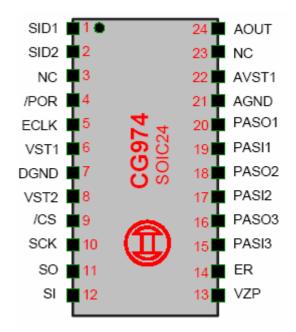

Automotive Electronics

Product Information Satellite Sensor Interface IC - CG974

Satellite Sensor Interface IC

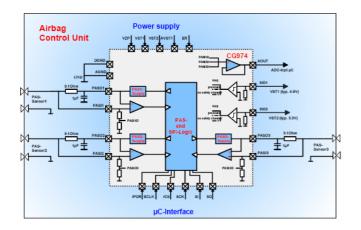
Customer benefits:


- Excellent system know-how
- Smart concepts for system safety
- Secured supply
- Long- term availability of manufacturing processes and products
- QS9000 and ISO/TS16949 certified

Following the successful implementation of the CG570 dual stand alone satellite sensor interface IC, BOSCH Automotive Electronics will move along with the introduction of a highly integrated version of a satellite sensor interface IC with 3 integrated channels for peripheral acceleration sensors (PAS). The CG974 is being designed by utilizing leading-edge automotive ASIC processes with 0.8 um feature size. The superior performance with respect to precision and reliability and the well-proven safety concept of its predecessors will be combined with a variety of new features as required by the quickly evolving next generations of electronic safety systems:

Features

- 3 channel satellite sensor interface
- Sensor supply
- PAS3- and PAS4 protocol compatible data receiver
- 2 SID inputs (SID1,SID2) for sensor indication purposes
- All functions controlled via 8MHz, 16 bit bidirectional SPI
- Analogue output for sensor supply monitoring
- 5V/3.3V systems compatibility
- Cascadable
- SOIC24 package


PIN Configuration

Pin description

No	Name	Description
1	SID1	Safety ID of sensor pair PAS 1 and PAS 2
2	SID2	Safety ID of sensor PAS 3
3	NC	Not connected
4	/POR	Power on reset (active low)
5	ECLK	System clock (2MHz)
6	VST1	VST1 supply voltage
7	DGND	Digital ground
8	VST2	VST2 supply voltage
9	/CS	Chip select (active low)
10	SCK	Serial clock (SPI)
11	SO	Slave out (SPI)
12	SI	Slave in (SPI)
13	VZP	Protected supply voltage
14	ER	Energy reserve supply voltage
15	PASI3	Comparator input PAS3
16	PASO3	PAS3 supply output
17	PASI2	Comparator input PAS2
18	PASO2	PAS2 supply output
19	PASI1	Comparator input PAS1
20	PASO2	PAS1 supply output
21	AGND	Analogue ground
22	AVST1	AVST1 supply voltage
23	NC	Not connected
24	AOUT	Analogue output

Application example

Note: In this application PAS sensors are connected to PAS-Channel 1+2 (SID1=4.9V), a pressure sensor is connected to PAS-Channel 3 (SID2=3.3V)

SID Inputs

CG974 has two hardware programmable SID inputs for sensor indication purposes. Different sensor types can be distinguished by applying dedicated voltage levels at SIDx.

PAS Protocol

Communication between the PAS and central unit is asynchronous and is started every TPAS. The duration of a PAS communication is T_{Tran} .

The transfer is accomplished using Manchester Code, and there is a flank change in the bit centre respectively. A logical 0 has a rising current flank, a logical 1 has a dropping current flank in the bit centre.

It takes TBit to transfer a bit.

A PAS3 data frame (please refer to Figure 1: Timing diagram PAS3 communication) consists of 11 bits transferred in the following form:

2 start bits, 8 data bits, 1 parity bit (even parity).

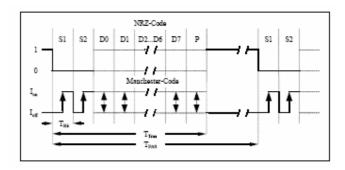


Figure 1: Timing diagram PAS3 communication

A PAS4 data frame (please refer to Figure 2: Timing diagram PAS4 communication) consists of 13 bits transferred in the following form:

2 start bits, 10 data bits, 1 parity bit (even parity).

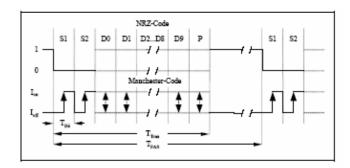


Figure 2: Timing diagram PAS4 communication

Maximum ratings

Parameter	Symbol	Min.	Тур.	Max.	Unit
Supply voltages	VER	-0.3		36	V
	VVZP	-0.3		36	V
	V _{ST1}	-0.3		7	V
	VAVST1	-0.3		7	V
	V _{ST2}	-0.3		7	V
Digital ground	Vdgnd	-0.3		0.3	V
PAS output	VPASOx	-0.3		18	V
PAS input	VPASIx	-0.3		18	V
Junction temperature	Tj	-40		150	°C
Operating temperature	Tamb	-40		105	°C
ESD classification					
Human body, C=100pF, R=1.5kOhm	Vнвм	-2000		2000	V

Electrical characteristics

Parameter	Symbol	Min.	Тур.	Max.	Unit
Supply voltages	Vvzp	5.2	14	20	V
	VER	VzPmin +5	33	35	V
	Vvst1	4.7	4.9	5.1	V
	VAVST1	4.7	4.9	5.1	V
	Vvst2	3.1	3.3	5.1	V
Sensor supply	VPASOx	5.1	7.9	11	V
Digital IO (ECLK, /POR, SCK, /CS, SI, SO)					
Low level	UIL			1.0	V
High Level	Uін	2.0			V
Baud rate					
PAS communication	VPAS		125		kBd
SPI communication	VSPI			8	MBd
PAS Timing					
Bit duration	TBit		8		μs
Transition time PAS3	TTran		88		μs
Transition time PAS4	Tran		104		μs
PAS Repetition rate	TPAS	Ttran + Tbit	228		μs

Contact

Robert Bosch GmbH Sales Semiconductors Postbox 13 42 72703 Reutlingen Germany Tel.: +49 7121 35-2979 Fax: +49 7121 35-2170

Robert Bosch Corporation Component Sales 38000 Hills Tech Drive Farmington Hills, MI 48331 USA Tel.: +1 248 876-7441 Fax: +1 248 848-2818

Robert Bosch K.K.

Component Sales 9-1, Ushikubo 3-chome Tsuzuki-ku, Yokohama 224 **Japan** Tel.: +81 45 9 12-83 01 Fax: +81 45 9 12-95 73

E-Mail: bosch.semiconductors@de.bosch.com

Internet: www.bosch-semiconductors.de

© 02/2006 All rights reserved by Robert Bosch GmbH including the right to file industrial property rights Robert Bosch GmbH retains the sole powers of distribution, such as reproduction, copying and distribution. For any use of products outside the released application, specified environments or installation conditions no warranty shall apply and Bosch shall not be liable for such products or any damage caused by such products.