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Heuristic scheduling concepts for TTCAN networks  

A. Albert, R.Hugel 
 
Time-triggered CAN (TTCAN) combines the advantages of event- and time-triggered 
communication in order to fulfil the requirements of distributed real-time systems. Of 
crucial importance is thereby the generation of the communication schedule which 
should consider the demands of the time-triggered system on the one hand, while 
maintaining a good real-time performance for the event-triggered part of the system 
on the other. This paper deals with heuristic scheduling concepts for TTCAN networks 
and carries out a comparison by means of the above mentioned criteria. The 
suitability of the concepts is evaluated by laboratory measurements. The results 
enable the derivation of important clues in order to schedule TTCAN networks.  
 
1 Introduction 

It is quite evident that networks with time-
triggered operation modes will play a 
major role in future automotive systems. 
One of such protocols is TTCAN, which 
combines the advantages of event- and 
time-triggered networks [1].  
Generally, the main advantages of time-
triggered networks are their quasi-
deterministic behavior and the possibility 
to easily realize fault-tolerant systems. 
One of the drawbacks is the restrictive 
design process, since the communication 
structure has to be defined in advance. 
The procedure which determines the time 
slots for the respective messages is called 
scheduling. The main targets of the 
scheduling are to consider the demands of 
the time-triggered system on the one 
hand, while maintaining a good real-time 
performance for the event-triggered part of 
the system on the other. 
This paper presents some heuristic 
scheduling concepts for TTCAN networks 
and carries out a comparison by means of 
the above mentioned criteria.  
 
The paper is organized as follows: 
Section 2 introduces into the scheduling 
problem and summarizes the typical 
requirements of distributed real-time 
systems. Furthermore, the section 
highlights the connection between these 
requirements and the restrictions due to 
the protocol as well as implementation 
specific limitations.  
Section 3 compares some heuristic 
scheduling concepts for TTCAN networks 
on the basis of a meaningful example 

close to a real world application. The 
demands of the time-triggered part of the 
communication is essential and thus 
fulfilled by all approaches. Therefore the 
different approaches are evaluated by the 
ability of the system to react to 
asynchronous events. 
Section 4 describes the test scenario and 
the measurement procedure for the 
evaluation of the system’s real-time 
response. The used method yields the 
average latency response time and the 
jitter when the system is reacting to an 
asynchronous external event.  
Afterwards, section 5 presents results for 
the different scheduling concepts. Further, 
the results are discussed. The paper ends 
with a summary in section 6.  
 
2 TTCAN scheduling problem  
 
Within a time-triggered framework the 
communication structure is defined in 
advance and generally not modified during 
operation. The corresponding procedure 
which determines the time slots for the 
corresponding messages is called 
scheduling. At start-up every 
communication controller is initialized with 
its own schedule. During operation merely 
the data of the time-triggered messages 
may be modified.  
In general the scheduling problem requires 
the solution of an optimization problem, 
whereby the quality of the solution will 
mainly depend on an appropriate choice of 
the performance criterion and the 
considered conditions. Elementary 
requirements of the scheduling are 
concerned with the period times of 
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messages and relations between 
messages, like precedence and exclusion 
constraints as well as release times and 
deadlines. Some more sophisticated 
criteria will consider, for instance, the 
impacts of latencies on the functional 
software, the possibility to easily modify 
the schedule without side effects or the 
efficient use of resources.  
It is not within the scope of this paper to 
intensively study the scheduling problem. 
Thus for simplicity reason we will take 
here into account only the required period 
times of the messages. Further we will not 
present any formal methods for the 
scheduling, but rather show the impacts of 
heuristic scheduling approaches onto the 
real-time performance.  
 
Lastly, it should be mentioned that the 
possibilities of the scheduling depend also 
on constraints caused by 
• protocol,  
• implementation specifics, and 
• physical limitations.  
These are for instance (example values 
are taken from the Bosch TTCAN 
evaluation chip specification):  
• number of basic cycles (in power of 

two, max 64) 
• number of network time units per basic 

cycle (2^16) 
• repetition period of messages related 

to multiples in powers of two 
• time marks defined for the first basic 

cycle can not be changed in 
subsequent cycles 

• number of triggers (32 per node) 
• number of message buffers 
• oscillator tolerance 
 
3 Heuristic scheduling 
 
Scheduling concepts with special 
emphasis on TTCAN networks can be 
found, for instance, in [2,3]. The work [2] 
solves the scheduling problem on the 
basis of a genetic algorithm. Starting from 
an initial system matrix, the proposed 
procedure determines out of a set of 
solutions the best one by means of a cost 
function which represents the deviations of 
the real to the desired transmission 
instants. The work [3] gives a quite 
comprehensive overview on heuristic 

scheduling concepts. Two strategies are 
presented. The one minimizes the number 
of basic cycles in order to produce a 
comprehensible schedule, whereas the 
other minimizes the length of the basic 
cycle in order to minimize the number of 
necessary triggers. Further, the work [3] 
distinguishes between a dense and a 
sparse allocation of the time-triggered 
slots and sketches theoretically the 
impacts on the time behavior of the 
remaining part of the system.  
This is also one of the main focus of the 
present work. In addition, we will present 
measurements of the average delay and 
the jitter for the envisaged scheduling 
strategies and show the relationship to the 
TTCAN implementation and its limitations.  
 
It is the intention of a heuristic approach to 
bring the requirements of the application 
(min. and max sample rate) in line with the 
possibilities of the communication system 
in a fairly simple manner. 
First of all, the communication objects are 
sorted according to their 
• repetition rate (period) 
• message length 
• periodic / spontaneous messages 
• response time of spontaneous 

messages on events 
• temporal dependencies between 

messages 
With this input, a basic attempt for a rate 
monotonic schedule will be checked under 
the consideration of the before mentioned 
constraints. 
The length of a basic cycle is chosen 
according to the shortest period and the 
number of basic cycles according to the 
longest period. If the number of basic 
cycles exceeds the maximum of 64, then 
the messages with longer periods shall be 
defined as spontaneous and their 
response time must be investigated later 
on. 
Messages with periods not matching the 
power of two requirement will be 
scheduled for the next lower suitable 
period. 
To get an overview of the system matrix, 
all messages with low periods are filled in 
the first time windows, followed by the 
messages with longer periods in 
ascending order until the basic cycle is full. 
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If there are more windows needed, then 
the larger periodic messages can be 
distributed to subsequent basic cycles. For 
simplicity, all time windows are of the 
same maximum length for eight byte 

messages. 
The unoccupied windows can be used for 
spontaneous messages and defined as 
"Arbitrating Windows" or dedicated to 
messages with a suitable required 
response time. 
With this basic approach, the performance 
of requirements demanded by the 
application and the constraints shall be 
checked. 
This paper focuses on the influence of 
protocol and implementation specific 

constraints like number of basic cycles, 
triggers and response time and assumes 
that physical requirements like clock 
tolerances are fulfilled. 
To explain the basic principle, the 

remaining part of this paper shows an 
example with the following characteristics:  

0.0ms 
5.0ms 
…. 

0.3ms 
5.3ms 
…. 

0.6ms 
5.6ms 
… 

0.9ms 
5.9ms 
… 

1.2ms 
6.2ms 
…. 

1.5ms 
6.5ms 
…. 

1.8ms 
6.8ms 
…. 

2.1ms 
7.1ms 
…. 

2.4ms 
7.4ms 
…. 

2.7ms 
7.7ms 
…. 

3.0ms 
8.0ms 
…. 

3.3ms 
8.3ms 
…. 

3.6ms 
8.6ms 
…. 

3.9ms 
8.9ms 
…. 

4.2ms 
9.2ms 
… 

4.5ms 
9.5ms 
…. 

51 52 53  101 102 103 104 105 201  202 203 204 401 402 403 404 
51 52 53               
51 52 53  101 102 103 104 105         
51 52 53               
51 52 53  101 102 103 104 105 201  202 203 204     
51 52 53               
51 52 53  101 102 103 104 105         
51 52 53               

Figure 1: Rate monotonic schedule; every line represents 5ms along the time axis 
 

• All messages of length 8 byte  
• Baud rate 500 kbit/s  
• period times of messages : 3 

messages with 5ms (IDs 51H, 52H, 
53H), 5*10ms (IDs 101H to 105H), 
4*20ms (IDs 201H to 204H), 4*40ms 
(IDs 401H to 405H) and some 100ms 
as well as 200ms messages, the total 
band width usage is approx. 40% 

 

window
time [ms] 0 0,16 0,45 0,75 1,05 1,35 1,65 1,95 2,25 2,55 2,85 3,15 3,45 3,75 4,05 4,35 4,65 5

BitTime[bit] 0 78 223 373 523 673 823 973 1123 1273 1423 1573 1723 1873 2023 2173 2323 2500
0 F0 51 52 53 101 102 103 104 105 201 202 203 204 401 402 403 404
1 F0 51 52 53 1FF, 1 1FF, 2 1FF, 2 1FF, 2 1FF, 2 1FF, 2 1FF, 2 1FF, 2 1FF, 2 1FF, 2 1FF, 2 1FF, 2 1FF, 3
2 F0 51 52 53 101 102 103 104 105 2FF, 1 2FF, 2 2FF, 2 2FF, 2 2FF, 2 2FF, 2 2FF, 2 2FF, 3
3 F0 51 52 53 1FF, 1 1FF, 2 1FF, 2 1FF, 2 1FF, 2 1FF, 2 1FF, 2 1FF, 2 1FF, 2 1FF, 2 1FF, 2 1FF, 2 1FF, 3
4 F0 51 52 53 101 102 103 104 105 201 202 203 204 4FF, 1 4FF, 2 4FF, 2 4FF, 3
5 F0 51 52 53 1FF, 1 1FF, 2 1FF, 2 1FF, 2 1FF, 2 1FF, 2 1FF, 2 1FF, 2 1FF, 2 1FF, 2 1FF, 2 1FF, 2 1FF, 3
6 F0 51 52 53 101 102 103 104 105 2FF, 1 2FF, 2 2FF, 2 2FF, 2 2FF, 2 2FF, 2 2FF, 2 2FF, 3
7 F0 51 52 53 1FF, 1 1FF, 2 1FF, 2 1FF, 2 1FF, 2 1FF, 2 1FF, 2 1FF, 2 1FF, 2 1FF, 2 1FF, 2 1FF, 2 1FF, 3

1612 13 14 158 9 10 114 5 6 70 1 2 3

 
Figure 2: Realization ‘8bc_version1’ with 8 basic cycles and 3 merged arbitrating windows  
(time scale is distorted, spaces in between the messages appear smaller than they are) 
 

window
time [ms] 0 0,16 0,45 0,75 1,05 1,35 1,65 1,95 2,25 2,55 2,85 3,15 3,45 3,75 4,05 4,35 4,65 5

BitTime[bit] 0 78 223 373 523 673 823 973 1123 1273 1423 1573 1723 1873 2023 2173 2323 2500
0 F0 51 52 1FF, 1 1FF, 2 1FF, 3 53 101 2FF, 1 2FF, 2 2FF, 3 102 103 4FF, 1 4FF, 2 4FF, 3 104
1 F0 51 52 1FF, 1 1FF, 2 1FF, 3 53 105 2FF, 1 2FF, 2 2FF, 3 201 202 4FF, 1 4FF, 2 4FF, 3 203
2 F0 51 52 1FF, 1 1FF, 2 1FF, 3 53 101 2FF, 1 2FF, 2 2FF, 3 102 103 4FF, 1 4FF, 2 4FF, 3 104
3 F0 51 52 1FF, 1 1FF, 2 1FF, 3 53 105 2FF, 1 2FF, 2 2FF, 3 204 401 4FF, 1 4FF, 2 4FF, 3 402
4 F0 51 52 1FF, 1 1FF, 2 1FF, 3 53 101 2FF, 1 2FF, 2 2FF, 3 102 103 4FF, 1 4FF, 2 4FF, 3 104
5 F0 51 52 1FF, 1 1FF, 2 1FF, 3 53 105 2FF, 1 2FF, 2 2FF, 3 201 202 4FF, 1 4FF, 2 4FF, 3 203
6 F0 51 52 1FF, 1 1FF, 2 1FF, 3 53 101 2FF, 1 2FF, 2 2FF, 3 102 103 4FF, 1 4FF, 2 4FF, 3 104
7 F0 51 52 1FF, 1 1FF, 2 1FF, 3 53 105 2FF, 1 2FF, 2 2FF, 3 204 403 4FF, 1 4FF, 2 4FF, 3 404

1612 13 14 158 9 10 114 5 6 70 1 2 3

 
 
Figure 3: Realization ‘8bc_version2’ with 8 basic cycles and 3 distributed merged arbitrating 
windows 
 

window 1
time [ms] 0 0,16 0,45 0,75 1,05 1,35 1,65 1,95 2,25 2,55 2,85 3,15 3,45 3,75 4,05 4,35 4,65 5

BitTime[bit] 0 78 223 373 523 673 823 973 1123 1273 1423 1573 1723 1873 2023 2173 2323 2500
0 F0 1FF, 0 51 1FE, 0 52 1FD, 0 53 1FC, 0 101 1FB, 0 102 1FA, 0 103 1F9, 0 104 1F8, 1 1F8, 3
1 F0 1FF, 0 51 1FE, 0 52 1FD, 0 53 1FC, 0 105 1FB, 0 201 1FA, 0 202 1F9, 0 203 1F8, 1 1F8, 3
2 F0 1FF, 0 51 1FE, 0 52 1FD, 0 53 1FC, 0 101 1FB, 0 102 1FA, 0 103 1F9, 0 104 1F8, 1 1F8, 3
3 F0 1FF, 0 51 1FE, 0 52 1FD, 0 53 1FC, 0 105 1FB, 0 204 1FA, 0 401 1F9, 0 402 1F8, 1 1F8, 3
4 F0 1FF, 0 51 1FE, 0 52 1FD, 0 53 1FC, 0 101 1FB, 0 102 1FA, 0 103 1F9, 0 104 1F8, 1 1F8, 3
5 F0 1FF, 0 51 1FE, 0 52 1FD, 0 53 1FC, 0 105 1FB, 0 201 1FA, 0 202 1F9, 0 203 1F8, 1 1F8, 3
6 F0 1FF, 0 51 1FE, 0 52 1FD, 0 53 1FC, 0 101 1FB, 0 102 1FA, 0 103 1F9, 0 104 1F8, 1 1F8, 3
7 F0 1FF, 0 51 1FE, 0 52 1FD, 0 53 1FC, 0 105 1FB, 0 204 1FA, 0 403 1F9, 0 404 1F8, 1 1F8, 3

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

 
 
Figure 4: Realization ‘8bc_version3’ with 8 basic cycles and widely spread distributed 
arbitrating windows 
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As already mentioned, we neglect any 
precedence and exclusion constraints and 
consider merely the required period times 
of the messages. Thus, it is straight 
forward to generate a first schedule in a 
rate monotonic fashion.  
Figure 1 qualitatively shows the result 
(reference message is neglected here). 
The time windows are chosen as 0.3ms 
which is sufficiently wide for eight byte 
messages on a 500kbit/s system. Only the 
messages up to the period time 40ms are 
considered as periodic messages; 
messages with longer period times are 
treated here as asynchronous messages 
and will be sent within arbitrating windows. 
Thus the longest period is 40ms and since 
all other periods are integer factors of this 
value, the cycle time after which the 
communication structure is repeated is 
40ms as well.  
Figure 2 demonstrates an almost one to 
one realization of the rate monotonic 
result. It shows a realizable TTCAN 
schedule with eight basic cycles and a 
basic cycle length of 5ms. The reference 
message is denoted with the ID F0H. The 
free spaces (the blank windows in figure 1) 
have been filled with arbitrating windows. 
Since consecutive arbitrating windows 
may be (if some certain requirements are 
met) combined to so called merged 
arbitrating windows, for the envisaged 
case three merged arbitrating windows 
with the dummy IDs 1FFH, 2FFH and 4FFH 
are introduced. The number behind the 
dummy ID indicates the position of the 
current window within the merged 
arbitrating window. For instance, the 
notation 1FFH,1 indicates that it is the first 
window and 1FFH,3 that it is the last 
window within a merged arbitrating 
window, respectively. Merely three 
message objects have to be defined here, 
but there is a high demand for triggers 
since every time window in the merged 
arbitration window needs a dedicated 
trigger.  
In general the number of triggers will 
depend on the structure of the 
communication matrix. The following table 
shows the influence of the number of the 
basic cycles on the number of triggers for 
the considered exemplary message set. It 
is assumed that the considered node 
participates in all messages which is a 

less likely occurrence but represents the 
worst case. Additionally, the values 
consider the reference message.  
 
# basic cycles # triggers 
1   (d = 40ms) 57 
2   (d = 20ms) 31 
4   (d = 10ms) 20 
8   (d =   5ms) 17 
16 (d=    2.5ms) 17 
32 (d=    1.25ms) 17 
 
The number of triggers decreases with the 
number of basic cycles. A realization with 
one basic cycle is not possible, since the 
number of necessary triggers exceeds the 
value of 32 (Bosch TTCAN evaluation 
chip). For the two basic cycle solution 
there will be for instance merely one 
trigger be left for the definition of an 
additional arbitrating window. Starting from 
eight basic cycles, the worst case number 
of triggers for the periodic messages 
equals 17.  
 
As one can imagine (it will be verified in 
section 5) the solution in figure 2 is not 
very appropriate from the real-time 
performance point of view. For instance, 
the system is not able to transmit any 
additional non periodic message in basic 
cycle 0, meaning that the system will not 
be able to react to any asynchronous 
event within a time range of more than 
5ms. The realization in figure 3 shows a 
sparser allocation of the time-triggered 
messages and provides a better real-time 
performance. By the way the number of 
triggers is significantly decreased, since 
the messages within the merged 
arbitrating windows can be defined as 
messages with high repetition rates. 
Merely 9 triggers are required in contrast 
to 25 triggers for the realization in figure 2 
(see also subsequent table). The number 
of message objects for the arbitrating 
windows is unchanged and equals three. 
As figure 4 shows, it is possible to further 
distribute the time-triggered messages and 
to achieve an even better real-time 
performance; merely the number of 
message objects is increased.  
The following table summarizes the 
necessary number of arbitration message 
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objects and the corresponding number of 
triggers for the different realizations. 
 
 # arbitration 

mess. objects
# triggers for arbit. 
Mess. objects 

vers. 1 3 25 
vers. 2 3 9 
vers. 3 8 9 
 
One has to take care that for every node 
the sum of number of triggers required for 
the periodic messages and the arbitrating 
messages as well as the number of 
message objects must not exceed the 
value 32.  
 
4 Reaction to asynchronous external events  
 
As presented in [4,5] it is possible to 
evaluate the ability of a communication 
systems to react to an asynchronous 
event by the so called 'Distinctness of 
Reaction' (DoR) [6]. The method is based 
on an orthogonal Walsh correlation and 
yields a reliability measure given by the 
average latency response time and the 
jitter when reacting to asynchronous 
external events.  
In order to measure the DoR, the 
communication system is excited at node 
A by a square wave signal i(t) with an 
adjustable frequency as is shown in figure 
5. Every rising edge of i(t) simulates the 

occurrence of a critical situation. The 
system reacts in a predefined manner with 
a so called A B A cycle. Node A 
informs another node B about the 
occurrence of the critical situation and 
waits for its response. After the A B A 
cycle the system reacts in a predefined 
manner with its response x(t). The signals 
i(t) and x(t) are processed by a FPGA 
board which quantifies the DoR. The result 

is delivered via a serial interface. The DoR 
is a measure for the jitter in the system's 
response and takes on values from 100% 
(no jitter) to 0% (at least sporadic loss of 
excitations).  
Not only the determination of a sole value 
is carried out (constant frequency of the 
excitation i(t)), but the recording of an 
entire frequency response, which consists 
of an amplitude response and a phase 
response. The DoR determines the 
amplitude response. The phase response 
is determined by the average response 
time τ of the system's response. In order 
to achieve a standard of comparison a 
normalization is carried out and the 
'average skew' s = -τ/T is introduced. The 
skew s is scaled downwards from 0% to -
100%. This choice provides the advantage 
that it allows to evaluate the system's 
quality from the plot by the simple rule 'the 
higher, the better' which holds true in the 
same manner also for the comparison by 
means of the DoR plots.  
The figures 6 and 7 show the best and 
worst case for the schedule in figure 2. 
Figure 6 shows the situation where the 
excitation of the system occurs within an 
merged arbitrating window. The system is 
able to perform the A B A cycle within 
two consecutive windows of the merged 
arbitrating window, leading to the minimum 
response time. In the situation of figure 7 

the worst case is illustrated. The system is 
excited at the end of basic cycle 7 such 
that it is not possible to perform the entire 
A B A cycle within that cycle. In fact, 
the reply message is transmitted in basic 
cycle 1 (since there is no possibility for a 
transmission in basic cycle 0), resulting in 
a system’s response time of more than 
6ms.  

 

 
 
Figure 5: Relevant part 
of the system’s 
configuration in order to 
evaluate the ability of 
the system to react to 
asynchronous events 
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5 Results 
 
Figure 8 illustrates the measured 
‘frequency response’ (DoR and skew) for 
the system realization in figure 2.  
The curve ends for the excitation 
frequency 143Hz. I.e., for higher excitation 
frequencies there are losses of excitations. 
The value of 143Hz can be derived from 
the worst case scenario in figure 7.  
Both curves, the DoR and the skew, 
decrease with increasing excitation 
frequencies. I.e., the higher the frequency, 
the higher the jitter in the system’s 
response and the higher the delay in 
relation to the period of the excitation 
signal. 
The skew shows an almost linear 
characteristic which means a quite regular 

behavior, since a linear skew means a 
constant average delay of the system.  

Figure 6: Best case 
response time for the 
schedule in figure 2 
 

 

Figure 7: Worst case 
response time for the 
schedule in figure 2 
 

Some interesting peculiarities occur for 
excitation frequencies which correspond to 
multiples of the basic cycle period of 5ms. 
For instance, we get resonances for 
100Hz and 50Hz, since then the system is 
always excited in the same situation and 
thus behaves any time in the same way. 
As a result there is no jitter and the DoR 
equals approximately 1. For this cases the 
value of the skew is of no meaning and 
depends on the relative phase relation 
between both time bases, the bus and the 
excitation.  
Figure 9 compares the different 
realizations with eight basic cycles, 
corresponding to the matrices in figures 2, 
3, and 4. The real-time performance is 
significantly increased by the distribution 
of the arbitrating windows. The realization  

 



iCC 2005  CAN in Automation 

 

0 20 40 60 80 100 120 140
0,6

0,7

0,8

0,9

1,0

 

 DoR_8bc_version_1

0 20 40 60 80 100 120 140
-30
-25
-20
-15
-10
-5
0 excitation in Hz

 skew_8bc_version_1

Figure 8: DoR and skew for the realization with 8 basic cycles and 3 merged arbitrating 
windows (8bc_version_1) 
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Figure 9: DoR and skew for the different realizations with 8 basic cycles (see figures 2,3,4) 
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‘8bc_version2’ already permits the 
occurrence of asynchronous events with 
approximately 500Hz, whereas the 
realization ‘8bc_version3’ even enables up 
to 670Hz. For these realization there is 
less jitter as well as less average delay.   

6 Summary  
 
This paper compared some heuristic 
scheduling concepts for TTCAN networks. 
For that purpose we have selected an 
exemplary set of messages close to real-
world automotive applications. Within this 

paper we neglected any precedence and 
exclusion constraints and considered 
merely the required period times for the 
messages. Since all considered heuristic 
approaches fulfilled the corresponding 
(time-triggered) demands they differed 
only in their real-time performance. For the 
comparison we have presented 
measurements which yielded the average 
delay and the jitter when the system is 
reacting to asynchronous events.  

 

In order to investigate the influence of the 
number of basic cycles we have further 
compared different realizations with 8, 16 
and 32 basic cycles. All communication 
matrices have been constructed in 
correspondence to figure 2. Figure10 
shows the results. The more basic cycles 
are used, the worse is the real-time 
performance. I.e., there is more jitter and 
more average latency. This result is due to 
the fact that there is a worse usage of the 
potential band width with more basic 
cycles. On the one hand the reference 
message is sent more frequently; on the 
other hand the relative waste of time 
between the last realizable time window 
within the basic cycle and the end of the 
basic cycle may be increased. 

0 20 40 60 80 100 120 140
0,6

0,7

0,8

0,9

1,0

 

 DoR_8bc
 DoR_16bc
 DoR_32bc

0 20 40 60 80 100 120 140
-30

-20

-10

0 excitation in Hz

 skew_8bc
 skew_16bc
 skew_32bc

Figure 10: DoR and skew for the rate monotonic schedule realized with 8, 16 and 32 basic 
cycles 
 

The results with respect to the here 
considered conditions are summarized as 
follows: 
• It is advantageous to use long basic 

cycles, since then the decrease in 
band width usage due to the reference 
message and bad fitness of the last 
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time window into the basic cycle length 
is lower.  
A limiting factor might be the number 
of necessary triggers which is 
increased for basic cycles with many 
time windows. An appropriate 
compromise seems to be to set the 
basic cycle length equal to the lowest 
message period. 

• A very significant increase in the real-
time performance may be achieved by 
a well distribution of the arbitrating 
windows within the communication 
matrix. For the presented example we 
have gained an improvement by a 
factor of approximately 4. A limiting 
factor for the distribution might be the 
number of available triggers and/or the 
number of message objects.  
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