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Abstract

This paper compares event-triggered and time-triggered concepts from the control theory point of
view. For that purpose, the requirements of distributed control systems are summarized and ad-
vantages and disadvantages of both concepts are elaborated by hand of different criteria. These
are, for instance, the ability to react to asynchronous events, the system design and scheduling,
the synchronization problem, and the compensation of latency and jitter in the control loop. The
results are highlighted with the aid of theoretical examinations and real measurements based on the
event-triggered CAN and its time-triggered version TTCAN.

1 Introduction

The event-triggered CAN bus [CAN90] has established itself as a de facto standard for today’s
chassis control systems and power train communication. Recently, the demand for time-triggered
communication has intensified and it is quite evident that busses with time-triggered operation
modes will play a major role in future automotive networks. Therefore, it is necessary to investi-
gate the impacts of such busses.
Within a time-triggered communication the permission to access the bus is controlled by prede-
fined time windows (TDMA, time division multiple access), leading to the advantage of a quasi-
deterministic behavior during regular operation. Therefore, time-triggered concepts potentially
provide a higher dependability, since e.g. missing messages are immediately detected. Other im-
portant properties are the possibility to guard the bus against non authorized bus accesses (bus
guardian) and to realize synchronously working busses in order to take care for redundancy (fault-
tolerant systems) [Kop97]. A very interesting property from the point of view of the automotive
field concerns the so called composability. Since the time windows to access the bus are predefined,
the behavior along the timeline is decoupled from the actual bus load. Thus, it is possible to de-
velop different subsystems independently (e.g. by the car manufacturers and suppliers), to exactly
simulate the final time behavior of the subsystems and subsequently to integrate the subsystems
into the complete system.
Although time-triggered concepts initially have been demanded by X-by-wire systems and their
necessity for fault-tolerance, they are now also of interest for other applications. For instance, the
(restrictive) framework of time-triggered architectures enables the system designers to disentangle
the high complexity of today’s large scale systems, making the system more controllable due to
more determinism.
One drawback of time-triggered bus concepts is the lack on flexibility and the restrictive design
process. All processes and their time specifications must be known in advance. Otherwise, an
efficient implementation is not possible. Furthermore, the communication and the task scheduling
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on the control units have to be synchronized during operation in order to ensure the strict timing
specifications of the system design. Since the different oscillators jitter, the subsystems would oth-
erwise run out of phase.
The main advantage of event-triggered systems is their ability to fastly react to asynchronous exter-
nal events which are not known in advance [AG03]. Thus, they show a better real-time performance
in comparison with time-triggered systems. In addition, event-triggered systems possess a higher
flexibility and allow in many cases the adaptation to the actual demand without a redesign of the
complete system.

In general, reality is neither black nor white but rather gray. Thus, it depends on the application
whether a time-triggered or an event-triggered behavior is more suitable. Some bus concepts try
to combine the advantages of both concepts (event- and time-triggered) as, for instance, TTCAN
[LH02, FMD+00] and FlexRay [BBE+02]. It is not within the scope of this paper to intensively
compare the different properties of event- and time-triggered systems. Works which address such
a comparison are, for instance, [Kop00, APF02]. The comparison here is carried out merely from
the control theory point of view.
The remaining part of this paper is organized as follows:
Section 2 summarizes the requirements of distributed control systems. Section 3 deals with the
ability to react to asynchronous external events and section 4 is concerned with the behavior during
regular operation in distributed control systems. Further, the origin of latency and jitter of event-
and time-triggered concepts are elaborated. Finally, section 5 gives some annotations concerning
the design process. The paper ends with a summary and a short discussion in section 6.

2 Requirements of distributed control systems

In modern upper class vehicles up to 2500 signals are exchanged by up to 70 ECUs, making nowa-
days cars highly distributed control systems. In order to reduce costs for cabling the nodes of
the distributed control system are connected to each other via a network. Network systems offer
the opportunity of modularity and scalability which allow a flexible design of variants. Further,
(intelligent) sensors and actuators are used in a multiple way to realize high level functions and
services.
There is a huge number of possible network topologies, like for instance, the currently frequently
used bus communication, topologies with gateways, active stars or cascaded star structures. If the
application requires fault-tolerance, the classic redundant network or a mixed redundant network
which efficiently maps the system safety structure into a system architecture is utilized [MFH+02].
To simplify matters, this paper merely considers the bus topology1.
Unfortunately, communication networks introduce delays. Furthermore, these delays may be vary-
ing in a random fashion, making the control system time varying [Hus97, Nil98].

If one is concerned to formulate the requirements of distributed control systems two different
situations should be distinguished:

1.) Occurrence of a critical situation, like for instance, the excess of a critical temperature and
2.) the regular operation of the control system.

The former situation requires an as fast as possible reaction to the asynchronous event in order
to start emergency mechanisms. For that purpose, section 3 compares event- and time-triggered
communication by hand of their ability to react to asynchronous events. The ’frequency response’
of the envisaged communication system is evaluated by a measuring method based on an orthogonal
Walsh correlation. The measurement yields the average latency and the jitter when reacting to the
event.

1In order to verify some statements of this paper, measurements based on the CAN bus have been carried out.
Due to its arbitration mechanism, the only appropriate bus topology for CAN is the bus structure.

236



Embedded World 2004

Nürnberg, 17.–19.02.2004

pages 235–252

The requirements for the second situation arise from control theory. Since the control is imple-
mented on digital computers, the most important requirements can be summarized as follows:

• The control design in general is carried out on the assumption that the sampling periods are
constant and that the control algorithm is executed with perfect periodicity. Otherwise, a time
varying algorithm may become necessary if one does not want to risk the degradation of the control
performance or even instability of the system. Such a time varying algorithm presupposes that time
information are available, like for instance, the actual sampling period, the instants at which the
measurement and the realization of the control variable are carried out or the time demand for the
control algorithm.

• Ideally, there is neither sensor delay nor actuator delay. The former denotes a delay between
the measurement of the controlled variable and the reading of the input by the controller. The
actuator delay denotes the latency between the writing of the output by the controller and the
actual realization of the control variable at the plant. If latency is inevitable it should be at least
constant in order to minimize the jitter and to use a time invariant control law [FPW97]. For the
compensation of sensor delays generally observers are used which deliver the state variables at the
interesting time instants. The original control algorithm can be used without modifications. For
the compensation of actuator delays a new design of the controller becomes necessary.

• The Realization of small delays is always advantageous, since the overall control performance
will degrade with increasing delays, no matter whether the delay is compensated or not. For in-
stance, in the meantime occurring disturbances are not observed and hence not considered by the
algorithm. Furthermore, also the exact compensation of a known and constant actuator latency
leads to a delay between the real and the desired tracking of the controlled variable (see section
4.4).

The target of this paper is to illustrate the pro/cons of event- and time-triggered concepts from the
control point of view. Illustrative examples are carried out here by hand of the well known CAN
and its time triggered version TTCAN which has been specified by the International Standard-
ization Organization in ISO 11898-4 [Org]. Silicon implementations of the protocol are available,
e.g. from Bosch [Har02] or Infineon [LKK03]. Due to its non-destructive arbitration mechanism
the bandwidth of a CAN network is limited by its cable length. The maximum data rate for a
40m network is 1Mbit/s which is not a technological but a physical limitation. This limitation also
holds true for TTCAN, since on the base level still the CAN arbitration is carried out. For future
applications with higher needs the FlexRay [BBE+02] standard is expected to play a major role.

3 Reaction to asynchronous external events

As explained in section 2, one of the elementary requirements of all real-time systems is the ability
to react to an asynchronous event within a predefined period of time. In order to evaluate the
quality of the system, frequently the average response time (latency) and its jitter is considered.
Obviously, for such a comparison event-triggered busses have an advantage over time-triggered
busses. Thus, the following examination should also show qualitatively and quantitatively which
price one has to pay for the higher determinism of time-triggered concepts in terms of the ability
to react to asynchronous events.

3.1 Test scenario

For the following examination the cooperative communication between two control units A and B
is considered as depicted in figure 1. The inspected test scenario looks as follows:
A critical situation occurs at an arbitrary instant of time and corresponding sensor signals reach
control unit A (in the following ECU A). Now ECU A informs another control unit B (in the
following ECU B) about the critical situation and waits for its reply. Thus in total the cycle A →
B → A is examined. Figure 2 illustrates the explained scenario along the timeline.
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B → A

ECU B

A → B
bus

ECU A

Figure 1: System configuration with
two control units ECU A and ECU B

latency τ

t5: reception of message by ECU A

t4: start of response by ECU B

t3: transmission request of ECU B

processing of information at ECU B

t2: reception of message by ECU B

t0: appearance of critical situation

t1: transmission of message by ECU A

B → A
message

A → B
message

t5t4t3t2t1t0 t

T5T4T3T2T1

Figure 2: Test scenario along the timeline and definition of the latency τ

At t = t0 the critical situation occurs and is immediately available to ECU A. The transmission
of the corresponding message to ECU B can take place not until t1. Reasons for this latency
T1 = t1− t0 are manifold. On the one hand there is a time demand for the computation at ECU A.
On the other hand one has to wait for the permission to access the bus. Subsection 3.2 will explain
the different compositions of the latency T1 for event- and time-triggered systems. The duration T2

is the transmission time on the bus which depends on the data rate and the length of the message.
The reception of the message by ECU B is finished at t2. The information processing takes place
until t3. Afterwards, a response for A is required. The permission to access the bus is received at
t4. The scenario ends at t5 when ECU A receives the response from ECU B.
Since external (environmental) events occur asynchronously, the time at which the critical situation
appears is not known in advance. Therefore, T1 and T4 are quite susceptible for jitter.

3.2 Origin of jitter

As shown above the overall latency τ is composed of the latencies T1, . . . , T5. Particularly, the
latencies T1 and T4 depend on the bus concept. Therefore, a more detailed examination is carried
out for T1 and T4.
Figure 3 illustrates qualitatively the behavior along the timeline for an event-triggered and a time-
triggered bus concept. The upper part shows a situation for CAN, where the critical situation
occurs at an arbitrary instant of time. Particularly, the bus can be occupied if a transmission is
currently in progress. Then ECU A has to wait for the next arbitration and receives in the best
case the permission to the bus in this next arbitration. The cycle A → B → A then starts. For
this situation to happen it is assumed that the message of ECU A possesses the highest priority
compared to all other messages during the arbitration. Summarizing, the following influences are
of importance:

• bus work load and message priority
• maximum length of message and data rate

The lower part of figure 3 shows the qualitative behavior of a time-triggered bus when reacting to
an asynchronous event. For a time-triggered architecture the time instant at which the message
is transmitted in the cycle is well defined. In the worst case, after the occurrence of the critical
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Figure 3: Qualita-
tive response along
the timeline for an
event-triggered (in
this example shown
for the CAN bus)
and a time-triggered
bus

situation one has to wait an entire cycle, if the respective time slot has just passed. After this idle
time it is guaranteed that the transmission will take place. Therefore, for the inspected scenario
at least a guaranteed upper bound can be given. Summarizing, the following influences are of
importance:

• cycle structure, cycle time
• position and counts within cycle
• data rate

As already mentioned, TTCAN and FlexRay provide also some limited event-triggered properties.
For instance, TTCAN also allows the definition of free arbitration windows and FlexRay provides
a scalable dynamic part of the communication cycle. These features are not considered here on
purpose in order to assure a clear comparison of event-triggered and time-triggered bus concepts.
If one is concerned to evaluate the real-time performance on the basis of the shown scenario, usually
three questions arise:

1.) Does the system react to all critical situations?
2.) Of what magnitude is the average delay τ of the system?
3.) How reliable is the system’s response? I.e., of what magnitude is the jitter?

To all three questions, the ’Distinctness of Reaction’ (DoR) is able to give a quantitative answer
[Wol02, WAG03, AWG03]. The method is based on an orthogonal Walsh correlation and yields
a reliability measure given by the average latency response time and the jitter when reacting to
asynchronous external events. The measurement of the DoR originally was developed for the
evaluation and comparison of different real-time operating systems. As presented in [AWG03] it is
possible also to evaluate communication systems by this method. Due to lack of space a detailed
description of the measuring procedure is not possible in the written paper. More information can
be found in the literature, e.g. [WAG03, AWG03].
In order to measure the DoR, the communication system is excited by a square wave signal i(t)
with an adjustable frequency as shown in figure 4. This excitation simulates the occurrence of the
critical situation. After the described cycle A → B → A the system reacts in a predefined manner
with its response x(t). The signals i(t) and x(t) are processed by a digital circuit, implemented on
a CPLD (Complex Programmable Logic Device) which allows to quantify the DoR. The result is
delivered via a serial interface. The DoR is a measure for the jitter in the system’s response and
takes on values from 100% (no jitter) to 0% (at least sporadic loss of excitations).
Not only the determination of a solely value is carried out (constant frequency of the excitation
i(t)), but the recording of an entire frequency response. A frequency response is known to consist
of an amplitude response and a phase response. The DoR determines the amplitude response. The
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Figure 4: System
configuration for the
evaluation of the
ability to react to
asynchronous events

phase response is determined by the average response time τ which is a direct measure of the average
latency of the system’s response. In order to achieve a standard of comparison a normalization is
carried out and the ’average skew’ s = −τ/T is introduced. The skew s is scaled downwards from
0% to -100%. This choice provides the advantage that it allows to evaluate the system’s quality
from the plot by the simple rule ’the higher, the better’ which holds true in the same manner also
for the comparison by hand of the DoR plots.

3.3 Results

This article compares CAN as an example for an event-triggered bus protocol with TTCAN which
serves as an example for a time-triggered concept. The basic differences where explained in section
3.2 and should now be verified with the aid of real measurements.
Figure 5 illustrates CAN results for different loads and also includes one result for TTCAN. For all
measurements the data rate is fixed to 250 kbit/s and the message length equals 2 byte user data.
Three load assumptions where examined for CAN:
Scenario Sc1 For scenario Sc1 there is no load. Measuring the time demand for the cycle A →
B → A gives 0.774ms which corresponds to a maximum realizable excitation frequency of 1291Hz.
As can be seen on the left side in figure 5, the system reaches very closely this limit. This result
can also be deduced from the skew (right side in figure 5) which reaches -100%. At this frequency
the system reacts exactly at the instant of time of the next trigger, meaning that the bandwidth
of the system is fully utilized. The curve of the skew is nearly linear, which indicates a highly
regular behavior. Deviations are due to measurement uncertainties and background functions of
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Figure 5: DoR (left) und skew (right) for CAN and TTCAN (both at the rate 250 kbit/s).
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the operating system, which are more noticed at higher excitation frequencies of i(t). An example
of an essential background function is the timer interrupt of the operating system.
Scenario Sc2 For scenario Sc2 there is a burden of the bus by low priority messages which are
send by CAN node A cyclically every millisecond. There are distinct resonances for the frequencies
250, 500 and 1000Hz (in fact, there are such resonances for every integer factor of 1000Hz, i.e. also
for 125Hz, 62.5Hz etc.). The reason for this phenomenon is explained in figure 6. Since background
load and excitation frequency are synchronous, there is no delay due to the background load and
thus there is no jitter.

excitation

t4 T

background load
2 T

τconst.
τ τ

cycle
A→B→A
finish of

Figure 6: Synchronous background load
and excitation

Scenario Sc3 Finally, for scenario Sc3 the micro controller is burdened by its serial interface.
For that purpose the interface is parameterized such that an interrupt is generated after the recep-
tion of each single character (1 byte). For the serial data rate of 9600 baud and a continuous data
stream there is a load of approximately 1000 IR/s. As can be recognized in figure 5 again jitter
arise, since the micro controller is interrupted during the processing of the messages of the A → B
→ A cycle. Thus, not only load on the bus but also on the micro controller generates jitter.

For time-triggered bus concepts the communication structure is defined in advance and gener-
ally not modified during operation. The communication controllers are initialized at start-up;
afterwards, they operate autonomously. Merely the data of the messages may be modified dur-
ing operation. Figure 7 shows a simple communication structure with two messages (besides the

IRSR

cycle K + 1cycle K

≈ 1000µs500µs± 500µs

Tx Ref 0 Rx Tx Tx Ref 1 Rx

i(t) x(t)
master
sends

slave
receives

slave
sends

master
rec. Figure 7:

TTCAN cycle SM
seen by the master
and expected laten-
cies

mandatory reference message of the TTCAN communication) in every cycle. This cycle is illus-
trated from the point of view of the master where double framed boxed mark actions of the master
node. Within the cycle at first the message of the slave (node B) is defined and afterwards the
message of the master (node A). Thus, from the point of view of the master, the cycle consists first
of a receive message and then of a transmit message. In the following this constellation is called
the scenario SM. The cycle time equals 1ms which for the chosen message length gives a bus load of
95.6% if the reference message is considered in the calculation and 66.4% otherwise. The result was
already presented in figure 5. As could be expected beforehand, the maximum excitation frequency
is 500Hz, since the inspected cycle A → B → A at least requires two communication cycles. Higher
frequencies lead to the missing of triggers.
Again resonances are detected but here for every integer factor of 500Hz. At this frequencies the
excitation and the cycle structure are synchronous. Both, the DoR as well as the skew show a linear
characteristic, which indicates a regular behavior. Figure 7 allows the estimation of the expected
latencies for the scenario SM as follows:
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• The excitation i(t) can occur at any time instant within the cycle. Therefore, the average
response time of the master equals 500µs± 500µs.
• There is a demand of an entire cycle until the master receives the answer message. This addi-
tionally generates a latency of 1000µs (corresponds to the cycle time).
• Finally, one has to wait for the completion of the interrupt service routine (IRSR), until the
expected reaction at the output x(t) is recognized.
Neglecting the run time of the IRSR one has to expect in total a latency of 1500µs ± 500µs. For
f = 500Hz one could expect an average latency of -1500/2000 = - 75%. The difference to the
measured value of -80% is due to the time demand for the IRSR.

It can be summarized that event-triggered bus concepts are more efficient for small bus loads,
since they generate lower latencies and less jitter when reacting to asynchronous events. But as has
been shown a bus load or a load on the micro controller arbitrarily worsen the behavior of the CAN
bus. For TTCAN the result is almost independent of the actual load and the DoR as well as the
skew show a linear characteristic with respect to the frequency of the excitation. Thus in a sense,
TTCAN is deterministic (compared to CAN), since the limit of the (worst case) time behavior can
easily be determined in advance.

4 Regular operation in control systems

4.1 Sampled-data systems

Only a minority of today’s control systems are implemented with analogue technique. Thus, con-
trol system generally are sampled-data systems, since computer algorithms work at certain in-
stants of time. Figure 8 shows the structure of a sampled-data system. The system output y(t)

(system output)

B

A

y(t)

t

A’

B’

sample

controlled variable
control variable

r(k)

v(t)w(t)

y(t)

ym(t)
u(t)

u(k)

k

u(k)

u(t)

t

hold

D/A A/Dcomputer
process

k

ym(k)

ym(k)

plant

(system input)

Figure 8: Sampled-data system: Digital control of a continuous-time plant.

of a continuous-time plant is controlled by the system input u(t) which is generated by a process
computer. Typically there are also disturbances acting on the system. For instance, the random
variables w(t) and v(t) disturb the plant input and the measurement of the system output, re-
spectively. When controlling a continuous-time plant it is necessary to sample the (measurable)
system output ym(t) and to carry out a conversion with an analogue-to-digital converter (A/D).
The controller output u(k) is converted by a digital-to-analogue converter (D/A) and is hold for
the sampling time. As is illustrated by the time plots in figure 8 in general a zero order hold is
utilized, meaning that the system input u(t) is kept constant between two sampling instants.
Most of design methods for sampled-data systems are deduced from two different point of views of
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the system architecture.

1.) If the converters are considered as a part of the controller (cut at the points A and A’)
the controller itself can be considered as a continuous-time system. The (discrete-time) controller
then tries to approximate the behavior of a (known) continuous-time controller. Generally, this
treatment is sub optimal, since in the best case the controller behaves as its continuous counter part
but neglects the interesting properties and potentials of ’real’ discrete-time controllers [ÅW97].

2.) The second possibility is to consider the converters as part of the plant (cut at the points
B and B’). Then the plant itself is a discrete-time system from the point of view of the controller.
The behavior of the plant is described exactly at the sampling instants but typically there is no
consideration of the behavior in between [ÅW97]. Nevertheless, also without special design meth-
ods which consider the continuous nature of the plant [CF95], in most cases the system will behave
good-natured between the sampling instants.

It is mentioned that it is unfortunately a common method to entirely neglect the sampling, which
can lead to a large mismatch between assumed and real system behavior. In order to minimize the
error one has to choose a high sampling frequency, but then more computational performance is
required than in fact is necessary and additional problems may arise due to ill- conditioning and
the limited word lengths provided by the controllers.

4.2 Origin of latency and jitter

Typically sampled-data systems work on the principle ’sample-then-output’. I.e., subsequent to the
measurement of the controlled variable the calculation of an adequate control variable is carried
out which ideally should immediately be realized to the system. Without special precautions the
appearing input/output latency τ should be as small as possible in relation to the sample period
T . A frequently utilized rule of thumb is τ/T ≤10%. But in fact the sensitivity of the system and
the control design to a certain amount will ’decide’ whether the latency is tolerable or not (see
subsection 4.4). The local distribution of the plant and the controller leads to additional latency
due to the field bus communication such that the input/output latency τ then increases. Figure 9

τCA

sensoractuator

plant

process
computer

τDA

generally τxx = τxx(k)

τAD

τAQ

τT2
τT1

Figure 9: Origin of time delays in
computer controlled systems

shows the origin of time delays in control systems. Subsequently, the different latencies τxx (which
in general will be time varying) are further explained2. It should be mentioned, that the number
and the classification of the different kinds of delays is rather arbitrary. Frequently, it suffices to
distinguish between three kinds of delays, namely the computational delay of the controller and
the communication delays between the sensor/controller and the controller/actuator, respectively
[Nil98]. We here specially distinguish between some more latencies in order to give some more
insight into the operation of the sampled-data system.

2The focus of this paper is to qualitatively compare the origin of latency and jitter with respect to the different
architectures and the impacts on the control design. A quite comprehensive paper on a similar subject is by Lonn &
Axelsson [LA99] who investigated eight different OS-bus-combinations by hand of their worst and best case latency
and jitter for control tasks. In their paper the authors distinguish between event- and time-triggered operating
systems, event- and time-triggered communication, and the presence or absence of a global time.
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4.2.1 Acquisition delay τAQ

Sometimes it is necessary to acquire a new measurement of the system output by the process
computer. Since this involves in general the transmission of a message over the bus, an acquisition
delay τAQ occurs.

Event-triggered architectures Basically, the same problems arise which have been discussed
already in section 3. Thus, the acquisition delay τAQ is time varying and depends, e.g. on the bus
load and the message priority.

Time-triggered architectures No additional latency is generated if the schedule is designed
such that the acquisition is demanded exactly the necessary duration earlier in order to deliver a
just-in-time measurement. For that purpose of course, the sensor node must be synchronized to
the (global) bus time.

4.2.2 Sensor delay τAD

The sensor delay τAD includes the conversion time of the A/D converter and further time delays
due to signal processing, like for instance, (anti-aliasing) filter operation, outlier detection, sensor
monitoring and built-in self test operation. A time varying delay component is frequently induced if
an (intelligent) sensor node possesses its own time base (oscillator) and works periodically without
being synchronized to the rest of the distributed system.

4.2.3 Communication delays τT1 and τT2

The communication delay τT1 describes the time demand for the communication from the sensor
to the controller, whereas τT2 stands for the communication delay between the controller and the
actuator. Both delays τT1 and τT2 strongly depend on the bus concept. The communication delay
is probably the main reason for latencies and jitter in the control loop.

Event-triggered architectures What has been said in section 3 about the origin of delay
still holds true, i.e. the latency and the jitter depend on the bus work load, the message priority,
the data rate and so on. Hence, in event-triggered architectures the communication delay may be
time varying and quite susceptible for jitter. One method in order to overcome the problem of
time variation is by Luck & Ray [LR90] who introduced buffers (sizes longer than the worst case
communication delay) at the reception sides of the network. However, one disadvantage of this
scheme is that the delay is larger than necessary.

Time-triggered architectures In time-triggered architectures it is essential to synchronize
the actions of all participating nodes to a global time. Since the (off-line) scheduling predefines
the time windows for all actions, the result is a time scheme with constant latencies and no jitter
(regardless of the actual bus work load). If no synchronization is implemented, the latency and the
jitter will most likely be of higher magnitude than for event-triggered systems as has been shown
in section 3.

4.2.4 Computational delay τCA

The computational delay of the control algorithm is denoted by τCA. In general, the operating
system and its scheduling policy will at its most influence τCA. Further, the computation time for
the algorithm may vary due to state dependent calculation branches of the algorithm.

Event-triggered architectures If the process computer has to service merely only plant,
an event-triggered operating system may ensure a nearly ideal behavior with minimum latency
and jitter of the sampling period. The more plants have to be serviced, the more likely latency
and jitter will occur. For instance, in systems with rate monotonic scheduling (RMS) the control
task usually possesses the highest frequency and hence also the highest priority. This ensures a
good time behavior since other tasks are preempted. Problems arise if several control loops have
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to serviced [Cer03]. Low latency/jitter for one control loop can be ensured only at the cost of the
other. A jitter correction is possible through the use of time variant controller, but makes the
algorithm more complicated and requires additional system functions like time stamps.

Time-triggered architectures What was mentioned for the communication delays also holds
true here. The (off-line) scheduling introduces delays. Assuming that a global synchronization is
realized, the delays are constant and there is no jitter. It does not matter how many systems are
serviced; every process has its dedicated time slots and time invariant algorithms can be used.

4.2.5 Actuator delay τDA

Lastly, there will be a delay between the reception of a new command for the control variable and
the realization at the plant. In most cases this time demand is negligible in comparison with the
other mentioned delays [Hus97].

A further source of delays and jitter are transient errors [San00] which are neglected here. For
instance, messages can be lost or corrupted. Time-triggered bus concepts may be more susceptible
for transient errors, since the retransmission of messages is often turned off in order to not disrupt
the global schedule. It is true that in time-triggered architectures a missing message immediately
is detected, but leads for the present to a delay of an entire sampling period!
In the summary, it can be concluded that event-triggered systems generally lead to less delays.
Unfortunately, there are a lot of influences on the delays, making them time varying. The com-
pensation of such jitter requires the knowledge of the real instants of time at which the sampling
is carried out and the plant input is realized. The control algorithm itself has to be time varying.
In contrast, time-triggered systems generally lead to higher but constant delays. Since the delays
arise from the scheduling, they are known in advance and a delay compensation can be carried out
by a time invariant control algorithm.
The following two subsections give some insight into the scheduling and the control design process
for time-triggered architectures.

4.3 Scheduling in time-triggered architectures

If the task scheduling and the bus communication of a time-triggered system are synchronized, the
so called input/output latency τ is constant. Figure 10 shows the generation of the input/output
latency τ . Thereby an almost ideal situation is shown, since there is a very harmonic cooperation

t

variablevariable
controlled control

variable
controlled

TT-Bus

D/A

τ

A/D

variable
control

µC at plant

process computer

transmis. transmis.

control algo.

Figure 10: Input/output latency τ for a harmonized task scheduling and bus communication.

between the task scheduling and the bus communication. In the real application such a realization
only rarely will succeed. As already mentioned, the execution time of the control algorithm is not
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necessarily constant so that buffers are introduced in the succession of the tasks and the corre-
sponding time windows. Besides, a suitable scheduling for the currently envisaged node could lead
to very disadvantageous relations for another node. Thus an optimized (entire) system design is
required which in general yields a compromise.
Figure 11 exemplarily illustrates a situation with two plants in the same network, both serviced by
the same process computer. For process 1 a scheduling succeeds with minimum latency in corre-

T

µCs at plants

TT-Bus

process computer

τ2
τ1

t

Figure 11: Relation between the input/output latency τ and the cycle time T .

spondence to figure 10; the division τ1/T takes on the minimum possible value. Due to bus and/or
computational activities such a scheduling for process 2 does not succeed. That does not necessarily
mean a tragedy. Of course, one will strive after a small as possible latency, since latencies in general
will decrease the control performance in comparison to the non delayed system (if the same design
goal of the controller is used). But what is more important for the shown architecture is the fact
that there is a constant input/output latency τ . Hence, the latency can be compensated by the
control design without the need of a time variant control law.
The following example should clarify some of the mentioned statements by hand of real measure-
ments.

4.4 Illustrative example

For the experiments a printed circuit board based on the MPC555 is utilized [AST03], which is
shown in figure 12. The interrupt driven multi-tasking operating system RTOS-UH [Ger99] and

Figure 12: Printed circuit board with
PowerPC MPC555, two CAN and two
TTCAN interfaces

the application programs reside and run in the internal flash EEPROM of the micro controller
[WAG01]. A user program management allows to simply exchange user programs via a terminal
interface. In addition to the integrated peripherals of the controller, two TTCAN chips [Har02]
and further digital and analogue interfaces have been made available.
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In order to investigate time-triggered architectures, the emulation of a time-triggered operating
system by the event-triggered OS has been realized [Alb03]. Furthermore, the implemented syn-
chronization layer allows the synchronization of the local OS time to an external global time. In
general such a time base is provided by the bus.

µC2

and

actuator

node

TTCAN bus

node

controller

control variable

controlled variable

plant

A/D

D/A

µC1

sensor

Figure 13: Investigated distributed control system

Figure 13 shows the investigated system structure. An electronic circuit based on operational am-
plifiers realizes a poorly damped second order plant (PT2 system). The plant (input u(t), output
y(t)) is uniquely described by the transfer function

F (s) =
Y (s)
U(s)

=
K

1 + 2D
ω0

s + 1
ω2

0

s2
.

An identification of the system parameter yielded:

cycle frequency of the undamped system ω0 = 78.4
static gain K = 1.18
damping constant D = 0.159 .

The measured step response of the PT2 system is illustrated in figure 14.

Figure 14: Step responses of the PT2 system.

As is shown in figure 13 the plant is connected to a micro controller µC1 which serves as the sensor
and actuator node. The controlled variable (system output) is measured by an analogue-to-digital
converter; the control variable (system input) is switched to the plant by a digital-to-analogue
converter. Micro controller µC2 is responsible for the calculation of the control algorithm. The
data exchange with µC2 is carried out via a TTCAN bus.
In order to get a reference for the best possible control behavior, in a first experiment micro con-
troller µC1 directly carried out the calculation of the control algorithm. That has been measured
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to lead to quite ideal conditions of a vanishing input/output latency τ (µseconds). The system now
has been discretized (sampling time T = 20ms), using the identified parameters and an observer
based state controller has been designed with pole placement for dead-beat (finite settling time,
here 2 sampling instants). Figure 15 shows the system’s closed loop response when the reference
signal is given by a square wave function with a frequency of 5Hz. After the step of the reference
value, the controlled variable reaches the reference within two sampling instants.

• • • • • •
•

• • • •

• • • • •
• •

• • • •

Figure 15: System’s closed loop response to a step of the reference (dead-beat design for T = 20ms).

Now the architecture of figure 13 is utilized. On both micro controllers a time-triggered oper-
ating system is emulated as described in [Alb03]. The schedule corresponds with figure 10, leading
to a latency due to the data exchange over the field bus of approximately τ = 1ms. If there is
no synchronization between the bus and the micro controllers, the input/output latency is varying
(jitter). Then there exist time areas with low differences between the local clocks but also time
areas where the difference is in the magnitude of the sampling time. A simple calculation shows
the necessity for synchronization:
Consider the utilized oscillators provide an accuracy of 100ppm (parts per million), i.e. the relative
error in the frequencies is below 0.01%. When comparing two oscillators in the worst case the
one shows an error of +100ppm and the other of -100ppm. For the sampling time T = 20ms the
maximum deviation of both clocks within one sampling is

4T = 2 · 0.01% · T = 4µs .

This corresponds to a maximum error of 200µs within a second. Thus, the input/output latency
within only 100s possibly goes through the entire spectrum from ’no delay’ to a delay of an entire
sampling period! This significantly decreases the control performance and enforces a varying con-
trol behavior along the timeline. Figure 16 shows some time plots if the reference value equals a
square wave function with a frequency of 5Hz. The original control design has been utilized without
any modification.

Figure 17 shows the system’s response when the time-triggered operating system is synchronized
to the global bus time. In addition, a new control design has been carried out where the constant
latency, resulting from the scheduling has been compensated for. Although the latencies differ
(1ms to 15ms) there is always an identical system behavior, which is only shifted by the constant
latency. In order to notice that, figure 17 also illustrates the reference signal. However, if the main
target is to adjust the reference signal as fast as possible, the original settling time can be achieved
only if the sampling time is decreased.

As has been shown by the example, latencies in principle make no problems in time-triggered
architectures. It is further emphasized that due to the synchronization of all nodes to the global
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Figure 16: System’s closed loop response to a step of the reference (loop closed via the TTCAN bus,
dead-Beat design for T = 20ms). The time-triggered operating system is not synchronized to the global
bus time. The corresponding latencies approximately are 1ms (upper left corner), 5ms (upper right
corner), 11ms (lower left corner) and 19ms (lower right corner).

time there is qualitative no difference between actuator and sensor latency. Thus, time-triggered
architectures does not require a special treatment for both types of delays as it was explained in
section 2.

5 Annotation to the time-triggered design process

In time-triggered architectures the entire design process must be carried out off-line in advance.
Generally, this design process contains several steps which have to be processed in an iterative
fashion. This paper merely dealt with a quite small part of the design process (impacts on the
controller design), since it was assumed that the scheduling of the tasks and the bus communi-
cation is already be at hand. The design process is all but not a trivial task and a lot of open
problems are yet no solved. The following annotation gives a little insight into the arising questions.

One interesting opportunity of time-triggered architectures from the automotive point of view
is the already mentioned composability. One of the most challenging problems in this context is
concerned with the responsibility for the system integration and liability questions [Stö02]. In any
case an iterative procedure will be required which roughly could look as follows:

1. First of all, it is necessary to define the desired functionality of the entire system. Usually,
this task will belong to the car manufacturer. Then the necessary subsystems should be
determined which have to be connected to the network. This task in general also involves the
suppliers.
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Figure 17: System’s closed loop response to a step of the reference (loop closed via the TTCAN bus,
dead-Beat design for T = 20ms). The time-triggered operating system is synchronized to the global
bus time. The latencies, resulting from the scheduling are 1ms (upper left corner), 5ms (upper right
corner), 10ms (loewer left corner) and 15ms (lower right corner). The controller design compensates
for the constant latency of the scheduling.

2. In the next step the system integrator has to be determined. He will supervise the subsystem
designers and take over responsibility for the system integration.

3. The subsystem designers now have to specify the requirements of their subsystems. For
instance, they have to define interfaces between the subsystems and to specify timing re-
quirements like the release times and deadlines for tasks as well as the sampling frequencies.
Further, precedence and exclusion constraints may be formulated. This part of the schedul-
ing already requires the use of powerful tools, e.g. in order to estimate realistic values for
the worst case execution times (WCETs) of the task processing. Without powerful tools the
assumptions may be too conservative and it is more likely that there is no feasible schedule.

4. The system integrator tries to find an appropriate communication schedule. For this task effi-
cient tools are of essential importance, since the scheduling problem is generally NP-complete,
implying that heuristics must be used to solve the problem [MG01]. Recent approaches for
heuristics dedicated to the scheduling of heterogenous time/event-triggered systems are, for
instance, proposed in [Pop03].
If there is a feasible solution for the scheduling, the procedure ends. Possibly the result of the
scheduling is considered by the subsystem designers and the control algorithms are modified
in order to compensate for latencies. If there is no feasible solution, one has to return to step
3 with modified requirements.
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6 Summary and conclusions

During the regular (periodical) operation of distributed control systems, time-triggered architec-
tures seem to be ideally suited. On the one hand they often lead to a higher latency compared
with event-triggered architectures but on the other hand there is no jitter if all participating nodes
at the network are synchronized to a global time. Thus, time-triggered architectures offer very
interesting properties from the control design point of view. For instance, a delay compensation
can be carried out by time invariant control algorithms. The main advantage of event-triggered
systems is their ability to fastly react to asynchronous external events. Thus, they are leading to
a better real-time performance in comparison with time-triggered systems.
One drawback of time-triggered architectures is the deficiency on flexibility and scalability [San00].
A small change in one subsystem may in general imply an entire new system design. The system
design itself is very complicated and there is still a lack of adequate tools for the design process.
Several times throughout this paper it has be mentioned that it depends on the actual application
whether a time-triggered or an event-triggered behavior is more suitable. Very safety critical sys-
tems, like X-by-wire require fault-tolerance and redundancy. The implementation of such systems
probably will fail without the framework of time-triggered architectures. For large-scale problems
in the automotive field, like global vehicle dynamics control time-triggered architectures are a good
choice and offers some interesting opportunities. For many other applications time-triggered archi-
tectures may be counterproductive due to the complicated design process and their inflexibility.
This paper on purpose showed a black or white view in order to illustrate some typical proper-
ties. Due to lack of space hybrid architectures which try to combine the advantages of event-
and time-triggered architectures have not been considered. Nevertheless, many future systems
will show hybrid architectures as can be deduced from the specification of future bus protocols
[BBE+02]. They will combine the strict time-triggered operation (constant latencies, synchronized
ECUs, sensor and actuator nodes) with the possibility to react to asynchronous events.
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