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The recent trend towards ubiquitously connected systems 
– be it cars, factories, or buildings – does not only come 

with numerous opportunities and benefits, but imposes also 
new security threats with a potentially huge impact. If every-
thing is interconnected and APIs are introduced in order to 
facilitate innovative services and applications, the attack sur-
face for malicious manipulations and intrusions is increased 
significantly. Without proper countermeasures, hackers may 
remotely control cars, eavesdrop on confidential production 
data, or manipulate a building automation system. 

This threat is reflected by various prominent attacks that 
have been performed and published recently. In “Remote 
exploitation of an unaltered passenger vehicle” [1], for exam-
ple, the authors describe how they managed to remotely inject 
messages to the CAN network of a car and thus affect impor-
tant physical systems, such as steering or braking. The hack-
ers connected to the vehicle via a mobile network. This led to a 
recall of about 1,4 million cars and fueled legislative initiatives 
to mandate car manufacturers to support reasonable mea-
sures to protect cars against hacking attacks [2]. More secu-
rity leaks and attacks on cars and other vehicles have been  
reported reported [3]-[5]. Remote attacks may easily scale 
and hackers do not need physical access to the system 
under attack. For example, imagine a scenario with thou-
sands of cars remotely hijacked. Hackers could precipi-
tate a breakdown of the whole traffic infrastructure of a 
city or country by manipulating all cars in a coordinated  
manner. Clearly, this could not only lead to tremendous phys-
ical damage, but also to a significant impact on the whole 
economy and society. Therefore, the support of appropriate 
security mechanisms represents a crucial prerequisite for the 
success and acceptance of any connected system.

In automotive networks, a secured CAN communication 
represents a particularly important building block of security 
concepts, since a compromised CAN network can have a 
direct impact on people’s safety. When CAN was introduced 
in the 1980s, security was not a crucial topic yet, since sys-
tems were closed and isolated. With the increased open-
ness, however, this changes fundamentally. While in principle 
suitable concepts and algorithms are available [6], [7], they 
are not used yet because other challenges still remain. This 
includes proper standardization across different manufactur-
ers and suppliers, but also efficient approaches for establish-
ing, refreshing, and managing the cryptographic keys that are 
required for the involved cryptographic schemes. 

We therefore propose a novel approach addressing the 
latter aspect: this approach is able to establish and refresh 
symmetric cryptographic keys between two nodes in a CAN 
network in a plug-and-play manner. To this end, special 
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properties of the CAN physical layer are exploited. It can be 
implemented with no or only minor extensions to CAN con-
trollers and it is particularly suited to enhance the security 
against remote (and thus scalable) attacks. The generation 
of group keys between a group of nodes becomes possible if 
the approach is integrated into a suitable protocol flow.

System and attacker model

In the following, we consider a setup as depicted in  
Figure 1. Two devices (Alice and Bob) are connected to the 
same CAN network segment and want to establish a pair 
of symmetric cryptographic keys. Afterwards, they may use 
these keys to encrypt and/or authenticate any messages 
exchanged between them. In addition, there is also a poten-
tial attacker (Eve) connected to the same bus segment, 
which tries to determine or influence the keys to be estab- 
lished between Alice and Bob. We make the following  
assumptions on Alice, Bob, and Eve:

◆◆ All nodes have a similar setup, made up of a CAN 
transceiver, a suitable CAN controller, as well as a  
microprocessor running the application software, 

◆◆ Eve is the victim of a remote attack in the sense that the 
original software running on that node has been  
replaced by a modified software,

◆◆ Eve can eavesdrop on all messages exchanged on the 
CAN network. She may also inject arbitrary single bits 
on the bus by bypassing the CAN controller and directly 
accessing the CAN transceiver from the malicious 
software running on the device. 

It is important to make sure that if one device has 
been successfully attacked (here: Eve), the impact on 
the overall system is kept to a minimum. In the attack on  
a regular car reported in [1], the head unit was successfully 
compromised first. With proper security mechanisms in place, 
it would be hardly possible for the head unit to control safety-
relevant functions like steering or braking by injecting CAN 
messages. However, any security mechanism is only secure 
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Figure 1: Considered System Model (Photo: Bosch)
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as long as the involved cryptographic keys of the legitimate 
nodes (here: Alice and Bob) remain secret. Therefore, Eve 
must not be able to determine and/or influence these keys. 

Review: Security for CAN networks

The protection of the integrity of a message and the assur-
ance of the authenticity of its sender should be among the 
top security goals in CAN-based networks. Unauthorized  
manipulations have to be prevented or should at least be 
detectable. Encryption, in contrast, makes it harder for 
an attacker to learn the current system state or becomes  
necessary for delivering critical software updates. 

In principle, all these things could be realized in 
exactly the same way as in the conventional IT world, but 
for optimal performance the constraints of CAN-based net-
works must be taken into account. This includes the limited 
data rate and message sizes, as well as the limited compu-
tational power and memory of CAN devices. Therefore, [6] 
and [7] propose several security mechanisms specifically 
optimized for CAN. Symmetric cryptographic schemes turn 
out to be the basis for most of the proposed schemes due 
to their limited computational complexity and bandwidth 
requirements. The use of symmetric cryptography requires 
the availability of symmetric keys at the involved nodes and 
the distribution and establishment of these keys represents 
a challenge. Possible options include a manual distribution 
of keys, e.g., at the end of a production line. This involves 
a considerable organizational effort and is made invalid if 
one or several devices were compromised before being 
integrated into the network. Besides, an automated refresh-
ment of keys cannot be realized this way. An alternative 
approach is the use of key establishment schemes based 
on asymmetric cryptography, such as the Diffie-Hellman 
key exchange protocol [8], [9]. Drawbacks of this approach 
are the high computational complexity as well as the large 
amount of data that has to be exchanged in order to set up 
a secure symmetric key. Moreover, the security of the Dif-
fie-Hellman key exchange relies only on the difficulty to effi-
ciently solve the discrete logarithm problem on finite fields 
or elliptic curves using state-of-the-art methods. Therefore, 
once an efficient algorithm for solving these problems has 
been found, the approach may suddenly become insecure. 

We therefore propose a novel approach for estab-
lishing symmetric cryptographic keys between two nodes, 
whose security does not rely on hard mathematical prob-
lems, but rather on physical properties of the CAN net-
work. Furthermore, it has a low complexity, low bandwidth 
requirements, and can be implemented in existing systems. 
Finally, it may also be used for refreshing established keys. 

CAN-based key establishment

The basic idea of our approach is that Alice and Bob agree 
on a shared secret or key by means of a public discus-
sion using CAN messages. In particular, both nodes simul-
taneously transmit CAN frames, so that Eve can only see 
the superposition of both messages. However, since Alice 
and Bob themselves know what they have transmitted and 
since they can see the superposition of both messages  
as well, they may conclude what the other peer has  
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transmitted and thus establish a shared key that is unknown 
to Eve. 

For the realization, we rely on the property of the CAN 
network that bit ‘0’ is dominant and bit ‘1’ is recessive, which 
represents also the basis for the classical bus arbitration. If 
Alice and Bob simultaneously transmit a certain bit, there 
are in total four different cases that may occur. These are 
put together in Table 1. If one of the two nodes transmits 
a dominant bit (‘0’), the effective bit on the CAN network 
is also a ‘0’ and only if both nodes transmit a recessive 
bit (‘1’), we also have the recessive state after the super-
position on the CAN network. Therefore, the CAN network 
may be considered a logical AND function of the individu-
ally transmitted bits. 

Table 1: Possible combinations of dominant and recessive 
bit transmissions

Alice Bob Effective Bit 
on CAN Bus

0 0 0
0 1 0
1 0 0
1 1 1

The actual procedure for agreeing on a shared secret 
between Alice and Bob is a multistep approach as follows:

◆◆ Alice and Bob independently generate random bit 
strings RAlice and RBob of a predefined length N.  
Example (for N = 10): 
RAlice	 = 0 1 1 0 1 0 0 1 0 1 
RBob	 = 1 0 1 1 0 1 0 1 1 0 

◆◆ Alice and Bob extend these random bit sequences 
in such a way that after each bit the corresponding 
inverse bit is inserted, leading to the modified bit 
sequences SAlice and SBob of length 2N.  
Example: 
SAlice	 = 01 10 10 01 10 01 01 10 01 10  
SBob	 = 10 01 10 10 01 10 01 10 10 01

◆◆ Alice and Bob simultaneously transmit the bit 
sequences SAlice and SBob, leading to the superimposed 
bit sequence Seff on the CAN network, which is given 
as Seff = SAlice AND SBob.  
Example: 
Seff = 00 00 10 00 00 00 01 10 00 00 
Eve may easily determine this bit sequence as well 
by means of simple passive eavesdropping on the 
channel. Therefore, this sequence does not provide 
any direct advantage yet.

◆◆ Alice and Bob determine all tuples in Seff which include  
a ‘1’.  
Example: In Seff given above, there is a ‘1’ in tuples 
number 3, 7, and 8 (assuming that we start counting the 
tuples with 1). 

◆◆ Alice and Bob delete the bits in their original random  
bit sequences RAlice and RBob corresponding to the 
tuples which included a ‘1’ as determined in step 4.  
The results are two shortened bit sequences, denoted 
as KAlice and KBob.  
Example: Based on the outcome of step 4, Alice and 
Bob have to delete the bits at positions 3, 7, and 8 in 

their original bit sequences RAlice and RBob. We get: 
KAlice	 = 0 1 1– 0 1 0 0– 1– 0 1 	 = 0 1 0 1 0 0 1 
KBob	 = 1 0 1– 1 0 1 0– 1– 1 0 	 = 1 0 1 0 1 1 0

This is done because whenever the effective bit on the CAN 
network is a ‘1’, it is clear that both Alice and Bob must have 
transmitted a ‘1’. Likewise, since the two bits in a tuple are 
always inverse to each other, it is also clear that in that case 
both nodes must have transmitted a ‘0’ for the other bit.  
However, exactly the same conclusion can be drawn by Eve  
and therefore the tuples including a ‘1’ do not provide 
any usable information for us as no secrecy is contained.  
For that reason, these bits are simply removed from Seff.

◆◆ The resulting bit sequence of Alice is now exactly the 
inverse of the corresponding bit sequence of Bob, which is 
the established shared secret. 

What remains after step 5 are the bits that are different 
in the initial bit strings RAlice and RBob. When simultaneously 
transmitting SAlice and SBob, we always get ‘00’ for the tuples 
corresponding to these bits. Hence, by eavesdropping on Seff, 
Eve only knows that Alice and Bob have inverse bits in their 
original random bit sequences RAlice and RBob at that position, 
but she is not able to tell which one has the zero and which 
one has the one. Alice and Bob, in contrast, know which bit 
they have transmitted themselves, they can also conclude 
that the respective other peer has transmitted the inverse bit 
by evaluating Seff and therefore they have a clear advantage 
compared to Eve. 

With the proposed scheme it is possible to establish a 
shared secret between Alice and Bob by means of a simple 
public discussion, i.e., by simply transmitting and receiving 
CAN frames and interpreting the superimposed frames on 
the bus. Consequently, the complexity is extremely low, espe-
cially compared to existing key establishment schemes and 
can be done in an automated manner.

In a practical realization, the simultaneous transmission 
of the bit strings SAlice and SBob would be done in the payload 
part of a CAN frame. It is possible to implement the proposed 
scheme in such a way that other nodes (apart from Alice and 
Bob) see valid CAN frames and do not trigger the transmis-
sion of any error frame. The number of payload bits in a CAN 
frame is limited to 64 bits in case of Classical CAN and 512 bits 
in case of CAN FD and the length of the shared secret is not 
constant, but depends on how many values are equal in RAlice 
and RBob. Therefore, the length of the shared secret that can 
be obtained from one simultaneous message exchange may 
vary between 0 and N, with an expected value of N/2. Since 
the initial random sequences are extended by a factor of two 
by inserting the inverse bit after each bit and since all these 
2N bits have to be transmitted over the CAN network, the over-
all efficiency ρ, which relates the length of the usable shared 
secret after one round of the proposed approach to the num-
ber of required bits to establish this shared secret, is given by 
                                       0 ≤ ρ ≤ ½,
with an expected value of E[ρ] = ¼. This means that on  
average four payload bits have to be simultaneously trans-
mitted by Alice and Bob in order to establish one secret 
bit. To achieve state-of-the-art security, symmetric keys of  
128 bit or even 256 bit are required, which is why a single 
run of the proposed approach is not enough to generate a 
sufficient number of secret bits. Therefore, suitable proto-
col mechanisms are required, which enable the generation 

En
gi

ne
er

in
g



of keys of arbitrary lengths. This may be done by repeat-
edly performing the proposed procedure and combining the 
secret bits generated during each run.

Our approach cannot only be used to generate keys 
of arbitrary length, but to periodically refresh existing keys. 
By doing so, certain attacks become more difficult and the 
potential damage if a particular key is revealed can be lim-
ited. Therefore, periodic key refreshment is a highly recom-
mended security practice ([10], [11]). For refreshing a key, 
a limited number of secret bits is sufficient as they may be 
combined with the old key. The procedure can be inserted 
into regular CAN communication in order to generate new 
secret bits and to refresh the used keys. 

Finally, CAN is a multicast-based communication pro-
tocol and messages transmitted by one node usually have 
to be received by multiple nodes. This implies that in many  
cases not only the communication between two nodes 
has to be secured, but rather the communication between 
groups of several nodes. Hence, cryptographic schemes 
for message authentication, encryption, etc. may only be 
applied if all devices belonging to a certain group are in 
possession of the same cryptographic key. The procedure 
proposed in this paper, however, cannot be extended to a 
multi-node setup in a straightforward manner. Nevertheless,  
solutions for establishing group keys are available. In the 
simplest case, all nodes of a certain communication group 
could establish a pairwise key with one particular node of 
that group and then this node may generate a group key 
and signal it to all nodes of the group, encrypting it with the 
previously established pair-wise keys. 

Implementation aspects 

As already mentioned, the bit strings SAlice and SBob should 
be transmitted in the payload field of a CAN frame. Without 
any additional measures, this may lead to problems and/or 
compatibility issues. In a direct implementation, the super-
imposed CAN frame may violate the bit stuffing rule since 
even if the individual bit strings SAlice and SBob adhere to this 
rule, it cannot be assured that this is also the case for the 
effective bit string Seff. Other nodes may generate an error 
frame if they observe such a violation on the bus and clock 
resynchronization may become more difficult. 

A solution to fix this problem is to insert a fixed bit 
change (‘01’ or ‘10’) in both SAlice and SBob after each 
sequence of at most four bits. This way, Alice and Bob 
would always transmit the same two bits at this position 
and since the two bits include a bit change, the bit stuff-
ing rule is never violated in the error-free case. This would 
come at the cost of a higher overhead. Alternatively, Alice 
and Bob could determine on-the-fly when it is necessary to 
insert a stuff bit. Both nodes have to read back the effec-
tive bit sequence Seff anyway and could thus check if there 
have been five identical bits and dynamically insert the 
inverse bit afterwards. Compared to the first solution, the 
additional overhead would be lower, but the complexity 
and processing requirements are higher.

A similar problem occurs with the cyclic redundancy 
check (CRC) field of a CAN frame in case of a direct imple-
mentation of the proposed approach. Since Seff depends 
on both SAlice and SBob, the valid value for the CRC field of 
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the effective message on the bus is generally not equal to 
the superimposed CRC fields of the messages transmitted 
by Alice and Bob in case that they calculate the CRC field 
in such a way that the transmitted frames are valid. In order 
to solve this issue and assure full backwards compatibility 
to standard CAN, the correct CRC value that matches the 
effective CAN frame on the bus could also be calculated by 
both nodes on the fly and then be appended to that frame 
after the payload field. While making sure that the effective 
frame on the bus is a valid CAN frame (based on existing 
specifications), it has the nice side effect that this proce-
dure automatically helps to make sure that both Alice and 
Bob have received the same effective bit string Seff (which 
is essential for deriving the same shared secret). If the 
two nodes are receiving differing bits, they would append  
different CRC fields, which would be detected by one of  
the nodes if a recessive bit was overwritten by a dominant 
one. 

With these approaches to dealing with bit stuffing vio-
lations and the CRC field, it is possible to achieve full back-
ward compatibility in the sense that all frames on the CAN 
network are in line with the existing specifications – at least 
in the error-free case. Smooth migration paths become 
possible, where not all nodes connected to a CAN net-
work necessarily have to support the proposed approach 
and existing hardware and software can be reused. We 
envision flexible implementation options, where existing 
CAN controllers do not have to be modified as long as they 
are supplemented by an additional hardware or software 
module.

Security considerations

If Eve is only passively eavesdropping on the CAN net-
work, she will not be able to readily determine the es-
tablished shared secret bit sequences KAlice or KBob: she 
only knows that the remaining bits were different for both 
nodes, but  cannot tell who has transmitted the zero and 
who the one. If, in contrast, Eve is trying to perform an ac-
tive attack, for example by sending additional own bits dur-
ing the exchange of SAlice and SBob, two different possibili-
ties have to be considered:

◆◆ Eve transmits a recessive bit,
◆◆ Eve transmits a dominant bit.

Transmitting a recessive bit is no different from not trans-
mitting at all since a recessive bit does not change the ef-
fective state on the CAN network. Therefore, we only have 
to analyze what Eve might does by superimposing another 
dominant bit to the bits exchanged between Alice and Bob. 
To this end, it is important to remember that with our pro-
cedure only those bits remain in the final shared secret for 
which the effective bit on the CAN network was ‘0’ for both 
the transmission of the original and the inverse bit. More-
over, if Eve transmits a dominant bit, she cannot tell what 
the status on the CAN network would have been without her 
transmission. Therefore, we can conclude the following: 
      Conclusion 1: An active Eve may disturb our procedure  
in such a way that the generated secret bit strings KAlice  
and KBob are actually not equal on both sides. In order to be 
able to detect such cases, additional mechanisms should 
be introduced, with which Alice and Bob can verify that 

they have generated the same bit sequences. This could 
be done by calculating and exchanging a hash value of 
these bit sequences. 

Conclusion 2: An active Eve is not able to en-
force the generation of a particular shared secret be-
tween Alice and Bob (which she then would be aware 
of) and/or to learn the shared secret that is estab-
lished between both nodes. This is because KAlice and 
KBob depend not only on Seff (which may be determined  
and influenced by Eve), but also on the bits  
of RAlice and RBob, which are unequal on both sides, and  
Eve has no way to determine these. 

Conclusion 3: An active Eve may perform a  
denial-of-service attack by preventing the establishment 
of a shared secret, for example by continuously sending 
a frame with the highest priority. However, this threat ex-
ists basically for any scheme since an active Eve could 
block any CAN communication on the bus. In this case, the 
failsafe mode of all devices should prevent any serious 
safety-critical impact. 

Conclusion and way forward

Security will play a crucial role for the success and accep-
tance of connected systems. A challenge in this regard is 
how to distribute and manage the cryptographic keys be-
tween the involved nodes. We have proposed a novel ap-
proach to establishing and/or refreshing symmetric crypto-
graphic keys between two CAN devices in a plug-and-play 
manner, exploiting special properties of the CAN network. 
The proposed scheme requires only the simultaneous ex-
change of random bit sequences along with an appropri-
ate interpretation of the resulting effective bit sequence on 
the bus. Therefore, it is of very low complexity and may 
be readily implemented and integrated in practical sys-
tems. Even though it cannot address all existing security 
challenges, it has the potential to become a major build-
ing block for secure CAN communication in future. Also, it 
should be noted that exactly the same concept may also 
be used in conjunction with other bus systems having simi-
lar properties as CAN. Apart from all CAN derivatives, such 
as TTCAN or CAN FD, this includes the LIN- and I2C-bus. 

As a next step, the basic idea has to be embed-
ded in a larger framework, including suitable protocols 
and mechanisms for synchronized frame transmissions 
between Alice and Bob, the establishment of group 
keys, the generation of keys of arbitrary lengths and 
the like. A first practical proof-of-concept demonstra-
tion is planned. In general, no major showstoppers are  
expected in this respect.                                                             t
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