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Security is a topic of rapidly increasing importance in both automotive as well as indus-
trial applications. This is driven by the current trend towards ubiquitously connected 
systems, a higher degree of automation, and the increasing openness of systems, with 
a multitude of interfaces and APIs that an attacker might use for malicious purposes. In 
today’s systems, the communication via CAN is often insecure. Although suitable con-
cepts and cryptographic algorithms are basically available, the distribution of the re-
quired (symmetric) cryptographic keys between the involved nodes is still challenging. 
Currently, the key establishment comes along with either a high logistical / organiza-
tional effort or high complexity and/or costs. For that reason, we propose a novel ap-
proach for establishing and refreshing symmetric cryptographic keys between different 
nodes in a CAN network in a plug-and-play manner. Our approach captivates by its sim-
plicity, low complexity and high cost-efficiency, and may be readily implemented with-
out any modifications of standard CAN controllers. 

 

I. Introduction 

The recent trend towards ubiquitously con-
nected systems – be it cars, factories or 
buildings – does not only come along with 
numerous opportunities and benefits, but 
imposes also serious new security threats 
with a potentially huge impact. If everything 
is interconnected with each other and with 
more and more interfaces and APIs being 
introduced in order to facilitate innovative 
services and applications, also the attack 
surface for malicious manipulations and in-
trusions is increasing significantly. Without 
proper countermeasures, hackers may 
easily take over the remote control of a car, 
eavesdrop on confidential production data 
or manipulate a building automation sys-
tem, for instance.  

The fact that this is not just a purely theo-
retical threat, but rather a real and serious 
menace, is reflected by various prominent 
attacks that have been performed and pub-
lished only recently. In [1], for example, the 
authors have managed to remotely inject 
messages on the CAN bus of a Jeep Cher-
okee (and thus affect important physical 
systems, such as steering or braking) by 
exploiting various security flaws and con-
necting to the vehicle via a mobile network. 
This led to recall of about 1.4 million cars 
and fueled legislative initiatives to mandate 
car manufacturers to support reasonable 
measures to protect cars against hacking 

attacks [2]. Further security leaks and suc-
cessful attacks on cars and other vehicles 
have been reported in [3] - [5], for example. 
One of the reasons why especially remote 
attacks are so relevant and threatening is 
the fact that these attacks may easily scale 
and that hackers do not even need physical 
access to the system under attack. For in-
stance, imagine a scenario with thousands 
of cars being remotely hijacked and hack-
ers taking control of them. Then, they may 
precipitate a breakdown of the whole traffic 
infrastructure of a city or country by manip-
ulating all cars in a coordinated manner. 
Clearly, this may not only lead to a tremen-
dous physical damage, but also to a signif-
icant impact on the whole economy and so-
ciety. Therefore, the support of appropriate 
security mechanisms represents without 
doubt a crucial prerequisite for the success 
and acceptance of any connected system. 

A solid and robust security concept gener-
ally covers many different aspects and rep-
resents a multi-stage approach, which com-
bines different components. Usually, this in-
cludes things like security-aware develop-
ment processes, fine-grained access con-
trol mechanisms and policies, the use of 
cryptographic methods as well as associ-
ated key management procedures. In auto-
motive networks – which we will focus on in 
the following, even though our approach is 
readily applicable to many other systems as 
well – a secured communication on CAN 
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represents a particularly important building 
block in this respect since a compromised 
CAN network may have a direct impact on 
passenger or other people’s safety. This is 
because CAN is typically used for intercon-
necting all kinds of sensors and actuators, 
e.g., for powertrain or chassis subsystems. 
Today, however, the communication on 
CAN is mostly completely insecure. Even 
though suitable concepts and algorithms 
are basically available (such as tailored ap-
proaches for authenticating or encrypting 
CAN messages [6], [7]), they are not used 
in practice yet as various other challenges 
still remain open. Among other things, this 
includes proper standardization across dif-
ferent OEMs and suppliers, but also effi-
cient approaches for establishing, refresh-
ing and managing the cryptographic keys 
that are required for the involved crypto-
graphic schemes. In this paper, we there-
fore propose a novel approach addressing 
the latter aspect, which is able to establish 
and refresh symmetric cryptographic keys 
between two nodes in a CAN network in a 
plug-and-play manner. To this end, special 
properties of the CAN physical layer are ex-
ploited and the approach captivates by its 
simplicity, low complexity and high cost-ef-
ficiency. Moreover, it may be readily imple-
mented with no or only minor extensions to 
standard CAN controllers. It is particularly 
suitable to enhance the security against re-
mote (and thus scalable) attacks and thus 
may become an important building block for 
secure communication on CAN.  

The remainder of this paper is structured as 
follows: In Section II, we outline our system 
and attacker model, followed by a review of 
existing approaches to CAN security in 
Section III. Our novel approach for estab-
lishing and refreshing cryptographic keys 
based on special CAN properties is then 
presented in Section IV. In Section V and 
VI, we discuss certain implementation as-
pects and elaborate on various security 
considerations, before concluding the pa-
per with a short summary in Section VII.  

 

II. System and Attacker Model 

In the following, we always consider a setup 
as depicted in Figure 1. Two devices (Alice 
and Bob) are connected to the same CAN 
bus segment and want to establish a pair of 

symmetric cryptographic keys. Afterwards, 
they may then use these keys for encrypt-
ing and/or authenticating any messages ex-
changed between them. In addition, how-
ever, there may also be a potential attacker 
(Eve) connected to the same bus segment, 
which tries to determine or influence the 
keys to be established between Alice and 
Bob. In this regard, we make the following 
assumptions on Alice, Bob and Eve: 

1) All nodes have a similar setup, made up 
of a CAN transceiver, a suitable CAN 
controller, as well as a microprocessor 
running the actual application software.  

2) Eve is the victim of a remote attack in 
the sense that the original software run-
ning on that node has been replaced by 
a modified (malicious) software. 

3) Eve may eavesdrop on all messages 
exchanged on the CAN bus. Further-
more, she may inject arbitrary (single) 
bits on the bus, e.g., by bypassing the 
CAN controller and directly accessing 
the CAN transceiver from the malicious 
software running on the device.  

 

Figure 1: Considered System Model 

A major challenge in general is to make 
sure that even if one device has been suc-
cessfully attacked (here: Eve), the impact 
on the overall system can be kept to a min-
imum. In the previously mentioned attack 
on a Jeep Cherokee, for example, first of all 
the head unit has been successfully com-
promised [1]. With proper security mecha-
nisms in place (e.g., proper message au-
thentication), it would not have been possi-
ble for the head unit to control safety-rele-
vant functions, such as the brakes of the 
car, by injecting CAN messages that it ac-
tually is not allowed to transmit. However, 
this is only possible as long as the crypto-
graphic keys of the legitimate nodes (here: 
Alice and Bob) remain secret. Therefore, 
Eve naturally must not be able to determine 
and/or influence these keys.  
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III. Review: Security for CAN Networks 

The protection of the integrity of a message 
and the assurance of the authenticity of its 
sender should generally be among the top 
security goals in CAN-based networks as 
CAN is widely used for controlling physical 
systems or processes with a potential direct 
impact on safety. Therefore, unauthorized 
manipulations have to be prevented or they 
should at least be detectable. Confidential-
ity, in contrast, is considered to be only of 
secondary importance and may be useful 
for making it harder for an attacker to learn 
the current system state or for delivering 
critical software updates, for example.  

In principle, all these security goals could 
be achieved in exactly the same way as in 
the conventional IT world (e.g., using digital 
signatures, message authentication codes, 
etc.), but for optimal performance the spe-
cific constraints of CAN-based networks 
should be properly taken into account. This 
includes things like the limited data rate and 
message sizes, for example, as well as the 
limited computational power and memory of 
many CAN devices. Therefore, in [6] and [7] 
several security mechanisms specifically 
optimized for CAN have been proposed, 
which take these specific constraints into 
account. In this regard, symmetric crypto-
graphic schemes turn out to be the basis for 
most of the proposed schemes due to their 
limited computational complexity and band-
width requirements. The use of symmetric 
cryptography, however, requires the availa-
bility of symmetric (i.e., identical) keys at 
the involved nodes and the distribution / es-
tablishment of these keys represents a ma-
jor challenge. Possible options include a 
manual distribution of keys, e.g., at the end 
of a production line. This, however, involves 
a considerable (organizational) complexity 
and reaches its limitations if one or several 
devices have already been compromised 
before being integrated into the network (for 
example due to an attack performed at the 
supplier). Besides, an automated refresh-
ment of keys cannot be realized this way. 
An alternative approach that has been ac-
tively discussed and considered in recent 
years is to use key establishment schemes 
based on asymmetric cryptography for that 
purpose, such as the Diffie-Hellman key ex-
change protocol [8],[9]. Major drawbacks of 
this approach are the high computational 

complexity as well as the comparatively 
large amounts of data that have to be ex-
changed between two nodes in order to set 
up a (secure) symmetric key. Besides, it 
should not be forgotten that the security of 
the Diffie-Hellman key exchange relies only 
on the difficulty to efficiently solve the dis-
crete logarithm problem on finite fields or el-
liptic curves using state-of-the-art methods. 
Therefore, the approach may become inse-
cure from one day to the other if adequate 
progress is made in this respect. This could 
be the advent of a high performance quan-
tum computer, for example.  

In the next section, we therefore propose a 
novel approach for establishing symmetric 
cryptographic keys between two nodes (or 
to be more precise: an approach for estab-
lishing a shared secret, based on which 
symmetric keys can be derived), whose se-
curity does not rely on hard mathematical 
problems, but rather on physical properties 
of the CAN bus. Furthermore, it has an ex-
tremely low complexity, low bandwidth re-
quirements and may be readily imple-
mented in practical systems. Finally, it may 
also be used for efficiently refreshing al-
ready established keys, thus making it a 
very useful and promising building block for 
future secure CAN networks.  

 

IV. CAN-Based Key Establishment 

The basic idea of our approach is that Alice 
and Bob agree on a shared secret / key by 
means of a public discussion using stand-
ard CAN messages. In particular, both 
nodes simultaneously transmit appropriate 
CAN frames, so that Eve is only able to see 
the superposition of both messages, with-
out knowing the exact content of each of 
them. However, since Alice and Bob them-
selves know what they have transmitted 
and since they can see the superposition of 
both messages as well, they may readily 
conclude what the respective other peer 
has transmitted and thus establish a shared 
secret that is not known to Eve.  

For the concrete realization, we rely on the 
characteristic property of the CAN bus that 
bit ‘0’ is dominant and bit ‘1’ is recessive, 
which represents also the basis for the clas-
sical bus arbitration. In fact, if Alice and Bob 
simultaneously transmit a certain bit (as re-
quired for our approach), there are in total 



iCC 2015  CAN in Automation 

04-4 

four different cases that may occur. These 
are put together in Table 1. Clearly, if one 
of the two nodes transmits a dominant bit 
(‘0’), also the effective bit on the CAN bus 
is a ‘0’ and only if both nodes transmit a re-
cessive bit (‘1’), we also have the recessive 
state after the superposition on the CAN 
bus. Therefore, the CAN bus may be con-
sidered as a logical AND function of the in-
dividually transmitted bits.  

Table 1: Possible Combinations of Domi-
nant and Recessive Bit Transmissions. 

Alice Bob 
Effective Bit 
on CAN Bus 

0 0 0 

0 1 0 

1 0 0 

1 1 1 
 

The actual procedure for agreeing on a 
shared secret between Alice and Bob is a 
multi-step approach as follows: 

1) Alice and Bob generate independently 
of each other random bit strings RAlice 
and RBob of a pre-defined length N.  

Example (for N = 10): 
 RAlice  = 0 1 1 0 1 0 0 1 0 1 
 RBob  = 1 0 1 1 0 1 0 1 1 0  

2) Alice and Bob extend these random bit 
sequences in such a way that after each 
bit the corresponding inverse bit is in-
serted, leading to the modified bit se-
quences SAlice and SBob of length 2N.  

Example: 
 SAlice = 01 10 10 01 10 01 01 10 01 10  
 SBob = 10 01 10 10 01 10 01 10 10 01 

3) Alice and Bob simultaneously transmit 
the bit sequences SAlice and SBob, lead-
ing to the superimposed (effective) bit 
sequence Seff on the CAN bus, which is 
given as Seff = SAlice AND SBob.   

Example: 
 Seff = 00 00 10 00 00 00 01 10 00 00 

Clearly, Eve may easily determine this bit 
sequence as well by means of simple pas-
sive eavesdropping on the channel. There-
fore, it does not really help us further, yet. 

4) Alice and Bob determine all tuples in Seff 
which include a ‘1’.  

 

Example: In Seff given above, there is a ‘1’ 
in tuples number 3, 7 and 8 (assuming that 
we start counting the tuples with 1).  

5) Alice and Bob delete the bits in their 
original random bit sequences RAlice and 
RBob corresponding to the tuples which 
included a ‘1’ as determined in step 4. 
The result are two shortened bit se-
quences, denoted as KAlice and KBob.  

Example: Based on the outcome of step 4, 
Alice and Bob have to delete the bits at po-
sitions 3, 7 and 8 in their original bit se-
quences RAlice and RBob. Hence, we get: 

KAlice = 0 1 1 0 1 0 0 1 0 1 = 0 1 0 1 0 0 1 

KBob = 1 0 1 1 0 1 0 1 1 0 = 1 0 1 0 1 1 0 

Please note that this is done because 
whenever the effective bit on the CAN bus 
is a ‘1’, it is clear that both Alice and Bob 
must have transmitted a ‘1’. Likewise, since 
the two bits in a tuple are always inverse to 
each other (cf. step 2), it is also clear that 
both nodes must have transmitted a ‘0’ for 
the other bit in that case. However, exactly 
the same conclusion can also be drawn by 
Eve and therefore the tuples including a ‘1’ 
do not provide any usable information for us 
as no secrecy is contained. For that reason, 
these bits are simply removed from Seff. 

6) The resulting (shortened) bit sequence 
of Alice (KAlice) is now exactly the in-
verse of the corresponding bit se-
quence of Bob (KBob), which eventually 
is the established shared secret.  

Clearly, what remains after step 5 are the 
bits that are different in the initial bit strings 
RAlice and RBob. When simultaneously trans-
mitting SAlice and SBob, we always get ‘00’ for 
the tuples corresponding to these bits. 
Hence, by eavesdropping on Seff, Eve only 
knows that Alice and Bob have inverse bits 
in their original random bit sequences RAlice 
and RBob at that position, but she is not able 
to tell which one has the zero and which 
one has the one. Alice and Bob, in contrast, 
know which bit they have transmitted them-
selves, they can also conclude that the re-
spective other peer has transmitted the in-
verse bit by evaluating Seff and therefore 
they have a clear advantage compared to 
Eve. Thus, KAlice and KBob are unknown to 
Eve, but are known by Alice and Bob.  
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Discussion 

With the proposed scheme it is possible to 
establish a shared secret between Alice 
and Bob by means of a simple public dis-
cussion, i.e., by simply transmitting and re-
ceiving CAN frames and interpreting the su-
perimposed frames on the bus in the right 
way. Consequently, the involved complex-
ity is extremely low, especially compared to 
existing key establishment schemes, such 
as the Diffie-Hellman key exchange proto-
col. Yet, it may be done in a fully automated 
manner and is thus clearly superior com-
pared to the manual distribution of keys. 

The concrete integration of the core idea in 
a full-blown solution with suitable protocol 
mechanisms is still ongoing work and not 
elucidated in more detail here due to space 
constraints. In particular, for a complete so-
lution additional mechanisms are required, 
e.g., for triggering the synchronized trans-
mission of Alice and Bob, for initiating the 
whole procedure, and for somehow ad-
dressing the involved nodes, for example. 
In general, however, we do not expect any 
showstoppers in this respect and for most 
aspects solid ideas are already available.  

In a practical realization, the simultaneous 
transmission of the bit strings SAlice and SBob 
preferably would be done in the payload 
part of a CAN frame, thus representing a 
deviation from standard CAN, where simul-
taneous transmissions may only occur dur-
ing the arbitration phase when transmitting 
the CAN identifiers. With some other smart 
ideas, however, it is still possible to imple-
ment the proposed in such a way that other 
noninvolved nodes (apart from Alice and 
Bob) see always valid CAN frames on the 
bus (even with superimposed random bit 
strings in the payload field) and therefore 
would not trigger the transmission of any er-
ror frame. This will be presented in more 
detail in the next section. What is important 
to note, though, is that the number of pay-
load bits in a CAN frame is limited to 64 bits 
in case of standard CAN and 512 bits in 
case of CAN FD. Furthermore, the length of 
the effective shared secret that we can gen-
erate with one run of the proposed proce-
dure for a given length N of the initial ran-
dom bit strings RAlice and RBob is not con-
stant, but depends on how many values in 
RAlice and RBob are equal. Clearly, this may 
vary between zero and N, with an expected 

value of N/2. Since in step 2 the initial ran-
dom sequences are extended by a factor of 
two by inserting always the inverse bit after 
each bit and since all these 2N bits have to 
be transmitted over the CAN bus, the over-

all efficiency , which relates the length of 
the usable shared secret after one round of 
the proposed approach (given by the length 
of KAlice and KBob, respectively) to the num-
ber of required bits to establish this shared 
secret (given by 2N) is generally given by 

 0 ≤  ≤ ½, (1) 

with an expected value of E[] = ¼. This 
means that on average four payload bits 
have to be simultaneously transmitted by 
Alice and Bob in order to establish one se-
cret bit. Since for achieving state-of-the-art 
security usually symmetric keys of length 
128 bit or even 256 bit are required, it is 
quite clear that for both standard CAN and 
CAN FD a single run of the proposed ap-
proach is generally not enough to generate 
a sufficient number of secret bits. There-
fore, also for addressing this issue suitable 
protocol mechanisms are required, which 
ideally would enable the generation of keys 
of arbitrary length. This may be done by re-
peatedly performing the proposed proce-
dure and combining the secret bits gener-
ated during each run in an appropriate way. 

Another very promising application of the 
our approach is to use it not just for gener-
ating full keys of 128 of 256 bits length, but 
for periodically refreshing existing keys. 
This is generally beneficial in order to limit 
the time during which a certain key is used 
or equivalently the number of messages 
that are secured using one particular key. 
By doing so, certain attacks become more 
difficult (e.g., plain-text attacks) and the po-
tential damage in case that a particular key 
is revealed at some point in time can be lim-
ited. Therefore, periodic key refreshment is 
a highly recommended security practice in 
general, see for example [10] and [11]. For 
refreshing a key, however, already a limited 
number of secret bits is sufficient as they 
may be combined with the old key in an ap-
propriate way. This may be done by using 
a cryptographic hash function, for example. 
Hence, the proposed procedure may be 
regularly inserted into the regular CAN 
communication in order to generate new 
shared secret bits and to refresh the used 
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keys accordingly for increasing the security 
level. The periodicity of the key refreshment 
may be adaptively adjusted depending on 
the respective needs, thus making it a very 
flexible and powerful solution in practice. 

Finally, it should be noted that CAN is a 
multicast-based communication protocol 
and messages transmitted by one node 
generally have to be received by multiple 
nodes. This implies that in many cases not 
only the communication between two 
nodes has to be secured, but rather the 
communication between groups of several 
nodes. Hence, cryptographic schemes for 
message authentication, encryption, etc. 
may only be reasonably applied in these 
cases if all devices belonging to a certain 
group are in possession of the same cryp-
tographic key. The procedure proposed in 
this paper, however, cannot be extended to 
a multi-node setup in a straightforward 
manner. Nevertheless, there are still sev-
eral possibilities how so-called group keys 
may be established. In the simplest case, 
all nodes of a certain communication group 
could establish a pairwise key with one par-
ticular node of that group (e.g., a gateway 
node), and then this node may generate a 
suitable group key and signal it to all nodes 
of the group in a secure manner using the 
previously established pairwise keys.  
 

V. Implementation Aspects  

As already outlined in the previous section, 
the bit strings SAlice and SBob are preferably 
transmitted in the payload field of a CAN 
frame. Without any additional measures, 
however, this may lead to problems and/or 
compatibility issues in practical realization. 
In particular, with a direct implementation of 
the proposed approach, the superimposed 
CAN frame on the bus may violate the bit 
stuffing rule since even if the individual bit 
strings SAlice and SBob adhere to this rule, it 
cannot be assured that this is also the case 
for the effective bit string Seff on the bus. For 
example, if SAlice = 01010101 and SBob = 
10101010, both strings would be valid, but 
Seff = SAlice AND SBob = 00000000 would 
clearly violate the bit stuffing rule. Hence, 
other nodes may generate an error frame if 
they observe such a violation on the bus 
and clock resynchronization may become 
more difficult. A relatively simple solution to 
fix this problem is to insert a fixed bit 

change (‘01’ or ‘10’) in both SAlice and SBob 
after each sequence of at most four bits. 
This way, Alice and Bob would always 
transmit the same two bits at this position 
and since the two bits include a bit change, 
the bit stuffing rule is never violated in the 
error-free case. However, this would come 
at the cost of a higher overhead, of course. 
Alternatively, Alice and Bob could deter-
mine on-the-fly when it is necessary to in-
sert a stuff bit. In fact, both nodes have to 
read back the effective bit sequence Seff an-
yway and thus they could check in real-time 
if there have been five identical bits effec-
tively on the bus and dynamically insert the 
inverse bit afterwards in that case. Com-
pared to the first solution, the additional 
overhead would be significantly lower, but 
in return the complexity and processing re-
quirements are somewhat higher.  

A similar problem occurs with the cyclic re-
dundancy check (CRC) field of a CAN 
frame in case of a direct implementation of 
the proposed approach. Since Seff depends 
on both SAlice and SBob, the valid value for 
the CRC field of the effective message on 
the bus would generally not be equal to the 
superimposed CRC fields of the messages 
transmitted by Alice and Bob in case that 
they calculate the CRC field in such a way 
that the transmitted frames are valid. In or-
der to solve this issue and thus assure full 
backwards compatibility to standard CAN, 
the correct CRC value that matches to the 
effective CAN frame on the bus could also 
be calculated by both nodes on the fly and 
then be appended to that frame after the 
payload field. While making sure that the ef-
fective frame on the bus is a valid CAN 
frame (based on existing specifications), it 
has the nice side effect that this procedure 
would automatically help to make sure that 
both Alice and Bob have received the same 
effective bit string Seff (which is essential for 
deriving the same shared secret). This is 
because if one of the two nodes has re-
ceived at least one erroneous bit but the 
other one hasn’t, they would append differ-
ent CRC fields in general, which may be de-
tected by one of the nodes if a recessive bit 
is overwritten by a dominant one.  

With the previously described approaches 
for dealing with bit stuffing violations and 
the CRC field, it is possible to achieve full 
backward compatibility in the sense that all 
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frames on the CAN bus are always in line 
with the existing specifications – at least in 
the error-free case. Hence, smooth migra-
tion paths become possible, where not all 
nodes connected to a CAN bus necessarily 
have to support the proposed approach and 
existing hardware / software may widely be 
reused. A practical implementation may be 
done solely in software (using CAN/GPIO 
re-pinning, for example, and thus directly 
accessing the CAN transceiver from the mi-
croprocessor) or hardware-assisted, where 
an additional hardware module may take 
care of the specific requirements of the pro-
posed approach, such as the synchronized 
transmission of Alice and Bob. In this re-
gard, we envision flexible implementation 
options, where existing CAN controllers 
taking care of the regular CAN communica-
tion do not have to be modified at all as long 
as they are supplemented by an additional 
(lightweight) hardware / software module. 
 

VI. Security Considerations 

If Eve as modeled in Section II is only pas-
sively eavesdropping on the CAN bus, she 
is not able to readily determine the estab-
lished shared secret bit sequences KAlice or 
KBob. As already outlined in Section IV, she 
just knows that the remaining bits were dif-
ferent for both nodes, but – unlike Alice and 
Bob – cannot tell who has transmitted the 
zero and who the one. If, in contrast, Eve is 
trying to perform an active attack, for exam-
ple by sending additional own bits during 
the exchange of SAlice and SBob between Al-
ice and Bob, there are two different possi-
bilities that have to be considered: 

1) Eve is transmitting a recessive bit 
2) Eve is transmitting a dominant bit 

Transmitting a recessive bit is no different 
from not transmitting at all since a recessive 
bit does not change the effective state on 
the CAN bus. Therefore, we only have to 
analyze what Eve might do by superimpos-
ing another dominant bit to the bits ex-
changed between Alice and Bob. To this 
end, it is important to remember that with 
the procedure proposed in Section IV only 
those bits remain in the final shared secret 
for which the effective bit on the CAN bus 
was ‘0’ for both the transmission of the orig-
inal and the inverse bit (cf. step 5). Moreo-
ver, if Eve transmits a dominant bit, she 

cannot tell what the status on the CAN bus 
would have been without her transmission. 
Therefore, we may conclude the following: 

Conclusion 1: An active Eve may disturb 
our procedure in such a way that the gen-
erated secret bit strings KAlice and KBob are 
actually not equal on both sides. In order to 
be able to detect such cases, therefore ad-
ditional mechanisms should be introduced, 
with which Alice and Bob can verify that 
they have really generated the same secret 
bit sequences KAlice and KBob. This could be 
done by calculating and exchanging a hash 
value of these bit sequences, for example.  

Conclusion 2: An active Eve is not able to 
enforce the generation of a particular 
shared secret between Alice and Bob 
(which she then would be aware of) and/or 
to learn the shared secret that is estab-
lished between both nodes. This is because 
KAlice and KBob depend not only on Seff 
(which may be determined and influenced 
by Eve), but also on the bits of RAlice and 
RBob, which are unequal on both sides, and 
Eve has no way to determine these bits.  

Conclusion 3: An active Eve may easily 
perform a denial-of-service attack by com-
pletely preventing the establishment of a 
shared secret, for example by continuously 
sending a dominant bit. However, this 
threat exists basically for any scheme since 
an active Eve may easily block any CAN 
communication on the bus. In this case, the 
fail-safe mode of all devices should prevent 
any serious safety-critical impact.  

If we deviate from the attacker model intro-
duced in Section II and consider not only 
remote attacks, but also attacks with direct 
access to the CAN bus (e.g., using own 
high-end equipment), the situation is get-
ting more challenging. Without any further 
ado, a passive eavesdropper might be able 
to determine the shared secret established 
between Alice and Bob in this case by ana-
lyzing the voltage levels on the CAN bus, 
for example. This is because for fixed posi-
tions of Alice, Bob, and Eve, the voltage 
level that Eve can observe on the bus may 
be different depending on whether Alice is 
transmitting a dominant bit and Bob a re-
cessive one or vice versa. For the remote 
attacker case, this was not an issue since 
she may only access the CAN bus via a 
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standard CAN transceiver, which regener-
ates the voltage levels. A remedy could be 
to artificially introduce a random jitter in the 
transmit voltage levels of Alice and Bob 
(within the allowed ranges), so that Eve can 
no longer conclude who has transmitted 
which bit. It should also be noted, however, 
that with direct (physical) access to the 
CAN bus, an attacker might manipulate a 
car with much less effort, e.g., by simply 
cutting through a cable or manipulating the 
brakes. Nevertheless, a more detailed anal-
ysis of potential attacks with direct physical 
access to the CAN bus as well as possible 
countermeasures is part of our future work. 
  

VII. Conclusion and Way Forward 

Security will play a crucial role for the suc-
cess and widespread acceptance of con-
nected systems, such as connected cars 
and other vehicles. A major challenge in 
this regard is how to distribute and manage 
the cryptographic keys between the in-
volved nodes. We have proposed a novel 
approach for establishing and/or refreshing 
symmetric cryptographic keys between two 
CAN devices in a plug-and-play manner, 
exploiting special properties of the CAN 
bus. The proposed scheme requires only 
the simultaneous exchange of random bit 
sequences along with an appropriate inter-
pretation of the resulting effective bit se-
quence on the bus. Therefore, it is of very 
low complexity and may be readily imple-
mented and integrated in practical systems. 
Even though it certainly cannot address all 
existing security challenges, it has the po-
tential to become a major building block for 
secure CAN communication in future. Also, 
it should be noted that exactly the same 
concept may also be used in conjunction 
with other bus systems having similar prop-
erties as CAN. Apart from all CAN deriva-
tives, such as TTCAN or CAN FD, this in-
cludes the LIN- and I2C-bus, for example.  

As a next step, the basic idea has to be em-
bedded in a larger framework, including 
suitable protocols and mechanisms for syn-
chronized frame transmissions between Al-
ice and Bob, the establishment of group 
keys, the generation of keys of arbitrary 
lengths and the like. Furthermore, a first 
practical proof-of-concept demonstration is 
planned. In general, however, no major 
showstoppers are expected in this respect. 
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