
iCC 2015 CAN in Automation

 04-1

Plug-and-Secure Communication for CAN

Andreas Mueller and Timo Lothspeich

Robert Bosch GmbH, Germany

Security is a topic of rapidly increasing importance in both automotive as well as indus-
trial applications. This is driven by the current trend towards ubiquitously connected
systems, a higher degree of automation, and the increasing openness of systems, with
a multitude of interfaces and APIs that an attacker might use for malicious purposes. In
today’s systems, the communication via CAN is often insecure. Although suitable con-
cepts and cryptographic algorithms are basically available, the distribution of the re-
quired (symmetric) cryptographic keys between the involved nodes is still challenging.
Currently, the key establishment comes along with either a high logistical / organiza-
tional effort or high complexity and/or costs. For that reason, we propose a novel ap-
proach for establishing and refreshing symmetric cryptographic keys between different
nodes in a CAN network in a plug-and-play manner. Our approach captivates by its sim-
plicity, low complexity and high cost-efficiency, and may be readily implemented with-
out any modifications of standard CAN controllers.

I. Introduction

The recent trend towards ubiquitously con-
nected systems – be it cars, factories or
buildings – does not only come along with
numerous opportunities and benefits, but
imposes also serious new security threats
with a potentially huge impact. If everything
is interconnected with each other and with
more and more interfaces and APIs being
introduced in order to facilitate innovative
services and applications, also the attack
surface for malicious manipulations and in-
trusions is increasing significantly. Without
proper countermeasures, hackers may
easily take over the remote control of a car,
eavesdrop on confidential production data
or manipulate a building automation sys-
tem, for instance.

The fact that this is not just a purely theo-
retical threat, but rather a real and serious
menace, is reflected by various prominent
attacks that have been performed and pub-
lished only recently. In [1], for example, the
authors have managed to remotely inject
messages on the CAN bus of a Jeep Cher-
okee (and thus affect important physical
systems, such as steering or braking) by
exploiting various security flaws and con-
necting to the vehicle via a mobile network.
This led to recall of about 1.4 million cars
and fueled legislative initiatives to mandate
car manufacturers to support reasonable
measures to protect cars against hacking

attacks [2]. Further security leaks and suc-
cessful attacks on cars and other vehicles
have been reported in [3] - [5], for example.
One of the reasons why especially remote
attacks are so relevant and threatening is
the fact that these attacks may easily scale
and that hackers do not even need physical
access to the system under attack. For in-
stance, imagine a scenario with thousands
of cars being remotely hijacked and hack-
ers taking control of them. Then, they may
precipitate a breakdown of the whole traffic
infrastructure of a city or country by manip-
ulating all cars in a coordinated manner.
Clearly, this may not only lead to a tremen-
dous physical damage, but also to a signif-
icant impact on the whole economy and so-
ciety. Therefore, the support of appropriate
security mechanisms represents without
doubt a crucial prerequisite for the success
and acceptance of any connected system.

A solid and robust security concept gener-
ally covers many different aspects and rep-
resents a multi-stage approach, which com-
bines different components. Usually, this in-
cludes things like security-aware develop-
ment processes, fine-grained access con-
trol mechanisms and policies, the use of
cryptographic methods as well as associ-
ated key management procedures. In auto-
motive networks – which we will focus on in
the following, even though our approach is
readily applicable to many other systems as
well – a secured communication on CAN

iCC 2015 CAN in Automation

04-2

represents a particularly important building
block in this respect since a compromised
CAN network may have a direct impact on
passenger or other people’s safety. This is
because CAN is typically used for intercon-
necting all kinds of sensors and actuators,
e.g., for powertrain or chassis subsystems.
Today, however, the communication on
CAN is mostly completely insecure. Even
though suitable concepts and algorithms
are basically available (such as tailored ap-
proaches for authenticating or encrypting
CAN messages [6], [7]), they are not used
in practice yet as various other challenges
still remain open. Among other things, this
includes proper standardization across dif-
ferent OEMs and suppliers, but also effi-
cient approaches for establishing, refresh-
ing and managing the cryptographic keys
that are required for the involved crypto-
graphic schemes. In this paper, we there-
fore propose a novel approach addressing
the latter aspect, which is able to establish
and refresh symmetric cryptographic keys
between two nodes in a CAN network in a
plug-and-play manner. To this end, special
properties of the CAN physical layer are ex-
ploited and the approach captivates by its
simplicity, low complexity and high cost-ef-
ficiency. Moreover, it may be readily imple-
mented with no or only minor extensions to
standard CAN controllers. It is particularly
suitable to enhance the security against re-
mote (and thus scalable) attacks and thus
may become an important building block for
secure communication on CAN.

The remainder of this paper is structured as
follows: In Section II, we outline our system
and attacker model, followed by a review of
existing approaches to CAN security in
Section III. Our novel approach for estab-
lishing and refreshing cryptographic keys
based on special CAN properties is then
presented in Section IV. In Section V and
VI, we discuss certain implementation as-
pects and elaborate on various security
considerations, before concluding the pa-
per with a short summary in Section VII.

II. System and Attacker Model

In the following, we always consider a setup
as depicted in Figure 1. Two devices (Alice
and Bob) are connected to the same CAN
bus segment and want to establish a pair of

symmetric cryptographic keys. Afterwards,
they may then use these keys for encrypt-
ing and/or authenticating any messages ex-
changed between them. In addition, how-
ever, there may also be a potential attacker
(Eve) connected to the same bus segment,
which tries to determine or influence the
keys to be established between Alice and
Bob. In this regard, we make the following
assumptions on Alice, Bob and Eve:

1) All nodes have a similar setup, made up
of a CAN transceiver, a suitable CAN
controller, as well as a microprocessor
running the actual application software.

2) Eve is the victim of a remote attack in
the sense that the original software run-
ning on that node has been replaced by
a modified (malicious) software.

3) Eve may eavesdrop on all messages
exchanged on the CAN bus. Further-
more, she may inject arbitrary (single)
bits on the bus, e.g., by bypassing the
CAN controller and directly accessing
the CAN transceiver from the malicious
software running on the device.

Figure 1: Considered System Model

A major challenge in general is to make
sure that even if one device has been suc-
cessfully attacked (here: Eve), the impact
on the overall system can be kept to a min-
imum. In the previously mentioned attack
on a Jeep Cherokee, for example, first of all
the head unit has been successfully com-
promised [1]. With proper security mecha-
nisms in place (e.g., proper message au-
thentication), it would not have been possi-
ble for the head unit to control safety-rele-
vant functions, such as the brakes of the
car, by injecting CAN messages that it ac-
tually is not allowed to transmit. However,
this is only possible as long as the crypto-
graphic keys of the legitimate nodes (here:
Alice and Bob) remain secret. Therefore,
Eve naturally must not be able to determine
and/or influence these keys.

iCC 2015 CAN in Automation

04-3

III. Review: Security for CAN Networks

The protection of the integrity of a message
and the assurance of the authenticity of its
sender should generally be among the top
security goals in CAN-based networks as
CAN is widely used for controlling physical
systems or processes with a potential direct
impact on safety. Therefore, unauthorized
manipulations have to be prevented or they
should at least be detectable. Confidential-
ity, in contrast, is considered to be only of
secondary importance and may be useful
for making it harder for an attacker to learn
the current system state or for delivering
critical software updates, for example.

In principle, all these security goals could
be achieved in exactly the same way as in
the conventional IT world (e.g., using digital
signatures, message authentication codes,
etc.), but for optimal performance the spe-
cific constraints of CAN-based networks
should be properly taken into account. This
includes things like the limited data rate and
message sizes, for example, as well as the
limited computational power and memory of
many CAN devices. Therefore, in [6] and [7]
several security mechanisms specifically
optimized for CAN have been proposed,
which take these specific constraints into
account. In this regard, symmetric crypto-
graphic schemes turn out to be the basis for
most of the proposed schemes due to their
limited computational complexity and band-
width requirements. The use of symmetric
cryptography, however, requires the availa-
bility of symmetric (i.e., identical) keys at
the involved nodes and the distribution / es-
tablishment of these keys represents a ma-
jor challenge. Possible options include a
manual distribution of keys, e.g., at the end
of a production line. This, however, involves
a considerable (organizational) complexity
and reaches its limitations if one or several
devices have already been compromised
before being integrated into the network (for
example due to an attack performed at the
supplier). Besides, an automated refresh-
ment of keys cannot be realized this way.
An alternative approach that has been ac-
tively discussed and considered in recent
years is to use key establishment schemes
based on asymmetric cryptography for that
purpose, such as the Diffie-Hellman key ex-
change protocol [8],[9]. Major drawbacks of
this approach are the high computational

complexity as well as the comparatively
large amounts of data that have to be ex-
changed between two nodes in order to set
up a (secure) symmetric key. Besides, it
should not be forgotten that the security of
the Diffie-Hellman key exchange relies only
on the difficulty to efficiently solve the dis-
crete logarithm problem on finite fields or el-
liptic curves using state-of-the-art methods.
Therefore, the approach may become inse-
cure from one day to the other if adequate
progress is made in this respect. This could
be the advent of a high performance quan-
tum computer, for example.

In the next section, we therefore propose a
novel approach for establishing symmetric
cryptographic keys between two nodes (or
to be more precise: an approach for estab-
lishing a shared secret, based on which
symmetric keys can be derived), whose se-
curity does not rely on hard mathematical
problems, but rather on physical properties
of the CAN bus. Furthermore, it has an ex-
tremely low complexity, low bandwidth re-
quirements and may be readily imple-
mented in practical systems. Finally, it may
also be used for efficiently refreshing al-
ready established keys, thus making it a
very useful and promising building block for
future secure CAN networks.

IV. CAN-Based Key Establishment

The basic idea of our approach is that Alice
and Bob agree on a shared secret / key by
means of a public discussion using stand-
ard CAN messages. In particular, both
nodes simultaneously transmit appropriate
CAN frames, so that Eve is only able to see
the superposition of both messages, with-
out knowing the exact content of each of
them. However, since Alice and Bob them-
selves know what they have transmitted
and since they can see the superposition of
both messages as well, they may readily
conclude what the respective other peer
has transmitted and thus establish a shared
secret that is not known to Eve.

For the concrete realization, we rely on the
characteristic property of the CAN bus that
bit ‘0’ is dominant and bit ‘1’ is recessive,
which represents also the basis for the clas-
sical bus arbitration. In fact, if Alice and Bob
simultaneously transmit a certain bit (as re-
quired for our approach), there are in total

iCC 2015 CAN in Automation

04-4

four different cases that may occur. These
are put together in Table 1. Clearly, if one
of the two nodes transmits a dominant bit
(‘0’), also the effective bit on the CAN bus
is a ‘0’ and only if both nodes transmit a re-
cessive bit (‘1’), we also have the recessive
state after the superposition on the CAN
bus. Therefore, the CAN bus may be con-
sidered as a logical AND function of the in-
dividually transmitted bits.

Table 1: Possible Combinations of Domi-
nant and Recessive Bit Transmissions.

Alice Bob
Effective Bit
on CAN Bus

0 0 0

0 1 0

1 0 0

1 1 1

The actual procedure for agreeing on a
shared secret between Alice and Bob is a
multi-step approach as follows:

1) Alice and Bob generate independently
of each other random bit strings RAlice
and RBob of a pre-defined length N.

Example (for N = 10):
 RAlice = 0 1 1 0 1 0 0 1 0 1
 RBob = 1 0 1 1 0 1 0 1 1 0

2) Alice and Bob extend these random bit
sequences in such a way that after each
bit the corresponding inverse bit is in-
serted, leading to the modified bit se-
quences SAlice and SBob of length 2N.

Example:
 SAlice = 01 10 10 01 10 01 01 10 01 10
 SBob = 10 01 10 10 01 10 01 10 10 01

3) Alice and Bob simultaneously transmit
the bit sequences SAlice and SBob, lead-
ing to the superimposed (effective) bit
sequence Seff on the CAN bus, which is
given as Seff = SAlice AND SBob.

Example:
 Seff = 00 00 10 00 00 00 01 10 00 00

Clearly, Eve may easily determine this bit
sequence as well by means of simple pas-
sive eavesdropping on the channel. There-
fore, it does not really help us further, yet.

4) Alice and Bob determine all tuples in Seff
which include a ‘1’.

Example: In Seff given above, there is a ‘1’
in tuples number 3, 7 and 8 (assuming that
we start counting the tuples with 1).

5) Alice and Bob delete the bits in their
original random bit sequences RAlice and
RBob corresponding to the tuples which
included a ‘1’ as determined in step 4.
The result are two shortened bit se-
quences, denoted as KAlice and KBob.

Example: Based on the outcome of step 4,
Alice and Bob have to delete the bits at po-
sitions 3, 7 and 8 in their original bit se-
quences RAlice and RBob. Hence, we get:

KAlice = 0 1 1 0 1 0 0 1 0 1 = 0 1 0 1 0 0 1

KBob = 1 0 1 1 0 1 0 1 1 0 = 1 0 1 0 1 1 0

Please note that this is done because
whenever the effective bit on the CAN bus
is a ‘1’, it is clear that both Alice and Bob
must have transmitted a ‘1’. Likewise, since
the two bits in a tuple are always inverse to
each other (cf. step 2), it is also clear that
both nodes must have transmitted a ‘0’ for
the other bit in that case. However, exactly
the same conclusion can also be drawn by
Eve and therefore the tuples including a ‘1’
do not provide any usable information for us
as no secrecy is contained. For that reason,
these bits are simply removed from Seff.

6) The resulting (shortened) bit sequence
of Alice (KAlice) is now exactly the in-
verse of the corresponding bit se-
quence of Bob (KBob), which eventually
is the established shared secret.

Clearly, what remains after step 5 are the
bits that are different in the initial bit strings
RAlice and RBob. When simultaneously trans-
mitting SAlice and SBob, we always get ‘00’ for
the tuples corresponding to these bits.
Hence, by eavesdropping on Seff, Eve only
knows that Alice and Bob have inverse bits
in their original random bit sequences RAlice
and RBob at that position, but she is not able
to tell which one has the zero and which
one has the one. Alice and Bob, in contrast,
know which bit they have transmitted them-
selves, they can also conclude that the re-
spective other peer has transmitted the in-
verse bit by evaluating Seff and therefore
they have a clear advantage compared to
Eve. Thus, KAlice and KBob are unknown to
Eve, but are known by Alice and Bob.

iCC 2015 CAN in Automation

04-5

Discussion

With the proposed scheme it is possible to
establish a shared secret between Alice
and Bob by means of a simple public dis-
cussion, i.e., by simply transmitting and re-
ceiving CAN frames and interpreting the su-
perimposed frames on the bus in the right
way. Consequently, the involved complex-
ity is extremely low, especially compared to
existing key establishment schemes, such
as the Diffie-Hellman key exchange proto-
col. Yet, it may be done in a fully automated
manner and is thus clearly superior com-
pared to the manual distribution of keys.

The concrete integration of the core idea in
a full-blown solution with suitable protocol
mechanisms is still ongoing work and not
elucidated in more detail here due to space
constraints. In particular, for a complete so-
lution additional mechanisms are required,
e.g., for triggering the synchronized trans-
mission of Alice and Bob, for initiating the
whole procedure, and for somehow ad-
dressing the involved nodes, for example.
In general, however, we do not expect any
showstoppers in this respect and for most
aspects solid ideas are already available.

In a practical realization, the simultaneous
transmission of the bit strings SAlice and SBob
preferably would be done in the payload
part of a CAN frame, thus representing a
deviation from standard CAN, where simul-
taneous transmissions may only occur dur-
ing the arbitration phase when transmitting
the CAN identifiers. With some other smart
ideas, however, it is still possible to imple-
ment the proposed in such a way that other
noninvolved nodes (apart from Alice and
Bob) see always valid CAN frames on the
bus (even with superimposed random bit
strings in the payload field) and therefore
would not trigger the transmission of any er-
ror frame. This will be presented in more
detail in the next section. What is important
to note, though, is that the number of pay-
load bits in a CAN frame is limited to 64 bits
in case of standard CAN and 512 bits in
case of CAN FD. Furthermore, the length of
the effective shared secret that we can gen-
erate with one run of the proposed proce-
dure for a given length N of the initial ran-
dom bit strings RAlice and RBob is not con-
stant, but depends on how many values in
RAlice and RBob are equal. Clearly, this may
vary between zero and N, with an expected

value of N/2. Since in step 2 the initial ran-
dom sequences are extended by a factor of
two by inserting always the inverse bit after
each bit and since all these 2N bits have to
be transmitted over the CAN bus, the over-

all efficiency , which relates the length of
the usable shared secret after one round of
the proposed approach (given by the length
of KAlice and KBob, respectively) to the num-
ber of required bits to establish this shared
secret (given by 2N) is generally given by

 0 ≤ ≤ ½, (1)

with an expected value of E[] = ¼. This
means that on average four payload bits
have to be simultaneously transmitted by
Alice and Bob in order to establish one se-
cret bit. Since for achieving state-of-the-art
security usually symmetric keys of length
128 bit or even 256 bit are required, it is
quite clear that for both standard CAN and
CAN FD a single run of the proposed ap-
proach is generally not enough to generate
a sufficient number of secret bits. There-
fore, also for addressing this issue suitable
protocol mechanisms are required, which
ideally would enable the generation of keys
of arbitrary length. This may be done by re-
peatedly performing the proposed proce-
dure and combining the secret bits gener-
ated during each run in an appropriate way.

Another very promising application of the
our approach is to use it not just for gener-
ating full keys of 128 of 256 bits length, but
for periodically refreshing existing keys.
This is generally beneficial in order to limit
the time during which a certain key is used
or equivalently the number of messages
that are secured using one particular key.
By doing so, certain attacks become more
difficult (e.g., plain-text attacks) and the po-
tential damage in case that a particular key
is revealed at some point in time can be lim-
ited. Therefore, periodic key refreshment is
a highly recommended security practice in
general, see for example [10] and [11]. For
refreshing a key, however, already a limited
number of secret bits is sufficient as they
may be combined with the old key in an ap-
propriate way. This may be done by using
a cryptographic hash function, for example.
Hence, the proposed procedure may be
regularly inserted into the regular CAN
communication in order to generate new
shared secret bits and to refresh the used

iCC 2015 CAN in Automation

04-6

keys accordingly for increasing the security
level. The periodicity of the key refreshment
may be adaptively adjusted depending on
the respective needs, thus making it a very
flexible and powerful solution in practice.

Finally, it should be noted that CAN is a
multicast-based communication protocol
and messages transmitted by one node
generally have to be received by multiple
nodes. This implies that in many cases not
only the communication between two
nodes has to be secured, but rather the
communication between groups of several
nodes. Hence, cryptographic schemes for
message authentication, encryption, etc.
may only be reasonably applied in these
cases if all devices belonging to a certain
group are in possession of the same cryp-
tographic key. The procedure proposed in
this paper, however, cannot be extended to
a multi-node setup in a straightforward
manner. Nevertheless, there are still sev-
eral possibilities how so-called group keys
may be established. In the simplest case,
all nodes of a certain communication group
could establish a pairwise key with one par-
ticular node of that group (e.g., a gateway
node), and then this node may generate a
suitable group key and signal it to all nodes
of the group in a secure manner using the
previously established pairwise keys.

V. Implementation Aspects

As already outlined in the previous section,
the bit strings SAlice and SBob are preferably
transmitted in the payload field of a CAN
frame. Without any additional measures,
however, this may lead to problems and/or
compatibility issues in practical realization.
In particular, with a direct implementation of
the proposed approach, the superimposed
CAN frame on the bus may violate the bit
stuffing rule since even if the individual bit
strings SAlice and SBob adhere to this rule, it
cannot be assured that this is also the case
for the effective bit string Seff on the bus. For
example, if SAlice = 01010101 and SBob =
10101010, both strings would be valid, but
Seff = SAlice AND SBob = 00000000 would
clearly violate the bit stuffing rule. Hence,
other nodes may generate an error frame if
they observe such a violation on the bus
and clock resynchronization may become
more difficult. A relatively simple solution to
fix this problem is to insert a fixed bit

change (‘01’ or ‘10’) in both SAlice and SBob
after each sequence of at most four bits.
This way, Alice and Bob would always
transmit the same two bits at this position
and since the two bits include a bit change,
the bit stuffing rule is never violated in the
error-free case. However, this would come
at the cost of a higher overhead, of course.
Alternatively, Alice and Bob could deter-
mine on-the-fly when it is necessary to in-
sert a stuff bit. In fact, both nodes have to
read back the effective bit sequence Seff an-
yway and thus they could check in real-time
if there have been five identical bits effec-
tively on the bus and dynamically insert the
inverse bit afterwards in that case. Com-
pared to the first solution, the additional
overhead would be significantly lower, but
in return the complexity and processing re-
quirements are somewhat higher.

A similar problem occurs with the cyclic re-
dundancy check (CRC) field of a CAN
frame in case of a direct implementation of
the proposed approach. Since Seff depends
on both SAlice and SBob, the valid value for
the CRC field of the effective message on
the bus would generally not be equal to the
superimposed CRC fields of the messages
transmitted by Alice and Bob in case that
they calculate the CRC field in such a way
that the transmitted frames are valid. In or-
der to solve this issue and thus assure full
backwards compatibility to standard CAN,
the correct CRC value that matches to the
effective CAN frame on the bus could also
be calculated by both nodes on the fly and
then be appended to that frame after the
payload field. While making sure that the ef-
fective frame on the bus is a valid CAN
frame (based on existing specifications), it
has the nice side effect that this procedure
would automatically help to make sure that
both Alice and Bob have received the same
effective bit string Seff (which is essential for
deriving the same shared secret). This is
because if one of the two nodes has re-
ceived at least one erroneous bit but the
other one hasn’t, they would append differ-
ent CRC fields in general, which may be de-
tected by one of the nodes if a recessive bit
is overwritten by a dominant one.

With the previously described approaches
for dealing with bit stuffing violations and
the CRC field, it is possible to achieve full
backward compatibility in the sense that all

iCC 2015 CAN in Automation

04-7

frames on the CAN bus are always in line
with the existing specifications – at least in
the error-free case. Hence, smooth migra-
tion paths become possible, where not all
nodes connected to a CAN bus necessarily
have to support the proposed approach and
existing hardware / software may widely be
reused. A practical implementation may be
done solely in software (using CAN/GPIO
re-pinning, for example, and thus directly
accessing the CAN transceiver from the mi-
croprocessor) or hardware-assisted, where
an additional hardware module may take
care of the specific requirements of the pro-
posed approach, such as the synchronized
transmission of Alice and Bob. In this re-
gard, we envision flexible implementation
options, where existing CAN controllers
taking care of the regular CAN communica-
tion do not have to be modified at all as long
as they are supplemented by an additional
(lightweight) hardware / software module.

VI. Security Considerations

If Eve as modeled in Section II is only pas-
sively eavesdropping on the CAN bus, she
is not able to readily determine the estab-
lished shared secret bit sequences KAlice or
KBob. As already outlined in Section IV, she
just knows that the remaining bits were dif-
ferent for both nodes, but – unlike Alice and
Bob – cannot tell who has transmitted the
zero and who the one. If, in contrast, Eve is
trying to perform an active attack, for exam-
ple by sending additional own bits during
the exchange of SAlice and SBob between Al-
ice and Bob, there are two different possi-
bilities that have to be considered:

1) Eve is transmitting a recessive bit
2) Eve is transmitting a dominant bit

Transmitting a recessive bit is no different
from not transmitting at all since a recessive
bit does not change the effective state on
the CAN bus. Therefore, we only have to
analyze what Eve might do by superimpos-
ing another dominant bit to the bits ex-
changed between Alice and Bob. To this
end, it is important to remember that with
the procedure proposed in Section IV only
those bits remain in the final shared secret
for which the effective bit on the CAN bus
was ‘0’ for both the transmission of the orig-
inal and the inverse bit (cf. step 5). Moreo-
ver, if Eve transmits a dominant bit, she

cannot tell what the status on the CAN bus
would have been without her transmission.
Therefore, we may conclude the following:

Conclusion 1: An active Eve may disturb
our procedure in such a way that the gen-
erated secret bit strings KAlice and KBob are
actually not equal on both sides. In order to
be able to detect such cases, therefore ad-
ditional mechanisms should be introduced,
with which Alice and Bob can verify that
they have really generated the same secret
bit sequences KAlice and KBob. This could be
done by calculating and exchanging a hash
value of these bit sequences, for example.

Conclusion 2: An active Eve is not able to
enforce the generation of a particular
shared secret between Alice and Bob
(which she then would be aware of) and/or
to learn the shared secret that is estab-
lished between both nodes. This is because
KAlice and KBob depend not only on Seff
(which may be determined and influenced
by Eve), but also on the bits of RAlice and
RBob, which are unequal on both sides, and
Eve has no way to determine these bits.

Conclusion 3: An active Eve may easily
perform a denial-of-service attack by com-
pletely preventing the establishment of a
shared secret, for example by continuously
sending a dominant bit. However, this
threat exists basically for any scheme since
an active Eve may easily block any CAN
communication on the bus. In this case, the
fail-safe mode of all devices should prevent
any serious safety-critical impact.

If we deviate from the attacker model intro-
duced in Section II and consider not only
remote attacks, but also attacks with direct
access to the CAN bus (e.g., using own
high-end equipment), the situation is get-
ting more challenging. Without any further
ado, a passive eavesdropper might be able
to determine the shared secret established
between Alice and Bob in this case by ana-
lyzing the voltage levels on the CAN bus,
for example. This is because for fixed posi-
tions of Alice, Bob, and Eve, the voltage
level that Eve can observe on the bus may
be different depending on whether Alice is
transmitting a dominant bit and Bob a re-
cessive one or vice versa. For the remote
attacker case, this was not an issue since
she may only access the CAN bus via a

iCC 2015 CAN in Automation

04-8

standard CAN transceiver, which regener-
ates the voltage levels. A remedy could be
to artificially introduce a random jitter in the
transmit voltage levels of Alice and Bob
(within the allowed ranges), so that Eve can
no longer conclude who has transmitted
which bit. It should also be noted, however,
that with direct (physical) access to the
CAN bus, an attacker might manipulate a
car with much less effort, e.g., by simply
cutting through a cable or manipulating the
brakes. Nevertheless, a more detailed anal-
ysis of potential attacks with direct physical
access to the CAN bus as well as possible
countermeasures is part of our future work.

VII. Conclusion and Way Forward

Security will play a crucial role for the suc-
cess and widespread acceptance of con-
nected systems, such as connected cars
and other vehicles. A major challenge in
this regard is how to distribute and manage
the cryptographic keys between the in-
volved nodes. We have proposed a novel
approach for establishing and/or refreshing
symmetric cryptographic keys between two
CAN devices in a plug-and-play manner,
exploiting special properties of the CAN
bus. The proposed scheme requires only
the simultaneous exchange of random bit
sequences along with an appropriate inter-
pretation of the resulting effective bit se-
quence on the bus. Therefore, it is of very
low complexity and may be readily imple-
mented and integrated in practical systems.
Even though it certainly cannot address all
existing security challenges, it has the po-
tential to become a major building block for
secure CAN communication in future. Also,
it should be noted that exactly the same
concept may also be used in conjunction
with other bus systems having similar prop-
erties as CAN. Apart from all CAN deriva-
tives, such as TTCAN or CAN FD, this in-
cludes the LIN- and I2C-bus, for example.

As a next step, the basic idea has to be em-
bedded in a larger framework, including
suitable protocols and mechanisms for syn-
chronized frame transmissions between Al-
ice and Bob, the establishment of group
keys, the generation of keys of arbitrary
lengths and the like. Furthermore, a first
practical proof-of-concept demonstration is
planned. In general, however, no major
showstoppers are expected in this respect.

Dr.-Ing. Andreas Mueller

Robert Bosch GmbH

Corporate Sector Research and Advance
 Engineering (CR/AEH4)

Robert-Bosch-Campus 1

71272 Renningen, Germany

Phone: +49-711-811-20836

Email: andreas.mueller21@de.bosch.com

Web: www.bosch.com

Timo Lothspeich

Robert Bosch GmbH

Automotive Electronics (AE-BE/EKE)

Mittlerer Pfad 9

70499 Stuttgart, Germany

Phone: +49-711-811-34016

Email: timo.lothspeich @de.bosch.com

References

[1] C. Miller and C. Valasek, “Remote exploitation of
an unaltered passenger vehicle”, in Proc. Black
Hat USA, Aug. 2015.

[2] T. Fox-Brewster, “SPY car act hopes to save
American cars from digital disaster”, Online:
http://www.forbes.com/sites/thomasbrew-
ster/2015/07/21/senators-launch-spy-car-act/,
Forbes, Jul. 2015.

[3] S. Checkoway, D. McCoy, B. Kantor, D. Ander-
son, H. Shacham, S. Savage, K. Koscher, A.
Czeskis, F. Roesner and T. Kohno, “Compre-
hensive experimental analyses of automotive at-
tack surfaces”, in Proc. USENIX, Aug. 2011.

[4] K. Koscher, A. Czeskis, F. Roesner, S. Patel, T.
Kohno, S. Checkoway, D. McCoy, B. Kantor, D.
Anderson, H. Shacham and S. Savage, “Experi-
mental security analysis of a modern automo-
bile”, in Proc. IEEE Symp. Security and Privacy,
May 2010.

[5] J. Petit and S. E. Shladover, “Potential cyberat-
tacks on automated vehicles”, in IEEE Trans. In-
telligent Transportation Systems, vol. 16, no. 2,
pp. 546 – 556, April 2015.

[6] C.-W. Lin and A. Sangiovanni-Vincentelli,
“Cyber-Security for the Controller Area Network
(CAN) Communication Protocol”, in Proc. 2012
Int. Conference on Cyber Security, June 2012.

[7] B. Glas, J. Guajardo, H. Hacioglu, M. Ihle, K.
Wehefritz and A. Yavuz, “Signal-based automo-
tive communication security and its interplay with
safety requirements”, in Proc. escar Europe,

Nov. 2012.

[8] W. Diffie and M.E. Hellman, “New directions in
cryptography”, in IEEE Transactions on Infor-
mation Theory, vol. 22, pp. 644-654, Nov. 1976.

[9] A.J. Menezes, P.C. van Oorschot, and S.A.
Vanstone, “Handbook of applied cryptography”,
CRC Press, October 1996.

[10] H. Krawczyk, M. Bellare, and R. Canetti, “HMAC:
keyed-hashing for message authentication”,
RFC 2104, IETF, Feb. 1997.

[11] S. Bellovin and R. Housley, “Guidelines for cryp-
tographic key management”, RFC 4107, IETF,
Jun. 2005.

mailto:andreas.mueller21@de.bosch.com
http://www.bosch.com/
mailto:andreas.mueller21@de.bosch.com

