
10 CAN Newsletter 4/2015

The recent trend towards ubiquitously connected systems
– be it cars, factories, or buildings – does not only come

with numerous opportunities and benefits, but imposes also
new security threats with a potentially huge impact. If every-
thing is interconnected and APIs are introduced in order to
facilitate innovative services and applications, the attack sur-
face for malicious manipulations and intrusions is increased
significantly. Without proper countermeasures, hackers may
remotely control cars, eavesdrop on confidential production
data, or manipulate a building automation system.

This threat is reflected by various prominent attacks that
have been performed and published recently. In “Remote
exploitation of an unaltered passenger vehicle” [1], for exam-
ple, the authors describe how they managed to remotely inject
messages to the CAN network of a car and thus affect impor-
tant physical systems, such as steering or braking. The hack-
ers connected to the vehicle via a mobile network. This led to a
recall of about 1,4 million cars and fueled legislative initiatives
to mandate car manufacturers to support reasonable mea-
sures to protect cars against hacking attacks [2]. More secu-
rity leaks and attacks on cars and other vehicles have been
reported reported [3]-[5]. Remote attacks may easily scale
and hackers do not need physical access to the system
under attack. For example, imagine a scenario with thou-
sands of cars remotely hijacked. Hackers could precipi-
tate a breakdown of the whole traffic infrastructure of a
city or country by manipulating all cars in a coordinated
manner. Clearly, this could not only lead to tremendous phys-
ical damage, but also to a significant impact on the whole
economy and society. Therefore, the support of appropriate
security mechanisms represents a crucial prerequisite for the
success and acceptance of any connected system.

In automotive networks, a secured CAN communication
represents a particularly important building block of security
concepts, since a compromised CAN network can have a
direct impact on people’s safety. When CAN was introduced
in the 1980s, security was not a crucial topic yet, since sys-
tems were closed and isolated. With the increased open-
ness, however, this changes fundamentally. While in principle
suitable concepts and algorithms are available [6], [7], they
are not used yet because other challenges still remain. This
includes proper standardization across different manufactur-
ers and suppliers, but also efficient approaches for establish-
ing, refreshing, and managing the cryptographic keys that are
required for the involved cryptographic schemes.

We therefore propose a novel approach addressing the
latter aspect: this approach is able to establish and refresh
symmetric cryptographic keys between two nodes in a CAN
network in a plug-and-play manner. To this end, special

Plug-and-secure communication for CAN

Security is a topic of rapidly increasing importance in automotive as well as industrial
applications. With Bosch’s novel approach, symmetric cryptographic keys between
different nodes in a CAN network can simply be established and refreshed.

properties of the CAN physical layer are exploited. It can be
implemented with no or only minor extensions to CAN con-
trollers and it is particularly suited to enhance the security
against remote (and thus scalable) attacks. The generation
of group keys between a group of nodes becomes possible if
the approach is integrated into a suitable protocol flow.

System and attacker model

In the following, we consider a setup as depicted in
Figure 1. Two devices (Alice and Bob) are connected to the
same CAN network segment and want to establish a pair
of symmetric cryptographic keys. Afterwards, they may use
these keys to encrypt and/or authenticate any messages
exchanged between them. In addition, there is also a poten-
tial attacker (Eve) connected to the same bus segment,
which tries to determine or influence the keys to be estab-
lished between Alice and Bob. We make the following
assumptions on Alice, Bob, and Eve:

◆◆ All nodes have a similar setup, made up of a CAN
transceiver, a suitable CAN controller, as well as a
microprocessor running the application software,

◆◆ Eve is the victim of a remote attack in the sense that the
original software running on that node has been
replaced by a modified software,

◆◆ Eve can eavesdrop on all messages exchanged on the
CAN network. She may also inject arbitrary single bits
on the bus by bypassing the CAN controller and directly
accessing the CAN transceiver from the malicious
software running on the device.

It is important to make sure that if one device has
been successfully attacked (here: Eve), the impact on
the overall system is kept to a minimum. In the attack on
a regular car reported in [1], the head unit was successfully
compromised first. With proper security mechanisms in place,
it would be hardly possible for the head unit to control safety-
relevant functions like steering or braking by injecting CAN
messages. However, any security mechanism is only secure

En
gi

ne
er

in
g

Figure 1: Considered System Model (Photo: Bosch)

http://can-newsletter.org/engineering/engineering-miscellaneous/151116_plug_and_secure_communication_or_CAN
http://can-newsletter.org/engineering/engineering-miscellaneous/151116_plug_and_secure_communication_or_CAN
http://can-newsletter.org/engineering/engineering-miscellaneous/151116_plug_and_secure_communication_or_CAN
http://can-newsletter.org/engineering/engineering-miscellaneous/151116_plug_and_secure_communication_or_CAN
http://can-newsletter.org/engineering/engineering-miscellaneous/151116_plug_and_secure_communication_or_CAN

C M Y CM MY CY CMY K

as long as the involved cryptographic keys of the legitimate
nodes (here: Alice and Bob) remain secret. Therefore, Eve
must not be able to determine and/or influence these keys.

Review: Security for CAN networks

The protection of the integrity of a message and the assur-
ance of the authenticity of its sender should be among the
top security goals in CAN-based networks. Unauthorized
manipulations have to be prevented or should at least be
detectable. Encryption, in contrast, makes it harder for
an attacker to learn the current system state or becomes
necessary for delivering critical software updates.

In principle, all these things could be realized in
exactly the same way as in the conventional IT world, but
for optimal performance the constraints of CAN-based net-
works must be taken into account. This includes the limited
data rate and message sizes, as well as the limited compu-
tational power and memory of CAN devices. Therefore, [6]
and [7] propose several security mechanisms specifically
optimized for CAN. Symmetric cryptographic schemes turn
out to be the basis for most of the proposed schemes due
to their limited computational complexity and bandwidth
requirements. The use of symmetric cryptography requires
the availability of symmetric keys at the involved nodes and
the distribution and establishment of these keys represents
a challenge. Possible options include a manual distribution
of keys, e.g., at the end of a production line. This involves
a considerable organizational effort and is made invalid if
one or several devices were compromised before being
integrated into the network. Besides, an automated refresh-
ment of keys cannot be realized this way. An alternative
approach is the use of key establishment schemes based
on asymmetric cryptography, such as the Diffie-Hellman
key exchange protocol [8], [9]. Drawbacks of this approach
are the high computational complexity as well as the large
amount of data that has to be exchanged in order to set up
a secure symmetric key. Moreover, the security of the Dif-
fie-Hellman key exchange relies only on the difficulty to effi-
ciently solve the discrete logarithm problem on finite fields
or elliptic curves using state-of-the-art methods. Therefore,
once an efficient algorithm for solving these problems has
been found, the approach may suddenly become insecure.

We therefore propose a novel approach for estab-
lishing symmetric cryptographic keys between two nodes,
whose security does not rely on hard mathematical prob-
lems, but rather on physical properties of the CAN net-
work. Furthermore, it has a low complexity, low bandwidth
requirements, and can be implemented in existing systems.
Finally, it may also be used for refreshing established keys.

CAN-based key establishment

The basic idea of our approach is that Alice and Bob agree
on a shared secret or key by means of a public discus-
sion using CAN messages. In particular, both nodes simul-
taneously transmit CAN frames, so that Eve can only see
the superposition of both messages. However, since Alice
and Bob themselves know what they have transmitted and
since they can see the superposition of both messages
as well, they may conclude what the other peer has

http://can-newsletter.org/engineering/engineering-miscellaneous/151116_plug_and_secure_communication_or_CAN
http://can-newsletter.org/engineering/engineering-miscellaneous/151116_plug_and_secure_communication_or_CAN
http://can-newsletter.org/engineering/engineering-miscellaneous/151116_plug_and_secure_communication_or_CAN
http://www.steinhoff-automation.com

12 CAN Newsletter 4/2015

transmitted and thus establish a shared key that is unknown
to Eve.

For the realization, we rely on the property of the CAN
network that bit ‘0’ is dominant and bit ‘1’ is recessive, which
represents also the basis for the classical bus arbitration. If
Alice and Bob simultaneously transmit a certain bit, there
are in total four different cases that may occur. These are
put together in Table 1. If one of the two nodes transmits
a dominant bit (‘0’), the effective bit on the CAN network
is also a ‘0’ and only if both nodes transmit a recessive
bit (‘1’), we also have the recessive state after the super-
position on the CAN network. Therefore, the CAN network
may be considered a logical AND function of the individu-
ally transmitted bits.

Table 1: Possible combinations of dominant and recessive
bit transmissions

Alice Bob Effective Bit
on CAN Bus

0 0 0
0 1 0
1 0 0
1 1 1

The actual procedure for agreeing on a shared secret
between Alice and Bob is a multistep approach as follows:

◆◆ Alice and Bob independently generate random bit
strings RAlice and RBob of a predefined length N.
Example (for N = 10):
RAlice	 = 0 1 1 0 1 0 0 1 0 1
RBob	 = 1 0 1 1 0 1 0 1 1 0

◆◆ Alice and Bob extend these random bit sequences
in such a way that after each bit the corresponding
inverse bit is inserted, leading to the modified bit
sequences SAlice and SBob of length 2N.
Example:
SAlice	 = 01 10 10 01 10 01 01 10 01 10
SBob	 = 10 01 10 10 01 10 01 10 10 01

◆◆ Alice and Bob simultaneously transmit the bit
sequences SAlice and SBob, leading to the superimposed
bit sequence Seff on the CAN network, which is given
as Seff = SAlice AND SBob.
Example:
Seff = 00 00 10 00 00 00 01 10 00 00
Eve may easily determine this bit sequence as well
by means of simple passive eavesdropping on the
channel. Therefore, this sequence does not provide
any direct advantage yet.

◆◆ Alice and Bob determine all tuples in Seff which include
a ‘1’.
Example: In Seff given above, there is a ‘1’ in tuples
number 3, 7, and 8 (assuming that we start counting the
tuples with 1).

◆◆ Alice and Bob delete the bits in their original random
bit sequences RAlice and RBob corresponding to the
tuples which included a ‘1’ as determined in step 4.
The results are two shortened bit sequences, denoted
as KAlice and KBob.
Example: Based on the outcome of step 4, Alice and
Bob have to delete the bits at positions 3, 7, and 8 in

their original bit sequences RAlice and RBob. We get:
KAlice	 = 0 1 1– 0 1 0 0– 1– 0 1 	 = 0 1 0 1 0 0 1
KBob	 = 1 0 1– 1 0 1 0– 1– 1 0 	 = 1 0 1 0 1 1 0

This is done because whenever the effective bit on the CAN
network is a ‘1’, it is clear that both Alice and Bob must have
transmitted a ‘1’. Likewise, since the two bits in a tuple are
always inverse to each other, it is also clear that in that case
both nodes must have transmitted a ‘0’ for the other bit.
However, exactly the same conclusion can be drawn by Eve
and therefore the tuples including a ‘1’ do not provide
any usable information for us as no secrecy is contained.
For that reason, these bits are simply removed from Seff.

◆◆ The resulting bit sequence of Alice is now exactly the
inverse of the corresponding bit sequence of Bob, which is
the established shared secret.

What remains after step 5 are the bits that are different
in the initial bit strings RAlice and RBob. When simultaneously
transmitting SAlice and SBob, we always get ‘00’ for the tuples
corresponding to these bits. Hence, by eavesdropping on Seff,
Eve only knows that Alice and Bob have inverse bits in their
original random bit sequences RAlice and RBob at that position,
but she is not able to tell which one has the zero and which
one has the one. Alice and Bob, in contrast, know which bit
they have transmitted themselves, they can also conclude
that the respective other peer has transmitted the inverse bit
by evaluating Seff and therefore they have a clear advantage
compared to Eve.

With the proposed scheme it is possible to establish a
shared secret between Alice and Bob by means of a simple
public discussion, i.e., by simply transmitting and receiving
CAN frames and interpreting the superimposed frames on
the bus. Consequently, the complexity is extremely low, espe-
cially compared to existing key establishment schemes and
can be done in an automated manner.

In a practical realization, the simultaneous transmission
of the bit strings SAlice and SBob would be done in the payload
part of a CAN frame. It is possible to implement the proposed
scheme in such a way that other nodes (apart from Alice and
Bob) see valid CAN frames and do not trigger the transmis-
sion of any error frame. The number of payload bits in a CAN
frame is limited to 64 bits in case of Classical CAN and 512 bits
in case of CAN FD and the length of the shared secret is not
constant, but depends on how many values are equal in RAlice
and RBob. Therefore, the length of the shared secret that can
be obtained from one simultaneous message exchange may
vary between 0 and N, with an expected value of N/2. Since
the initial random sequences are extended by a factor of two
by inserting the inverse bit after each bit and since all these
2N bits have to be transmitted over the CAN network, the over-
all efficiency ρ, which relates the length of the usable shared
secret after one round of the proposed approach to the num-
ber of required bits to establish this shared secret, is given by
 0 ≤ ρ ≤ ½,
with an expected value of E[ρ] = ¼. This means that on
average four payload bits have to be simultaneously trans-
mitted by Alice and Bob in order to establish one secret
bit. To achieve state-of-the-art security, symmetric keys of
128 bit or even 256 bit are required, which is why a single
run of the proposed approach is not enough to generate a
sufficient number of secret bits. Therefore, suitable proto-
col mechanisms are required, which enable the generation

En
gi

ne
er

in
g

of keys of arbitrary lengths. This may be done by repeat-
edly performing the proposed procedure and combining the
secret bits generated during each run.

Our approach cannot only be used to generate keys
of arbitrary length, but to periodically refresh existing keys.
By doing so, certain attacks become more difficult and the
potential damage if a particular key is revealed can be lim-
ited. Therefore, periodic key refreshment is a highly recom-
mended security practice ([10], [11]). For refreshing a key,
a limited number of secret bits is sufficient as they may be
combined with the old key. The procedure can be inserted
into regular CAN communication in order to generate new
secret bits and to refresh the used keys.

Finally, CAN is a multicast-based communication pro-
tocol and messages transmitted by one node usually have
to be received by multiple nodes. This implies that in many
cases not only the communication between two nodes
has to be secured, but rather the communication between
groups of several nodes. Hence, cryptographic schemes
for message authentication, encryption, etc. may only be
applied if all devices belonging to a certain group are in
possession of the same cryptographic key. The procedure
proposed in this paper, however, cannot be extended to a
multi-node setup in a straightforward manner. Nevertheless,
solutions for establishing group keys are available. In the
simplest case, all nodes of a certain communication group
could establish a pairwise key with one particular node of
that group and then this node may generate a group key
and signal it to all nodes of the group, encrypting it with the
previously established pair-wise keys.

Implementation aspects

As already mentioned, the bit strings SAlice and SBob should
be transmitted in the payload field of a CAN frame. Without
any additional measures, this may lead to problems and/or
compatibility issues. In a direct implementation, the super-
imposed CAN frame may violate the bit stuffing rule since
even if the individual bit strings SAlice and SBob adhere to this
rule, it cannot be assured that this is also the case for the
effective bit string Seff. Other nodes may generate an error
frame if they observe such a violation on the bus and clock
resynchronization may become more difficult.

A solution to fix this problem is to insert a fixed bit
change (‘01’ or ‘10’) in both SAlice and SBob after each
sequence of at most four bits. This way, Alice and Bob
would always transmit the same two bits at this position
and since the two bits include a bit change, the bit stuff-
ing rule is never violated in the error-free case. This would
come at the cost of a higher overhead. Alternatively, Alice
and Bob could determine on-the-fly when it is necessary to
insert a stuff bit. Both nodes have to read back the effec-
tive bit sequence Seff anyway and could thus check if there
have been five identical bits and dynamically insert the
inverse bit afterwards. Compared to the first solution, the
additional overhead would be lower, but the complexity
and processing requirements are higher.

A similar problem occurs with the cyclic redundancy
check (CRC) field of a CAN frame in case of a direct imple-
mentation of the proposed approach. Since Seff depends
on both SAlice and SBob, the valid value for the CRC field of

CAN Bus Connectors
External Cable Clamp
 Secure fi eld assembly for thick special
cables e.g. drag chain cables

 Solid metal external cable clamp for
safe strain relief and shield termination

 EMI/RFI proof fully shielded metal
housing

CAN Bus Plug & Play M12
Bus Connectors
 Reliable data transmission due to
• failure-free M12 connection
• fully shielded robust metal housing
• safe effective shield termination

 Quick connection – Plug & Play M12

CAN M12 Cable connectors + Cordsets
and T + Y pieces (splitters)
 Secure data transmission due to crimp technology for wires and for shield
 EMI/RFI proof fully shielded metal housing for rough environment
 Torsion- and vibration-proof strain relief and shield connection

• Approved by certifi ed shock/vibration test acc. to DIN EN 61373
Category 1, class B

 Compact dimensions with small outer diameter
 For railway applications with materials acc. to DIN EN 45 545 and
NFF 16-101 available

CAN Bus distribution boxes
and service boxes
 EMI/RFI proof full metal housing
 Machined D-Sub contacts for high
reliability

 Customized design
 PCB with customized special
insulation as option

www.provertha.com

PROVERTHA
Connectors, Cables & Solutions GmbH
Westring 9 . 75180 Pforzheim . Germany
Tel. ++49 (0) 7231-774 66 . service@provertha.com

http://can-newsletter.org/engineering/engineering-miscellaneous/151116_plug_and_secure_communication_or_CAN
http://www.provertha.com

14 CAN Newsletter 4/2015

the effective message on the bus is generally not equal to
the superimposed CRC fields of the messages transmitted
by Alice and Bob in case that they calculate the CRC field
in such a way that the transmitted frames are valid. In order
to solve this issue and assure full backwards compatibility
to standard CAN, the correct CRC value that matches the
effective CAN frame on the bus could also be calculated by
both nodes on the fly and then be appended to that frame
after the payload field. While making sure that the effective
frame on the bus is a valid CAN frame (based on existing
specifications), it has the nice side effect that this proce-
dure automatically helps to make sure that both Alice and
Bob have received the same effective bit string Seff (which
is essential for deriving the same shared secret). If the
two nodes are receiving differing bits, they would append
different CRC fields, which would be detected by one of
the nodes if a recessive bit was overwritten by a dominant
one.

With these approaches to dealing with bit stuffing vio-
lations and the CRC field, it is possible to achieve full back-
ward compatibility in the sense that all frames on the CAN
network are in line with the existing specifications – at least
in the error-free case. Smooth migration paths become
possible, where not all nodes connected to a CAN net-
work necessarily have to support the proposed approach
and existing hardware and software can be reused. We
envision flexible implementation options, where existing
CAN controllers do not have to be modified as long as they
are supplemented by an additional hardware or software
module.

Security considerations

If Eve is only passively eavesdropping on the CAN net-
work, she will not be able to readily determine the es-
tablished shared secret bit sequences KAlice or KBob: she
only knows that the remaining bits were different for both
nodes, but cannot tell who has transmitted the zero and
who the one. If, in contrast, Eve is trying to perform an ac-
tive attack, for example by sending additional own bits dur-
ing the exchange of SAlice and SBob, two different possibili-
ties have to be considered:

◆◆ Eve transmits a recessive bit,
◆◆ Eve transmits a dominant bit.

Transmitting a recessive bit is no different from not trans-
mitting at all since a recessive bit does not change the ef-
fective state on the CAN network. Therefore, we only have
to analyze what Eve might does by superimposing another
dominant bit to the bits exchanged between Alice and Bob.
To this end, it is important to remember that with our pro-
cedure only those bits remain in the final shared secret for
which the effective bit on the CAN network was ‘0’ for both
the transmission of the original and the inverse bit. More-
over, if Eve transmits a dominant bit, she cannot tell what
the status on the CAN network would have been without her
transmission. Therefore, we can conclude the following:
 Conclusion 1: An active Eve may disturb our procedure
in such a way that the generated secret bit strings KAlice
and KBob are actually not equal on both sides. In order to be
able to detect such cases, additional mechanisms should
be introduced, with which Alice and Bob can verify that

they have generated the same bit sequences. This could
be done by calculating and exchanging a hash value of
these bit sequences.

Conclusion 2: An active Eve is not able to en-
force the generation of a particular shared secret be-
tween Alice and Bob (which she then would be aware
of) and/or to learn the shared secret that is estab-
lished between both nodes. This is because KAlice and
KBob depend not only on Seff (which may be determined
and influenced by Eve), but also on the bits
of RAlice and RBob, which are unequal on both sides, and
Eve has no way to determine these.

Conclusion 3: An active Eve may perform a
denial-of-service attack by preventing the establishment
of a shared secret, for example by continuously sending
a frame with the highest priority. However, this threat ex-
ists basically for any scheme since an active Eve could
block any CAN communication on the bus. In this case, the
failsafe mode of all devices should prevent any serious
safety-critical impact.

Conclusion and way forward

Security will play a crucial role for the success and accep-
tance of connected systems. A challenge in this regard is
how to distribute and manage the cryptographic keys be-
tween the involved nodes. We have proposed a novel ap-
proach to establishing and/or refreshing symmetric crypto-
graphic keys between two CAN devices in a plug-and-play
manner, exploiting special properties of the CAN network.
The proposed scheme requires only the simultaneous ex-
change of random bit sequences along with an appropri-
ate interpretation of the resulting effective bit sequence on
the bus. Therefore, it is of very low complexity and may
be readily implemented and integrated in practical sys-
tems. Even though it cannot address all existing security
challenges, it has the potential to become a major build-
ing block for secure CAN communication in future. Also, it
should be noted that exactly the same concept may also
be used in conjunction with other bus systems having simi-
lar properties as CAN. Apart from all CAN derivatives, such
as TTCAN or CAN FD, this includes the LIN- and I2C-bus.

As a next step, the basic idea has to be embed-
ded in a larger framework, including suitable protocols
and mechanisms for synchronized frame transmissions
between Alice and Bob, the establishment of group
keys, the generation of keys of arbitrary lengths and
the like. A first practical proof-of-concept demonstra-
tion is planned. In general, no major showstoppers are
expected in this respect. t

Authors

Andreas Mueller and Timo Lothspeich
Robert Bosch GmbH
www.bosch.com
Andreas.Mueller21@de.bosch.com
Timo.Lothspeich@de.bosch.com

En
gi

ne
er

in
g

http://www.bosch.com
mailto:Andreas.Mueller21@de.bosch.com
mailto:Timo.Lothspeich@de.bosch.com

See for yourself. Contact Curtis to expand your I/O.
www.curtisinstruments.com
To see product information and datasheet go to: www.bit.do/Curtis1356

THE CURTIS MODEL 1356 CANbus I/O expansion module adds digital, analog
and encoder I/O to any CANopen based control system and is ideal for industrial
and manufacturing equipment, engine powered and electric vehicles. This low cost,
powerful, compact general purpose I/O module, 100 x 70 mm, is available as a
PCB or encapsulated. Two models at 12 V-80 V, provide 18 multi- purpose I/O pins
with: 13 digital and 5 analog inputs; 1 and 3 Amp outputs configurable as PWM,
Constant Current or Constant Voltage; 1 quadrature input; a serial port; 12VDC
unregulated and a 5VDC regulated power supplies. The encoder input is suited
to reading quadrature encoders from steer or positioning devices with automatic
conversion to speed, RPM and distance travelled. The 1356 module is programmed
via serial or CANopen for simple integration.

I/O
Galore!

http://www.curtisinstruments.com

