
User’s Manual

- 1/53 -

Revision 2.1.0C_CAN FD8

 22.01.2015

C_CAN FD8
Controller Area Network

User’s Manual

Revision 2.1.0

22.01.2015

Robert Bosch GmbH
Automotive Electronics

FD

User’s Manual Revision 2.1.0C_CAN FD8
LEGAL NOTICE

© Copyright 1998-2015 by Robert Bosch GmbH and its licensors. All rights reserved.

"Bosch" is a registered trademark of Robert Bosch GmbH.

The content of this document is subject to continuous developments and improvements. All
particulars and its use contained in this document are given by BOSCH in good faith.

NO WARRANTIES: TO THE MAXIMUM EXTENT PERMITTED BY LAW, NEITHER THE
INTELLECTUAL PROPERTY OWNERS, COPYRIGHT HOLDERS AND CONTRIBUTORS,
NOR ANY PERSON, EITHER EXPRESSLY OR IMPLICITLY, WARRANTS ANY ASPECT OF
THIS SPECIFICATION, SOFTWARE RELATED THERETO, CODE AND/OR PROGRAM
RELATED THERETO, INCLUDING ANY OUTPUT OR RESULTS OF THIS SPECIFICATION,
SOFTWARE RELATED THERETO, CODE AND/OR PROGRAM RELATED THERETO
UNLESS AGREED TO IN WRITING. THIS SPECIFICATION, SOFTWARE RELATED
THERETO, CODE AND/OR PROGRAM RELATED THERETO IS BEING PROVIDED "AS IS",
WITHOUT ANY WARRANTY OF ANY TYPE OR NATURE, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE, AND ANY WARRANTY THAT THIS
SPECIFICATION, SOFTWARE RELATED THERETO, CODE AND/OR PROGRAM RELATED
THERETO IS FREE FROM DEFECTS.

ASSUMPTION OF RISK: THE RISK OF ANY AND ALL LOSS, DAMAGE, OR
UNSATISFACTORY PERFORMANCE OF THIS SPECIFICATION (RESPECTIVELY THE
PRODUCTS MAKING USE OF IT IN PART OR AS A WHOLE), SOFTWARE RELATED
THERETO, CODE AND/OR PROGRAM RELATED THERETO RESTS WITH YOU AS THE
USER. TO THE MAXIMUM EXTENT PERMITTED BY LAW, NEITHER THE INTELLECTUAL
PROPERTY OWNERS, COPYRIGHT HOLDERS AND CONTRIBUTORS, NOR ANY
PERSON EITHER EXPRESSLY OR IMPLICITLY, MAKES ANY REPRESENTATION OR
WARRANTY REGARDING THE APPROPRIATENESS OF THE USE, OUTPUT, OR
RESULTS OF THE USE OF THIS SPECIFICATION, SOFTWARE RELATED THERETO,
CODE AND/OR PROGRAM RELATED THERETO IN TERMS OF ITS CORRECTNESS,
ACCURACY, RELIABILITY, BEING CURRENT OR OTHERWISE. NOR DO THEY HAVE ANY
OBLIGATION TO CORRECT ERRORS, MAKE CHANGES, SUPPORT THIS
SPECIFICATION, SOFTWARE RELATED THERETO, CODE AND/OR PROGRAM RELATED
THERETO, DISTRIBUTE UPDATES, OR PROVIDE NOTIFICATION OF ANY ERROR OR
DEFECT, KNOWN OR UNKNOWN. IF YOU RELY UPON THIS SPECIFICATION,
SOFTWARE RELATED THERETO, CODE AND/OR PROGRAM RELATED THERETO, YOU
DO SO AT YOUR OWN RISK, AND YOU ASSUME THE RESPONSIBILITY FOR THE
RESULTS. SHOULD THIS SPECIFICATION, SOFTWARE RELATED THERETO, CODE
AND/OR PROGRAM RELATED THERETO PROVE DEFECTIVE, YOU ASSUME THE COST
OF ALL LOSSES, INCLUDING, BUT NOT LIMITED TO, ANY NECESSARY SERVICING,
REPAIR OR CORRECTION OF ANY PROPERTY INVOLVED TO THE MAXIMUM EXTEND
PERMITTED BY LAW.

DISCLAIMER: IN NO EVENT, UNLESS REQUIRED BY LAW OR AGREED TO IN WRITING,
SHALL THE INTELLECTUAL PROPERTY OWNERS, COPYRIGHT HOLDERS OR ANY
PERSON BE LIABLE FOR ANY LOSS, EXPENSE OR DAMAGE, OF ANY TYPE OR NATURE
ARISING OUT OF THE USE OF, OR INABILITY TO USE THIS SPECIFICATION,
SOFTWARE RELATED THERETO, CODE AND/OR PROGRAM RELATED THERETO,
- 2/53 - 22.01.2015

User’s Manual Revision 2.1.0C_CAN FD8
INCLUDING, BUT NOT LIMITED TO, CLAIMS, SUITS OR CAUSES OF ACTION INVOLVING
ALLEGED INFRINGEMENT OF COPYRIGHTS, PATENTS, TRADEMARKS, TRADE
SECRETS, OR UNFAIR COMPETITION.

INDEMNIFICATION: TO THE MAXIMUM EXTEND PERMITTED BY LAW YOU AGREE TO
INDEMNIFY AND HOLD HARMLESS THE INTELLECTUAL PROPERTY OWNERS,
COPYRIGHT HOLDERS AND CONTRIBUTORS, AND EMPLOYEES, AND ANY PERSON
FROM AND AGAINST ALL CLAIMS, LIABILITIES, LOSSES, CAUSES OF ACTION,
DAMAGES, JUDGMENTS, AND EXPENSES, INCLUDING THE REASONABLE COST OF
ATTORNEYS’ FEES AND COURT COSTS, FOR INJURIES OR DAMAGES TO THE
PERSON OR PROPERTY OF THIRD PARTIES, INCLUDING, WITHOUT LIMITATIONS,
CONSEQUENTIAL, DIRECT AND INDIRECT DAMAGES AND ANY ECONOMIC LOSSES,
THAT ARISE OUT OF OR IN CONNECTION WITH YOUR USE, MODIFICATION, OR
DISTRIBUTION OF THIS SPECIFICATION, SOFTWARE RELATED THERETO, CODE AND/
OR PROGRAM RELATED THERETO, ITS OUTPUT, OR ANY ACCOMPANYING
DOCUMENTATION.

GOVERNING LAW: THE RELATIONSHIP BETWEEN YOU AND ROBERT BOSCH GMBH
SHALL BE GOVERNED SOLELY BY THE LAWS OF THE FEDERAL REPUBLIC OF
GERMANY. THE STIPULATIONS OF INTERNATIONAL CONVENTIONS REGARDING THE
INTERNATIONAL SALE OF GOODS SHALL NOT BE APPLICABLE. THE EXCLUSIVE
LEGAL VENUE SHALL BE DUESSELDORF, GERMANY.

MANDATORY LAW SHALL BE UNAFFECTED BY THE FOREGOING PARAGRAPHS.

INTELLECTUAL PROPERTY OWNERS/COPYRIGHT OWNERS/CONTRIBUTORS:
ROBERT BOSCH GMBH, ROBERT BOSCH PLATZ 1, 70839 GERLINGEN, GERMANY AND
ITS LICENSORS.
- 3/53 - 22.01.2015

User’s Manual Revision 2.1.0C_CAN FD8
- 4/53 - 22.01.2015

User’s Manual Revision 2.1.0C_CAN FD8
C_CAN FD8 . 1

1. About this Document . 7
1.1. Change Control .7

1.1.1. Current Status .7
1.1.2. Change History .7

1.2. Conventions .7
1.3. Scope .7
1.4. References .7
1.5. Terms and Abbreviations .8

2. Functional Description . 9
2.1. Functional Overview .9
2.2. Block Diagram .10
2.3. Operating Modes .11

2.3.1. Software Initialisation .11
2.3.2. CAN Message Transfer .11
2.3.3. CAN FD Operation Mode .12
2.3.4. Restricted Operation Mode .12
2.3.5. Disabled Automatic Retransmission .12
2.3.6. Test Mode .12

2.3.6.1.Silent Mode .13
2.3.6.2.Loop Back Mode .13
2.3.6.3.Loop Back combined with Silent Mode .14
2.3.6.4.Basic Mode .14
2.3.6.5.Software control of Pin can_tx .15

3. Programmer’s Model . 17
3.1. Hardware Reset Description .18

3.1.1. Coding of Register Bit access / reset .18
3.2. CAN Protocol Related Registers .19

3.2.1. CAN Control Register (addresses 0x01 & 0x00) .19
3.2.2. Status Register (addresses 0x03 & 0x02) .20

3.2.2.1.Status Interrupts .21
3.2.3. Error Counter (addresses 0x05 & 0x04) .21
3.2.4. Bit Timing Register (addresses 0x07 & 0x06) .21
3.2.5. Test Register (addresses 0x0B & 0x0A) .22
3.2.6. BRP Extension Register (addresses 0x0D & 0x0C)23
3.2.7. FD Control Register (addresses 0x27 & 0x26) .23
3.2.8. Nominal Bit Timing Register 1 (addresses 0x29 & 0x28) 24
3.2.9. Nominal Bit Timing Register 2 (addresses 0x2B & 0x2A)24
3.2.10. Data Bit Timing Register 1 (addresses 0x2D & 0x2C) 25
3.2.11. Data Bit Timing Register 2 (addresses 0x2F & 0x2E) 25
3.2.12. Transmitter Delay Compensation Register (addresses 0x31 & 0x30) 25
3.2.13. SSP Position Register (addresses 0x33 & 0x32) .26
3.2.14. Error Logging Register (addresses 0x35 & 0x34) .26
3.2.15. FD Status Register (addresses 0x37 & 0x36) .27

3.3. Message Interface Register Sets .29
3.3.1. IFx Command Request Registers .29
- 5/53 - 22.01.2015

User’s Manual Revision 2.1.0C_CAN FD8
3.3.2. IFx Command Mask Registers .30
3.3.2.1.Direction = Write .30
3.3.2.2.Direction = Read .32

3.3.3. IFx Message Buffer Registers .33
3.3.3.1.IFx Mask Registers .33
3.3.3.2.IFx Arbitration Registers .33
3.3.3.3.IFX Message Control Registers .34
3.3.3.4.IFx Data A and Data B Registers .34

3.3.4. Message Object in the Message Memory .35
3.4. Message Handler Registers .38

3.4.1. Interrupt Register (addresses 0x09 & 0x08) .38
3.4.2. Transmission Request Registers .38
3.4.3. New Data Registers .39
3.4.4. Interrupt Pending Registers .39
3.4.5. Message Valid Registers .39

3.5. Core Release Registers .40
3.5.1. Core Release Low (addresses 0x39 & 0x38) .40
3.5.2. Core Release High (addresses 0x3B & 0x3A) .40

4. CAN Application . 41
4.1. Management of Message Objects .41
4.2. Message Handler State Machine .41

4.2.1. Data Transfer from / to Message RAM .41
4.2.2. Transmission of Messages .42
4.2.3. Acceptance Filtering of Received Messages .43

4.2.3.1.Reception of Data Frame .43
4.2.3.2.Reception of Remote Frame .43

4.2.4. Receive / Transmit Priority .44
4.3. Configuration of a Transmit Object .44
4.4. Updating a Transmit Object .44
4.5. Configuration of a Receive Object .45
4.6. Handling of Received Messages .45
4.7. Configuration of a FIFO Buffer .46
4.8. Reception of Messages with FIFO Buffers .46

4.8.1. Reading from a FIFO Buffer .46
4.9. Handling of Interrupts .48
4.10. CAN with Flexible Data-Rate .48

4.10.1. Frame Transmission in CAN FD Mode .49
4.10.2. Frame Reception in CAN FD Mode .50
4.10.3. Configuration of the Transmitter Delay Compensation50

4.10.3.1.Transmitter Delay Compensation Measurement51
4.10.3.2.Fixed Transmitter Delay .51

5. Appendix . 53
5.1. List of Figures .53
- 6/53 - 22.01.2015

User’s Manual Revision 2.1.0C_CAN FD8
1. About this Document

1.1 Change Control

 1.1.1 Current Status

Revision 2.1.0

 1.1.2 Change History

Issue Date Change

Draft 17.12.1998 First Draft

Draft 07.04.1999 DAR Mode added

Draft 20.04.1999 Signal names modified

Revision 1.0 28.09.1999 Revised version

Revision 1.1 10.12.1999 BRP Extension Register added

Revision 1.2 06.06.2000 Document restructured

Revision 2.0 18.12.2013 Upgraded for CAN FD8 support

Revision 2.0.1 17.03.2014 Bits PXE, PXHD, and EFBI added to FD Control
Register, minor amendments and textual
enhancements

Revision 2.1.0 22.01.2015 Bit NISO added, description of bit TDCNM and bit
fields TDCO, TDCF, and SSPP updated

1.2 Conventions

The following conventions are used within this User’s Manual.

Helvetica bold Names of bits and signals

Helvetica italic States of bits and signals

1.3 Scope

This document describes the C_CAN FD8 module and its features from the application
programmer’s point of view. All information necessary to integrate the C_CAN FD8 module
into an user-defined ASIC is located in the C_CAN FD8 Module Integration Guide.

1.4 References

This document refers to the following documents.

Ref Author(s) Title

1 ISO ISO 11898-1: CAN data link layer and physical signalling

2 AE/PJ-SCI C_CAN FD8 Module Integration Guide
- 7/53 - 22.01.2015

User’s Manual Revision 2.1.0C_CAN FD8
1.5 Terms and Abbreviations

This document uses the following terms and abbreviations.

Term Meaning

BSP Bit Stream Processor

BTL Bit Timing Logic

CAN Controller Area Network

CAN FD Controller Area Network with Flexible Data-rate

CRC Cyclic Redundancy Check Register

DLC Data Length Code

EML Error Management Logic

FSM Finite State Machine

mtq minimum time quantum = system clock period

SJW Synchronization Jump Width

system clock clock input of the C_CAN FD8 module

SSP Secondary Sample Point

tq time quantum

TDC Transmitter Delay Compensation

TSEG1 Time Segment before Sample Point

TSEG2 Time Segment after Sample Point

TTCAN Time-Triggered CAN
- 8/53 - 22.01.2015

User’s Manual Revision 2.1.0C_CAN FD8
2. Functional Description

2.1 Functional Overview

The C_CAN FD8 is a CAN module that can be integrated as stand-alone device or as part of
an ASIC. It is described in VHDL on RTL level, prepared for synthesis. It consists of the
components (see figure 1) CAN Core, Message RAM, Message Handler, Control Registers,
and Module Interface.

The CAN_Core performs communication according to ISO11898-1, 2003. It also supports
CAN FD communication with up to 8 byte data fields. For the connection to the physical layer
additional transceiver hardware is required.

For communication on a CAN network, individual Message Objects are configured. The
Message Objects and Identifier Masks for acceptance filtering of received messages are
stored in the Message RAM.

All functions concerning the handling of messages are implemented in the Message Handler.
Those functions are the acceptance filtering, the transfer of messages between the CAN Core
and the Message RAM, and the handling of transmission requests as well as the generation of
the module interrupt.

The register set of the C_CAN FD8 can be accessed directly by an external CPU via the
module interface. These registers are used to control/configure the CAN Core and the
Message Handler and to access the Message RAM.

The Module Interfaces delivered with the C_CAN FD8 module can easily be replaced by a
customized module interface adapted to the needs of the user.

The C_CAN FD8 implements the following features:

• Conform to ISO11898-1, 2003

• CAN FD with up to 8 byte data fields supported,
FD format currently being integrated into ISO11898-1

• 32 Message Objects

• Each Message Object has its own identifier mask

• Programmable FIFO mode (concatenation of Message Objects)

• Maskable interrupt

• Disabled Automatic Retransmission mode for Time Triggered CAN applications

• Programmable loop-back mode for self-test operation

• Example of an 8-bit non-multiplex Motorola HC08 compatible module interface

• Example of a 16-bit module interfaces to the AMBA APB bus from ARM

Note : The C_CAN FD8 is software compatible to the C_CAN as long as the reserved
addresses of the C_CAN are not accessed.
- 9/53 - 22.01.2015

User’s Manual Revision 2.1.0C_CAN FD8
2.2 Block Diagram

The design consists of the following functional blocks (see figure 1):

CAN Core

CAN Protocol Controller and Rx/Tx Shift Register for serial/parallel conversion of messages.

Message RAM

Stores Message Objects and Identifier Masks.

Registers

All registers used to control and to configure the C_CAN FD8 module.

Message Handler

State Machine that controls the data transfer between the Rx/Tx Shift Register of the CAN
Core and the Message RAM as well as the generation of interrupts as programmed in the
Control and Configuration Registers.

Module Interface

The C_CAN FD8 module interfaces are documented in the C_CAN FD8 Module Integration
Guide.

 Figure 1: Block Diagram of the C_CAN FD8

C_CAN FD8

CAN Core

Registers

Module Interface

M
es

sa
g

e
H

an
d

le
r

can_tx can_rx

Message RAM

D
at

aI
N

In
te

rr
u

p
t

C
lo

ck

R
es

et

A
d

d
re

ss
(7

:0
)

C
o

n
tr

o
l

ca
n

_w
ai

t_
b

D
at

aO
U

T

- 10/53 - 22.01.2015

User’s Manual Revision 2.1.0C_CAN FD8
2.3 Operating Modes

 2.3.1 Software Initialisation

The software initialization is started by setting the bit Init in the CAN Control Register, either
by software or by a hardware reset, or by going Bus_Off.

While Init is set, all message transfer from and to the CAN bus is stopped, the status of the
CAN bus output can_tx is recessive (HIGH). The counters of the EML are unchanged. Setting
Init does not change any configuration register.

To initialize the CAN Controller, the CPU has to set up the Bit Timing Register and each
Message Object. If a Message Object is not needed, it is sufficient to set it’s MsgVal bit to not
valid. Otherwise, the whole Message Object has to be initialized.

Access to the Bit Timing Register and to the BRP Extension Register for the configuration of
the bit timing is enabled when both bits Init and CCE in the CAN Control Register are set.

Resetting Init (by CPU only) finishes the software initialisation. Afterwards the Bit Stream
Processor BSP synchronizes itself to the data transfer on the CAN bus by waiting for the
occurrence of a sequence of 11 consecutive recessive bits (≡ Bus Idle) before it can take part
in bus activities and starts the message transfer.

The initialization of the Message Objects is independent of Init and can be done on the fly, but
the Message Objects should all be configured to particular identifiers or set to not valid before
the BSP starts the message transfer. To change the configuration of a Message Object during
normal operation, the CPU has to start by setting MsgVal to not valid. When the configuration
is completed, MsgVal is set to valid again.

 2.3.2 CAN Message Transfer

Once the C_CAN FD8 is initialized and Init is reset to zero, the C_CAN FD8’s CAN Core
synchronizes itself to the CAN bus and starts the message transfer.

Received messages are stored into their appropriate Message Objects if they pass the
Message Handler’s acceptance filtering. The whole message including all arbitration bits, DLC
and eight data bytes is stored into the Message Object. If the Identifier Mask is used, the
arbitration bits which are masked to “don’t care” may be overwritten in the Message Object.

The CPU may read or write each message any time via the Interface Registers, the Message
Handler guarantees data consistency in case of concurrent accesses.

Messages to be transmitted are updated by the CPU. If a permanent Message Object
(arbitration and control bits set up during configuration) exists for the message, only the data
bytes are updated and then TxRqst bit with NewDat bit are set to start the transmission. If
several transmit messages are assigned to the same Message Object (when the number of
Message Objects is not sufficient), the whole Message Object has to be configured before the
transmission of this message is requested.

The transmission of any number of Message Objects may be requested at the same time, they
are transmitted subsequently according to their internal priority. Messages may be updated or
set to not valid any time, even when their requested transmission is still pending. The old data
will be discarded when a message is updated before its pending transmission has started.
Depending on the configuration of the Message Object, the transmission of a message may
be requested autonomously by the reception of a remote frame with a matching identifier.

Note : Remote frames are always transmitted in Classical CAN format.
- 11/53 - 22.01.2015

User’s Manual Revision 2.1.0C_CAN FD8
 2.3.3 CAN FD Operation Mode

The C_CAN FD8 also supports CAN FD operation for data fields up to 8 byte. For
configuration/control/status of CAN FD operation the new registers from address CAN Base +
0x26 to CAN Base + 0x36 have been introduced. To enable CAN FD operation bit FDOE in
the FD Control Register has to be set. This can only be done while bits CCE and Init in the
CAN Control Register are set.

 2.3.4 Restricted Operation Mode

In Restricted Operation Mode the node is able to receive data and remote frames and to give
acknowledge to valid frames, but it does not send data frames, remote frames, active error
frames, or overload frames. In case of an error condition or overload condition, it does not
send dominant bits (error or overload flags), instead it waits for the occurrence of bus idle
condition to resynchronize itself to the CAN communication. The error counters (REC, TEC)
are frozen while Error Logging is active (CELD, CELN). The Host can set the C_CAN FD8 into
Restricted Operation mode by setting bit REOM in the FD Control Register. The bit can only
be written by the Host when both CCE and Init are set to ‘1’.

The Restricted Operation Mode can be used in applications that adapt themselves to different
CAN bit rates. In this case the application tests different bit rates and leaves the Restricted
Operation Mode after it has received a valid frame.

Note : The Restricted Operation Mode must not be combined with the Loop Back Mode
(internal or external).

 2.3.5 Disabled Automatic Retransmission

According to the CAN Specification (see ISO11898-1, 6.3.3 Recovery Management), the
C_CAN FD8 provides means for automatic retransmission of frames that have lost arbitration
or that have been disturbed by errors during transmission. The frame transmission service will
not be confirmed to the user before the transmission is successfully completed. By default,
this means for automatic retransmission is enabled. It can be disabled to enable the C_CAN
FD8 to work within a Time-Triggered CAN (TTCAN, see ISO11898-4) environment.

The Disabled Automatic Retransmission mode is enabled by programming bit DAR in the CAN
Control Register to one. In this operation mode the programmer has to consider the different
behaviour of bits TxRqst and NewDat in the Control Registers of the Message Buffers:

• When a transmission starts, bit TxRqst of the respective Message Buffer is reset, while bit
NewDat remains set.

• When the transmission completed successfully bit NewDat is reset.

When a transmission failed (lost arbitration or error) bit NewDat remains set. To restart the
transmission the CPU has to set TxRqst back to one.

 2.3.6 Test Mode

The Test Mode is entered by setting bit Test in the CAN Control Register to one. In Test Mode
the bits Tx1, Tx0, LBack, Silent and Basic in the Test Register are writable. Bit Rx monitors
the state of pin can_rx and therefore is only readable. All Test Register functions are disabled
when bit Test is reset to zero. The Test Mode functions as described in the following
subsections are intended for device tests outside normal operation. These functions should be
used carefully. Switching between Test Mode functions and normal operation while
communication is running (Init = ‘0’) should be avoided.
- 12/53 - 22.01.2015

User’s Manual Revision 2.1.0C_CAN FD8
 2.3.6.1 Silent Mode

In ISO 11898-1, the Silent Mode is called the Bus Monitoring Mode. The CAN Core can be set
in Silent Mode by programming the Test Register bit Silent to one.

In Silent Mode, the C_CAN FD8 is able to receive valid data frames and valid remote frames,
but it sends only recessive bits on the CAN bus and it cannot start a transmission. If the CAN
Core is required to send a dominant bit (ACK bit, overload flag, active error flag), the bit is
rerouted internally so that the CAN Core monitors this dominant bit, although the CAN bus
may remain in recessive state. The Silent Mode can be used to analyse the traffic on a CAN
bus without affecting it by the transmission of dominant bits (Acknowledge Bits, Error Frames).
Figure 2 shows the connection of signals can_tx and can_rx to the CAN Core in Silent Mode.

 Figure 2: CAN Core in Silent Mode

 2.3.6.2 Loop Back Mode

The CAN Core can be set in Loop Back Mode by programming the Test Register bit LBack to
one. In Loop Back Mode, the CAN Core treats its own transmitted messages as received
messages and stores them (if they pass acceptance filtering) into a Receive Buffer. Figure 3
shows the connection of signals can_tx and can_rx to the CAN Core in Loop Back Mode.

 Figure 3: CAN Core in Loop Back Mode

This mode is provided for self-test functions. To be independent from external stimulation, the
CAN Core ignores acknowledge errors (recessive bit sampled in the acknowledge slot of a data/
remote frame) in Loop Back Mode. In this mode the CAN Core performs an internal feedback
from its Tx output to its Rx input. The actual value of the can_rx input pin is disregarded by the
CAN Core. The transmitted messages can be monitored at the can_tx pin.

can_tx can_rx

Tx Rx

CAN Core

C_CAN FD8

••

=1

can_tx can_rx

Tx Rx

CAN Core

C_CAN FD8

••
- 13/53 - 22.01.2015

User’s Manual Revision 2.1.0C_CAN FD8
 2.3.6.3 Loop Back combined with Silent Mode

It is also possible to combine Loop Back Mode and Silent Mode by programming bits LBack
and Silent to one at the same time. This mode can be used for a “Hot Selftest”, meaning the
C_CAN FD8 can be tested without affecting a running CAN system connected to the pins
can_tx and can_rx. In this mode the can_rx pin is disconnected from the CAN Core and the
can_tx pin is held recessive. Figure 4 shows the connection of signals can_tx and can_rx to
the CAN Core in case of the combination of Loop Back Mode with Silent Mode.

 Figure 4: CAN Core in Loop Back combined with Silent Mode

 2.3.6.4 Basic Mode

The CAN Core can be set in Basic Mode by programming the Test Register bit Basic to one.
In this mode the C_CAN FD8 module runs without the Message RAM.

The IF1 Registers are used as Transmit Buffer. The transmission of the contents of the IF1
Registers is requested by writing the Busy bit of the IF1 Command Request Register to ‘1’.
The IF1 Registers are locked while the Busy bit is set. The Busy bit indicates that the
transmission is pending.

As soon the CAN bus is idle, the IF1 Registers are loaded into the shift register of the CAN
Core and the transmission is started. When the transmission has completed, the Busy bit is
reset and the locked IF1 Registers are released.

A pending transmission can be aborted at any time by resetting the Busy bit in the IF1
Command Request Register while the IF1 Registers are locked. If the CPU has reset the Busy
bit, a possible retransmission in case of lost arbitration or in case of an error is disabled.

The IF2 Registers are used as Receive Buffer. After the reception of a message the contents
of the shift register is stored into the IF2 Registers, without any acceptance filtering.

Additionally, the actual contents of the shift register can be monitored during the message
transfer. Each time a read Message Object is initiated by writing the Busy bit of the IF2
Command Request Register to ‘1’, the contents of the shift register is stored into the IF2
Registers.

In Basic Mode the evaluation of all Message Object related control and status bits and of the
control bits of the IFx Command Mask Registers is turned off. The message number of the
Command request registers is not evaluated. The NewDat and MsgLst bits of the IF2
Message Control Register retain their function, DLC3-0 will show the received DLC, the other
control bits will be read as ‘0’.

In Basic Mode the ready output can_wait_b is not active.

can_tx can_rx

Tx Rx

CAN Core

C_CAN FD8

••

=1
- 14/53 - 22.01.2015

User’s Manual Revision 2.1.0C_CAN FD8
 2.3.6.5 Software control of Pin can_tx

Four output functions are available for the CAN transmit pin can_tx. Additionally to its default
function – the serial data output – it can drive the CAN Sample Point signal to monitor
CAN_Core’s bit timing and it can drive constant dominant or recessive values. The last two
functions, combined with the readable CAN receive pin can_rx, can be used to check the
CAN bus’ physical layer.

The output mode of pin can_tx is selected by programming the Test Register bits Tx1 and Tx0
as described in section 3.2.5 on page 22.

The three test functions for pin can_tx interfere with all CAN protocol functions. can_tx must
be left in its default function when CAN message transfer or any of the test modes Loop Back
Mode, Silent Mode, or Basic Mode are selected.
- 15/53 - 22.01.2015

User’s Manual Revision 2.1.0C_CAN FD8
- 16/53 - 22.01.2015

User’s Manual Revision 2.1.0C_CAN FD8
3. Programmer’s Model

The C_CAN FD8 module allocates an address space of 256 bytes. The registers are
organized as 16-bit registers, with the high byte at the odd address and the low byte at the
even address.

Address Name Reset Value Note

CAN Base + 0x00 CAN Control Register 0x0001

CAN Base + 0x02 Status Register 0x0000

CAN Base + 0x04 Error Counter 0x0000 read only

CAN Base + 0x06 Bit Timing Register 0x2301 write enabled by CCE

CAN Base + 0x08 Interrupt Register 0x0000 read only

CAN Base + 0x0A Test Register 0x00 & 0bu0000000 1) write enabled by Test

CAN Base + 0x0C BRP Extension Register 0x0000 write enabled by CCE

CAN Base + 0x0E — reserved — 3)

CAN Base + 0x10 IF1 Command Request 0x0001

CAN Base + 0x12 IF1 Command Mask 0x0000

CAN Base + 0x14 IF1 Mask 1 0xFFFF

CAN Base + 0x16 IF1 Mask 2 0xFFFF

CAN Base + 0x18 IF1 Arbitration 1 0x0000

CAN Base + 0x1A IF1 Arbitration2 0x0000

CAN Base + 0x1C IF1 Message Control 0x0000

CAN Base + 0x1E IF1 Data A 1 0x0000

CAN Base + 0x20 IF1 Data A 2 0x0000

CAN Base + 0x22 IF1 Data B 1 0x0000

CAN Base + 0x24 IF1 Data B 2 0x0000

CAN Base + 0x26 FD Control Register 0x0000

CAN Base + 0x28 Nominal Bit Timing Register 1 0x0000 write enabled by CCE

CAN Base + 0x2A Nominal Bit Timing Register 2 0x0000 write enabled by CCE

CAN Base + 0x2C Data Bit Timing Register 1 0x0000 write enabled by CCE

CAN Base + 0x2E Data Bit Timing Register 2 0x0000 write enabled by CCE

CAN Base + 0x30 Transmitter Delay Compens. 0x0000 write enabled by CCE

CAN Base + 0x32 SSP Position Register 0x0000 read only

CAN Base + 0x34 Error Logging Register 0x0000 read only

CAN Base + 0x36 FD Status Register 0x0700 read only

CAN Base + 0x38 Core Release Low release ID read only

CAN Base + 0x3A Core Release High release ID read only

CAN Base + 0x3C-0x3E — reserved — 3)

CAN Base + 0x40-0x54 IF2 Registers see note 2) same as IF1 Registers

CAN Base + 0x56-0x7E — reserved — 3)

CAN Base + 0x80 Transmission Request 1 0x0000 read only

CAN Base + 0x82 Transmission Request 2 0x0000 read only

CAN Base + 0x84-0x8E — reserved — 3)

CAN Base + 0x90 New Data 1 0x0000 read only

CAN Base + 0x92 New Data 2 0x0000 read only
1) u signifies the actual value of the can_rx pin.
2) The two sets of Message Interface Registers - IF1 and IF2 - have identical functions.
3) Reserved bits are read as ’0’ except for IFx Mask 2 Register where they are read as ’1’
- 17/53 - 22.01.2015

User’s Manual Revision 2.1.0C_CAN FD8
 Figure 5: C_CAN FD8 Register Summary

The two sets of interface registers (IF1 and IF2) control the CPU access to the Message RAM.
They buffer the data to be transferred to and from the RAM, avoiding conflicts between CPU
accesses and message reception/transmission.

The C_CAN FD8 operates in a single clock domain, its system clock period is the minimum
time quantum mtq for CAN communication.

3.1 Hardware Reset Description

After hardware reset, the registers of the C_CAN FD8 hold the values described in figure 5.

Additionally the busoff state is reset and the output can_tx is set to recessive (HIGH). The
value 0x0001 (Init = ‘1’) in the CAN Control Register enables the software initialisation. The
C_CAN FD8 does not influence the CAN bus until the CPU resets Init to ‘0’.

The data stored in the Message RAM is not affected by a hardware reset. After power-on, the
contents of the Message RAM is undefined.

 3.1.1 Coding of Register Bit access / reset

The coding shown in figure 6 is used with the C_CAN FD8 register descriptions.

 Figure 6: Coding Register Bit access / reset

CAN Base + 0x94-0x9E — reserved — 3)

CAN Base + 0xA0 Interrupt Pending 1 0x0000 read only

CAN Base + 0xA2 Interrupt Pending 2 0x0000 read only

CAN Base + 0xA4-0xAE — reserved — 3)

CAN Base + 0xB0 Message Valid 1 0x0000 read only

CAN Base + 0xB2 Message Valid 2 0x0000 read only

CAN Base + 0xB4-0xBE — reserved — 3)

Code Description
r-<reset value> read-only

rw-<reset value> read / write

rp-<reset value> read / protected write

x-<reset value> reset-on-read

s-<reset value> set-on-read

Address Name Reset Value Note

1) u signifies the actual value of the can_rx pin.
2) The two sets of Message Interface Registers - IF1 and IF2 - have identical functions.
3) Reserved bits are read as ’0’ except for IFx Mask 2 Register where they are read as ’1’
- 18/53 - 22.01.2015

User’s Manual Revision 2.1.0C_CAN FD8
3.2 CAN Protocol Related Registers

These registers are related to the CAN protocol controller in the CAN Core. They control the
operating modes and the configuration of the CAN bit timing and provide status information.

 3.2.1 CAN Control Register (addresses 0x01 & 0x00)

Test Test Mode Enable
one Test Mode.
zero Normal Operation.

CCE Configuration Change Enable
one While Init = ‘1’, the CPU has write access to protected register bits (rp).
zero The CPU has no write access to protected register bits (rp).

DAR Disable Automatic Retransmission
one Automatic Retransmission disabled.
zero Automatic Retransmission of disturbed messages enabled.

EIE Error Interrupt Enable
one Enabled - A change of bits BOff or EWarn in the Status Register will

cause the Interrupt Register to be set to Status Interrupt (0x8000).
zero Disabled - No Error Status Interrupt will be generated.

SIE Status Change Interrupt Enable
one Enabled - The Interrupt Register will be set to Status Interrupt (0x8000)

when the C_CAN FD8 sets LEC to a value ≠ 7.
zero Disabled - No Status Change Interrupt will be generated.

IE Module Interrupt Enable
one Enabled - When the Interrupt Register is ≠ zero, the interrupt line can_int

is set to active. can_int remains active until all interrupts are processed
(Interrupt Register returns to zero).

zero Disabled - Module Interrupt can_int is always inactive.

Init Initialization
one Initialization is started.
zero Normal Operation.

Note : The busoff recovery sequence (see CAN Specification Rev. 2.0) cannot be shortened
by setting or resetting Init. If the device goes busoff, it will set Init of its own accord, stopping
all bus activities. Once Init has been cleared by the CPU, the device will then wait for 129
occurrences of Bus Idle (129 • 11 consecutive recessive bits) before resuming normal
operations. At the end of the busoff recovery sequence, the Error Management Counters will
be reset.

During the waiting time after the resetting of Init, each time a sequence of 11 recessive bits
has been monitored, a Bit0Error code is written to the Status Register, enabling the CPU to
readily check up whether the CAN bus is stuck at dominant or continuously disturbed and to
monitor the proceeding of the busoff recovery sequence.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

res res res res res res res res Test CCE DAR res EIE SIE IE Init

r-0 r-0 r-0 r-0 r-0 r-0 r-0 r-0 rw-0 rw-0 rw-0 r-0 rw-0 rw-0 rw-0 rw-1
- 19/53 - 22.01.2015

User’s Manual Revision 2.1.0C_CAN FD8
 3.2.2 Status Register (addresses 0x03 & 0x02)

BOff Busoff Status
one The CAN module is in busoff state.
zero The CAN module is not busoff.

EWarn Warning Status
one At least one of the error counters in the EML has reached the error warn-

ing limit of 96.
zero Both error counters are below the error warning limit of 96.

EPass Error Passive
one The CAN Core is error passive as defined in the CAN Specification.
zero The CAN Core is error active.

RxOk Received a Message Successfully
one Since this bit was last reset (to zero) by the CPU, a message has been

successfully received (independent of the result of acceptance filtering).
zero Since this bit was last reset by the CPU, no message has been success-

fully received. This bit is never reset by the CAN Core.

TxOk Transmitted a Message Successfully
one Since this bit was last reset by the CPU, a message has been success-

fully (error free and acknowledged by at least one other node) transmitted.
zero Since this bit was reset by the CPU, no message has been successfully

transmitted. This bit is never reset by the CAN Core.

LEC Last Error Code (Type of the last protocol event to occur on the CAN bus)
0 No Error: Message successfully transmitted or received.
1 Stuff Error: More than 5 equal bits in a sequence have occurred in a

part of a received message where this is not allowed.
2 Form Error: Fixed format part of a received frame has the wrong format.
3 AckError: The message this CAN Core transmitted was not acknowl-

edged by another node.
4 Bit1Error: During the transmission of a message (with the exception

of the arbitration field), the device wanted to send a recessive level (bit of
logical value ‘1’), but the monitored bus value was dominant.

5 Bit0Error: During the transmission of a message (or acknowledge bit,
or active error flag, or overload flag), the device wanted to send a domi-
nant level (data or identifier bit logical value ‘0’), but the monitored Bus
value was recessive. During busoff recovery this status is set each time a
sequence of 11 recessive bits has been monitored. This enables the CPU
to monitor the proceeding of the busoff recovery sequence (indicating the
bus is not stuck at dominant or continuously disturbed).

6 CRCError: The CRC check sum was incorrect in the message
received, the CRC received for an incoming message does not match with
the calculated CRC for the received data.

7 NoChange: When the LEC shows the value ‘7’, no CAN bus event was
detected since the CPU wrote this value to the LEC.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

res res res res res res res res BOff EWarn EPass RxOk TxOk LEC

r-0 r-0 r-0 r-0 r-0 r-0 r-0 r-0 r-0 r-0 r-0 rw-0 rw-0 rw-000
- 20/53 - 22.01.2015

User’s Manual Revision 2.1.0C_CAN FD8
Note : The LEC field holds a code which indicates the type of the last error to occur on the
CAN bus. This field will be cleared to ‘0’ when a message has been transferred (reception or
transmission) without error. The code ‘7’ may be written by the CPU to check for updates.

 3.2.2.1 Status Interrupts

A Status Interrupt is generated by bits BOff and EWarn (Error Interrupt) or by RxOk, TxOk,
and LEC (Status Change Interrupt) assumed that the corresponding enable bits in the CAN
Control Register are set. A change of bit EPass or a write to RxOk, TxOk, or LEC will never
generate a Status Interrupt.

Reading the Status Register will clear the Status Interrupt value (8000h) in the Interrupt
Register, if it is pending.

 3.2.3 Error Counter (addresses 0x05 & 0x04)

RP Receive Error Passive
one The Receive Error Counter has reached the error passive level as defined

in the CAN Specification.
zero The Receive Error Counter is below the error passive level.

REC Receive Error Counter
Actual state of the Receive Error Counter. Values between 0 and 127.

TEC Transmit Error Counter
Actual state of the Transmit Error Counter. Values between 0 and 255.

 3.2.4 Bit Timing Register (addresses 0x07 & 0x06)

This is register configures the bit timing for Classic CAN operation (bit FDOE in the FD Control
Register is not set).

TSeg2 The time segment after the sample point
0x0-0x7 valid values for TSeg2 are [0 … 7]. The actual interpretation by the

hardware of this value is such that one more than the value pro-
grammed here is used.

TSeg1 The time segment before the sample point
0x01-0x0F valid values for TSeg1 are [1 … 15]. The actual interpretation by

the hardware of this value is such that one more than the value pro-
grammed here is used.

SJW (Re)Synchronisation Jump Width
0x0-0x3 Valid programmed values are 0-3. The actual interpretation by the

hardware of this value is such that one more than the value pro-
grammed here is used.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RP REC TEC
r-0 r-000 0000 r-0000 0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

res TSeg2 TSeg1 SJW BRP

r-0 rp-010 rp-0011 rp-00 rp-00 0001
- 21/53 - 22.01.2015

User’s Manual Revision 2.1.0C_CAN FD8
BRP Baud Rate Prescaler (base value)
0x01-0x3F The value by which the system clock frequency is divided for gener-

ating the bit time quanta. The bit time is built up from a multiple of
this quanta. Valid values for BRP are [0 … 63]. The actual interpre-
tation by the hardware of this value is such that one more than the
programmed value is used. The time quantum tq is (BRPE • 0x40 +
BRP + 1) • mtq.

Note : With a module clock can_clk of 8 MHz, the reset value of 0x2301 configures the
C_CAN FD8 for a bit rate of 500 kBit/s. The registers are only writable if bits CCE and Init in
the CAN Control Register are set.

 3.2.5 Test Register (addresses 0x0B & 0x0A)

Rx Monitors the actual value of the can_rx Pin
one The CAN bus is recessive (can_rx = ‘1’).
zero The CAN bus is dominant (can_rx = ‘0’).

Tx1-0 Control of can_tx pin
00 Reset value, can_tx is controlled by the CAN Core.
01 Sample Point can be monitored at can_tx pin.
10 can_tx pin drives a dominant (‘0’) value.
11 can_tx pin drives a recessive (‘1’) value.

LBack Loop Back Mode
one Loop Back Mode is enabled.
zero Loop Back Mode is disabled.

Silent Silent Mode
one The module is in Silent Mode
zero Normal operation.

Basic Basic Mode
one IF1 Registers used as Tx Buffer, IF2 Registers used as Rx Buffer.
zero Basic Mode disabled.

Note : Write access to the Test Register is enabled by setting bit Test in the CAN Control
Register. The different test functions may be combined, but Tx1-0 ≠ “00” disturbs message
transfer.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

res res res res res res res res Rx Tx1 Tx0 LBack Silent Basic res res

r-0 r-0 r-0 r-0 r-0 r-0 r-0 r-0 r-u rw-0 rw-0 rw-0 rw-0 rw-0 r-0 r-0
- 22/53 - 22.01.2015

User’s Manual Revision 2.1.0C_CAN FD8
 3.2.6 BRP Extension Register (addresses 0x0D & 0x0C)

This is register configures the BRP extension for Classic CAN operation when bit FDOE in the
FD Control Register is not set.

BRPE Baud Rate Prescaler Extension
0x00-0x0F By programming BRPE the Baud Rate Prescaler can be extended to

values up to 1023. The actual interpretation by the hardware is that
one more than the value programmed by BRPE (MSBs) and BRP
(LSBs) is used.

 3.2.7 FD Control Register (addresses 0x27 & 0x26)

NISO If this bit is set, the C_CAN FD8 uses the CAN FD frame format as specified by
the Bosch CAN FD Specification V1.0.
one CAN FD frame format according to Bosch CAN FD Specification V1.0
zero CAN FD frame format according to ISO11898-1

Note : When the generic parameter iso_only_g is set to ‘1’ in hardware synthesis, this bit
becomes reserved and is read as ‘0’. The C_CAN FD8 then always operates with the CAN FD
frame format according to ISO11898-1.

DSIE Data Phase Status Change Interrupt Enable
one Enabled - The Interrupt Register will be set to Status Interrupt (0x8000)

when the C_CAN FD8 sets DLEC to a value ≠ 7
zero Disabled - No Data Phase Status Change Interrupt generated when

DLEC in the FD Status Register is updated

BRSR Bit Rate Switch Request
one Request CAN FD transmissions with bit rate switching
zero Request CAN FD transmissions without bit rate switching

PXE Protocol Exception Event
one Protocol exception event occurred
zero No protocol exception event occurred since last read access

PXHD Protocol Exception Handling Disable
one Protocol exception handling disabled
zero Protocol exception handling enabled

Note : When protocol exception handling is disabled, the C_CAN FD8 will transmit an error
frame when it detects a protocol exception condition.

EFBI Edge Filtering during Bus Integration
one Two consecutive dominant tq required to detect an edge for hard sync
zero Edge filtering disabled

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

res res res res res res res res res res res res BRPE

r-0 r-0 r-0 r-0 r-0 r-0 r-0 r-0 r-0 r-0 r-0 r-0 rp-0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

NISO res res res res res DSIE BRSR PXE PXHD EFBI REOM TDCNM TDCE BRSE FDOE

rp-0 r-0 r-0 r-0 r-0 r-0 rw-0 rw-0 x-0 rp-0 rp-0 rp-0 rp-0 rp-0 rp-0 rp-0
- 23/53 - 22.01.2015

User’s Manual Revision 2.1.0C_CAN FD8
REOM Restricted Operation Mode
one Restricted Operation Mode active (see section 2.3.4)
zero Normal CAN operation

TDCNM Transmitter Delay Compensation No Measurement
one The transmitter delay is given by TDCF (without delay measurement)
zero TDCO defines SSP position relative to delay measurement.

TDCE Transmitter Delay Compensation Enable
one Transmitter Delay Compensation is enabled.
zero Transmitter Delay Compensation is disabled.

BRSE Bit Rate Switch Enable
one Bit rate switching for transmissions enabled
zero Bit rate switching for transmissions disabled

FDOE FD Operation Enable
one FD Operation enabled
zero FD Operation disabled, C_CAN compatible operation

Note : When FDOE is not set, the C_CAN FD8 operates exactly as previous versions of the
C_CAN, the CAN FD format functions are disabled.

Note : When a Classic CAN frame is transmitted while FDOE is set, the nominal bit timing as
configured by the Nominal Bit Timing Registers is used.

 3.2.8 Nominal Bit Timing Register 1 (addresses 0x29 & 0x28)

When bit FDOE in the CAN Control Register is set, the Nominal Bit Timing Registers are used
to configure the bit timing in the Arbitration Phase of a CAN FD frame (4 to 385 tq).

NTSeg2 The time segment after the sample point
0x00-0x7F valid values are 0-127. The actual interpretation by the hardware of

this value is such that one more than the programmed value is used.

NTSeg1 The time segment before the sample point
0x01-0xFF valid values are 1-255. The actual interpretation by the hardware of

this value is such that one more than the programmed value is used.

 3.2.9 Nominal Bit Timing Register 2 (addresses 0x2B & 0x2A)

When bit FDOE in the CAN Control Register is set, the Nominal Bit Timing Registers are used
to configure the bit timing in the Arbitration Phase of a CAN FD frame (4 to 385 tq).

NSJW (Re)Synchronisation Jump Width Arbitration Phase
0x00-0x7F valid values are 0-127. The actual interpretation by the hardware of

this value is such that one more than the programmed value is used.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
res NTSeg2 NTSeg1
r-0 rp-000 0000 rp-0000 0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

res NSJW NBRP

r-0 rp-000 0000 rp-0000 0000
- 24/53 - 22.01.2015

User’s Manual Revision 2.1.0C_CAN FD8
NBRP Baud Rate Prescaler Arbitration Phase
0x00-0xFF The nominal bit time is a multiple of the nominal time quanta. One

nominal time quantum is (NBRP + 1) • mtq. The range of NBRP is 0
to 255.

 3.2.10 Data Bit Timing Register 1 (addresses 0x2D & 0x2C)

When bit FDOE in the CAN Control Register is set, the Data Bit Timing Registers are used to
configure the bit timing in the Data Phase of a CAN FD frame (4 to 49 tq).

DTSeg2 The time segment after the sample point
0x0-0xF valid values for DTSeg2 are [0 … 15]. The actual interpretation by

the hardware of this value is such that one more than the value pro-
grammed here is used.

DTSeg1 The time segment before the sample point
0x00-0x1F valid values for DTSeg1 are [0 … 31]. The actual interpretation by

the hardware of this value is such that one more than the value pro-
grammed here is used.

 3.2.11 Data Bit Timing Register 2 (addresses 0x2F & 0x2E)

When bit FDOE in the CAN Control Register is set, the Data Bit Timing Registers are used to
configure the bit timing in the Data Phase of a CAN FD frame (4 to 49 tq).

DSJW (Re)Synchronisation Jump Width
0x0-0xF Valid programmed values are 0-15. The actual interpretation by the

hardware of this value is such that one more than the value pro-
grammed here is used.

DBRP Baud Rate Prescaler Data Phase
0x00-0x1F The data bit time is a multiple of the data time quanta. One data time

quantum is (DBRP + 1) • mtq. The range of DBRP is 0 to 31.

 3.2.12 Transmitter Delay Compensation Register (addresses 0x31 & 0x30)

TDCO Transmitter Delay Compensation Offset
0x00-0x7F Offset value defining the distance between the measured or config-

ured delay from can_tx to can_rx and the SSP. The value is given in
mtq.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

res res res res DTSeg2 res res res DTSeg1

r-0 r-0 r-0 r-0 rp-0000 r-0 r-0 r-0 rp-0 0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

res res res res DSJW res res res DBRP

r-0 r-0 r-0 r-0 rp-0000 r-0 r-0 r-0 rp-0 0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
res TDCO res TDCF
r-0 rp-000 0000 r-0 rp-000 0000
- 25/53 - 22.01.2015

User’s Manual Revision 2.1.0C_CAN FD8
TDCF Transmitter Delay Compensation Filter Window Length
0x00-0x7F Defines the minimum value for the SSP position, dominant edges on

can_rx that would result in an earlier SSP position are ignored for
Transmitter Delay measurement. The feature is enabled when TDCF
is configured to a value greater than TDCO.
When transmitter delay compensation with fixed SSP position is
selected (TDCNM = ‘1’), the transmitter delay value has to be config-
ured here. Then the sum of TDCF and TDCO may not be greater
than 0x7F, it gives the SSP position SSPP. In case the sum of TDCF
and TDCO exceeds the specified limit of 0x7F, the sum will be lim-
ited to 7 bit, eliminating the MSB.
The value is given in mtq.

 3.2.13 SSP Position Register (addresses 0x33 & 0x32)

SSPP SSP Position
0x00-0x7F Position of the secondary sample point, defined by the sum of the

measured (and optionally filtered) delay from can_tx to can_rx and
TDCO. When transmitter delay compensation with fixed SSP posi-
tion is selected, the fixed value is shown here. SSPP is, in the data
phase, the number of mtq between the start of the transmitted bit
and the secondary sample point.

 3.2.14 Error Logging Register (addresses 0x35 & 0x34)

CELD CAN Error Logging (Data Phase)
0x00-0xFF The counter is incremented each time when a CAN protocol error in the

Data Phase of a CAN FD frame causes the Transmit Error Counter TEC
or the Receive Error Counter REC to be incremented. It is reset by read
access to CELD. The counter stops at 0xFF.

CELN CAN Error Logging (Arbitration Phase)
0x00-0xFF The counter is incremented each time when a CAN protocol error in the

Arbitration Phase of a CAN FD frame causes the Transmit Error Counter
TEC or the Receive Error Counter REC to be incremented. It is reset by
read access to CELN. The counter stops at 0xFF.

Note : When the C_CAN FD8 is in Restricted Operation Mode (FD Control Register
REOM = ‘1’), the receive and transmit error counters are not incremented when a CAN
protocol error is detected, but CELD and CELN are still incremented.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

res res res res res res res res res SSPP

r-0 r-0 r-0 r-0 r-0 r-0 r-0 r-0 r-0 r-000 0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
CELD CELN

x-0000 0000 x-0000 0000
- 26/53 - 22.01.2015

User’s Manual Revision 2.1.0C_CAN FD8
 3.2.15 FD Status Register (addresses 0x37 & 0x36)

When the C_CAN FD8 is operated in CAN FD mode (bit FDOE in the FD Control Register set)
this register is to be used instead of the Status Register (CAN Base + 0x02). Bits 7 downto 0
are mirrored from the Status Register. Any modifications done in one register is also seen in
the other register.

In case CAN FD operation is disabled (FDOE = ‘0’), reading the register will not modify the
register contents (modification-on-read disabled) to assure software compatibility to existing
C_CAN implementations. The activity state Act can be accessed in all operation modes.

Act Activity (operation state)
0 Integrating: Waiting for 11 recessive bits after reset or in busoff recovery
1 Idle: Ready for Start of Frame
2 Receiver: Node is receiving a frame
3 Transmitter: Node is transmitting a frame

Note : ACT is set to “00” after power-on, by hardware reset, when the node entered busoff
state, or by a Protocol Exception Event.

RxFDF Message in CAN FD format (FDF = ‘1’’) received
one Since this bit was reset by reading the register, a message in CAN FD for-

mat has been received (independent of the result of acceptance filtering).
This bit is set together with RxOk.

zero Since this bit was reset by reading the register, no message in CAN FD
format has been received. This bit is never reset by the CAN Core.

RxBRS Message in CAN FD format with BRS set received
one Since this bit was reset by reading the register, a message in CAN FD for-

mat has been received (independent of the result of acceptance filtering)
which had its BRS flag set. This bit is set together with RxFDF and RxOk.

zero Since this bit was reset by reading the register, no message in CAN FD
format has been received (independent of the result of acceptance filter-
ing) which had its BRS flag set. This bit is never reset by the CAN Core.

RxESI Message in CAN FD format with ESI set received
one Since this bit was reset by reading the register, a message in CAN FD for-

mat has been received (independent of the result of acceptance filtering)
which had its ESI flag set. This bit is set together with RxFDF and RxOk.

zero Since this bit was reset by reading the register, no message in CAN FD
format has been received (independent of the result of acceptance filter-
ing) which had its ESI flag set. This bit is never reset by the CAN Core.

DLEC Last Error Code of CAN FD format frame with its BRS flag set
Same coding as LEC. Reading the register will set DLEC to ‘7’ (0b111).

BOff Busoff Status
one The CAN module is in busoff state.
zero The CAN module is not busoff.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Act RxFDF RxBRS RxESI DLEC BOff EWarn EPass RxOk TxOk LEC

r-00 x-0 x-0 x-0 s-111 r-0 r-0 r-0 x-0 x-0 s-000
- 27/53 - 22.01.2015

User’s Manual Revision 2.1.0C_CAN FD8
EWarn Warning Status
one At least one of the error counters in the EML has reached the error warn-

ing limit of 96.
zero Both error counters are below the error warning limit of 96.

EPass Error Passive
one The CAN Core is error passive as defined in the CAN Specification.
zero The CAN Core is error active.

RxOk Received a Message Successfully
one Since this bit was reset by reading the register, a message has been suc-

cessfully received (independent of the result of acceptance filtering).
zero Since this bit was reset by reading the register, no message has been

successfully received. This bit is never reset by the CAN Core.

TxOk Transmitted a Message Successfully
one Since this bit was reset by reading the register, a message has been suc-

cessfully (error free and acknowledged by at least one other node) trans-
mitted.

zero Since this bit was reset by reading the register, no message has been
successfully transmitted. This bit is never reset by the CAN Core.

LEC Last Error Code (Type of the last protocol event to occur on the CAN bus)
0 No Error: Message successfully transmitted or received.
1 Stuff Error: More than 5 equal bits in a sequence have occurred in a

part of a received message where this is not allowed.
2 Form Error: Fixed format part of a received frame has the wrong format.
3 AckError: The message this CAN Core transmitted was not acknowl-

edged by another node.
4 Bit1Error: During the transmission of a message (with the exception

of the arbitration field), the device wanted to send a recessive level (bit of
logical value ‘1’), but the monitored bus value was dominant.

5 Bit0Error: During the transmission of a message (or acknowledge bit,
or active error flag, or overload flag), the device wanted to send a domi-
nant level (data or identifier bit logical value ‘0’), but the monitored Bus
value was recessive. During busoff recovery this status is set each time a
sequence of 11 recessive bits has been monitored. This enables the CPU
to monitor the proceeding of the busoff recovery sequence (indicating the
bus is not stuck at dominant or continuously disturbed).

6 CRCError: The CRC check sum was incorrect in the message
received, the CRC received for an incoming message does not match with
the calculated CRC for the received data.

7 NoChange: When the LEC shows the value ‘7’, no CAN bus event was
detected since the CPU wrote this value to the LEC.

Note : The LEC field holds a code which indicates the type of the last error to occur on the
CAN bus. This field will be cleared to ‘0’ when a message has been transferred (reception or
transmission) without error. Reading the register will set LEC to ‘7’ (0b111).

Note : When a frame in CAN FD format has reached the Data Phase with BRS flag set, the
next CAN event (error or valid frame) will be shown in DLEC instead of LEC. An error in a fixed
stuff-bit of a CAN FD CRC Sequence will be shown as a Form Error, not Stuff Error. When
BRS flag is not set, there is no Data Phase and the Data Phase status will not be updated.
- 28/53 - 22.01.2015

User’s Manual Revision 2.1.0C_CAN FD8
3.3 Message Interface Register Sets

There are two sets of Interface Registers which are used to control the CPU access to the
Message RAM. The Interface Registers avoid conflicts between CPU access to the Message
RAM and CAN message reception and transmission by buffering the data to be transferred. A
complete Message Object (see chapter 3.3.4) or parts of the Message Object may be
transferred between the Message RAM and the IFx Message Buffer registers (see chapter
3.3.3) in one single transfer.

The function of the two interface register sets is identical (except for test mode Basic). They
can be used the way that one set of registers is used for data transfer to the Message RAM
while the other set of registers is used for the data transfer from the Message RAM, allowing
both processes to be interrupted by each other. Figure 7 gives an overview of the two Interface
Register sets.

Each set of Interface Registers consists of Message Buffer Registers controlled by their own
Command Registers. The Command Mask Register specifies the direction of the data transfer
and which parts of a Message Object will be transferred. The Command Request Register is
used to select a Message Object in the Message RAM as target or source for the transfer and
to start the action specified in the Command Mask Register.

 Figure 7: IF1 and IF2 Message Interface Register Sets

 3.3.1 IFx Command Request Registers

A message transfer is started as soon as the CPU has written the message number to the
Command Request Register. With this write operation the Busy bit is automatically set to ‘1’
and output can_wait_b is activated to notify the CPU that a transfer is in progress. After a wait
time of 3 to 6 can_clk periods, the transfer between the Interface Register and the Message
RAM has completed. The Busy bit is set back to zero and can_wait_b is deactivated (see
Module Integration Guide).

Address IF1 Register Set Address IF2 Register Set
CAN Base + 0x10 IF1 Command Request CAN Base + 0x40 IF2 Command Request

CAN Base + 0x12 IF1 Command Mask CAN Base + 0x42 IF2 Command Mask

CAN Base + 0x14 IF1 Mask 1 CAN Base + 0x44 IF2 Mask 1

CAN Base + 0x16 IF1 Mask 2 CAN Base + 0x46 IF2 Mask 2

CAN Base + 0x18 IF1 Arbitration 1 CAN Base + 0x48 IF2 Arbitration 1

CAN Base + 0x1A IF1 Arbitration 2 CAN Base + 0x4A IF2 Arbitration 2

CAN Base + 0x1C IF1 Message Control CAN Base + 0x4C IF2 Message Control

CAN Base + 0x1E IF1 Data A 1 CAN Base + 0x4E IF2 Data A 1

CAN Base + 0x20 IF1 Data A 2 CAN Base + 0x50 IF2 Data A 2

CAN Base + 0x22 IF1 Data B 1 CAN Base + 0x52 IF2 Data B 1

CAN Base + 0x24 IF1 Data B 2 CAN Base + 0x54 IF2 Data B 2

IF1 Command Request Register
(addresses 0x11 & 0x10)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Busy res res res res res res res res res Message Number

IF2 Command Request Register
(addresses 0x41 & 0x40)

Busy res res res res res res res res res Message Number

r-0 r-0 r-0 r-0 r-0 r-0 r-0 r-0 r-0 r-0 rw-00 0001
- 29/53 - 22.01.2015

User’s Manual Revision 2.1.0C_CAN FD8
Busy Busy Flag
one set to one when writing to the IFx Command Request Register
zero reset to zero when read/write action has finished.

Message Number
0x01-0x20 Valid Message Number, the Message Object in the Message RAM

is selected for data transfer.
0x00 Not a valid Message Number, interpreted as 0x20.
0x21-0x3F Not a valid Message Number, interpreted as 0x01-0x1F.

Note : When a Message Number that is not valid is written into the Command Request
Register, the Message Number will be transformed into a valid value and that Message
Object will be transferred.

 3.3.2 IFx Command Mask Registers

The control bits of the IFx Command Mask Register specify the transfer direction and select
which of the IFx Message Buffer Registers are source or target of the data transfer.

WR/RD Write / Read
one Write: Transfer data from the selected Message Buffer Registers to the

Message Object addressed by the Command Request Register.
zero Read: Transfer data from the Message Object addressed by the Com-

mand Request Register into the selected Message Buffer Registers.
The other bits of IFx Command Mask Register have different functions depending on the
transfer direction :

 3.3.2.1 Direction = Write

Mask Access Mask Bits
one transfer Identifier Mask + MDir + MXtd to Message Object.
zero Mask bits unchanged.

Arb Access Arbitration Bits
one transfer Identifier + Dir + Xtd + MsgVal to Message Object.
zero Arbitration bits unchanged.

Control Access Control Bits
one transfer Control Bits to Message Object.
zero Control Bits unchanged.

ClrIntPnd Clear Interrupt Pending Bit

Note : When writing to a Message Object, this bit is ignored.

TxRqst/NewDatAccess Transmission Request Bit
one set TxRqst bit
zero TxRqst bit unchanged

IF1 Command Mask Register
(addresses 0x13 & 0x12)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

res WR/RD Mask Arb Control ClrIntPnd TxRqst/
NewDat Data A Data B

IF2 Command Mask Register
(addresses 0x43 & 0x42)

res WR/RD Mask Arb Control ClrIntPnd TxRqst/
NewDat Data A Data B

r-0000 0000 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0
- 30/53 - 22.01.2015

User’s Manual Revision 2.1.0C_CAN FD8
Note : If a transmission is requested by programming bit TxRqst/NewDat in the IFx
Command Mask Register, bit TxRqst in the IFx Message Control Register will be ignored.

Data A Access Data Bytes 0-3
one transfer Data Bytes 0-3 to Message Object.
zero Data Bytes 0-3 unchanged.

Data B Access Data Bytes 4-7
one transfer Data Bytes 4-7 to Message Object.
zero Data Bytes 4-7 unchanged.
- 31/53 - 22.01.2015

User’s Manual Revision 2.1.0C_CAN FD8
 3.3.2.2 Direction = Read

Mask Access Mask Bits
one transfer Identifier Mask + MDir + MXtd to IFx Message Buffer Register.
zero Mask bits unchanged.

Arb Access Arbitration Bits
one transfer Identifier + Dir + Xtd + MsgVal to IFx Message Buffer Register.
zero Arbitration bits unchanged.

Control Access Control Bits
one transfer Control Bits to IFx Message Buffer Register.
zero Control Bits unchanged.

ClrIntPnd Clear Interrupt Pending Bit
one clear IntPnd bit in the Message Object.
zero IntPnd bit remains unchanged.

TxRqst/NewDatAccess New Data Bit
one clear NewDat bit in the Message Object.
zero NewDat bit remains unchanged.

Note : A read access to a Message Object can be combined with the reset of the control bits
IntPnd and NewDat. The values of these bits transferred to the IFx Message Control Register
always reflect the status before resetting these bits.

Data A Access Data Bytes 0-3
one transfer Data Bytes 0-3 to IFx Message Buffer Register.
zero Data Bytes 0-3 unchanged.

Data B Access Data Bytes 4-7
one transfer Data Bytes 4-7 to IFx Message Buffer Register.
zero Data Bytes 4-7 unchanged.
- 32/53 - 22.01.2015

User’s Manual Revision 2.1.0C_CAN FD8
 3.3.3 IFx Message Buffer Registers

The bits of the Message Buffer registers mirror the Message Objects in the Message RAM.
The function of the Message Objects bits is described in chapter 3.3.3.

 3.3.3.1 IFx Mask Registers

 3.3.3.2 IFx Arbitration Registers

IF1 Mask 1 Register
(addresses 0x15 & 0x14)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Msk15-0

rw-1111 1111 rw-1111 1111

IF1 Mask 2 Register
(addresses 0x17 & 0x16)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MXtd MDir res Msk28-16

rw-1 rw-1 r-1 rw-1 1111 rw-1111 1111

IF2 Mask 1 Register
(addresses 0x45 & 0x44)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Msk15-0

rw-1111 1111 rw-1111 1111

IF2 Mask 2 Register
(addresses 0x47 & 0x46)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MXtd MDir res Msk28-16

rw-1 rw-1 r-1 rw-1 1111 rw-1111 1111

IF1 Arbitration 1 Register
(addresses 0x19 & 0x18)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ID15-0

rw-0000 0000 rw-0000 0000

IF1 Arbitration 2 Register
(addresses 0x1B & 0x1A)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MsgVal Xtd Dir ID28-16

rw-0 rw-0 rw-0 rw-0 0000 rw-0000 0000

IF2 Arbitration 1 Register
(addresses 0x49 & 0x48)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ID15-0

rw-0000 0000 rw-0000 0000

IF2 Arbitration 2 Register
(addresses 0x4B & 0x4A)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MsgVal Xtd Dir ID28-16

rw-0 rw-0 rw-0 rw-0 0000 rw-0000 0000
- 33/53 - 22.01.2015

User’s Manual Revision 2.1.0C_CAN FD8
 3.3.3.3 IFX Message Control Registers

The behaviour of the IFX Message Control Registers depends on the state of bit FDOE in the
FD Control Register.

FDOE = ‘0’ - C_CAN compatibility mode:

Bits at position 6 downto 4 not writable, the bits are always read as ‘0’.

FDOE = ‘1’ - CAN FD operation mode:

Bits FDF, BRS, and ESI on position 6 downto 4 are read/write.

Resetting FDOE will also reset bits FDF, BRS, and ESI. The state of these bits in the Message
RAM is not affected.

 3.3.3.4 IFx Data A and Data B Registers

The data bytes of CAN messages are stored in the IFx Message Buffer Registers in the
following order:

In a CAN Data Frame, Data(0) is the first, Data(7) is the last byte to be transmitted or received.
In CAN’s serial bit stream, the MSB of each byte will be transmitted first.

IF1 Message Control Register
(addresses 0x1D & 0x1C)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

NewDat MsgLst IntPnd UMask TxIE RxIE RmtEn TxRqst EoB res res res DLC3-0

IF2 Message Control Register
(addresses 0x4D & 0x4C)

NewDat MsgLst IntPnd UMask TxIE RxIE RmtEn TxRqst EoB res res res DLC3-0

rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 r-0 r-0 r-0 rw-0000

IF1 Message Control Register
(addresses 0x1D & 0x1C)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

NewDat MsgLst IntPnd UMask TxIE RxIE RmtEn TxRqst EoB FDF BRS ESI DLC3-0

IF2 Message Control Register
(addresses 0x4D & 0x4C)

NewDat MsgLst IntPnd UMask TxIE RxIE RmtEn TxRqst EoB FDF BRS ESI DLC3-0

rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IF1 Message Data A1 (addresses 0x1F & 0x1E) Data(1) Data(0)

IF1 Message Data A2 (addresses 0x21 & 0x20) Data(3) Data(2)

IF1 Message Data B1 (addresses 0x23 & 0x22) Data(5) Data(4)

IF1 Message Data B2 (addresses 0x25 & 0x24) Data(7) Data(6)

IF2 Message Data A1 (addresses 0x4F & 0x4E) Data(1) Data(0)

IF2 Message Data A2 (addresses 0x51 & 0x50) Data(3) Data(2)

IF2 Message Data B1 (addresses 0x53 & 0x52) Data(5) Data(4)

IF2 Message Data B2 (addresses 0x55 & 0x54) Data(7) Data(6)

rw-0000 0000 rw-0000 0000
- 34/53 - 22.01.2015

User’s Manual Revision 2.1.0C_CAN FD8
 3.3.4 Message Object in the Message Memory

There are 32 Message Objects in the Message RAM. To avoid conflicts between CPU access
to the Message RAM and CAN message reception and transmission, the CPU cannot directly
access the Message Objects, these accesses are handled via the IFx Interface Registers.

Figure 8 gives an overview of the structure of a Message Object. Bits TxRqst, NewDat,
IntPnd, and MsgVal are implemented as FFs (see section 3.4.2 to section 3.4.5) and are
therefore not located in the Message RAM.

 Figure 8: Structure of a Message Object in the Message RAM

Msk28-0 Identifier Mask
one The corresponding identifier bit is used for acceptance filtering.
zero The corresponding bit in the identifier of the message object cannot inhibit

the match in the acceptance filtering.

ID28-0 Message Identifier
ID28 - ID0 29-bit Identifier (“Extended Frame”).
ID28 - ID18 11-bit Identifier (“Standard Frame”).

MXtd Mask Extended Identifier
one The extended identifier bit (IDE) is used for acceptance filtering.
zero The extended identifier bit (IDE) has no effect on the acceptance filtering

Note : When 11-bit (“standard”) Identifiers are used for a Message Object, the identifiers of
received Data Frames are written into bits ID28 to ID18. For acceptance filtering, only these
bits together with mask bits Msk28 to Msk18 are considered.

Xtd Extended Identifier
one The 29-bit (“extended”) Identifier will be used for this Message Object.
zero The 11-bit (“standard”) Identifier will be used for this Message Object.

MDir Mask Message Direction
one The message direction bit (Dir) is used for acceptance filtering.
zero The message direction bit (Dir) has no effect on the acceptance filtering.

Note : The Arbitration Registers ID28-0, Xtd, and Dir are used to define the identifier and type
of outgoing messages and are used (together with the mask registers Msk28-0, MXtd, and
MDir) for acceptance filtering of incoming messages. A received message is stored into the
valid Message Object with matching identifier and Direction=receive (Data Frame) or
Direction=transmit (Remote Frame). Extended frames can be stored only in Message Objects
with Xtd = one, standard frames in Message Objects with Xtd = zero. If a received message
(Data Frame or Remote Frame) matches with more than one valid Message Object, it is stored
into that with the lowest message number. For details see chapter 4.2.3 Acceptance Filtering
of Received Messages.

Message Object
Msk28-0 MXtd MDir UMask TxIE RxIE RmtEn EoB FDF BRS ESI DLC3-0

ID28-0 Xtd Dir MsgLst Data 0 Data 1 Data 2 Data 3 Data 4 Data 5 Data 6 Data 7
- 35/53 - 22.01.2015

User’s Manual Revision 2.1.0C_CAN FD8
Dir Message Direction
one Direction = transmit: On TxRqst, the respective Message Object is trans-

mitted as a Data Frame. On reception of a Remote Frame with matching
identifier, the TxRqst bit of this Message Object is set (if RmtEn = one).

zero Direction = receive: On TxRqst, a Remote Frame with the identifier of this
Message Object is transmitted. On reception of a Data Frame with match-
ing identifier, that message is stored in this Message Object.

UMask Use Acceptance Mask
one Use Mask (Msk28-0, MXtd, and MDir) for acceptance filtering
zero Mask ignored.

Note : If the UMask bit is set to one, the Message Object’s mask bits have to be programmed
during initialization of the Message Object before MsgVal is set to one.

MsgLst Message Lost (only valid for Message Objects with direction = receive)
one The Message Handler stored a new message into this object when New-

Dat was still set, the CPU has lost a message.
zero No message lost since last time this bit was reset by the CPU.

TxIE Transmit Interrupt Enable
one IntPnd will be set after a successful transmission of a frame.
zero IntPnd will be left unchanged after the successful transmission of a frame.

RxIE Receive Interrupt Enable
one IntPnd will be set after a successful reception of a frame.
zero IntPnd will be left unchanged after a successful reception of a frame.

RmtEn Remote Enable
one At the reception of a Remote Frame, TxRqst is set.
zero At the reception of a Remote Frame, TxRqst is left unchanged.

EoB End of Buffer
one Single Message Object or last Message Object of a FIFO Buffer.
zero Message Object belongs to a FIFO Buffer and is not the last Message

Object of that FIFO Buffer.

Note : This bit is used to concatenate two ore more Message Objects (up to 32) to build a
FIFO Buffer. For single Message Objects (not belonging to a FIFO Buffer) this bit must
always be set to one. For details on the concatenation of Message Objects see chapter 4.7.

FDF FD Format
one Message in CAN FD format.
zero Message in Classic CAN format.

BRS Bit Rate Switch
one Received message with bit rate switching.
zero Received message without bit rate switching.

ESI Error State Indicator
one Message with ESI bit (Error Passive) in CAN FD format.
zero Message without ESI bit or not in CAN FD format.
- 36/53 - 22.01.2015

User’s Manual Revision 2.1.0C_CAN FD8
Note : The bits FDF, BRS, and ESI in the IFx Interface Registers are always updated by
transfer from the Message Object (from received messages). When FD operation is enabled
(FDOE = ‘1’), bit FDF decides whether the frame is transmitted in FD format. For message
transmission bit BRS is ignored. The ESI bit of the transmit buffer is or’ed with the error
passive flag to decide the value of the ESI bit in the transmitted FD frame. As required by the
CAN FD protocol specification, an error active node may optionally transmit the ESI bit
recessive, but an error passive node will always transmit the ESI bit recessive.

DLC3-0 Data Length Code
0-8 CAN + CAN FD: frame has 0-8 data bytes
9-15 CAN: frame has 8 data bytes
9-15 CAN FD: frame has 12/16/20/24/32/48/64 data bytes

Note : The Data Length Code of a Message Object must be defined the same as in all the
corresponding objects with the same identifier at other nodes. When the Message Handler
stores a data frame, it will write the DLC to the value given by the received message.

Data 0 1st data byte of a CAN Data Frame

Data 1 2nd data byte of a CAN Data Frame

Data 2 3rd data byte of a CAN Data Frame

Data 3 4th data byte of a CAN Data Frame

Data 4 5th data byte of a CAN Data Frame

Data 5 6th data byte of a CAN Data Frame

Data 6 7th data byte of a CAN Data Frame

Data 7 8th data byte of a CAN Data Frame

Note : Byte Data 0 is the first data byte shifted into the shift register of the CAN Core during a
reception, byte Data 7 is the last. When the Message Handler stores a Data Frame, it will write
all the eight data bytes into a Message Object. If the Data Length Code is less than 8, the
remaining bytes of the Message Object will be overwritten by non specified values.
- 37/53 - 22.01.2015

User’s Manual Revision 2.1.0C_CAN FD8
3.4 Message Handler Registers

All Message Handler registers are read-only. Their contents (TxRqst, NewDat, IntPnd, and
MsgVal bits of each Message Object and the Interrupt Identifier) is status information provided
by the Message Handler FSM.

 3.4.1 Interrupt Register (addresses 0x09 & 0x08)

IntId15-0 Interrupt Identifier (the number here indicates the source of the interrupt)
0x0000 No interrupt is pending.
0x0001-0x0020Number of Message Object which caused the interrupt.
0x0021-0x7FFFunused.
0x8000 Status Interrupt.
0x8001-0xFFFFunused

If several interrupts are pending, the CAN Interrupt Register will point to the pending interrupt
with the highest priority, disregarding their chronological order. An interrupt remains pending
until the CPU has cleared it. If IntId is different from 0x0000 and IE is set, the interrupt line to
the CPU, can_int, is active. The interrupt line remains active until IntId is back to value
0x0000 (the cause of the interrupt is reset) or until IE is reset.

The Status Interrupt has the highest priority. Among the message interrupts, the Message
Object’s interrupt priority decreases with increasing message number.

A message interrupt is cleared by clearing the Message Object’s IntPnd bit. The Status
Interrupt is cleared by reading the Status Register resp. the FD Status Register when
FDOE = ‘1’.

 3.4.2 Transmission Request Registers

TxRqst32-1Transmission Request Bits (of all Message Objects)
one The transmission of this Message Object is requested and is not yet done.
zero This Message Object is not waiting for transmission

These registers hold the TxRqst bits of the 32 Message Objects. By reading out the TxRqst
bits, the CPU can check for which Message Object a Transmission Request is pending. The
TxRqst bit of a specific Message Object can be set/reset by the CPU via the IFx Message
Interface Registers or by the Message Handler after reception of a Remote Frame or after a
successful transmission.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IntId15-8 IntId7-0

r-0000 0000 r-0000 0000

Transmission Request 1 Register
(addresses 0x81 & 0x80)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TxRqst16-9 TxRqst8-1

Transmission Request 2 Register
(addresses 0x83 & 0x82)

TxRqst32-25 TxRqst24-17

r-0000 0000 r-0000 0000
- 38/53 - 22.01.2015

User’s Manual Revision 2.1.0C_CAN FD8
 3.4.3 New Data Registers

NewDat32-1New Data Bits (of all Message Objects)
one The Message Handler or the CPU has written new data into the data por-

tion of this Message Object
zero No new data has been written into the data portion of this Message Object

by the Message Handler since last time this flag was cleared by the CPU

These registers hold the NewDat bits of the 32 Message Objects. By reading out the NewDat
bits, the CPU can check for which Message Object the data portion was updated. The
NewDat bit of a specific Message Object can be set/reset by the CPU via the IFx Message
Interface Registers or by the Message Handler after reception of a Data Frame or after a
successful transmission.

 3.4.4 Interrupt Pending Registers

IntPnd32-1 Interrupt Pending Bits (of all Message Objects)
one This message object is the source of an interrupt. The Interrupt Identifier

in the Interrupt Register will point to this message object if there is no
other interrupt source with higher priority.

zero This message object is not the source of an interrupt

These registers hold the IntPnd bits of the 32 Message Objects. By reading out the IntPnd
bits, the CPU can check for which Message Object an interrupt is pending. The IntPnd bit of a
specific Message Object can be set/reset by the CPU via the IFx Message Interface Registers
or by the Message Handler after reception or after a successful transmission of a frame. This
will also affect the value of IntId in the Interrupt Register.

 3.4.5 Message Valid Registers

MsgVal32-1Message Valid Bits (of all Message Objects)
one This Message Object is configured and should be considered by the Mes-

sage Handler
zero This Message Object is ignored by the Message Handler

New Data 1 Register
(addresses 0x91 & 0x90)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

NewDat16-9 NewDat8-1

New Data 2 Register
(addresses 0x93 & 0x92)

NewDat32-25 NewDat24-17

r-0000 0000 r-0000 0000

Interrupt Pending 1 Register
(addresses 0xA1 & 0xA0)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IntPnd16-9 IntPnd8-1

Interrupt Pending 2 Register
(addresses 0xA3 & 0xA2)

IntPnd32-25 IntPnd24-17

r-0000 0000 r-0000 0000

Message Valid 1 Register
(addresses 0xB1 & 0xB0)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MsgVal16-9 MsgVal8-1

Message Valid 2 Register
(addresses 0xB3 & 0xB2)

MsgVal32-25 MsgVal24-17

r-0000 0000 r-0000 0000
- 39/53 - 22.01.2015

User’s Manual Revision 2.1.0C_CAN FD8
These registers hold the MsgVal bits of the 32 Message Objects. By reading out the MsgVal
bits, the CPU can check which Message Object is valid. The MsgVal bit of a specific Message
Object can be set/reset by the CPU via the IFx Message Interface Registers.

Note : The CPU must reset the MsgVal bit of all unused Messages Objects during the
initialization before it resets bit Init in the CAN Control Register. This bit must also be reset
before the identifier Id28-0, the control bits Xtd, Dir, or the Data Length Code DLC3-0 are
modified, or if the Messages Object is no longer required.

3.5 Core Release Registers

The design step of a C_CAN FD8 implementation can be identified by reading the Core
Release Registers Low/High.

 Figure 9: Example for Coding of Revisions

 3.5.1 Core Release Low (addresses 0x39 & 0x38)

MON7-0 Time Stamp Month
Two digits, BCD-coded. Configured by constant on C_CAN FD8 synthesis.

DAY7-0 Time Stamp Day
Two digits, BCD-coded. Configured by constant on C_CAN FD8 synthesis.

 3.5.2 Core Release High (addresses 0x3B & 0x3A)

REL3-0 Core Release
One digit, BCD-coded.

STEP3-0 Step of Core Release
One digit, BCD-coded.

SUBSTEP3-0 Sub-step of Core Release
One digit, BCD-coded.

YEAR3-0 Time Stamp Year (2010 + digit)
One digit, BCD-coded. Configured by constant on C_CAN FD8 synthesis.

Release Step SubStep Year Month Day Name

1 9 5 3 12 20 Revision 1.9.5, Date 2013/12/20

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MON7-0 DAY7-0

r r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

REL3-0 STEP3-0 SUBSTEP3-0 YEAR3-0

r r r r
- 40/53 - 22.01.2015

User’s Manual Revision 2.1.0C_CAN FD8
4. CAN Application

4.1 Management of Message Objects

The configuration of the Message Objects in the Message RAM will (with the exception of the
bits MsgVal, NewDat, IntPnd, and TxRqst) not be affected by resetting the C_CAN FD8. All
the Message Objects must be initialized by the CPU or they must be set not valid (MsgVal =
‘0’). The bit timing must be configured before the CPU clears the Init bit in the CAN Control
Register.

The configuration of a Message Object is done by programming Mask, Arbitration, Control and
Data field of one of the two interface register sets to the desired values. By writing to the
corresponding IFx Command Request Register, the IFx Message Buffer Registers are loaded
into the addressed Message Object in the Message RAM.

When the Init bit in the CAN Control Register is cleared, the CAN Protocol Controller state
machine of the CAN_Core and the Message Handler State Machine control the C_CAN FD8’s
internal data flow. Received messages that pass the acceptance filtering are stored into the
Message RAM, messages with pending transmission request are loaded into the CAN_Core’s
Shift Register and are transmitted via the CAN bus.

The CPU reads received messages and updates messages to be transmitted via the IFx
Interface Registers. Depending on the configuration, the CPU is interrupted on certain CAN
message and CAN error events.

4.2 Message Handler State Machine

The Message Handler controls the data transfer between the Rx/Tx Shift Register of the CAN
Core, the Message RAM and the IFx Registers.

The Message Handler FSM controls the following functions:

• Data Transfer from IFx Registers to the Message RAM

• Data Transfer from Message RAM to the IFx Registers

• Data Transfer from Shift Register to the Message RAM

• Data Transfer from Message RAM to Shift Register

• Data Transfer from Shift Register to the Acceptance Filtering unit

• Scanning of Message RAM for a matching Message Object

• Handling of TxRqst flags.

• Handling of interrupts.

 4.2.1 Data Transfer from / to Message RAM

When the CPU initiates a data transfer between the IFx Registers and Message RAM, the
Message Handler sets the Busy bit in the respective IFx Command Request Register to ‘1’.
After the transfer has completed, the Busy bit is set back to ‘0’ (see figure 10).

The respective IFx Command Mask Register specifies whether a complete Message Object or
only parts of it will be transferred. Due to the structure of the Message RAM it is not possible to
write single bits/bytes of one Message Object, it is always necessary to write a complete
Message Object to the Message RAM. Therefore the data transfer from the IFx Message
Buffer Registers to the Message RAM (WR/RD = ‘1’) requires a read-modify-write cycle. First
- 41/53 - 22.01.2015

User’s Manual Revision 2.1.0C_CAN FD8
that parts of the Message Object that are not to be changed are read from the Message RAM
to the selected IFx Message Buffer Registers and then the complete contents of the selected
IFx Message Buffer Registers is written to the Message Object.

 Figure 10: Data Transfer between IFx Registers and Message RAM

After a partial write of a Message Object (WR/RD = ‘1’), the IFx Message Buffer Registers that
are not selected by the respective IFx Command Mask Register will be set to the actual
contents of the selected Message Object.

After the partial read of a Message Object (WR/RD = ‘0’), the IFx Message Buffer Registers
that are not selected by the respective IFx Command Mask Register will be left unchanged.

 4.2.2 Transmission of Messages

If the shift register of the CAN Core cell is ready for loading and if there is no data transfer
between the IFx Registers and Message RAM, the MsgVal bits in the Message Valid Register
and the TxRqst bits in the Transmission Request Register are evaluated. The valid Message
Object with the highest priority pending transmission request is loaded into the shift register by
the Message Handler and the transmission is started. The Message Object’s NewDat bit is
reset.

After a successful transmission and if no new data was written to the Message Object
(NewDat = ‘0’) since the start of the transmission, the TxRqst bit will be reset. If TxIE is set,
IntPnd will be set after a successful transmission. If the C_CAN FD8 has lost the arbitration or

START

WR/RD = 1

Busy = 0

Busy = 1

Read Message Object to IFx

Write IFx to Message RAM

Read Message Object to IFx

No Yes

can_wait_b = 0

can_wait_b = 1

Write Command Request Register
No

Yes
- 42/53 - 22.01.2015

User’s Manual Revision 2.1.0C_CAN FD8
if an error occurred during the transmission, the message will be retransmitted as soon as the
CAN bus is free again. If meanwhile the transmission of a message with higher priority has
been requested, the messages will be transmitted in the order of their priority.

 4.2.3 Acceptance Filtering of Received Messages

When the arbitration and control field (Identifier up to DLC) of an incoming message is
completely shifted into the Rx/Tx Shift Register of the CAN Core, the Message Handler FSM
starts the scanning of the Message RAM for a matching valid Message Object.

To scan the Message RAM for a matching Message Object, the Acceptance Filtering unit is
loaded with the arbitration bits from the CAN Core shift register. Then the arbitration and mask
fields (including MsgVal, UMask, NewDat, and EoB) of Message Object 1 are loaded into the
Acceptance Filtering unit and are compared with the arbitration field from the shift register.
This is repeated with each following Message Object until a matching Message Object is
found or until the end of the Message RAM is reached.

If a match occurs, the scanning is stopped and the Message Handler FSM proceeds
depending on the type of frame (Data Frame or Remote Frame) received.

 4.2.3.1 Reception of Data Frame

The Message Handler FSM stores the message from the CAN Core shift register into the
respective Message Object in the Message RAM. Not only the data bytes, but all arbitration
bits and the Data Length Code are stored into the corresponding Message Object. This is
implemented to keep the data bytes connected with the identifier even if arbitration mask
registers are used.

The NewDat bit is set to indicate that new data (not yet seen by the CPU) has been received.
The CPU should reset NewDat when it reads the Message Object. If at the time of the
reception the NewDat bit was already set, MsgLst is set to indicate that the previous data
(supposedly not seen by the CPU) is lost. If the RxIE bit is set, the IntPnd bit is set, causing
the Interrupt Register to point to this Message Object.

The TxRqst bit of this Message Object is reset to prevent the transmission of a Remote
Frame, while the requested Data Frame has just been received.

 4.2.3.2 Reception of Remote Frame

When a Remote Frame is received, three different configurations of the matching Message
Object have to be considered:

1) Dir = ‘1’ (direction = transmit), RmtEn = ‘1’, UMask = ‘1’ or ’0’
At the reception of a matching Remote Frame, the TxRqst bit of this Message Object is set.
The rest of the Message Object remains unchanged.

2) Dir = ‘1’ (direction = transmit), RmtEn = ‘0’, UMask = ’0’
At the reception of a matching Remote Frame, the TxRqst bit of this Message Object remains
unchanged; the Remote Frame is ignored.

3) Dir = ‘1’ (direction = transmit), RmtEn = ‘0’, UMask = ’1’
At the reception of a matching Remote Frame, the TxRqst bit of this Message Object is reset.
The arbitration and control field (Identifier + IDE + RTR + DLC) from the shift register is stored
into the Message Object in the Message RAM and the NewDat bit of this Message Object is
set. The data field of the Message Object remains unchanged while bits FDF, BRS, and ESI
are reset; the Remote Frame is treated similar to a received Data Frame.

Note : Remote frames are always transmitted in Classical CAN format.
- 43/53 - 22.01.2015

User’s Manual Revision 2.1.0C_CAN FD8
 4.2.4 Receive / Transmit Priority

The receive/transmit priority for the Message Objects is attached to the message number.
Message Object 1 has the highest priority, while Message Object 32 has the lowest priority. If
more than one transmission request is pending, they are serviced according to the priority of
the corresponding Message Object.

4.3 Configuration of a Transmit Object

Figure 11 shows how a Transmit Object should be initialised.

 Figure 11: Initialisation of a Transmit Object

The Arbitration Registers (ID28-0 and Xtd bit) are given by the application. They define the
identifier and type of the outgoing message. If an 11-bit Identifier (“Standard Frame”) is used,
it is programmed to ID28 - ID18, ID17 - ID0 can then be disregarded.

The CAN FD format bits FDF, BRS, and ESI are also given by the application.

If the TxIE bit is set, the IntPnd bit will be set after a successful transmission of the Message
Object.

If the RmtEn bit is set, a matching received Remote Frame will cause the TxRqst bit to be set;
the Remote Frame will autonomously be answered by a Data Frame.

The Data Registers (DLC3-0, Data0-7) are given by the application, TxRqst and RmtEn may
not be set before the data is valid.

The Mask Registers (Msk28-0, UMask, MXtd, and MDir bits) may be used (UMask=’1’) to
allow groups of Remote Frames with similar identifiers to set the TxRqst bit (for details see
section 4.2.3.2). The Dir bit should not be masked.

4.4 Updating a Transmit Object

The CPU may update the data bytes of a Transmit Object any time via the IFx Interface
registers, neither MsgVal nor TxRqst have to be reset before the update.

Even if only a part of the data bytes are to be updated, all four bytes of the corresponding IFx
Data A Register or IFx Data B Register have to be valid before the content of that register is
transferred to the Message Object. Either the CPU has to write all four bytes into the IFx Data
Register or the Message Object is transferred to the IFx Data Register before the CPU writes
the new data bytes.

When only the (eight) data bytes are updated, first 0x0087 is written to the IFx Command
Mask Register and then the number of the Message Object is written to the IFx Command
Request Register, concurrently updating the data bytes and setting TxRqst.

To prevent the reset of TxRqst at the end of a transmission that may already be in progress
while the data is updated, NewDat has to be set together with TxRqst. For details see section
section 4.2.2.

When NewDat is set together with TxRqst, NewDat will be reset as soon as the new
transmission has started.

MsgVal Arb CAN_FD Data Mask EoB Dir NewDat MsgLst RxIE TxIE IntPnd RmtEn TxRqst

1 appl. appl. appl. appl. 1 1 0 0 0 appl. 0 appl. 0
- 44/53 - 22.01.2015

User’s Manual Revision 2.1.0C_CAN FD8
4.5 Configuration of a Receive Object

Figure 11 shows how a Receive Object should be initialised.

 Figure 12: Initialisation of a Receive Object

The Arbitration Registers (ID28-0 and Xtd bit) are given by the application. They define the
identifier and type of accepted received messages. If an 11-bit Identifier (“Standard Frame”) is
used, it is programmed to ID28 - ID18, ID17 - ID0 can then be disregarded. When a Data
Frame with an 11-bit Identifier is received, ID17 - ID0 will be set to ‘0’.

The CAN FD format bits FDF, BRS, and ESI are also given by the application. They are taken
from the received frame.

If the RxIE bit is set, the IntPnd bit will be set when a received Data Frame is accepted and
stored in the Message Object.

The Data Length Code (DLC3-0) is given by the application. When the Message Handler
stores a Data Frame in the Message Object, it will store the received Data Length Code and
eight data bytes. If the Data Length Code is less than 8, the remaining bytes of the Message
Object will be overwritten by non specified values.

The Mask Registers (Msk28-0, UMask, MXtd, and MDir bits) may be used (UMask=’1’) to
allow groups of Data Frames with similar identifiers to be accepted (for details see section
4.2.3.1). The Dir bit should not be masked in typical applications.

4.6 Handling of Received Messages

The CPU may read a received message any time via the IFx Interface registers, the data
consistency is guaranteed by the Message Handler state machine.

Typically the CPU will write first 0x007F to the IFx Command Mask Register and then the
number of the Message Object to the IFx Command Request Register. That combination will
transfer the whole received message from the Message RAM into the IFx Message Buffer
Register. Additionally, the bits NewDat and IntPnd are cleared in the Message RAM (not in
the Message Buffer).

If the Message Object uses masks for acceptance filtering, the arbitration bits show which of
the matching messages has been received.

The actual value of NewDat shows whether a new message has been received since last time
this Message Object was read. The actual value of MsgLst shows whether more than one
message has been received since last time this Message Object was read. MsgLst will not be
automatically reset.

By means of a Remote Frame, the CPU may request another CAN node to provide new data
for a receive object. Setting the TxRqst bit of a receive object will cause the transmission of a
Remote Frame with the receive object’s identifier. This Remote Frame triggers the other CAN
node to start the transmission of the matching Data Frame. If the matching Data Frame is
received before the Remote Frame could be transmitted, the TxRqst bit is automatically reset.

MsgVal Arb CAN_FD Data Mask EoB Dir NewDat MsgLst RxIE TxIE IntPnd RmtEn TxRqst

1 appl. appl. appl. appl. 1 0 0 0 appl. 0 0 0 0
- 45/53 - 22.01.2015

User’s Manual Revision 2.1.0C_CAN FD8
4.7 Configuration of a FIFO Buffer

With the exception of the EoB bit, the configuration of Receive Objects belonging to a FIFO
Buffer is the same as the configuration of a (single) Receive Object, see section 4.5.

To concatenate two or more Message Objects into a FIFO Buffer, the identifiers and masks (if
used) of these Message Objects have to be programmed to matching values. Due to the
implicit priority of the Message Objects, the Message Object with the lowest number will be
the first Message Object of the FIFO Buffer. The EoB bit of all Message Objects of a FIFO
Buffer except the last have to be programmed to zero. The EoB bits of the last Message
Object of a FIFO Buffer is set to one, configuring it as the End of the Block.

4.8 Reception of Messages with FIFO Buffers

Received messages with identifiers matching to a FIFO Buffer are stored into a Message
Object of this FIFO Buffer starting with the Message Object with the lowest message number.

When a message is stored into a Message Object of a FIFO Buffer the NewDat bit of this
Message Object is set. By setting NewDat while EoB is zero the Message Object is locked for
further write accesses by the Message Handler until the CPU has written the NewDat bit back
to zero.

Messages are stored into a FIFO Buffer until the last Message Object of this FIFO Buffer is
reached. If none of the preceding Message Objects is released by writing NewDat to zero, all
further messages for this FIFO Buffer will be written into the last Message Object of the FIFO
Buffer and therefore overwrite previous messages.

 4.8.1 Reading from a FIFO Buffer

When the CPU transfers the contents of Message Object to the IFx Message Buffer Registers
by writing its number to the IFx Command Request Register, the corresponding IFx Command
Mask Register should be programmed the way that bits NewDat and IntPnd are reset to zero
(TxRqst/NewDat = ‘1’ and ClrIntPnd = ‘1’). The values of these bits in the IFx Message
Control Register always reflect the status before resetting the bits.

To assure the correct function of a FIFO Buffer, the CPU should read out the Message Objects
starting at the FIFO Object with the lowest message number.

Figure 13 shows how a set of Message Objects which are concatenated to a FIFO Buffer can
be handled by the CPU.
- 46/53 - 22.01.2015

User’s Manual Revision 2.1.0C_CAN FD8
 Figure 13: CPU Handling of a FIFO Buffer

Read Interrupt Pointer

START

case Interrupt Pointer
0x8000h else 0x0000h

Status Change END

MessageNum = Interrupt Pointer

Write MessageNum to IFx Command Request

(Read Message to IFx Registers,
Reset NewDat = 0,
Reset IntPnd = 0)

Read IFx Message Control

NewDat = 1

Read Data from IFx Data A,B

EoB = 1

MessageNum = MessageNum + 1

Yes

No

Yes

No

Message Interrupt

Interrupt Handling
- 47/53 - 22.01.2015

User’s Manual Revision 2.1.0C_CAN FD8
4.9 Handling of Interrupts

If several interrupts are pending, the CAN Interrupt Register will point to the pending interrupt
with the highest priority (IntId), disregarding their chronological order. An interrupt remains
pending until the CPU has cleared it.

The interrupt identifier IntId in the Interrupt Register indicates the cause of the interrupt. When
no interrupt is pending, the register will hold the value zero. If the value of the Interrupt
Register is different from zero, then there is an interrupt pending and, if IE is set, the interrupt
line to the CPU is active. The interrupt line remains active until the Interrupt Register is back to
value zero (the cause of the interrupt is reset) or until IE is reset.

The Status Interrupt has the highest priority. Among the message interrupts, the Message
Object’ s interrupt priority decreases with increasing message number.

A message interrupt is cleared by clearing the Message Object’s IntPnd bit. The Status
Interrupt is cleared by reading the Status Register.

The value 0x8000 indicates that an interrupt is pending because the CAN Core has updated
(not necessarily changed) the Status Register resp. the FD Status Register (Error Interrupt or
Status Interrupt). This interrupt has the highest priority. The CPU can update (reset) the Status
Register bits RxOk, TxOk, and LEC by writing to the Status Register. A write access by the
CPU to the Status Registers can never generate or reset an interrupt. When the CPU reads
the FD Control Register while CAN FD operation is enabled (bit FDOE in the FD Control
Register set), the FD Status Register bits RxFDF, RxBRS, RxESI, RxOK, and TxOK are reset
while DLEC and LEC are set to 0b111.

All other values indicate that the source of the interrupt is one of the Message Objects, IntId
points to the pending message interrupt with the highest interrupt priority.

The CPU controls whether a change of the Status Registers may cause the Interrupt Register
to be set to IntId Status Interrupt (bits EIE and SIE in the CAN Control Register as well as bit
DSIE in the FD Control Register) and whether the interrupt line becomes active when the
Interrupt Register is different from zero (bit IE in the CAN Control Register). The Interrupt
Register will be updated even when IE is not set.

The CPU has two possibilities to follow the source of a message interrupt. First it can follow
the IntId in the Interrupt Register and second it can poll the Interrupt Pending Register (see
section 3.4.4).

An interrupt service routine reading the message that is the source of the interrupt may read
the message and reset the Message Object’s IntPnd at the same time (bit ClrIntPnd in the
IFx Command Mask Register). When IntPnd is cleared, the Interrupt Register will point to the
next Message Object with a pending interrupt.

4.10 CAN with Flexible Data-Rate

CAN FD operation is enabled by setting bit FDOE in the FD Control Register. In case CAN FD
with bit rate switching shall be used, also bit BRSE in the FD Control Register has to be set.
Both bits can only be set while bits Init and CCE in the CAN Control Register are set. After the
initialization mode is left (Init set to ‘0’), both bits are locked.

The previously reserved bit in CAN frames with 11-bit identifiers and the first previously
reserved bit in CAN frames with 29-bit identifiers will now be decoded as FDF bit.
FDF = recessive signifies a CAN FD frame, FDF = dominant signifies a Classic CAN frame. In
a CAN FD frame, the two bits following FDF, res and BRS, decide whether the bit rate inside
of this CAN FD frame is switched. A CAN FD bit rate switch is signified by res = dominant and
- 48/53 - 22.01.2015

User’s Manual Revision 2.1.0C_CAN FD8
BRS = recessive. The coding of res = recessive is reserved for future expansion of the
protocol. In case the C_CAN FD8 receives a frame with FDF = recessive and res = recessive,
it will signal a Protocol Exception Event by setting bit PXE in the FD Control Register. When
Protocol Exception Handling is enabled (FD Control Register PXHD = ‘0’), this causes the
operation state to change from Receiver (FD Status Register ACT = “10”) to Integrating (FD
Status Register ACT = “00”) at the next sample point. In case Protocol Exception Handling is
disabled (FD Control Register PXHD = ‘1’), the C_CAN FD8 will treat a recessive res bit as an
form error and will respond with an error frame.

In CAN FD frames, the coding of the DLC differs from the Classic CAN format. The DLC
codes 0 to 8 have the same coding as in Classic CAN, the codes 9 to 15, which in Classic
CAN all code a data field of 8 bytes, are coded according to figure 14.

 Figure 14: Coding of DLC in CAN FD

In CAN FD frames, the bit timing will be switched inside the frame, after the BRS (Bit Rate
Switch) bit, if this bit is recessive. Before the BRS bit, in the CAN FD Arbitration Phase, the
nominal CAN bit timing is used as defined by the Nominal Bit Timing Registers 1, 2. In the
following CAN FD Data Phase, the data bit timing is used as defined by the Data Bit Timing
Register. The bit timing is switched back from the data bit timing at the CRC Delimiter or when
an error is detected, whichever occurs first.

In CAN FD frames, the value of the bit ESI (Error Status Indicator) is determined by the
transmitter’s error state at the start of the transmission. If the transmitter is error passive, ESI
is transmitted recessive, else it is transmitted dominant. For special applications bit ESI of an
error active transmitter may be transmitted recessive by setting the Message Object’s ESI bit
to ‘1’.

 4.10.1 Frame Transmission in CAN FD Mode

To transmit frames in CAN FD format, FD operation has to be enabled by programming
FDOE = ‘1’ in the FD Control Register. In addition, BRSE has to be set to enable transmission
with bit rate switching. If enabled, bit rate switching can be requested by writing BRSR = ‘1’. A
change of BRSR becomes effective when the next transmission after setting/resetting BRSR
is started. Ongoing transmissions are not affected.

The CAN FD format bit FDF has to be set to configure a Message Object for CAN FD
transmission. The state of BRS is ignored; whether the message is transmitted with bit rate
switching or not depends only on the state of BRSR. In case ESI in the Message Object is
configured to ‘0’, the value of ESI in the transmitted frame reflects the error state of the
transmitters protocol engine. In case ESI in the Message Object is configured to ‘1’, the
message is transmitted with ESI set, signalling to the receiver that the transmitter is error
passive independent of its actual error state.

In case the DLC of a Transmit Object is configured to a value higher than eight, the bytes not
defined by the Transmit Object are transmitted as “0xCC” (padding bytes).

DLC 9 10 11 12 13 14 15

Number of Data Bytes 12 16 20 24 32 48 64
- 49/53 - 22.01.2015

User’s Manual Revision 2.1.0C_CAN FD8
 4.10.2 Frame Reception in CAN FD Mode

To receive frames in CAN FD format, FD operation has to be enabled by programming FDOE
= ‘1’ in the FD Control Register.

As with Classic CAN frames, CAN FD frames have to pass acceptance filtering to be stored in
a matching Message Object. The CAN FD format bits FDF, BRS, and ESI are updated from
the received frame. For CAN FD frames bit FDF is always ‘1’, while BRS indicates whether the
frame was received with bit rate switching (BRS = ‘1’) or not (BRS = ‘0’). Bit ESI reflects the
error state of the received frame’s transmitter. ESI = ‘0’ indicates that the transmitter was in
error active state, with ESI = ‘1’ the transmitter was error passive (receive or transmit error
count ≥ 128).

In case a CAN FD frame with more than eight data bytes is received, only the first eight bytes
are stored into the matching Receive Object.

 4.10.3 Configuration of the Transmitter Delay Compensation

In CAN FD, transmitter delay compensation is used in the data phase of transmitting nodes to
compensate the delay from the transmitters can_tx output through the attached transceiver to
its can_rx input.

During frame transmission, the transmitter compares the bit transmitted at its can_tx output
against the received bit at its can_rx input. In case the transmitter delay causes this bit to be
received after the transmitter’s sample point, this will result in a bit error at the transmitter.

The transmitter delay compensation enables configurations where the data bit time is shorter
than the transmitter delay, it is described in detail in the new ISO11898-1. It is enabled by
setting bit TDCE in the FD Control Register.

The received bit is compared against the transmitted bit at the Secondary Sample Point SSP.
The SSP is defined as the sum of the measured delay from the can_tx output to the can_rx
input and the transmitter delay compensation offset as configured by TDCO in the Transmitter
Delay Compensation Register. TDCO can be used to adjust the position of the SSP inside the
received bit. The actual transmitter delay compensation value SSPP is available in the SSP
Position Register. SSPP is cleared when CCE and Init are set and is updated at each
transmission of an FD frame while TDCE is set and TDCNM is not set.

The following boundary conditions have to be considered for the transmitter delay
compensation implemented in the C_CAN FD8:

• The sum of the measured delay from can_tx to can_rx and the configured transmitter delay
compensation offset TDCO has to be less or equal 127 mtq. In case this sum exceeds 127
mtq, the maximum value of 127 mtq is used for transmitter delay compensation.

• When in case of fixed transmitter delay compensation the sum of TDCF and TDCO exceeds
the specified limit of 0x7F, the sum will be limited to 7 bit, eliminating the MSB.

• The resulting SSP position SSPP has to be less than 6 bit times in the data phase.

• The data phase ends at the sample point of the CRC delimiter, that stops checking of receive
bits at the SSPs.

There are two possibilities to compensate the transmitter delay; transmitter delay
measurement or using a fixed transmitter delay compensation value.
- 50/53 - 22.01.2015

User’s Manual Revision 2.1.0C_CAN FD8
 4.10.3.1 Transmitter Delay Compensation Measurement

If transmitter delay compensation measurement is enabled by programming TDCNM = ‘0’, the
measurement is started within each transmitted CAN FD frame at the falling edge of bit FDF.
The measurement is stopped when this edge is seen at the can_rx input of the transmitter.
The resolution of this measurement is one mtq.

 Figure 15: Calculation of SSP Position

To avoid that a dominant glitch inside the received FDF bit ends the delay compensation
measurement before the falling edge of the received res bit, resulting in a to early SSP
position, the use of a transmitter delay compensation filter window can be enabled by
programming TDCF in the Transmitter Delay Compensation Register. This defines a minimum
value for the SSP position, dominant edges on can_rx, that would result in an earlier SSP
position are ignored for transmitter delay measurement. The measurement is stopped when
the SSP position is at least TDCF AND can_rx is low.

 4.10.3.2 Fixed Transmitter Delay

Instead of measuring the transmitter delay, a fixed transmitter delay compensation value can
be used. This is enabled by programming FD Control Register bit TDCNM = ‘1’. In this case
the fixed transmitter delay value has to be written to TDCF in the Transmitter Delay
Compensation Register. It directly defines the delay. Reading SSPP from the SSP Position
Register will show the sum of TDCF and TDCO after CCE or Init is cleared (see section
3.2.12 and section 3.2.13).

arbitration phase data phase

can_tx

can_rx

Delay Counter

Start Stop

BRS DLCFDF

E
S
Ires

Transmitter

data phasearbitration phase

SSP Position

Delay

can_clk
Delay

TDCNM

TDCO

TDCF 1

0

- 51/53 - 22.01.2015

User’s Manual Revision 2.1.0C_CAN FD8
- 52/53 - 22.01.2015

User’s Manual

- 53/53 -

Revision 2.1.0C_CAN FD8

 22.01.2015

1. Appendix

1.1 List of Figures

 Figure 1: Block Diagram of the C_CAN FD8 . 10

 Figure 2: CAN Core in Silent Mode . 13

 Figure 3: CAN Core in Loop Back Mode . 13

 Figure 4: CAN Core in Loop Back combined with Silent Mode . 14

 Figure 5: C_CAN FD8 Register Summary . 18

 Figure 6: Coding Register Bit access / reset . 18

 Figure 7: IF1 and IF2 Message Interface Register Sets . 29

 Figure 8: Structure of a Message Object in the Message RAM . 35

 Figure 9: Example for Coding of Revisions . 40

 Figure 10: Data Transfer between IFx Registers and Message RAM 42

 Figure 11: Initialisation of a Transmit Object . 44

 Figure 12: Initialisation of a Receive Object . 45

 Figure 13: CPU Handling of a FIFO Buffer . 47

 Figure 14: Coding of DLC in CAN FD. 49

 Figure 15: Calculation of SSP Position. 51

EOF

	1. About this Document
	1.1 Change Control
	1.1.1 Current Status
	1.1.2 Change History

	1.2 Conventions
	1.3 Scope
	1.4 References
	1.5 Terms and Abbreviations

	2. Functional Description
	2.1 Functional Overview
	2.2 Block Diagram
	2.3 Operating Modes
	2.3.1 Software Initialisation
	2.3.2 CAN Message Transfer
	2.3.3 CAN�FD Operation Mode
	2.3.4 Restricted Operation Mode
	2.3.5 Disabled Automatic Retransmission
	2.3.6 Test Mode
	2.3.6.1 Silent Mode
	2.3.6.2 Loop Back Mode
	2.3.6.3 Loop Back combined with Silent Mode
	2.3.6.4 Basic Mode
	2.3.6.5 Software control of Pin can_tx

	3. Programmer’s Model
	3.1 Hardware Reset Description
	3.1.1 Coding of Register Bit access / reset

	3.2 CAN Protocol Related Registers
	3.2.1 CAN Control Register (addresses 0x01 & 0x00)
	3.2.2 Status Register (addresses 0x03 & 0x02)
	3.2.2.1 Status Interrupts

	3.2.3 Error Counter (addresses 0x05 & 0x04)
	3.2.4 Bit Timing Register (addresses 0x07 & 0x06)
	3.2.5 Test Register (addresses 0x0B & 0x0A)
	3.2.6 BRP Extension Register (addresses 0x0D & 0x0C)
	3.2.7 FD Control Register (addresses 0x27 & 0x26)
	3.2.8 Nominal Bit Timing Register 1 (addresses 0x29 & 0x28)
	3.2.9 Nominal Bit Timing Register 2 (addresses 0x2B & 0x2A)
	3.2.10 Data Bit Timing Register 1 (addresses 0x2D & 0x2C)
	3.2.11 Data Bit Timing Register 2 (addresses 0x2F & 0x2E)
	3.2.12 Transmitter Delay Compensation Register (addresses 0x31 & 0x30)
	3.2.13 SSP Position Register (addresses 0x33 & 0x32)
	3.2.14 Error Logging Register (addresses 0x35 & 0x34)
	3.2.15 FD Status Register (addresses 0x37 & 0x36)

	3.3 Message Interface Register Sets
	3.3.1 IFx Command Request Registers
	3.3.2 IFx Command Mask Registers
	3.3.2.1 Direction = Write
	3.3.2.2 Direction = Read

	3.3.3 IFx Message Buffer Registers
	3.3.3.1 IFx Mask Registers
	3.3.3.2 IFx Arbitration Registers
	3.3.3.3 IFX Message Control Registers
	3.3.3.4 IFx Data A and Data B Registers

	3.3.4 Message Object in the Message Memory

	3.4 Message Handler Registers
	3.4.1 Interrupt Register (addresses 0x09 & 0x08)
	3.4.2 Transmission Request Registers
	3.4.3 New Data Registers
	3.4.4 Interrupt Pending Registers
	3.4.5 Message Valid Registers

	3.5 Core Release Registers
	3.5.1 Core Release Low (addresses 0x39 & 0x38)
	3.5.2 Core Release High (addresses 0x3B & 0x3A)

	4. CAN Application
	4.1 Management of Message Objects
	4.2 Message Handler State Machine
	4.2.1 Data Transfer from / to Message RAM
	4.2.2 Transmission of Messages
	4.2.3 Acceptance Filtering of Received Messages
	4.2.3.1 Reception of Data Frame
	4.2.3.2 Reception of Remote Frame

	4.2.4 Receive / Transmit Priority

	4.3 Configuration of a Transmit Object
	4.4 Updating a Transmit Object
	4.5 Configuration of a Receive Object
	4.6 Handling of Received Messages
	4.7 Configuration of a FIFO Buffer
	4.8 Reception of Messages with FIFO Buffers
	4.8.1 Reading from a FIFO Buffer

	4.9 Handling of Interrupts
	4.10 CAN with Flexible Data-Rate
	4.10.1 Frame Transmission in CAN�FD Mode
	4.10.2 Frame Reception in CAN�FD Mode
	4.10.3 Configuration of the Transmitter Delay Compensation
	4.10.3.1 Transmitter Delay Compensation Measurement
	4.10.3.2 Fixed Transmitter Delay

	1. Appendix
	1.1 List of Figures

