
IFS User's Guide

March 2010

Copyright Notice and Proprietary Information
Copyright © 2010 Robert Bosch GmbH. All rights reserved. This software and
manual are owned by Robert Bosch GmbH, and may be used only as authorized in
the license agreement controlling such use. No part of this publication may be
reproduced, transmitted, or translated, in any form or by any means, electronic,
mechanical, manual, optical, or otherwise, without prior written permission of Robert
Bosch GmbH, or as expressly provided by the license agreement.
Disclaimer
THIS DOCUMENT IS FOR PRELIMINARY INFORMATION PURPOSE ONLY.
ROBERT BOSCH GMBH, RESERVES THE RIGHT TO CHANGE AND MODIFY
THE SERVICES AND DELIVERABLES DESCRIBED HEREIN WITHOUT FURTHER
NOTICE.
ROBERT BOSCH GMBH DISCLAIMS LIABILITY AND WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE.

Contents

 3

Contents

1 Getting Started: Simulation with IFS... 5

1.1 What Is IFS?... 5
1.2 IFS script .. 6

2 Simulation Semantics... 7
2.1 Execution of Module Commands... 7
2.2 Interrupts .. 8
2.3 Substitutions ... 9

3 IFS Command Script .. 9
3.1 Notation.. 10
3.2 Lexical Elements .. 11
3.3 Pre-Processing.. 11

3.3.1 Comments... 11
3.3.2 Inclusion of other Scripts ... 11

3.4 Values... 11
3.5 General Script Structure ... 12
3.6 Module Commands .. 13

3.6.1 TITLE... 15
3.6.2 IRQ for Modules .. 15
3.6.3 IFS_M... 15

3.7 Controller Commands .. 16
3.7.1 WAIT ... 17
3.7.2 SYNC ... 18
3.7.3 CHECK .. 18
3.7.4 Print .. 18

3.8 Control Flow Commands ... 19
3.8.1 #loop... 19
3.8.2 #if ... 20
3.8.3 #switch ... 21
3.8.4 #critical... 23

3.9 Interrupts .. 24
3.9.1 Priorities ... 25
3.9.2 Masking.. 25
3.9.3 #break ... 26

3.10 Randomisation.. 26
3.10.1 Randomisation without Repetition... 28

3.11 Expressions... 29
3.12 Variables... 32
3.13 Arrays ... 34

Quick Reference... 36

 IFS User's Guide

4

1 Getting Started: Simulation with IFS

1.1 What Is IFS?

As shown in Figure 1.1 an IFS-based simulation consists of the following parts:

 The design under test (DUT) (in either SystemC or VHDL)

 IFS modules (in either SystemC or VHDL)

 IFS Controller

 A testbench in SystemC that instantiates and connects the DUT, the IFS modules, and the
IFS controller

 An IFS script containing commands for the IFS modules

DUT

IFS IFS

IFS

IFS

IFS

IFS

IFS
Script

Testbench

IFS-Controller

Figure 1.1: Structure of an IFS-based testbench

IFS modules are the building blocks of a testbench. An IFS module typically provides some
kind of standard interface. For example, such an IFS module could be a simple clock genera-
tor or an I²S interface. Each IFS module provides user-defined commands which control the
IFS module's behaviour. For example, a clock module may provide a command which sets the
clock frequency and the I²S interface may provide a write command which transmits a value
given as parameter to the command.

 5

 IFS User's Guide

6

These commands are invoked from a so-called IFS script. The IFS controller reads these
commands, does some pre-processing, and dispatches the commands to the IFS modules. In
other words, it is the IFS script which defines a simulation – the testbench is just composed of
programmable modules.

1.2 IFS script

Figure 1.2 shows a simple IFS script. An IFS script is processed line-by-line, i.e. each line can
contain at most one command. However, a command may be stretched across multiple lines
by ending each intermediate line by a backslash ‘\‘. A normal command consists of three
parts: the name of the receiving module (e.g. module2), the name of the command (e.g.
Write), and a list of space-separated parameters for the command (e.g. 2 true). A module's
name is the string given as the constructor argument during the instantiation of that module.
The command name is the string specified in the IFS_REGISTER_COMMAND(…) macro. For a
complete documentation of a script’s syntax and its semantics refer to Chapter 3.

-- Interrupt handler for interrupt 1
#isr 1
 module1 print "Handler 1: simtime should be 100 ns"
 module2 print "Handler 1: simtime should be 100 ns"

 module1 WAIT deltime 400 ns
 module2 WAIT simtime 500 ns
#end

-- Begin of the script body
module1 print "Simtime should be 0"
module2 print "Simtime should be 0"

-- Enable interrupt 1
IFS IRQ MASK #1 1

module1 WAIT simtime 1000 ns
module2 WAIT deltime 100 ns

module2 print "Triggering interrupt 1"
module2 Write 2 true
module2 WAIT simtime 800 ns

module1 print "Simtime should be 1000 ns"
module2 print "Simtime should be 800 ns"

Figure 1.2: An exemplary IFS script.

The script in Figure 1.2 starts with the definition of the interrupt handler for interrupt num-
ber 1. The body of the script starts with two print commands which cause module1 and mod-
ule2 to print the given string. Note that print, as well as for example WAIT, is a predefined
command which does not have to be implemented by the user, but which is handled by the

controller. The only user-defined module command in this example is the line "module2
Write 2 true". This command causes the method void SimpleIO::Write(list<string> parame-
ters) to be executed with parameters being a list containing the two strings "2" and "true" .

Note that although the order of the commands in the IFS script suggests that this order is
equal to the execution order of the commands it is not necessarily the case. The reason is the
underlying execution mechanism. All the IFS modules independently query for new com-
mands from the script and execute them until they are finished. Therefore each IFS module
can be thought as having its own "instruction pointer". Even if one IFS module executes a
command which takes a certain amount of time, other IFS modules can execute their com-
mands which may be located below that command and effectively "overtake" each other.
However, there is a possibility to synchronise the execution of commands. For detailed in-
formation on this topic refer to Chapter 0.

2 Simulation Semantics
This chapter gives an overview of the basic execution mechanism and provides references to
more detailed descriptions.

2.1 Execution of Module Commands

Each IFS module contains its own process with a command loop. When a module command
from a script is executed and the corresponding method from the IFS module is called, it is
done from the module's command loop via the controller. Each command loop permanently
queries the controller for new commands. The controller steps through the script and looks for
the next command of the requesting module and invokes the corresponding method. As a con-
sequence of this execution process, a module can only process one command at a time and a
wait statement within a command method will suspend the command loop, thereby prevent-
ing the module from fetching new commands. However, it is possible for a command to acti-
vate other internal processes within the module that work in parallel to the execution of suc-
cessive commands.

Another consequence of the underlying execution mechanism is that each IFS module has its
own 'instruction pointer', i.e. its own location in the script from where the next command is
fetched. For example in the script shown Figure 2.2 the order of the print statements de-
pends on the (simulated) execution time of Cmd1, Cmd3 and Cmd4: since moduleA will not exe-
cute its print statement until Cmd1 is finished, moduleB may execute its print statement be-
fore moduleA – namely when Cmd3 and Cmd4 take less time than Cmd1. Note that the only way
for a command to consume time is to call a wait(...) function of the SystemC kernel. Also
note that the order of execution of moduleA's and moduleB's first command is not determined,
but depends on the SystemC scheduler. For the example shown in Figure 2.2 this means that it
is not determined whether Cmd1 or Cmd3 is executed first. The same is true for commands fol-
lowing SYNC or WAIT commands.

 7

 IFS User's Guide

8

invoke

query query

ModuleBase

IFS-
ModuleB

ModuleBase

IFS-
ModuleA

void Cmd1();
void Cmd2();

Controller

DUT

Script

void Cmd3();
void Cmd4();

Signals

Figure 2.1: Dispatching and Execution of IFS modules

Commands where the target module is ALL or IFS (both are synonyms), such as the com-
mand: IFS IRQ MASK #1 1 in Figure 1.2, are actually executed by every module. In special
cases IFS can also address a module. Therefore it is advisable to place SYNC statements
around such commands in order to ensure a consistent environment for all modules, especially
when a certain setting is changed multiple times during the execution of the script. Otherwise
it may happen that some 'faster modules' activate the new settings and "some slower" modules
set them back because they arrive at the location of the first change of the settings.

moduleA Cmd1 1 2 3
moduleA print "Hello from moduleA"
moduleB Cmd3 XYZ
moduleB Cmd4
moduleB print "Hello from moduleB"
moduleA Cmd2

Figure 2.2: An exemplary IFS script.

2.2 Interrupts

Interrupts can be triggered by IFS modules via the method

void interruptOccurred (InterruptID occurredInterrupt)

If an enabled interrupt is triggered, all modules branch to the corresponding interrupt handler
in the IFS script (see Figure 1.2).

By means of a predefined module command it is possible to prevent that all modules branch
to the interrupt handler. Actually, the occurrence of an interrupt will not interrupt the execu-
tion of a module's command (except for WAIT simtime, WAIT deltime and SYNC), but cause
a module to fetch its next instruction from the interrupt handler. Since there is no implicit
SYNC at the beginning or the end of an interrupt handler, modules may enter the corresponding
interrupt handler at different times. It may happen that some modules are already finished
with the execution of the interrupt handler whereas other modules did not even begin with the
execution of the interrupt handler. When the end of an interrupt handler is reached (or a
#break statement), a module continues its execution at the point where it was interrupted.

Note that interrupts cannot be interrupted. For further details refer to Section 3.9.

2.3 Substitutions

Three kinds of substitutions are applied before a script line is actually executed: variable sub-
stitution, random expression substitution, and arithmetic expression substitution – in this se-
quence. Examples are shown in Figure 2.3. Variables can be either loop variables or global
variables. Their substitution is a simple string replacement; hence variables can hold any
string. Arithmetic expressions can only contain operations on numerical values. Boolean val-
ues in relational expressions are also handled as numbers, i.e. using 0 and 1. Finally, there are
two different kinds of random expressions: ranges and lists of arbitrary tokens. When combin-
ing these three types of expressions (variables, random expressions, and arithmetic expres-
sions) it is important to keep the substitution order in mind. For example, it is not possible to
use arithmetic expressions in ranges of random expressions due to the substitution order.
However, it would be possible to assign the arithmetic expression to a variable and then use
this variable as a range.

module1 ASSIGN myVariable = "Hello, world"
module1 print The value of myVariable is : #myVariable
module1 print The result of 3*2 is : $(3*2)
module1 print A random number between 1 and 10 : ${ 1:10 }

Figure 2.3: Substitutions in IFS script

3 IFS Command Script

This chapter describes the syntax and semantics of the IFS scripts. The script syntax of the
SystemC implementation of IFS is (should be) fully backwards compatible to the VHDL im-
plementation of IFS, but provides additional features such as:
 Random expressions

 Nested loops

 9

 IFS User's Guide

10

 Unified checking of expected values

 Arbitrary length of module names

 Static consistency checks

3.1 Notation

The syntax is described below, using a mixture of regular expressions and the EBNF (Ex-
tended Backus-Naur Form). This section will explain the semantics of the used notation.

For example, the expression

Script ::= <InterruptHandler_List> <Command_List> <InterruptHandler_List>

means: A script is a sequence of an interrupt handler list followed by a command list followed
by an interrupt handler list.

Symbols printed in italics are non-terminal symbols. The left hand side of a so called produc-
tion rule is always a single non-terminal symbol. Occurrences of non-terminal symbols on the
right hand side are always enclosed in angled brackets (<>), meaning they could be replaced
by the right hand side of the production rule that has this non-terminal symbol on its left hand
side. For example, the non-terminal <Command_List> could be replaced by the right hand
side of this production rule:

Command_List ::= (<Command> <Newline>)+

Parentheses are used to group sequences of commands. The plus operator means that the pre-
ceding symbol (in this case the sequence of <Command> <Newline>) can be repeated one to
n times. An asterisk (*) means that the preceding symbol can be repeated zero to n times.

Alternatives are expressed by a vertical bar (|). For example:

InterruptCommand ::= <IrqEnableClause> |
 <IrqPriorityClause>

So an InterruptCommand may be either an IrqEnableClause or an IrqPriorityClause.

In addition to non-terminal symbols there are so called terminal symbols. These terminal
symbols are the text that is actually written in the script. Terminal symbols are printed in
underlined courier font.

ALLCommand ::= SYNC (<ModuleName>* | ALL) |
 CHECK <ModuleCommand> <ReferenceValue>

Hence, an ALLCommand is either the word ‘SYNC’ followed by a (possibly empty) list of
module names or the word ‘ALL’, or it is the word ‘CHECK’ followed by a
ModuleCommand and a ReferenceValue.

3.2 Lexical Elements

The basic lexical elements of a command-script, i.e. the terminal symbols of its grammar, are
called ‘tokens’. Tokens are sequences of characters that are separated from each other by ei-
ther white-spaces (space, newline, or tab) or special non-alphabetic characters such as
":,()${}". Additional separation characters exist in expressions (see Chapter 3.11). Roughly
speaking, a token is a word surrounded by spaces or non-alphabetic characters or it is the non-
alphabetic character itself. If a token is required to contain characters, which normally would
lead to a separation into multiple tokens, it has to be surrounded by quotation marks. In order
to quote a quotation mark, it has to be preceded by a backslash.

Examples:

"Hello World!" One token
"Hello , World" One token
"Hello \" World" One token
Hello World! Two tokens
Hello World! Two tokens
Hello,World? Three tokens
Hello, World. Three tokens
Hello ,,World Four tokens

3.3 Pre-Processing

A pre-processing of the script is performed before it is actually parsed. During this phase
comments and empty lines are removed and include directives are resolved.

3.3.1 Comments

Comments are indicated by ‘--‘, i.e., two minuses. All characters in a line after the comment
delimiter are ignored. In expressions (see Chapter 3.11) a minus ‘-‘ is regarded as a sign and
not as the introduction of a comment.

3.3.2 Inclusion of other Scripts

If the first token of a line is either #inc or #include the line will be replaced by the contents
of the file whose path follows as the second token. If the path is relative, it is interpreted as
being relative to the location where the executable has been started.

3.4 Values

Table 3.1 shows the lexical structure of some basic tokens.

 11

 IFS User's Guide

12

Identifier ::= <Letter> (<Letter> | <Digit> | _)*

Note: The third alternative is the terminal ‘_’ (underscore).

Letter := a-z | A-Z

Digit := 0-9

PositiveInteger

Note: Follows the common notion of positive integer numbers. Leading zeros are allowed
and the zero-value1 itself is not allowed. The leading ‘+’ (plus) is optional.

NegativeInteger

Note: Follows the common notion of negative integers with a preceding ‘-‘ (minus). Leading
zeros are allowed and the zero-value2 itself is not allowed.

Integer ::= <NonNegativeInteger> | <NegativeInteger>

NonNegativeInteger ::= <PositiveInteger> | 0

Time ::= <IfsFloatingPointNumber> [fs | ps | ns | us | ms | s]

Table 3.1: Lexical structure of identifiers and numbers

3.5 General Script Structure

Table 3.2 shows the overall structure of an IFS script. Basically, it states that interrupt han-
dlers must be at the beginning or at the end of the script (or both), but not within the body (the
sequence of "normal" commands). An example can be found in Figure 1.2.

Some general remarks:
 Identifiers and keywords are handled case-sensitive.

 The non-terminals ending on the postfix ‘_List’ were not absolutely required, but were
introduced to increase comprehensibility.

1 This includes a zero with leading zeros.
2 This includes a zero with leading zeros.

 13

 Commands may contain a line break between any two tokens, but then require an extra
backslash as the last token of all but the last line in order to allow continuation of the
command.

Script ::= <InterruptHandler_List> <Command_List> <InterruptHandler_List>

Command_List ::= <Command>+

Command ::= <ModuleCommand> | (see 3.6)
 <ControlCommand> | (see 3.7)
 <ControlFlowCommand>

ControlFlowCommand ::= <LoopCommand> | (see 3.8.1)
 <IfCommand> | (see 0)
 <SwitchCommand> | (see 3.8.3)
 <CriticalCommand> (see 3.8.4)

Table 3.2: The structure of an IFS script

3.6 Module Commands

Table 3.3 shows the syntax of commands addressed to registered modules. There are three
kinds of module commands: user-defined commands, predefined commands, and legacy
commands. User-defined commands are the commands that are defined and registered in Sys-
temC-based IFS modules. Predefined commands are commands that every module under-
stands without defining them explicitly in the module. Legacy commands are more of a dif-
ferent way of handling a command in a script3 rather than a new style of commands.

ModuleCommand ::= <ModuleName> (<UserCommand> <Parameter>* |
 <PredefinedCommand> |
 <LegacyCommand>)

Note: These commands refer to a specific module.

LegacyCommand ::= <LegacyCommandName> <Parameter>*

Note: Legacy commands are commands of existing IFS modules in VHDL and need not be
registered.

3 These commands are intended to allow the reuse of existing (legacy) IFS modules written in VHDL. See also
chapter 1.

 IFS User's Guide

14

UserCommand

Note: A <UserCommand> shall be the name of a command that has been registered by the
module.

In general there are no restrictions in the choice of the name of the command. But if the com-
mand shall be named like the method in the IFS module it is of course subject to the C++
rules for valid identifiers.

ModuleName

Note: This is an identifier of a module. It has to be unique in its context to allow unambigu-
ous addressing. It is equal to the name of the instance of the referenced interface module.
Valid identifiers in SystemC may contain all characters except ‘.’ (dot), white-space4 or ‘*’
(asterisk).

Parameter ::= <UserDefinedParameter> |
 <VariableReference>

UserDefinedParameter

Note: An arbitrary sequence of characters (a string), which is further processed within the
command it belongs to.

VariableReference ::= #<Identifier>

Note: The Identifier has to be defined by a previous command to be valid. An invalid refer-
ence is replaced with an empty string and a warning is issued.

PredefinedCommand ::= <WaitClause> |
 <PrintClause> |
 <GetValue> | (see Fehler! Verweisquelle konnte
nicht gefunden werden.)
 <Title> | (see 3.6.1)
 <IRQM> | (see 3.6.2)
 <IFSM> | (see 3.6.3)
 <AssignCommand>

Table 3.3: The syntax of module commands

4 According to the man-page of the function isspace() of the C standard library.

3.6.1 TITLE

Each module contains five predefined signals which can be used to display string information
in a signal trace. With the command TITLE it is possible to set these signals. The <index>
indicates which signal the string is assigned to. The length of the string itself is limited to 100
characters. The names of the signals are “title< index >”. Legacy modules provide their own
title implementation, which might differ from this one.

Title ::= TITLE < index > <String>*

Note: The Strings may not contain a “ (quotation mark). If quotation marks shall be used
they have to be prefixed with the escape character. Multiple parameters are concatenated
with an additional space between each element. Zero string parameters clear the title signal.

Note: The index must be a number between 0 and 4.

Table 3.5: The syntax of the TITLE command

3.6.2 IRQ for Modules

By means of this command it is possible to disable specific interrupts for a module. The syn-
tax of this command is shown in Table 3.6.

<IRQM> ::= IRQ MASK <MaskSpecifier >

Note: The <MaskSpecifier> has got the same semantics as described in Section 3.9. By de-
fault, all IRQs are enabled.

Table 3.6: The syntax of the IRQ command for modules

-- After this command the IRQs one and four are disabled for the module
ifsmodule1 IRQ MASK 0110

Figure 3.2: Example for the usage of the IRQ command for modules

3.6.3 IFS_M

The command makes it possible to enable or to disable all interrupts for the module. Table 3.7
shows the syntax of this command.

 15

 IFS User's Guide

16

<IFSM> ::= IRQ IFS_M (1 | 0)

Note: ‘1’ means that all interrupts are enabled and ‘0’ means that all interrupts are disabled.

Table 3.7: The syntax of the IFS_M command

3.7 Controller Commands

Table 3.8 shows the syntax of commands concerning the controller. These commands are not
directed toward specific modules, but configure the IFS system or initiate more global activi-
ties such as printing output or causing a synchronisation of modules.

ControlCommand ::= (IFS | ALL) <ALLCommand>

Note: The keywords IFS and ALL are synonyms. The keyword IFS was introduced, because
the keyword ALL suggests that all modules will be affected by this command, which is not
necessarily the case.

Note: It is possible to use the name IFS as module name. In that case the <PrintClause> and
the <WaitClause> are regarded as module commands. The rest of the control commands are
interpreted as control commands. Commands, which are not control commands, are always
regarded as module commands.

ALLCommand ::= SYNC (<ModuleName>* | ALL) | (see 3.7.20)
 CHECK <ModuleCommand> <ReferenceValue> | (see 3.7.3)
 IRQ <InterruptCommand> |
 <PrintClause> | (see 3.7.4)
 <WaitClause> | (see 3.7.1)
 QUIT [MODULES] |
 REPORTLEVEL (INFO | DEBUG | ERROR | WARNING)[NO_IFS]
 | EXPRESSION_ACCURACY
 [<WordLength> [<IntegerWordLength>]] (3.11)

Note: QUIT will cause the simulation to end as soon as a module requests this command. The
optional parameter MODULES will shutdown the IFS modules only, allowing the DUT to con-
tinue.

Note: ALL WAIT is deprecated. Please use <ModuleName> WAIT followed by ALL SYNC ALL
instead. ALL WAIT cycles may cause unexpected behaviour for the case of multiple clock
domains.

Note: REPORTLEVEL will control the verbosity of the output messages. The option NO_IFS
(with an underscore between NO and IFS) will suppress IFS internal messages coming from
the controller.

ReferenceValue ::= <Parameter>

InterruptCommand ::= <IrqEnableClause> | (see 3.9.20)
 <IrqPriorityClause> (see 3.9.1)

Table 3.8: The syntax of controller commands

3.7.1 WAIT

Table 3.9 shows the syntax of a wait command. Such a command suspends the execution of
further commands for the addressed module. The two variants WAIT simtime and WAIT
deltime can be interrupted by an interrupt. Upon completion of the execution of the inter-
rupt, the interrupted wait command will be continued. A warning will be issued if the targeted
simulation time has been exceeded in the meantime.

The wait command can also be used as a control command (in the form ‘ALL <Wait-
Clause>’). This variant is deprecated (and a warning will be issued), but for compatibility
reasons it will still cause every module to wait upon reaching this command. Hence, the key-
word ALL in this case can be regarded as wildcard matching every module.

WaitClause ::= WAIT (cycles <PositiveInteger> |
 simtime <Time> | (see 3.3)
 deltime <Time>) (see 3.3)

Note: In order to use WAIT cycles, an clock event has to be registered. This variant will
wait the given number of clock cycles. When the WAIT cycles command is executed simul-
taneously with the occurrence of the event it is waiting for, it depends on the delta cycle in
which the command is executed and on the delta cycles in which the event was notified,
whether or not the event will be counted. For example, a WAIT cycles following a WAIT
simtime or WAIT deltime will count the first event, even if it occurs exactly at the resulting
wait time. This is because the preceding WAIT command will cause the module to fetch its
instruction in the first delta cycle of the given simulation time, whereas the signal update (for
example for the clock signal) will happen not until the next delta cycle. On the other hand, a
WAIT cycles following a WAIT cycles will not count the event that occurs at the same time
as the wait is executed, because this event was already consumed by the previous WAIT
command (and the command fetch of the second WAIT happens in a delta cycle after the oc-
currence of the event).

Note: WAIT simtime waits until the specified simulation time is reached. A warning is issued
if this time has already exceeded.

Note: WAIT deltime waits for the given duration.

Table 3.9: The syntax of a wait statement

 17

 IFS User's Guide

18

3.7.2 SYNC

A SYNC command will suspend each module that reaches this command and that is an element
of the given list. When all specified modules have reached the SYNC, execution is continued.
This ensures that all modules will execute their next commands simultaneously.

A SYNC command can be interrupted by an interrupt. The SYNC will be re-executed upon com-
pletion of the interrupt handler.

3.7.3 CHECK

A CHECK-command will call the given module command and compare the value returned from
this command with the specified reference. In order to be able to use a checked command call,
it is necessary to use the macro IFS_SET_CHECKVALUE(value) within the implementation of
the command. An example is shown in Figure 3.3.

-- call the Read command (with one parameter: 0x100) of module1 and
-- check if the result is 42
IFS CHECK module1 Read 0x100 42

Figure 3.3: Example for the usage of a checked command call.

An error is issued when no value to check has been set in the called command and a warning,
if the values do not match. Otherwise, a message stating the equality will be issued on the
‘info’-level.

3.7.4 Print

The syntax of the print command is given in Table 3.10. This command can be used for user-
defined output.

PrintClause ::= print <Parameter>*

Note: It is advisable to put the parameters in quotation marks. Otherwise the spaces will be
lost.

Table 3.10: The syntax of the print command

3.8 Control Flow Commands

3.8.1 #loop

Figure 3.4 shows an example for the usage of the #loop command. In this example, the outer
loop defines a loop variable called outerLoopVariable. The outer loop will make 3 itera-
tions with #outerLoopVariable running from 0 to 2. The inner loop will make 5 iterations
per iteration of the outer loop. The expression #innerVar will be successively replaced by the
values 3, 2, 1, 0, -1 and #someSymbol will be replaced by "Hello World", 1234, asdf,
“Hello World” and 1234.

#loop outerLoopVariable 3
 module1 print "outerLoopVariable = " #outerLoopVariable
 #loop innerVar (3, -1) someSymbol var { "Hello World" 1234 asdf }
 module1 print "innerVar = " #innerVar ", someSymbol = " #someSymbol
 #eol
#eol

Figure 3.4: Example for the usage of the #loop command

Table 3.11 shows the syntax of the #loop statement. Note, that
 Loops can be nested to any depth.

 Loop variable names in nested loops must be unique. Otherwise the inner variable names
will hide the outer variable names.

 There is no implicit SYNC in a loop, which means that different modules may be in different
iterations of the same loop. A warning will be issued if there is a loop that contains com-
mands for more than one module, but does not contain SYNC.

LoopCommand ::= #loop <IterationDefinition> [<EnumerationDefinition>] <Newline>
 <Command_List>
 #eol

Note: Variables defined in a loop command can be referenced within the enclosed
<Command_List> to obtain their actual value.

Note: The identifiers of the iteration variable and the enumeration variable must be different.

IterationDefinition ::= [<Identifier>] (<NumberOfIterations> |
 (<IntervalStart> , <IntervalEnd>))

Note: If the <Identifier> for the variable is omitted, the name i is assumed. In that case ref-
erencing occurs via #i.

If a <NumberOfIterations> is provided, the value of the variable iterates from zero to the
<NumberOfIterations> minus one, else from <IntervalStart> to <IntervalEnd>.

 19

 IFS User's Guide

20

EnumerationDefinition ::= [<Identifier>] var { <EnumerationValue>* }

Note: If the Identifier for the variable is omitted, the name var is assumed. In that case refer-
encing occurs via #var.

Note: The Identifier must not be named var.

Note: An empty sequence of <EnumerationValue> will issue a runtime warning.

The value of the variable will iterate (from left to right) through the values provided in the
enumeration <EnumerationValue>+ and starts again with the first value after reaching the
last value.

Table 3.11: The syntax of the #loop command

3.8.2 #if

Figure 3.5 shows an example for the usage of an #if command. The #if command works as
in other programming languages such as C/C++. Depending on the condition either the 'then'-
part or the optional ‘elseif’-part/'else'-part is executed. A condition is interpreted as false if it
is equal to the string literal '0' (zero) and true otherwise.

#if 1
 module1 print "This is always true"
#endif

#if 0
 module1 print "This is wrong."
#else
 module1 print "This is OK."
#endif

module1 ASSIGN cond = 3

#if $(#cond)
 module1 print "This is OK."
#endif
#if $(#cond-5)
 module1 print "This is OK, too."
#endif

#if $(#cond-3)
 module1 print "This is wrong."
#elseif $(#cond*0)
 module1 print "This is also wrong."
#else
 module1 print "This is OK."
#endif

Figure 3.5: Example for the usage of the #if command

Table 3.12 shows the syntax of the #if command. Note, that it is legal to use expressions
(3.11) in the condition, to have empty 'then'- ‘elseif-’, and 'else'-part, and to nest #if com-
mands.

IfCommand ::= #if <Condition> <Newline>
 [<ThenPart>]
 [<ElseifPart>]
 [<ElsePart>]
 #endif

Note: <Condition> can be any token. A 0 is interpreted as false, everything else as true.

ThenPart ::= <Command_List>

ElseifPart ::= #elseif <Condition> <Newline>
 <Command_List>

ElsePart ::= #else <Newline>
 <Command_List>

Table 3.12: The syntax of the #if command

3.8.3 #switch

Figure 3.6 shows an example for the usage of a #switch command. The #switch command
works as in other programming languages such as C/C++. Depending on the expression fol-
lowing the keyword #switch, the first matching #case block will be executed. A #case block
matches if the string following the #case statement equals the string following the #switch
statement. The #cases are checked in their order of appearance in the script, i.e., top to bot-
tom. A #case statement without an additional string always matches and therefore can be
used as a 'default' case.

 21

 IFS User's Guide

22

-- a loop with 6 iterations:
-- #i=0 and #var = symbol1
-- #i=1 and #var = 8
-- #i=2 and #var = "X Y"
-- #i=3 and #var = qwer
-- #i=4 and #var = symbol1
-- #i=5 and #var = 8
#loop 6 var { symbol1 $(2*4) "X Y" qwer }

 #switch #var

 #case symbol1
 module1 print "1. iteration " #i
 #case 8
 module1 print "2. iteration " #i
 #case "X Y"
 module1 print "3. iteration " #i
 #case

 #if $(#i-3)

 #switch #i

 #case 4
 module1 print "5. iteration " #i #var
 #case 5
 module1 print "6. iteration " #i #var
 #endswitch

 #else
 module1 print "4. iteration " #i #var
 #endif

 #endswitch
#eol

Figure 3.6: Example for the usage of the #switch command

Table 3.13 shows the syntax of the #switch command. Note, that it is legal to use expressions
(3.11) as switch value, to have empty case blocks, and to nest #switch commands.

SwitchCommand ::= #switch <SwitchValue> <Newline>
 <CaseBlock>*
 #endswitch

Note: <SwitchValue> can be any token.

Note: Case blocks do not 'fall through' as in C/C++. Instead, the command following the
#endswitch is executed when the end of a case block is reached.

CaseBlock ::= #case [<CaseLabel>] <Newline>
 [<CommandList>]

Note: <CaseLabel> can be any token. The <CaseLabel> is compared with the
<SwitchValue> of the surrounding <SwitchCommand>. If they match, the <CaseBlock> is
executed. A missing <CaseLabel> always matches. The use of variables and expressions in
<CaseLabel> is also possible.

Table 3.13: The syntax of the #switch command

3.8.4 #critical

Sometimes it is desirable that commands are not evaluated by any module. For this purpose
the control flow command #critical is introduced. By means of this command it is possible to
exclude modules from code parts in the script. Or in other words, the modules which are ex-
cluded never reach the commands in the critical section. Figure 3.7 shows an example.

--Only module2 can reach the print command
#critical EXCLUDED module1
 ALL print "condition"
#endcritical

module1 print module1
module2 print module2
IFS SYNC ALL

- Only module1 can reach the print command
#critical INCLUDED module1
 ALL print "condition"
#endcritical

module1 print module1
module2 print module2
IFS SYNC ALL
IFS QUIT

Figure 3.7: Example of the command #critical

The Table 3.14 shows the syntax of the command critical.

 23

 IFS User's Guide

24

CriticalCommand ::= #critical (INCLUDED | EXCLUDED) <ModuleName>+ <Newline>
 [<CommandList>]
 #endcritical <Newline>

Note: INCLUDED means that all modules (listed behind the INCLUDED) can reach the
CommandList in the critical section. EXCLUDED means that all modules (listed behind the
EXCLUDED) can not reach the CommandList in the critical section.

Table 3.14: The syntax of the #critical command

3.9 Interrupts

An occurred interrupt will trigger the execution of the associated interrupt-handler in the cur-
rently executed script. The syntax of interrupt handlers is shown in Table 3.15 and an exam-
ple can be found in Figure 1.2.

Further interrupts cannot interrupt the execution of an interrupt handler. Hence, nesting inter-
rupts is not possible. Further interrupts are stored and handled when the active interrupt-
handler is left. The scheme for selecting the next interrupt is described in Chapter 2.2.

User-defined commands cannot be interrupted, only SYNC and WAIT can. When a SYNC com-
mand is interrupted, it will be finished after the execution of the interrupt handler. When an
interrupted WAIT is continued, it will (a) wait until the simulation time it would have waited
for without an interrupt (if this point in time is not yet reached) or (b) continue immediately, if
the time is already exceeded.

Note: There is no implicit SYNC in an interrupt handler. So, in general, the execution of the
interrupt handler will start at different simulation times for different modules, unless there is
an explicit SYNC at the beginning.

InterruptHandler_List ::= (<InterruptHandler> <Newline>)*

InterruptHandler ::=
 #isr <InterruptID> <Newline> <InterruptHandlerCommand_List> #end

InterruptID ::= <NonNegativeInteger>

InterruptHandlerCommand_List ::= (<InterruptHandlerCommand> <Newline>)*

InterruptHandlerCommand ::= <Command> |
 #break (see Chapter 2.2)

Table 3.15: The syntax of interrupt handlers

3.9.1 Priorities

The syntax for setting interrupt priorities is shown Table 3.16; an example is shown in Figure
3.8. In this example, the priority of interrupt 1 is set to 3 and is therefore higher than the prior-
ity for interrupt 2, which is -5.

IFS IRQ PRIO 1 3
IFS IRQ PRIO 2 -5

Figure 3.8: Setting priorities of interrupts

Multiple pending interrupts are handled sequentially according to their priority. If two pend-
ing interrupts have the same priority, the interrupts are handled in their order of occurrence. If
two pending interrupts have the same priority and occur simultaneously, the execution order
of the corresponding interrupt handlers is undefined. If no priority was assigned to an inter-
rupt, the priority defaults to 0.

IrqPriorityClause ::= PRIO <InterruptID> <InterruptPriority>

InterruptPriority ::= <Integer>

Note: A lower number indicates a lower priority. The default value of a priority is 0.

Table 3.16: The syntax of priorities for interrupts.

3.9.2 Masking

The syntax for interrupt masking, i.e. enabling and disabling interrupts, is shown in Table
3.17; an example is shown in Figure 1.2.

When an interrupt is disabled, interrupt requests will be ignored completely, i.e., they won't
be stored until the interrupt is enabled.

 25

 IFS User's Guide

26

Attention: Masking an already pending interrupt will not remove it from the list of pending
interrupts. As a result it is possible that even after masking an interrupt its handler gets exe-
cuted.

IrqEnableClause ::= MASK <IrqMaskSpecifier>

Note: By default, all interrupts are enabled.

IrqMaskSpecifier ::= b#(0|1)+ |
 d#(0-9)+ |
 h#(0-9 | a-f | A-F)+ |
 (.|0|1)+ |
 #<InterruptID> (0|1)

Note: The first alternative uses a string of bits (1s and 0s), where each bit indicates whether
the interrupt with the ID identical to the index5 of this bit is enabled (1) or disabled (0). If the
number of letters in the specification-string is smaller than the number of available inter-
rupts, the masking of interrupts who have an ID equal to or higher than this number remains
unchanged. The second and third variant is similar to the first one, but instead of a binary
representation, the number is specified in decimal or hexadecimal notation. The fourth vari-
ant works identical to the first one, but also allows a dot indicating interrupts whose masking
remains unchanged. The fifth approach explicitly names the ID of an interrupt and specifies
whether it is enabled (1) or disabled (0).

Note: The bit vectors used must be a single token, i.e., they must not contain spaces.

Table 3.17: The syntax for masking interrupts

3.9.3 #break

The #break command must only occur within an interrupt handler and will pass control back
to the point executed prior to the interrupt, just like #end. The next occurrence of this inter-
rupt, however, causes the execution to resume with the statement following the #break state-
ment, which caused leaving the handler last time.

3.10 Randomisation

A <RandomExpression> can occur at each location within the script in place of a normal to-
ken. This expression will be evaluated once each time a line is processed. The result of the
evaluation will replace the <RandomExpression>. Note that random expressions can be
nested. An example is shown in Figure 3.9; the syntax of random expressions is shown in
Table 3.18.

5 The index is counted from right to left and begins with one.

The randomisation is based on the randomisation features of the SystemC Verification Li-
brary (SCV). Hence, the SCV seed functions can be used to control the randomisation in or-
der to create reproducible tests. It should be noted that the random values generated can differ
between different platforms. Hence, test sequences on a 32bit machine can (and often do)
differ from those obtained on a 64bit machine.

My_module1 ${ Command1, Command2 }
My_module1 Command1 ${ ${ X 10%, Y 9%, Z } 90%, Q }
My_module1 ${ Command1, Command2 } ${ X 90%, Y } 42
My_module1 Command2 ${ -8 :-3 75%, "Hello World" } 23

Figure 3.9: Exemplary usage of randomisation

RandomExpression ::= $[!]{ <RandomParameter_List> }

Note: The meaning of the optional symbol ! (exclamation mark) is described in Section
3.10.1.

Note: A RandomExpression is evaluated by the controller and replaced by the result.

Note: If no parameter is provided, a warning is issued and the expression will be replaced by
an empty string.

RandomParameter_List ::= <RandomParameter> (, <RandomParameter>)*

RandomParameter ::= <RandomValue> [<Probability>]

Note: If the Probability is omitted, the remaining probability is equally distributed onto the
parameters with omitted probabilities. Since probabilities are handled as integers, any discre-
tisation will add the value in decimal places to the probability of the first parameter with
omitted probability.

Example:
${ red 10% , blue , lightblack }
equals
${ red 10% , blue 45% , lightblack 45% }

Example:
${ red 27% , blue , darkwhite, mauve }
equals
${ red 27% , blue 25% , darkwhite 24% , mauve 24% }

Note: If all probabilities are specified, but their sum is not equal to 100%, an error is issued.

 27

 IFS User's Guide

28

RandomValue ::= <Token> | <Range>

Note: For an explanation of Token see the Section 2.2.

Range ::= <Integer> : <Integer>

Example:
-20:14

Probability ::= 0-100 %

Example:
42%

Table3.18: The syntax of random expressions

3.10.1 Randomisation without Repetition

Sometimes it is required that the values of a randomisation must not be repeated. For this case
the <RandomExpression> can be extended by the symbol ‘!’ (exclamation mark). If this
symbol occurs, no <RandomParameter> will be repeated until all values have occurred once.
Note: Ranges and nested randomizations are regarded as one parameter.

When all parameters have occurred once, the randomisation restarts. A <RandomExpression>
with a probability of zero will never be selected.

-- We have the following randomization
#loop 6
 module print $!{A 10% , ${AA ,BB}, C 10%}
#eol

--The output could be

-- One of the values is selected
[module]: AA

-- AA and BB can’t occur now, since the parameter ${AA,BB} has been used once
[module]: A

-- A, AA and BB can’t occur
[module]: C

-- All three parameters have occurred. Now all parameters are available
[module]: BB

-- The second parameter has occurred, hence only C and A are possible
[module]: C

-- Only A is possible
[module]: A

Figure 3.10: Exemplary usage of randomization without repetition

It is important to note that there is a difference between module commands and common com-
mands. When a module command is executed, the selected <RandomParameter> (for the
randomizations without repetition) is only stored for that module. In other words, only the
requesting module has an effect of the randomization without repetition.

But, when a control-flow command or a control command is executed, the selected parame-
ters are stored for all modules. Hence, all modules have an effect of the randomization with-
out repetition.

Furthermore, one exception is to mention. If a particular module command (see Figure 3.11)
is requested, the parameters of all randomizations in this line are stored for all modules.

$!{module1, module2, module3} print “TEST”

Figure 3.11: Randomization without repetition

3.11 Expressions

An <Expression> can occur at each location within the script in place of a normal token. This
expression will be evaluated once each time a line is processed (after the random expression
evaluation and after the variable substitution). The result of the evaluation will replace the
<Expression>. Note, that expressions cannot be nested. An example is shown in Figure 3.12;
the syntax of random expressions is shown in Table 3.19.

Expressions can be arithmetic expressions, bit operations, or logic (Boolean) expressions. The
accuracy of the expression evaluation can be determined by the command
EXPRESSION_ACCURACY.

For Boolean expressions the number 0 means false and anything else true. If the result of such
an expression is true, it will be substituted by 1 and by 0 otherwise.

 29

 IFS User's Guide

30

module1 print $(1)
module1 print $(h#ff)
module1 print $(1+1)
module1 print $(1)
module1 print $(3*2)
module1 print "The value is : " $(3*2) A B C
module1 print "The value is : " $(3*3) " with text behind the expression."
module1 print "The value is : " $(3*2) " and a second value is: " $(42)
module1 print $(1+2*3) $((1+2)*2) $((((+1)*2+3)*(-11--21)))
module1 print The previous line should be: 7 6 50
module1 print $(b#00100)
module1 print $(b#00100)
module1 print $(h#10/b#010) " (16/2 = 8)"
module1 print $(h#ff) $(h#0ff) "(255 255)"
module1 print $(h#100/+2+-b#10) "(256/2+(-2)=126)"
module1 print $(h#f) $(h#ff) $(h#fff) $(b#1) $(b#11) $(b#111) "(15 255 4095
1 3 7)"
IFS EXPRESSION_ACCURACY 8
module1 print $(-1) $(--1) $(---1) $(----1) "(255 1 255 1)"
module1 print $(-1) $(1/2) $(257) "(255 0 1)"
module1 print $(60/3/5) "(4)"
IFS EXPRESSION_ACCURACY 8 4
module1 print $(1/2) $(15+15/8/2) "(0.5 15.9375)"
IFS EXPRESSION_ACCURACY
module1 print $(-1) $(1/2) "(18446744073709551615 0)"

relational operators
module1 print $(5<10) (1)
module1 print $(10<5) (0)
module1 print $(1<0+2) (1)
module1 print $(3+4*5 < 22*1) (0)
module1 print $(3+4*5 == 22+1) (1)
module1 print $(3+4*5 != 20+22+1) (1)
module1 print $((1+4>3)*5) (5)
module1 print $((1+4>3)*5-(2>1)) (4)
module1 print $((1+4>3)*5-2>1) (1)

Boolean negation
module1 print $(!1) (0)
module1 print $(!100) (0)
module1 print $(!0) (1)
module1 print $(!(1-1)) (1)
module1 print $(!(1*1)) (0)

bit-wise negation
module1 print $(~0) ($(-1))
module1 print $(~1) ($(-2))

Boolean operators
module1 print $(1 && 1) (1)
module1 print $(0 && 1) (0)

module1 print $(1 || 0) (1)
module1 print $(0 || 0) (0)

module1 print $(1+3 || 42) (1)
module1 print $(3-(2+1) || 256*0) (0)

bit operations
module1 print $(1<<2) (4)
module1 print $(4>>2) (1)

module1 print $(2|1) (3)
module1 print $(2&1) (0)

conversion
IFS EXPRESSION_ACCURACY 8

module1 print $(1<<2)'b# (b#00000100)
module1 print $(1<<2)'h# (h#04)

Figure 3.12 : Exemplary usage of expressions

Expression ::= $(<ExpressionContent>)[’h#|’b#]

Note: An Expression is evaluated by the controller and replaced by the result.

Note: After the evaluation of the expression, it is possible to convert the result in a binary or
hex representation. This can be accomplished by using the optional terminals ’h# and ’b#.

ExpressionContent ::= <LogicalAndExpression> (|| <LogicalAndExpression>)* (or)

LogicalAndExpression ::= <RelationalExpression> (&& <RelationalExpression>)* (and)

RelationalExpression ::= <AdditiveExpression> (
 >= <AdditiveExpression> | (greater equal)
 <= <AdditiveExpression> | (lower equal)
 < <AdditiveExpression> | (lower)
 > <AdditiveExpression> | (greater)
 == <AdditiveExpression> | (equal)
 != <AdditiveExpression> (unequal)
)*

AdditiveExpression ::= MultiplicativeExpression (+ MultiplicativeExpression |
 & MultiplicativeExpression |
 | MultiplicativeExpression |
 << MultiplicativeExpression |
 >> MultiplicativeExpression |
 - MultiplicativeExpression)*

MultiplicativeExpression ::= Factor (* Factor | / Factor)*

Factor ::= IfsNumber |
 (Expression) |
 - Factor | (unary -)

 31

 IFS User's Guide

32

 + Factor | (unary +)
 ! Factor | (Boolean negation)
 ~ Factor | (bit-wise negation)

IfsNumber ::= (+ | -) (
 b#(0|1)+ |
 h#(0-9 | a-f | A-F)+ |
 [d#](0-9)+
)

IfsFloatingPointNumber::=[(+ | -)](
 b#(0|1)+ [. (0|1)+] |
 h#(0-9 | a-f | A-F)+ [. (0-9 | a-f | A-F)+] |
 [d#](0-9)+ [. (0-9) +]
)

Note: The intermediate rules are to ensure the correct precedence of the operators, that is
from highest to lowest priority: unary - + ! ~, * /, - +,<<,>>,&,|, >= <= < > == !=, &&, ||.

Note: The underlying data type of the expressions is sc_ufix. The accuracy of (intermedi-
ate) expressions during the evaluation can be controlled by the controller command IFS
EXPRESSION_ACCURACY [<WordLength> [<IntegerWordLength>]]. The two parameters
<WordLength> and <IntegerWordLength>, which must be <NonNegativeInteger>, are
passed as arguments to the underlying sc_ufix. If the <IntegerWordLength> is omitted, it
will be set to <WordLength>, i.e., the number of digits behind the binary point is zero in this
case. If both numbers are omitted, the accuracy is set to the default accuracy (64, 64).

Note: In Boolean expressions a 0 is interpreted as false and anything else as true.

Note: The IfsFloatingPointNumber is not used in the expressions. This string representation
is used in the IFS Utilities (see 2.3) to convert a string into a double.

Table 3.19: The syntax of expressions

3.12 Variables

The controller holds a set of global variables. These variables can be referenced anywhere in
the script (e.g. in expressions, as parameters to commands, as loop index boundaries, etc.) by
preceding the variable name with a '#'. In this case the token with the variable reference is
replaced by the variable's value. In order to create such a variable (or to set it to different
value) the predefined module command ASSIGN is used. An example is shown in Figure 3.13
the syntax of random expressions is shown in Table 3.19.

Note that ASSIGN is a predefined module command and not a controller command. The reason
for this is the fact that controller commands are executed by every module. Hence, an assign-
ment would be executed multiple times if it was realised as controller command. Especially
for assignments like x=x+1 this would result in unexpected results. The advantage of making
ASSIGN a module command is that assignments are executed only once.

module1 ASSIGN testVar = 42
module1 ASSIGN testVar2 = $(1+1)
module1 ASSIGN testVar3 = "Hello, world"

module1 print #testVar " (42)"
module1 print #testVar2 " (2)"
module1 print #testVar3 " (Hello, world)"

-- variable re-assignment
module1 ASSIGN testVar2 = $(2*4)
ALL SYNC ALL
module2 print #testVar2 " (8)"

-- shadowing of global variables by loop variables
#loop testVar2 2
 module1 print #testVar " (42)"
 module1 print #testVar2
 module1 print #testVar3 " (Hello, world)"
#eol

module1 ASSIGN someVar = h#ff
ALL SYNC ALL
module2 print $(#someVar +1) "(256)"
module2 print $(2+#someVar) "(257)"

-- Use an expression as loop range
#loop ($(#testVar2+5), $(#testVar2+4))
 module2 print #i
#eol

Figure 3.13: Exemplary usage of variables

 33

 IFS User's Guide

34

AssignCommand ::= ASSIGN <VariableName> = <Value>

Note: The ASSIGN command assigns <Value> to a variable called <VariableName>. Value
can be any kind of token. <VariableName> can be any name (without the leading '#'), that is
unambiguous when preceded with the '#'. For example 'loop' is not a valid variable name,
because a reference to this variable ('#loop') would be a reserved keyword. Variables are
created on demand, i.e., they need not be declared.

Note: If unknown variables or an empty sequence of <EnumerationValue> are referenced,
an error will be issued.

Note: The AssignCommand can also be used to initialise arrays. The syntax of arrays is de-
scribed in the Section 3.13.

Note: It is forbidden to use the characters ‘[‘ and ‘]’ in the <VariableName>.

Table 3.20: The syntax of variables

3.13 Arrays

In many cases it is desirable to use arrays. For this reason the concept of the variables is ex-
tended by arrays. Figure 3.14 shows examples of their usage. Similar to variables, the control-
ler holds a list of global arrays. The elements of the arrays can be referenced anywhere in the
script. The access to an array is introduced by a ‘#’, followed by the variable name and
‘[<NonNegativeInteger>]’. Between the brackets no expressions or randomisations are al-
lowed, only variables are possible. If you need expressions or randomisations you have to
evaluate them in an extra command line and store the result in a variable. The variable can
then be used in the array expression. The first element of an array has the index 0 (zero). If the
access is not within the bounds of the array, an error will be issued.

The procedure of the replacement is similar to that of variable replacement. An array is initial-
ised by the assign command. The syntax of the assign command for arrays is described in
Table 3.21.

-- The first variation to initialise an array
module1 ASSIGN test = a b c

-- Access to the array content
module1 print "Array test[0]: " #test[0]
module1 print "Array test[1]: " #test[1]
module1 print "Array test[2]: " #test[2]

-- Only a variable is possible between the brackets.
#loop i 3
 module1 print "loop: " #test[#i]
#eol

Quick Reference

 35

-- Assignment of values to the array
module1 ASSIGN test[0] = aa
module1 ASSIGN test[1] = bb
module1 ASSIGN test[2] = cc

#loop i 3
 module1 print "loop: " #test[#i]
#eol

-- The second variation to initialise an array
module1 ASSIGN [10]myArray = "All The Same!"
#loop 10
 module1 print "Content: " #myArray[#i]
#eol

Figure 3.14: Exemplary usage of arrays

AssignCommand ::= ASSIGN ((<VariableName> = <Value><Value>+) |
 ([<NonNegativeInteger>]<VariableName> = <Value>) |
 (<VariableName>[<NonNegativeInteger>] = <Value>))

Note: There are two possibilities to initialise an array. The first one defines a variable name
with an initialisation list. The values behind the ‘=’ are the initialisation list. The second one
is to initialise all elements of an array to the same value. The size of the array is specified in
front of the variable name (between the brackets). All elements of the array are initialised to
the value standing on the right hand side of the ‘=’.

Note: It is also possible to change the value of a specific element of an array. Behind the
variable name the index (a <NonNegativeInteger>) is specified between brackets. On the
right hand side of the ‘=’ is the new value. If the index is not valid, an error will be issued.

Table 3.21: The syntax of arrays

 IFS User's Guide

Quick Reference

Commands

-- <ModuleName> <Command> <Parameter>*
clk SetPeriod 100 ns

-- pre-defined module commands:
-- ASSIGN, print, WAIT
clk ASSIGN x = 42
clk print "Hello, World!"
clk WAIT simtime 200 ns

Variables

m ASSIGN testVar = 42
m ASSIGN testVar2 = $(1+1)
m ASSIGN testVar3 = Symbol
m ASSIGN testVar3 = "Hello, world"
m ASSIGN testVar4 = a b c
m ASSIGN [10]testVar4 = a
m ASSIGN testVar4[5] = b
m print #testVar #testVar2 #testVar3

Expressions

-- (256/2+(-2)=126)
m print $(h#100/+2+-b#10)
-- relational/Boolean expression
m print $(2*5+#x < 100 && #y >= 3)
-- binary/hex conversion
m print $(1 +1)’b#
m print $(1 +1)’h#

Random Expressions

m print ${ "Hello, world!", Something }
m print ${ "A B C" 30%, ${ x, y }, Z 30% }
${m1, m2 95%, m3} print "It's me."
m print ${ -3:-6 20%, ${ -10:-7, X}, Z}

Control Flow

#if $(#i == 3)
 m print True

#elseif $(#i == 4)

 m print True
#else
 m print False
#endif

#switch #var
 #case symbol
 m print A
 #case 8
 m print B
 #case "X Y"
 m print C
 #case
 m print Default
#endswitch

#loop myVar 3
 m print myVar = #myVar
#eol

#loop myVar (4, -2)
 m print "myVar =" #myVar
#eol

#loop myVar (-3, 3) var { red green blue }
 m print myVar = #myVar , var = #var
#eol

#loop 3 X var { red green blue }
 m print i = #i , X = #X
#eol

#critical INCLUDED m
 m print True
#endcritical

#critical EXCLUDED m
 m print True
#endcritical

Controller Commands

-- IFS and ALL are synonyms
-- sync all modules
ALL SYNC ALL
-- sync modules m1 and m2
ALL SYNC m1 m2

-- compare IFS_SET_CHECKVALUE(..) with Ref
IFS CHECK <ModuleCommand> <ReferenceValue>
-- check if m1 cmd1 'returns' 100
IFS CHECK m1 cmd1 100

-- enable IRQ 3, disable 2 and 1
IFS IRQ MASK b#100
-- disable IRQ 3
IFS IRQ MASK #3 0

-- set PRIO of IRQ 2 to 5
IFS IRQ PRIO 2 5

IFS print Hello, World!

-- stop simulation/shut down modules
IFS QUIT [MODULES]

-- set amount of displayed messages
IFS REPORTLEVEL (INFO | DEBUG | ERROR |
WARNING)

-- set evaluation accuracy
IFS EXPRESSION_ACCURACY [<WL> [<IWL>]]

IFS Modules

-- wait for 20*IFS_REGISTER_CLOCK_EVENT(X)
m WAIT cycles 20
-- wait until simulation time is 100 ns
m WAIT simtime 100 ns
-- wait for 10 ns
m WAIT deltime 10 ns

-- TITLE command
m TITLE 0 “My Title”
-- IRQ commands
m IRQ MASK 0110
m IRQ IFS_M 1

36

	1 Getting Started: Simulation with IFS
	1.1 What Is IFS?
	1.2 IFS script

	2 Simulation Semantics
	2.1 Execution of Module Commands
	2.2 Interrupts
	2.3 Substitutions

	3 IFS Command Script
	3.1 Notation
	3.2 Lexical Elements
	3.3 Pre-Processing
	3.3.1 Comments
	3.3.2 Inclusion of other Scripts

	3.4 Values
	3.5 General Script Structure
	3.6 Module Commands
	3.6.1 TITLE
	3.6.2 IRQ for Modules
	3.6.3 IFS_M

	3.7 Controller Commands
	3.7.1 WAIT
	3.7.2 SYNC
	3.7.3 CHECK
	3.7.4 Print

	3.8 Control Flow Commands
	3.8.1 #loop
	3.8.2 #if
	3.8.3 #switch
	3.8.4 #critical

	3.9 Interrupts
	3.9.1 Priorities
	3.9.2 Masking
	3.9.3 #break

	3.10 Randomisation
	3.10.1 Randomisation without Repetition

	3.11 Expressions
	3.12 Variables
	3.13 Arrays

