

The function throws an exception if no scan has previously been run of if index
or pos are not valid.

Due to single floating point use, high counter values of 32-bit counters get lost.
Only values within the range of +/-16777216 are available.

A list of all possible commands is provided in chapter "Overview", p. 41.

 Interfaces and Functions - The LibadX Interface

© BMC Messsysteme GmbH Page 57

4.1.25 AboutBox

C++ HRESULT AboutBox ()

BASIC Sub AboutBox ()

Delphi procedure AboutBox

Displays the AboutBox of LibadX.

A list of all possible commands is provided in chapter "Overview", p. 41.

Interfaces and Functions - The INvxFile Interface

Page 58 © BMC Messsysteme GmbH

4.2 The INvxFile Interface

The INvxFile provides for the access to saved measurement data.

4.2.1 Overview

Function Description

Open opens a measurement file
Create creates a new measurement file
Close closes a measurement file
SignalCount returns the number of signals in the measurement file
Signal returns the interface of a signal in the measurement file

4.2.2 Open

C++ HRESULT Open(_bstr_t fileName);

BASIC Sub Open(fileName As String)

Delphi procedure Open(const fileName: WideString);

Opens the specified measurement file. If the file does not exist or cannot be
opened, the function throws an exception.

A list of all possible commands is provided in chapter "Overview", p. 58.

 Interfaces and Functions - The INvxFile Interface

© BMC Messsysteme GmbH Page 59

4.2.3 Create

C++ HRESULT Create(_bstr_t fileName,

 long signalCount,
 long sampleCount);

BASIC Sub Create(fileName As String,
 signalCount As Long,
 sampleCount As Long)

Delphi procedure Create(const fileName: WideString;
 signalCount: Integer;
 sampleCount: Integer);

Creates a new measurement file. SignalCount signals are generated in the file.
Each signal can save SampleCount measurement values.

A list of all possible commands is provided in chapter "Overview", p. 58.

4.2.4 Close

C++ HRESULT Close();

BASIC Sub Close()

Delphi procedure Close;

Closes a measurement file previously been opened with Open() or Create().

A list of all possible commands is provided in chapter "Overview", p. 58.

Interfaces and Functions - The INvxFile Interface

Page 60 © BMC Messsysteme GmbH

4.2.5 SignalCount

C++ long SignalCount();

BASIC Function SignalCount() As Long

Delphi function SignalCount: Integer;

Returns the number of signals in a measurement file. The function throws an
exception if no measurement file has previously been opened with Open() or
created with Create().

A list of all possible commands is provided in chapter "Overview", p. 58.

4.2.6 Signal

C++ INvxSignalPtr Signal(long index);

BASIC Function Signal(index As Long) As INvxSignal

Delphi function Signal(index: Integer): INvxSignal;

Returns a signal from the measurement file. The first signal in the file has the index
number 1.

A list of all possible commands is provided in chapter "Overview", p. 58.

 Interfaces and Functions - The INvxSignal Interface

© BMC Messsysteme GmbH Page 61

4.3 The INvxSignal Interface

The INvxSignal interface allows the access to a single signal of a measurement
file.

4.3.1 Overview

Function Description

Name name of the signal
GroupName group name of the signal
Comment comment of the signal
xStart starting time of the signal
xEnd end time of the signal
xDelta scan time of the signal
xUnit unit of the x-axis
xSetUsing sets the using of the x-axis
xGetUsing returns the using of the x-axis
yMin lower limit of the measuring range
yMax upper limit of the measuring range
yDefaultMin lower limit of the default range
yDefaultMax upper limit of the default range
yDelta resolution of the signal
yUnit unit of the x-axis
ySetUsing sets the using of the y-axis
yGetUsing returns the using of the y-axis
ScanStart date at the beginning of the scan
SampleCount number of measuring values of the signal
ScaleX scaling of the x-axis
ScaleY scaling of the y-axis
ResetDataPosition reset the internal signal counter
GetNextScaled returns the next scaled pair of values

Interfaces and Functions - The INvxSignal Interface

Page 62 © BMC Messsysteme GmbH

GetNextScaledDigital returns the next scaled pair of values of a digital signal
Unscale removes the scaling of the signal
NextSample returns the next sample at the current position of the

signal
NextDigitalSample returns the next sample at the current position of the

digital signal
GetSampleAt returns a sample at a certain signal position
GetSampleAtOffset returns a sample at a certain offset in the signal
IsAnalog verifies if the signal contains analog measuring values
IsDigital verifies if the signal contains digital or counter values

4.3.2 Name

C++ __declspec(property(get=GetName,put=PutName))

 _bstr_t Name;

BASIC Property Name As String

Delphi property Name: WideString
 read Get_Name write Set_Name;

Returns the name of the signal.

A list of all possible commands is provided in chapter "Overview", p. 61.

 Interfaces and Functions - The INvxSignal Interface

© BMC Messsysteme GmbH Page 63

4.3.3 GroupName

C++ __declspec(property(get=GetName,put=PutName))

 _bstr_t Name;

BASIC Property GroupName As String

Delphi property GroupName: WideString
 read Get_GroupName write Set_GroupName;

Returns the group name of the signal.

A list of all possible commands is provided in chapter "Overview", p. 61.

4.3.4 Comment

C++ __declspec(property(get=GetComment,put=PutComment))

 _bstr_t Comment;

BASIC Property Comment As String

Delphi property Comment: WideString
 read Get_Comment write Set_Comment;

Returns the comment of the signal.

A list of all possible commands is provided in chapter "Overview", p. 61.

Interfaces and Functions - The INvxSignal Interface

Page 64 © BMC Messsysteme GmbH

4.3.5 xStart

C++ __declspec(property(get=GetxStart,put=PutxStart))

 double xStart;

BASIC Property xStart As Double

Delphi property xStart: Double
 read Get_xStart write Set_xStart;

Returns the starting time of the signal in seconds. This value is usually 0.0s. Only
for scans using a trigger a negative value is returned indicating the length of the
prehistory.

A list of all possible commands is provided in chapter "Overview", p. 61.

4.3.6 xEnd

C++ __declspec(property(get=GetxEnd,put=PutxEnd))

 double xEnd;

BASIC Property xEnd As Double

Delphi property xEnd: Double
 read Get_xEnd write Set_xEnd;

Returns the end time of the signal. Please note that the total time of the signal can
be different from the end time. The total time is xEnd-xStart.

A list of all possible commands is provided in chapter "Overview", p. 61.

 Interfaces and Functions - The INvxSignal Interface

© BMC Messsysteme GmbH Page 65

4.3.7 xDelta

C++ __declspec(property(get=GetxDelta,put=PutxDelta))

 double xDelta;

BASIC Property xDelta As Double

Delphi property xDelta: Double
 read Get_xDelta write Set_xDelta;

Returns the scan time of the signal in seconds.

A list of all possible commands is provided in chapter "Overview", p. 61.

4.3.8 xUnit

C++ __declspec(property(get=GetxUnit,put=PutxUnit))

 _bstr_t xUnit;

BASIC Property xUnit As String

Delphi property xUnit: WideString
 read Get_xUnit write Set_xUnit;

Returns the unit of the x-axis.

A list of all possible commands is provided in chapter "Overview", p. 61.

Interfaces and Functions - The INvxSignal Interface

Page 66 © BMC Messsysteme GmbH

4.3.9 xSetUsing

C++ HRESULT xSetUsing(long format,

 long width,
 long frac,
 long opt);

BASIC Sub xSetUsing(format As Long,
 width As Long,
 frac As Long,
 opt As Long)

Delphi procedure xSetUsing(format: Integer;
 width: Integer;
 frac: Integer;
 opt: Integer);

Sets the using for the values of the x-axis used for the signal. format defines the
output format, width the number of total characters of a value and frac the
number of digits after the decimal place. The argument opt is only used for the
scientific format specifying the decimal power used as base (see following table).

The following values can be passed for format, all others lead to the error code
E_INVALIDARG:

 Interfaces and Functions - The INvxSignal Interface

© BMC Messsysteme GmbH Page 67

Value Description Example:
17336.78

0 uses integer values 17336

3 value is written as a decimal value with frac digits after the
decimal place

17336.780

4 exponential notation E+xxx 1.734E+004

5 scientific format: The representation of values is optimized by
automatically using metric units for the decimal power:

p (10-12), n (10-9), µ (10-6), m (10-3), k (103), M (106), G (109)

17.337k

6 Fixed scientific notation: The decimal power is preset by the
parameter opt. The following values can be chosen for opt:

0.017M

 0: p (10-12)
1: n (10-9)
2: µ (10-6)

3: m (10-3)
4: (100)
5: k (103)

0: p (10-12)
1: n (10-9)
2: µ (10-6)

3: m (10-3)
4: (100)
5: k (103)

A list of all possible commands is provided in chapter "Overview", p. 61.

4.3.10 xGetUsing

C++ HRESULT xGetUsing(long *format,

 long *width,
 long *frac,
 long *opt);

BASIC Sub xGetUsing(format As Long,
 width As Long,
 frac As Long,
 opt As Long)

Delphi procedure xGetUsing(var format: Integer;
 var width: Integer;
 var frac: Integer;
 var opt: Integer);

Returns the settings used for the values at the x-axis of the signal. The meaning of
the individual parameters is described in chapter "xSetUsing", p. 66.

Interfaces and Functions - The INvxSignal Interface

Page 68 © BMC Messsysteme GmbH

A list of all possible commands is provided in chapter "Overview", p. 61.

4.3.11 yMin

C++ __declspec(property(get=GetyMin,put=PutyMin))

 double yMin;

BASIC Property yMin As Double

Delphi property yMin: Double
 read Get_yMin write Set_yMin;

Returns the lower limit of the measuring range the signal has been recorded with.

A list of all possible commands is provided in chapter "Overview", p. 61.

4.3.12 yMax

C++ __declspec(property(get=GetyMax,put=PutyMax))

 double yMax;

BASIC Property yMax As Double

Delphi property yMax: Double
 read Get_yMax write Set_yMax;

Returns the upper limit of the measuring range the signal has been recorded with.

A list of all possible commands is provided in chapter "Overview", p. 61.

 Interfaces and Functions - The INvxSignal Interface

© BMC Messsysteme GmbH Page 69

4.3.13 yDefaultMin

C++ __declspec(property(get=GetyDefaultMin,put=PutyDefaultMin))

 double yDefaultMin;

BASIC Property yDefaultMin As Double

Delphi property yDefaultMin: Double
 read Get_yDefaultMin write Set_yDefaultMin;

Returns the lower limit of the default range setting for displaying the signal.

A list of all possible commands is provided in chapter "Overview", p. 61.

4.3.14 yDefaultMax

C++ __declspec(property(get=GetyDefaultMax,put=PutyDefaultMax))

 double yDefaultMax;

BASIC Property yDefaultMax As Double

Delphi property yDefaultMax: Double
 read Get_yDefaultMax write Set_yDefaultMax;

Returns the upper limit of the default range setting for displaying the signal.

A list of all possible commands is provided in chapter "Overview", p. 61.

Interfaces and Functions - The INvxSignal Interface

Page 70 © BMC Messsysteme GmbH

4.3.15 yDelta

C++ __declspec(property(get=GetyDelta,put=PutyDelta))

 double yDelta;

BASIC Property yDelta As Double

Delphi property yDelta: Double
 read Get_yDelta write Set_yDelta;

Returns the resolution of the signal values.

A list of all possible commands is provided in chapter "Overview", p. 61.

4.3.16 yUnit

C++ __declspec(property(get=GetyUnit,put=PutyUnit))

 _bstr_t yUnit;

BASIC Property yUnit As String

Delphi property yUnit: WideString
 read Get_yUnit write Set_yUnit;

Returns the unit of the y-axis.

A list of all possible commands is provided in chapter "Overview", p. 61.

 Interfaces and Functions - The INvxSignal Interface

© BMC Messsysteme GmbH Page 71

4.3.17 ySetUsing

C++ HRESULT ySetUsing(long format,

 long width,
 long frac,
 long opt);

BASIC Sub ySetUsing(format As Long,
 width As Long,
 frac As Long,
 opt As Long)

Delphi procedure ySetUsing(format: Integer;
 width: Integer;
 frac: Integer;
 opt: Integer);

Sets the using for the values of the y-axis used for the signal. format defines the
output format, width the number of total characters of a value and frac the
number of digits after the decimal place. The argument opt is only used for the
scientific format specifying the decimal power used as base (see following table).

The following values can be passed for format, all others lead to the error code
E_INVALIDARG:

Interfaces and Functions - The INvxSignal Interface

Page 72 © BMC Messsysteme GmbH

Value Description Example:
17336.78

0 uses integer values 17336

3 value is written as a decimal value with frac digits after the
decimal place

17336.780

4 exponential notation E+xxx 1.734E+004

5 scientific format: The representation of values is optimized by
automatically using metric units for the decimal power:

p (10-12), n (10-9), µ (10-6), m (10-3), k (103), M (106), G (109)

17.337k

6 Fixed scientific notation: The decimal power is preset by the
parameter opt. The following values can be chosen for opt:

0.017M

 0: p (10-12)
1: n (10-9)
2: µ (10-6)

3: m (10-3)
4: (100)
5: k (103)

0: p (10-12)
1: n (10-9)
2: µ (10-6)

3: m (10-3)
4: (100)
5: k (103)

A list of all possible commands is provided in chapter "Overview", p. 61.

4.3.18 yGetUsing

C++ HRESULT yGetUsing(long *format,

 long *width,
 long *frac,
 long *opt);

BASIC Sub yGetUsing(format As Long,
 width As Long,
 frac As Long,
 opt As Long)

Delphi procedure yGetUsing(var format: Integer;
 var width: Integer;
 var frac: Integer;
 var opt: Integer);

Returns the settings used for the values at the y-axis of the signal. The meaning of
the individual parameters is described in chapter "ySetUsing", S. 71.

 Interfaces and Functions - The INvxSignal Interface

© BMC Messsysteme GmbH Page 73

A list of all possible commands is provided in chapter "Overview", p. 61.

4.3.19 ScanStart

C++ __declspec(property(get=GetScanStart,put=PutScanStart))

 double ScanStart;

BASIC Property ScanStart As Double

Delphi property ScanStart: Double
 read Get_ScanStart write Set_ScanStart;

Returns the data of the scan start (i.e. time which the first signal sample has been
recorded at). The date is passed in seconds since January 1st, 1970.

A list of all possible commands is provided in chapter "Overview", p. 61.

4.3.20 SampleCount

C++ long SampleCount();

BASIC Function SampleCount() As Long

Delphi function SampleCount: Integer;

Returns the number of signal samples .

A list of all possible commands is provided in chapter "Overview", p. 61.

Interfaces and Functions - The INvxSignal Interface

Page 74 © BMC Messsysteme GmbH

4.3.21 ScaleX

C++ HRESULT ScaleX(double xStart,

 double xEnd,
 long px);

BASIC Sub ScaleX(xStart As Double,
 xEnd As Double,
 px As Long)

Delphi procedure ScaleX(xStart: Double;
 xEnd: Double;
 px: Integer);

Scales the x-range of the signal in such a way, that the samples between xStart
und xEnd are passed by GetNextScaled. The function GetNextScaled
must be called px-times, to get the complete graph.

A list of all possible commands is provided in chapter "Overview", p. 61.

4.3.22 ScaleY

C++ HRESULT ScaleY(double yMin,

 double yMax,
 long py);

BASIC Sub ScaleY(yMin As Double,
 yMax As Double,
 py As Long)

Delphi procedure ScaleY(yMin: Double;
 yMax: Double;
 py: Integer);

Scales the y-range of the signal in such a way, that the samples between yMin
and yMax are displayed to the integer values 0 to py.

 Interfaces and Functions - The INvxSignal Interface

© BMC Messsysteme GmbH Page 75

A list of all possible commands is provided in chapter "Overview", p. 61.

4.3.23 ResetDataPosition

C++ HRESULT ResetDataPosition();

BASIC Sub ResetDataPosition()

Delphi procedure ResetDataPosition;

Resets the internal signal counter so that the next call of GetNextScaled will
return the first minimum/maximum pair (or NextSample will return the first
signal sample).

A list of all possible commands is provided in chapter "Overview", p. 61.

4.3.24 GetNextScaled

C++ VARIANT_BOOL GetNextScaled(long *min, long *max);

BASIC Function GetNextScaled(min As Long, max As Long) As Boolean

Delphi function GetNextScaled(out min: Integer;
 out max: Integer): WordBool;

Returns the next minimum/maximum pair of the signal according to the scaling
defined by ScaleX() and ScaleY().

A list of all possible commands is provided in chapter "Overview", p. 61.

Interfaces and Functions - The INvxSignal Interface

Page 76 © BMC Messsysteme GmbH

4.3.25 GetNextScaledDigital

C++ VARIANT_BOOL GetNextScaledDigital(long *min, long *max);

BASIC Function GetNextScaledDigital(min As Long, max As Long)
 As Boolean

Delphi function GetNextScaledDigital(out min: Integer;
 out max: Integer): WordBool;

Returns the next minimum/maximum pair of the signal according to the scaling
defined by ScaleX() as a digital value. This function does not regard the settings
of ScaleY().

A list of all possible commands is provided in chapter "Overview", p. 61.

4.3.26 Unscale

C++ HRESULT Unscale();

BASIC Sub Unscale()

Delphi procedure Unscale;

Removes the signal scaling so that all signal samples can be retrieved by means of
the function NextSample().

A list of all possible commands is provided in chapter "Overview", p. 61.

 Interfaces and Functions - The INvxSignal Interface

© BMC Messsysteme GmbH Page 77

4.3.27 NextSample

C++ __declspec(property(get=GetNextSample,put=PutNextSample)

 double NextSample;

BASIC Property NextSample As Double

Delphi property NextSample: Double
 read Get_NextSample write Set_NextSample

Returns the next signal sample. This function only returns meaningful values if the
signal scaling has previously been turned off with Unscale().

A list of all possible commands is provided in chapter "Overview", p. 61.

4.3.28 NextDigitalSample

C++ __declspec(property(get=GetNextDigitalSample,

 put=PutNextDigitalSample)
 long NextDigitalSample;

BASIC Property NextDigitalSample As Long

Delphi property NextDigitalSample: Long
 read Get_NextDigitalSample
 write Set_NextDigitalSample

Returns the next value of a digital signal.

A list of all possible commands is provided in chapter "Overview", p. 61.

Interfaces and Functions - The INvxSignal Interface

Page 78 © BMC Messsysteme GmbH

4.3.29 GetSampleAt

C++ double GetSampleAt(double time);

BASIC Function GetSampleAt(time As Double) As Double

Delphi function GetSampleAt(time: Double): Double;

Returns a measuring value at a certain point of time in the signal.

A list of all possible commands is provided in chapter "Overview", p. 61.

4.3.30 GetSampleAtOffset

C++ double GetSampleAtOffset(long offset);

BASIC Function GetSampleAtOffset(offset As Long) As Double

Delphi function GetSampleAt(offset: Integer): Double;

Returns a measuring value at a certain offset in the signal. The parameter offset
must be between 0 and SampleCount.

A list of all possible commands is provided in chapter "Overview", p. 61.

 Interfaces and Functions - The INvxSignal Interface

© BMC Messsysteme GmbH Page 79

4.3.31 IsAnalog

C++ VARIANT_BOOL IsAnalog();

BASIC Function IsAnalog() As Boolean

Delphi function IsAnalog: WordBool;

Returns TRUE if the signal contains analog values.

A list of all possible commands is provided in chapter "Overview", p. 61.

4.3.32 IsDigital

C++ VARIANT_BOOL IsDigital();

BASIC Function IsDigital() As Boolean

Delphi function IsDigital: WordBool;

Returns TRUE if the signal contains digital values.

A list of all possible commands is provided in chapter "Overview", p. 61.

 Index

© BMC Messsysteme GmbH Page 81

5 Index

3
32-Bit 7

6
64-Bit 7

A
AboutBox 57
ActiveX Control 11
AMS42-LAN16f 28
AMS42-LAN16fx 28
AMS42-USB 37
AMS84-LAN16f 28
AMS84-LAN16fx 28
AMS84-USB 37
Analog input

Current value 52
Analog output

Current value 52
AnalogIn 52
AnalogOut 52

B
Basics 25
BMCSAD 16, 18

C
C++® 7
Case sensitivity 26, 42
Channel list 45, 47, 49, 50, 51

Add analog channel 46
Add counter 46
Add digital channel 47

Channel number 26
Close 43, 59
Comment 63
Copyright 9

Counter 36, 37, 38
Current value 52

Create 58

D
Data acquisition system

Close 26, 43
Open 26, 42

Date 72
Default range

Lower limit 68
Upper limit 68

Delphi® 7, 17
Device conflict 10
Device Manager 10
Digital channel

Direction 55
Digital input

Current value 53
Digital input line

Current value 54
Digital output

Current value 54
Digital output line

Current value 55
Digital port

Direction 55
Digital signal

Next value 76
DigitalDirection 55
DigitalIn 53
DigitalInLine 54
DigitalOut 54
DigitalOutLine 55
Direction 55
Directory path 14
Disk space 14

E
E_INVALIDARG 66, 70
Error message 44
Error number 44
Example programs 16, 18, 23

Index

Page 82 © BMC Messsysteme GmbH

F
FileCreate 51
FileCreateAnalogIn 50
FileCreateDigital 50
FileCreatePrepare 49
FileOpen 48

G
GetNextScaled 74
GetNextScaledDigital 75
GetSampleAt 77
GetSampleAtOffset 77
GetVersion 43
Group name 62
GroupName 62

I
iM-3250 27
iM-3250T 27
iM-AD25 27
iM-AD25a 27
Installation 10, 12
Installation folder 14
Installation path 14
Integration in programming languages

10, 11
Interface

INvxFile 57
INvxSignal 60
LibadX 41

Internet address 8
INvxFile 57
INvxSignal 60
IsAnalog 78
IsDigital 78

L
LAN-AD16f 28

Counter 28
Digital ports 28

LAN-AD16fx 28
Counter 28
Digital ports 28

LastError 44
LastErrorString 44
LIBAD4 25
LibadX 41
Limit

Lower 67, 68
Upper 68

M
MAD12 30
MAD12a 30
MAD12b 30
MAD12f 30
MAD16 30
MAD16a 30
MAD16b 30
MAD16f 30
MADDA16 31
MADDA16n 31
Maximum 74, 75
MDA12 31
MDA12-4 31
MDA16 31
MDA16-2i 31
MDA16-4i 31
MDA16-8i 31
Measurement file

Add analog input 50
Add counter 50
Add digital channel 50
Close 59
Create 49, 51, 58
Number of signals 59
Open 48, 58
Prepare 49
Return signal 60

Measuring range 26
Lower limit 67
Upper limit 68

meM devices
Digital ports 32, 33
Order 32, 33
Serial number 32, 33

meM-AD 32
meM-ADDA 32
meM-ADf 32
meM-ADfo 32

 Index

© BMC Messsysteme GmbH Page 83

meM-PIO 33
meM-PIO-OEM 33
Minimum 74, 75

N
Name 62
Next digital sample 76
Next sample 76
NextDigitalSample 76
NextSample 76
NextView®4 25
Number of measuring values 45
Number of samples 72

O
Offset 77
Open 26, 42, 58
Output range 26

P
PCI cards

Serial number 29
PCI-BASE1000 29

Digital ports 29
PCI-BASE300 29

Digital ports 29
PCI-BASEII 29

Digital ports 29
PCIe cards

Serial number 29
PCIe-BASE 29

Digital ports 29
PCI-PIO 29

Digital ports 29
Prehistory 63

R
ResetDataPosition 74
Resolution 69

S
Sample 56

Get 77
Get at offset 77

Sample rate 45
SampleCount 72
ScaleX 73
ScaleY 73
Scaling 73

Turn off 75
Scan 47

Prepare 45
Save 48
Start 47

Scan start 45
Date 72
Time 63

Scan time 64
ScanAnalogIn 46
ScanDigitalIn 47
ScanPrepare 45
ScanSave 48
ScanStart 72
Serial number 29, 32, 33, 34, 36, 37, 38,

39
Signal 60

Analog 78
Digital 78
Next sample 76
Number of samples 72
Reset data position 74

Signal comment 63
Signal duration 64
Signal end 64
Signal name 62
Signal start 63
SignalCount 59
Software Collection CD 10, 11, 12, 16,

18, 23

T
Trigger 63

U
Unit

x-axis 65
y-axis 69

Unscale 75

Index

Page 84 © BMC Messsysteme GmbH

USB-AD 34
Digital ports 34
Order 34
Serial number 34

USB-AD12f 36
Counter 36
Digital ports 36
Order 36
Serial number 36

USB-AD14f 36
Counter 36
Digital ports 36
Order 36
Serial number 36

USB-AD16f 37
Counter 37
Digital ports 37
Order 37
Serial number 37

USB-OI16 38
Counter 38
Digital ports 38
Order 38
Serial number 38

USB-PIO 39
Digital ports 39
Order 39
Serial number 39

USB-PIO-OEM 39
Digital ports 39
Order 39
Serial number 39

Using 67, 71
x-axis 65, 67
y-axis 70, 71

V
VB .NET 21
Version 43
Visual Basic® 7, 15
Visual Basic® .NET 7
Visual C#® 7, 20
Visual C++® 7, 19

X
x-axis

Scaling 73
Unit 65
Using 65

xDelta 64
xEnd 64
xGetUsing 67
xSetUsing 65
xStart 63
xUnit 65

Y
y-axis

Scaling 73
Unit 69
Using 70

yDefaultMax 68
yDefaultMin 68
yDelta 69
yGetUsing 71
yMax 68
yMin 67, 68
ySetUsing 70
yUnit 69

	1 Overview
	1.1 Introduction
	1.2 BMC Messsysteme GmbH
	1.3 Copyrights
	1.4 Quickstart

	2 Installation and Integration
	2.1 General
	2.2 LibadX Installation
	2.3 Integration in Programming Languages
	2.3.1 Integration in Visual Basic® 4.0 - 6.0
	2.3.2 Integration in Delphi® 3.01 - 5.0
	2.3.3 Integration in Visual C++® 5.0/6.0
	2.3.4 Integration in Visual C#®.NET
	2.3.5 Integration in VB.NET (Microsoft®)

	2.4 Example Programs

	3 Basics
	3.1 General
	3.2 Connect to the Data Acquisition System
	3.2.1 Channel Numbers and Measuring Ranges
	3.2.2 iM-AD25a / iM-AD25 / iM3250T / iM3250
	3.2.3 LAN-AD16fx / LAN-AD16f
	3.2.4 PCIe-BASE / PCI-BASEII/300/1000 / PCI-PIO
	3.2.4.1 Digital Ports and Counters
	3.2.4.2 MAD12/12a/12b/12f/16/16a/16b/16f
	3.2.4.3 MADDA16/16n
	3.2.4.4 MDA12/12-4/16/16-2i/16-4i/16-8i

	3.2.5 meM-AD /-ADDA /-ADf / -ADfo
	3.2.6 meM-PIO / meM-PIO-OEM
	3.2.7 USB-AD
	3.2.8 USB-AD14f / USB-AD12f
	3.2.9 USB-AD16f
	3.2.10 USB-OI16
	3.2.11 USB-PIO / USB-PIO-OEM

	4 Interfaces and Functions
	4.1 The LibadX Interface
	4.1.1 Overview
	4.1.2 Open
	4.1.3 Close
	4.1.4 GetVersion
	4.1.5 LastError
	4.1.6 LastErrorString
	4.1.7 ScanPrepare
	4.1.8 ScanAnalogIn
	4.1.9 ScanDigitalIn
	4.1.10 Scan
	4.1.11 ScanSave
	4.1.12 FileOpen
	4.1.13 FileCreatePrepare
	4.1.14 FileCreateAnalogIn
	4.1.15 FileCreateDigital
	4.1.16 FileCreate
	4.1.17 AnalogIn
	4.1.18 AnalogOut
	4.1.19 DigitalIn
	4.1.20 DigitalOut
	4.1.21 DigitalInLine
	4.1.22 DigitalOutLine
	4.1.23 DigitalDirection
	4.1.24 Sample
	4.1.25 AboutBox

	4.2 The INvxFile Interface
	4.2.1 Overview
	4.2.2 Open
	4.2.3 Create
	4.2.4 Close
	4.2.5 SignalCount
	4.2.6 Signal

	4.3 The INvxSignal Interface
	4.3.1 Overview
	4.3.2 Name
	4.3.3 GroupName
	4.3.4 Comment
	4.3.5 xStart
	4.3.6 xEnd
	4.3.7 xDelta
	4.3.8 xUnit
	4.3.9 xSetUsing
	4.3.10 xGetUsing
	4.3.11 yMin
	4.3.12 yMax
	4.3.13 yDefaultMin
	4.3.14 yDefaultMax
	4.3.15 yDelta
	4.3.16 yUnit
	4.3.17 ySetUsing
	4.3.18 yGetUsing
	4.3.19 ScanStart
	4.3.20 SampleCount
	4.3.21 ScaleX
	4.3.22 ScaleY
	4.3.23 ResetDataPosition
	4.3.24 GetNextScaled
	4.3.25 GetNextScaledDigital
	4.3.26 Unscale
	4.3.27 NextSample
	4.3.28 NextDigitalSample
	4.3.29 GetSampleAt
	4.3.30 GetSampleAtOffset
	4.3.31 IsAnalog
	4.3.32 IsDigital

