
07-10

Scheduling for a TTCAN network with a stochastic optimization
algorithm

Jos� Fonseca*, Fernanda Coutinho**, Jorge Barreiros**
* DET / IEETA Ð Universidade de Aveiro, Portugal

** Instituto Superior de Engenharia de Coimbra, Portugal

The TTCAN protocol is a new development in CAN technology that specifies a time-slot based
communication mechanism. TTCAN technology avoids the transmission collisions commonly
found in standard CAN networks. In TTCAN, all the message instances are transmitted only on
previously allocated time-slots. No other instance may be transmitted on an allocated time-slot,
so transmission collisions are avoided.
Before transmitting a message set over a TTCAN network, it is necessary to create a valid
scheduling table that specifies how the time is discretized into time-slots and how the message
instances are allocated into those time-slots. Building a valid optimized scheduling table that
follows the TTCAN specification isnÕt trivial. Additionally, several distinct scheduling tables
may be built for the same message set, so it is necessary to use some quality criterion to
select one among all. Typical message sets include a large number of messages, making
manual scheduling a very hard and error-prone process. This means it is desirable to use
automated tools that compute a feasible scheduling table automatically for a given message
set. In this paper, we present a scheduling tool for TTCAN networks that generates a valid
scheduling table using a stochastic optimization algorithm. The tool attempts to optimize the
scheduling table so it will generate solutions with low jitter. The tool was applied to two well
known message sets used in the automotive industry and results are positive.

1. Introduction
The CAN fieldbus has been used in automotive
industry for real-time distributed systems
embedded in vehicles since several years.
Recently, the interest of the industrial and
research communities in communication based
on the time-triggered paradigm [1] has
increased substantially and a standardization
process led to the definition of a new session
layer for CAN. The future standard, known as
time-triggered CAN (TTCAN) [4] uses a
scheduling table that must be built off-line, prior
to the system start of operation. In this paper,
we present an early version of a tool that can be
used to simplify the construction of the required
scheduling table. We begin with a brief
presentation of the TTCAN protocol, and then
we follow by describing the scheduler and
optimizer algorithms. We briefly describe the
tool operation and some of its screens. We
show some results obtained from applying the
tool to a modified PSA message set [3] with
messages having harmonic periods. The results

are briefly analyzed, some conclusions are
extracted and some future work is identified.
2. TTCAN Ð Time-triggered CAN
During the last years, CAN Ð Controller Area
Network has become the main fieldbus used in
the time critical parts of automotive systems.
Although CAN operates following the event-
triggered paradigm, recent academic studies [8]
pointed to the possibility of using a time-
triggered approach in part of the operation of
CAN based distributed systems. This feature
could improve the bandwidth utilization in CAN-
based real-time systems by separating the
periodic traffic from the aperiodic one and
keeping the timeliness guarantees of the
former. From the industrial side, the interest of
using the time-triggered approach in CAN has
also been recognized since some time and, as
a consequence, a standardization task force
(ISO/TC 22/SC 3/WG 1/TF 6) was launched
under International Standards Organization in
order to achieve a definition for a session layer
for CAN. This standard, which will be numbered

07-11

11898-4, is already known as TTCAN, from
Time-Triggered Controller Area Network.
In TTCAN, a special node, the time master, is
responsible for the transmission of a systolic
message, the reference message, which is
used to achieve synchronization between the
fieldbus nodes. The reference message marks
the start of a time slot called the Basic Cycle
(BC). The BC may be divided in different types
of windows, namely, the exclusive windows and
the arbitrating windows. An exclusive window is
used to transmit a specific periodic message.
An arbitrating window may be used to transmit
any message, provided it gains the bitwise
arbitrating process as in normal CAN operation
and provided it finishes transmission before the
end of the window, thus guaranteeing temporal
isolation between the different types of traffic.
The complete traffic pattern in a TTCAN system
consists in a fixed number of consecutive BCs
and is named the System Matrix or Matrix Cycle
(SM). In figure 1, an example of a system SM is
presented. There, it is possible to notice one of
the major restrictions in the SM construction,
which is the column like organization. All the
windows of the same column in every BC must
be of the same size. With this organization it is
possible to define a set of trigger instants
(offsets from the reference message) which is
kept constant from BC to BC all along the SM,
thus simplifying the TTCAN controllers
hardware. Once the MC is defined, it is possible
to merge two (or more) consecutive arbitrating
windows in the same BC in order to facilitate
the transmission of normal CAN messages.
Finally, The other major restriction is in the
number of BCs per SM, which must be an
integer power of two.

Reference
Message A B CArbitration Window D

Reference
Message

A AW EArbitration Window F

Reference
Message

A B CArbitration Window D

Reference
Message

A EArbitration Window D

AW - Arbitration Window

A, B, C, D, E, F - Periodic Messages

BC

0

1

2

3

BC - Basic Cycles

Transmission Columns

Figure 1 Example of a Matrix Cycle in TTCAN.
In TTCAN, the system matrix must be defined
off-line. All the nodes must have stored the
correspondent information prior to the start of

operation. Details about TTCAN operation
modes, synchronization techniques and other
specification details can be found in [4], [5] and
in the draft standard.
3. Building a schedule
The process of off-line scheduling a message
set in the case of a TTCAN network consists in
building the system matrix (SM). It includes:

• The determination of the number of
columns.

• The determination of the number of rows.

• The definition of the duration of each
column.

• The indication of the message to be
transmitted in each cell (row, column).

This must be done respecting the messagesÕ
period and duration. In what concerns the
period, the first approach is to keep the average
period of each message identical to the
respective instantaneous period. This is done
using the appropriate number of message
instances in the system matrix. The average
period is equal to the duration of SM divided by
the number of message instances. In what
concerns the messagesÕ duration, this
determines the column width.
In spite of these restrictions and of the one
imposed to the number of Basic Cycles as
indicated in section 2, it is usually possible to
build several distinct system matrixes for the
same message set. Consequently, it is possible
to assess the quality of the schedule in the
System Matrix according to some pre-defined
criterion.
In the present case we use a cost function
based on the sum of the message jitter values.
Jitter is determined for every instance of every
message all over the system matrix. The cost
function is weighted by the system matrix
duration. The correspondent expression is the
following:

Jitter
M

e ai
p

i
p

ip

= −∑∑1

where
p
ie is the expected beginning time of

transmission of instance i of message p,
p
ia is

the actual beginning time and M is the duration
of the system matrix.

07-12

Considering now the automatic tool operation,
the required phases needed to build the system
matrix are the following:

• Scheduling.

• Optimization.

The first corresponds to the generation of a
feasible set of distinct system matrixes (SMs).
The second does the selection of the best SMs
according to the cost function above.
In order to be able to maintain the average
period of every message, the SMs duration,
M , must be the least common multiple of the
messagesÕ periods (it could also be an integer
multiple of it). The average period is kept with

iPM / instances of every message i of period

iP during the SM.

The first phase, scheduling, includes the
following steps:

1. Determination of the maximum number
of lines of the system matrix.

2. Message allocation.

3. Free time redistribution.

Ignoring the restriction about the number of
basic cycles, it is obvious that the maximum
number of lines in the SM is bounded by:

L
M

Tmax
max

=

where maxT is the maximum transmission time

of all the messages in the set.
Before starting the allocation process, the
automatic tool generates an ordered set I
which includes every instance of every
message in the initial set. This set is organized
by decreasing order of the message
transmission time T :

I I I I I I I IK K
n n

Kn={ }1
1

1
2

1 2
1

2
11 2, ,..., , ,..., ,..., ,...,

with n being the number of different messages
in the initial set and:

K
M

Pi
i

= and

nTTTT >>>= ...2max1

The next step in the operation of the tool
consists in defining a random number of lines:

maxLL ≤

Then, the tool removes the first L instances in
I and allocates them in the first column of the
system matrix. The tool repeats this last step
until all instances in I are removed, thus
obtaining a SM with the following number of
columns, # C :

#
#

C
I

L
=

As the longer messages are taken into
consideration first, C# is minimum.
At this moment it is possible to determine the
minimum duration of the basic cycle for this
particular system matrix:

D DBC i
i

C

=
=
∑

1

#

with iD being the duration of each column.

With this value it is possible to determine if the
set is schedulable which happens when:

D
M

LBC ≤

If the set is schedulable then there is some free
time available in each basic cycle:

t
M

L
Dfree BC= −

07-13

The tool inserts a free column between each
two occupied columns and redistributes the free
time randomly between the first ones. This is
the only random factor in the construction of the
first set of system matrixes.

Figure 2 - Example of a first System Matrix,
after an initial random transformation.

3.1 Optimization process
The optimization process uses a set of feasible
system matrixes built as described previously.
These matrixes, considered the initial
population in a similar way to genetic
algorithms, will be subject to random
transformations. These transformations must
guarantee that the matrixes are still feasible
afterwards. The cost function defined above
determines the quality of the matrixes.
The complete set of steps in this process is the
following:

1. Generation of the initial population;

2. Diversification of the population;

3. Random selection of a matrix;

4. Application of a random transfor-mation
to the selected matrix;

5. Evaluation of the cost function for this
matrix.

6. If this matrix is worse than the worst
matrix in the population then it is
eliminated, otherwise it replaces the
latter;

7. Repeat steps 4 to 6 till the pre-defined
maximum number of iterations is
attained.

Considering step 1, the number of elements
that constitute the initial population is defined
previously by the user. The scheduler
generates then a feasible system matrix as it
was explained before.
In step 2 the tool applies to the elements of the
population a random transformation without

caring about quality. This originates some
diversity in the initial population. This operation
ends the initialization process.
Now the main body of the optimization
algorithm is attained. The algorithm is based on
a steady state genetic algorithm [6], [7].
However, we called it a stochastic algorithm, as
we couldnÕt find any simple process to apply
crossover keeping the system matrixes
feasible.
Another issue regarding the completion of the
algorithm is the number of iterations. In fact, it is
impossible to define an absolute value for the
cost function that could be used in every
message set. Jitter depends on the
transmission load and on the relationship
between the messagesÕ periods. The number of
iterations must then be pre-imposed by the
user. It is easy to choose an adequate value
after running a couple of optimization
processes.

4. A brief look at the tool and some results
Before starting the operation of the tool, the
optimization settings must be initialized (figure
3). These are the number of runs, the number of
iterations, the size of the initial population and
the probabilities of each transformation.

Figure 3 Ð Initialization of parameters.
After, a message set must be chosen from a file
or a new one must be created. The tool has
also the adequate editing screen (figure 5).

07-14

When this is done, it is possible to run the
optimization tests. When the message set has
not too many messages, the user can get a
flavor of the final optimized schedule directly
from the main tool screen (figure 6). The
accurate results can be obtained from an output
file. An example is shown in figure 4.
In [9] it was shown that the optimization tool
was able to schedule the well known SAE [2]
and PSA [3] message sets which are often used
as benchmarks for fieldbus based distributed
systems. The messages in the sets have non-
harmonic periods so, it is only possible to
reduce jitter, which was achieved by the tool,
but it is impossible to eliminate it.
In order to verify if the tool is able to find a zero
jitter solution, we decided to use a modified
PSA message set in which the messagesÕ
periods were slightly reduced in order to
become harmonic. The messagesÕ parameters
are the ones in figure 5.

Config
 Pop size:10
 Nr of iterations:20000
Probabilities
 column swap:20
 cell swap:20
 free time distrib:20
 horiz mirror :20
 vertical mirror :20
Rows:8
Columns:12
Column duration:
808 736 1040 1040 1096 844 584 1427
260 736 773 656
Scheduling matrix:
(-1 represents an empty cell, other
values are the index of the message
(with the same order that was
defined in the input file))
4 6 0 10 -1 -1 3 -1 -1 8 -1 1
5 6 0 9 -1 -1 3 -1 -1 2 -1 1
4 6 0 -1 -1 -1 3 -1 -1 8 -1 1
11 6 0 7 -1 -1 3 -1 -1 2 -1 1
4 6 0 10 -1 -1 3 -1 -1 8 -1 1
5 6 0 -1 -1 -1 3 -1 -1 2 -1 1
4 6 0 -1 -1 -1 3 -1 -1 8 -1 1
-1 6 0 7 -1 -1 3 -1 -1 2 -1 1
Jitter:0

Figure 4 Ð Schedule with 0 jitter (output from
the tool).

Some tenths of simulations were then made
with that set. Several zero jitter solutions such
as the one in figure 4 were obtained. We

noticed also many solutions with a very reduced
jitter and some with jitter in two or three
messages. It was clear that the number of
iterations was enough to arrive to a steady
population, so we think that the optimization
often discovers just a local minimum. However,
as the time to execute is just a few seconds in a
normal PC, it is quick to make a reasonable
number of optimizations and it is almost sure
that a good schedule is found.

07-15

Figure 5 Ð View of the Create/Edit message screen with the modified PSA set.

Figure 6 Ð Main screen of the tool showing a schedule with 0 jitter (output from the tool).

5. Conclusions
We developed a scheduling and optimization
tool capable of building the so-called system
matrix for a TTCAN based network given a set of
periodic messages. The tool, based on a
stochastic algorithm similar to a genetic one,
always generates a valid scheduling solution for

feasible sets. An optimization phase applies
different transformations to the schedule in
order to refine the solution so that message jitter
can be reduced or, if possible, eliminated. The
tool has been tried with SAE and PSA message
sets and could find several zero jitter schedules
with a modified version of this last set.

07-16

However, there is yet some research work to do
on it. First, we would like to tune some initial
parameters such as the percentages of the
optimization transformations. Also, we would like
to find more of those transformations and to
study the possibility of applying a transformation
similar to the crossover operation in genetic
algorithms.

References
[1] Kopetz H., ÒReal Time Systems - Design
Principles for Distr ibuted Embedded
ApplicationsÓ, Kluwer Academic Publishers,
1997.
[2] Tindel K., Burns A., ÒGuaranteeing Message
Latencies on Control Area Network (CAN)Ó,
Proceedings of the ICCÕ94, Mainz, Germany,
1994.
[3] Navet N., Song Y.-Q., ÒPerformance and
Fault Tolerance of Real Time Applications
Distributed over CANÓ, CiA Ð CAN in Automation
Research Award, 1997.
[4] F�hrer T., et al, ÒTime-triggered
Communication on CAN (Time-triggered CAN-
TTCAN)Ó, Proceedings of ICCÕ2000, Amsterdam,
The Netherlands, 2000.
[5] Hartwich F., et al, ÒCAN Network with Time-
triggered CommunicationÓ, Proceedings of
ICCÕ2000, Amsterdam, The Netherlands, 2000.
[6] Coutinho F., et al, ÒUsing Genetic Algorithms
to Reduce Jitter in Control Variables Transmitted
over CANÓ, Proceedings of ICCÕ2000,
Amsterdam, The Netherlands, 2000.
[7] Michalewicz Z., ÒGenetic Algorithms + Data
Structures = Evolution Programs (3rd, revised
and extended edition)Ó, Springer-Verlag. Berlin,
1999.
[8] Almeida L., Fonseca J., Fonseca P., ÒA
Flexible Time-Triggered Communication System
Based on the Controller Area NetworkÓ
Proceedings FeT '99 - Fieldbus Systems and
their Applications Conference, Magdeburg,
Germany, September 23-24, 1999.
[9] Coutinho F., Barreiros J., Fonseca J.,
ÒScheduling for a TTCAN Network with a
Stochastic Optimization AlgorithmÓ, proceedings
of 4th FETÕ2001, IFAC Conference on Fieldbus
Systems and their Applications, Nancy, France,
November 15-16, 2001.

Jos� A. Fonseca
DET/IEETA, Universidade of Aveiro
Campus Universit�rio de Santiago
P-3810-193 Aveiro Ð PORTUGAL
Phone: +351 234 370 330
Fax: +351 234 381 128
Email: jaf@det.ua.pt

