
iCC 2005 CAN in Automation

Heuristic scheduling concepts for TTCAN networks

A. Albert, R.Hugel

Time-triggered CAN (TTCAN) combines the advantages of event- and time-triggered
communication in order to fulfil the requirements of distributed real-time systems. Of
crucial importance is thereby the generation of the communication schedule which
should consider the demands of the time-triggered system on the one hand, while
maintaining a good real-time performance for the event-triggered part of the system
on the other. This paper deals with heuristic scheduling concepts for TTCAN networks
and carries out a comparison by means of the above mentioned criteria. The
suitability of the concepts is evaluated by laboratory measurements. The results
enable the derivation of important clues in order to schedule TTCAN networks.

1 Introduction

It is quite evident that networks with time-
triggered operation modes will play a
major role in future automotive systems.
One of such protocols is TTCAN, which
combines the advantages of event- and
time-triggered networks [1].
Generally, the main advantages of time-
triggered networks are their quasi-
deterministic behavior and the possibility
to easily realize fault-tolerant systems.
One of the drawbacks is the restrictive
design process, since the communication
structure has to be defined in advance.
The procedure which determines the time
slots for the respective messages is called
scheduling. The main targets of the
scheduling are to consider the demands of
the time-triggered system on the one
hand, while maintaining a good real-time
performance for the event-triggered part of
the system on the other.
This paper presents some heuristic
scheduling concepts for TTCAN networks
and carries out a comparison by means of
the above mentioned criteria.

The paper is organized as follows:
Section 2 introduces into the scheduling
problem and summarizes the typical
requirements of distributed real-time
systems. Furthermore, the section
highlights the connection between these
requirements and the restrictions due to
the protocol as well as implementation
specific limitations.
Section 3 compares some heuristic
scheduling concepts for TTCAN networks
on the basis of a meaningful example

close to a real world application. The
demands of the time-triggered part of the
communication is essential and thus
fulfilled by all approaches. Therefore the
different approaches are evaluated by the
ability of the system to react to
asynchronous events.
Section 4 describes the test scenario and
the measurement procedure for the
evaluation of the system’s real-time
response. The used method yields the
average latency response time and the
jitter when the system is reacting to an
asynchronous external event.
Afterwards, section 5 presents results for
the different scheduling concepts. Further,
the results are discussed. The paper ends
with a summary in section 6.

2 TTCAN scheduling problem

Within a time-triggered framework the
communication structure is defined in
advance and generally not modified during
operation. The corresponding procedure
which determines the time slots for the
corresponding messages is called
scheduling. At start-up every
communication controller is initialized with
its own schedule. During operation merely
the data of the time-triggered messages
may be modified.
In general the scheduling problem requires
the solution of an optimization problem,
whereby the quality of the solution will
mainly depend on an appropriate choice of
the performance criterion and the
considered conditions. Elementary
requirements of the scheduling are
concerned with the period times of

CAN in Automation Session

messages and relations between
messages, like precedence and exclusion
constraints as well as release times and
deadlines. Some more sophisticated
criteria will consider, for instance, the
impacts of latencies on the functional
software, the possibility to easily modify
the schedule without side effects or the
efficient use of resources.
It is not within the scope of this paper to
intensively study the scheduling problem.
Thus for simplicity reason we will take
here into account only the required period
times of the messages. Further we will not
present any formal methods for the
scheduling, but rather show the impacts of
heuristic scheduling approaches onto the
real-time performance.

Lastly, it should be mentioned that the
possibilities of the scheduling depend also
on constraints caused by
• protocol,
• implementation specifics, and
• physical limitations.
These are for instance (example values
are taken from the Bosch TTCAN
evaluation chip specification):
• number of basic cycles (in power of

two, max 64)
• number of network time units per basic

cycle (2^16)
• repetition period of messages related

to multiples in powers of two
• time marks defined for the first basic

cycle can not be changed in
subsequent cycles

• number of triggers (32 per node)
• number of message buffers
• oscillator tolerance

3 Heuristic scheduling

Scheduling concepts with special
emphasis on TTCAN networks can be
found, for instance, in [2,3]. The work [2]
solves the scheduling problem on the
basis of a genetic algorithm. Starting from
an initial system matrix, the proposed
procedure determines out of a set of
solutions the best one by means of a cost
function which represents the deviations of
the real to the desired transmission
instants. The work [3] gives a quite
comprehensive overview on heuristic

scheduling concepts. Two strategies are
presented. The one minimizes the number
of basic cycles in order to produce a
comprehensible schedule, whereas the
other minimizes the length of the basic
cycle in order to minimize the number of
necessary triggers. Further, the work [3]
distinguishes between a dense and a
sparse allocation of the time-triggered
slots and sketches theoretically the
impacts on the time behavior of the
remaining part of the system.
This is also one of the main focus of the
present work. In addition, we will present
measurements of the average delay and
the jitter for the envisaged scheduling
strategies and show the relationship to the
TTCAN implementation and its limitations.

It is the intention of a heuristic approach to
bring the requirements of the application
(min. and max sample rate) in line with the
possibilities of the communication system
in a fairly simple manner.
First of all, the communication objects are
sorted according to their
• repetition rate (period)
• message length
• periodic / spontaneous messages
• response time of spontaneous

messages on events
• temporal dependencies between

messages
With this input, a basic attempt for a rate
monotonic schedule will be checked under
the consideration of the before mentioned
constraints.
The length of a basic cycle is chosen
according to the shortest period and the
number of basic cycles according to the
longest period. If the number of basic
cycles exceeds the maximum of 64, then
the messages with longer periods shall be
defined as spontaneous and their
response time must be investigated later
on.
Messages with periods not matching the
power of two requirement will be
scheduled for the next lower suitable
period.
To get an overview of the system matrix,
all messages with low periods are filled in
the first time windows, followed by the
messages with longer periods in
ascending order until the basic cycle is full.

iCC 2005 CAN in Automation

If there are more windows needed, then
the larger periodic messages can be
distributed to subsequent basic cycles. For
simplicity, all time windows are of the
same maximum length for eight byte

messages.
The unoccupied windows can be used for
spontaneous messages and defined as
"Arbitrating Windows" or dedicated to
messages with a suitable required
response time.
With this basic approach, the performance
of requirements demanded by the
application and the constraints shall be
checked.
This paper focuses on the influence of
protocol and implementation specific

constraints like number of basic cycles,
triggers and response time and assumes
that physical requirements like clock
tolerances are fulfilled.
To explain the basic principle, the

remaining part of this paper shows an
example with the following characteristics:

0.0ms
5.0ms
….

0.3ms
5.3ms
….

0.6ms
5.6ms
…

0.9ms
5.9ms
…

1.2ms
6.2ms
….

1.5ms
6.5ms
….

1.8ms
6.8ms
….

2.1ms
7.1ms
….

2.4ms
7.4ms
….

2.7ms
7.7ms
….

3.0ms
8.0ms
….

3.3ms
8.3ms
….

3.6ms
8.6ms
….

3.9ms
8.9ms
….

4.2ms
9.2ms
…

4.5ms
9.5ms
….

51 52 53 101 102 103 104 105 201 202 203 204 401 402 403 404
51 52 53
51 52 53 101 102 103 104 105
51 52 53
51 52 53 101 102 103 104 105 201 202 203 204
51 52 53
51 52 53 101 102 103 104 105
51 52 53

Figure 1: Rate monotonic schedule; every line represents 5ms along the time axis

• All messages of length 8 byte
• Baud rate 500 kbit/s
• period times of messages : 3

messages with 5ms (IDs 51H, 52H,
53H), 5*10ms (IDs 101H to 105H),
4*20ms (IDs 201H to 204H), 4*40ms
(IDs 401H to 405H) and some 100ms
as well as 200ms messages, the total
band width usage is approx. 40%

window
time [ms] 0 0,16 0,45 0,75 1,05 1,35 1,65 1,95 2,25 2,55 2,85 3,15 3,45 3,75 4,05 4,35 4,65 5

BitTime[bit] 0 78 223 373 523 673 823 973 1123 1273 1423 1573 1723 1873 2023 2173 2323 2500
0 F0 51 52 53 101 102 103 104 105 201 202 203 204 401 402 403 404
1 F0 51 52 53 1FF, 1 1FF, 2 1FF, 2 1FF, 2 1FF, 2 1FF, 2 1FF, 2 1FF, 2 1FF, 2 1FF, 2 1FF, 2 1FF, 2 1FF, 3
2 F0 51 52 53 101 102 103 104 105 2FF, 1 2FF, 2 2FF, 2 2FF, 2 2FF, 2 2FF, 2 2FF, 2 2FF, 3
3 F0 51 52 53 1FF, 1 1FF, 2 1FF, 2 1FF, 2 1FF, 2 1FF, 2 1FF, 2 1FF, 2 1FF, 2 1FF, 2 1FF, 2 1FF, 2 1FF, 3
4 F0 51 52 53 101 102 103 104 105 201 202 203 204 4FF, 1 4FF, 2 4FF, 2 4FF, 3
5 F0 51 52 53 1FF, 1 1FF, 2 1FF, 2 1FF, 2 1FF, 2 1FF, 2 1FF, 2 1FF, 2 1FF, 2 1FF, 2 1FF, 2 1FF, 2 1FF, 3
6 F0 51 52 53 101 102 103 104 105 2FF, 1 2FF, 2 2FF, 2 2FF, 2 2FF, 2 2FF, 2 2FF, 2 2FF, 3
7 F0 51 52 53 1FF, 1 1FF, 2 1FF, 2 1FF, 2 1FF, 2 1FF, 2 1FF, 2 1FF, 2 1FF, 2 1FF, 2 1FF, 2 1FF, 2 1FF, 3

1612 13 14 158 9 10 114 5 6 70 1 2 3

Figure 2: Realization ‘8bc_version1’ with 8 basic cycles and 3 merged arbitrating windows
(time scale is distorted, spaces in between the messages appear smaller than they are)

window
time [ms] 0 0,16 0,45 0,75 1,05 1,35 1,65 1,95 2,25 2,55 2,85 3,15 3,45 3,75 4,05 4,35 4,65 5

BitTime[bit] 0 78 223 373 523 673 823 973 1123 1273 1423 1573 1723 1873 2023 2173 2323 2500
0 F0 51 52 1FF, 1 1FF, 2 1FF, 3 53 101 2FF, 1 2FF, 2 2FF, 3 102 103 4FF, 1 4FF, 2 4FF, 3 104
1 F0 51 52 1FF, 1 1FF, 2 1FF, 3 53 105 2FF, 1 2FF, 2 2FF, 3 201 202 4FF, 1 4FF, 2 4FF, 3 203
2 F0 51 52 1FF, 1 1FF, 2 1FF, 3 53 101 2FF, 1 2FF, 2 2FF, 3 102 103 4FF, 1 4FF, 2 4FF, 3 104
3 F0 51 52 1FF, 1 1FF, 2 1FF, 3 53 105 2FF, 1 2FF, 2 2FF, 3 204 401 4FF, 1 4FF, 2 4FF, 3 402
4 F0 51 52 1FF, 1 1FF, 2 1FF, 3 53 101 2FF, 1 2FF, 2 2FF, 3 102 103 4FF, 1 4FF, 2 4FF, 3 104
5 F0 51 52 1FF, 1 1FF, 2 1FF, 3 53 105 2FF, 1 2FF, 2 2FF, 3 201 202 4FF, 1 4FF, 2 4FF, 3 203
6 F0 51 52 1FF, 1 1FF, 2 1FF, 3 53 101 2FF, 1 2FF, 2 2FF, 3 102 103 4FF, 1 4FF, 2 4FF, 3 104
7 F0 51 52 1FF, 1 1FF, 2 1FF, 3 53 105 2FF, 1 2FF, 2 2FF, 3 204 403 4FF, 1 4FF, 2 4FF, 3 404

1612 13 14 158 9 10 114 5 6 70 1 2 3

Figure 3: Realization ‘8bc_version2’ with 8 basic cycles and 3 distributed merged arbitrating
windows

window 1
time [ms] 0 0,16 0,45 0,75 1,05 1,35 1,65 1,95 2,25 2,55 2,85 3,15 3,45 3,75 4,05 4,35 4,65 5

BitTime[bit] 0 78 223 373 523 673 823 973 1123 1273 1423 1573 1723 1873 2023 2173 2323 2500
0 F0 1FF, 0 51 1FE, 0 52 1FD, 0 53 1FC, 0 101 1FB, 0 102 1FA, 0 103 1F9, 0 104 1F8, 1 1F8, 3
1 F0 1FF, 0 51 1FE, 0 52 1FD, 0 53 1FC, 0 105 1FB, 0 201 1FA, 0 202 1F9, 0 203 1F8, 1 1F8, 3
2 F0 1FF, 0 51 1FE, 0 52 1FD, 0 53 1FC, 0 101 1FB, 0 102 1FA, 0 103 1F9, 0 104 1F8, 1 1F8, 3
3 F0 1FF, 0 51 1FE, 0 52 1FD, 0 53 1FC, 0 105 1FB, 0 204 1FA, 0 401 1F9, 0 402 1F8, 1 1F8, 3
4 F0 1FF, 0 51 1FE, 0 52 1FD, 0 53 1FC, 0 101 1FB, 0 102 1FA, 0 103 1F9, 0 104 1F8, 1 1F8, 3
5 F0 1FF, 0 51 1FE, 0 52 1FD, 0 53 1FC, 0 105 1FB, 0 201 1FA, 0 202 1F9, 0 203 1F8, 1 1F8, 3
6 F0 1FF, 0 51 1FE, 0 52 1FD, 0 53 1FC, 0 101 1FB, 0 102 1FA, 0 103 1F9, 0 104 1F8, 1 1F8, 3
7 F0 1FF, 0 51 1FE, 0 52 1FD, 0 53 1FC, 0 105 1FB, 0 204 1FA, 0 403 1F9, 0 404 1F8, 1 1F8, 3

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Figure 4: Realization ‘8bc_version3’ with 8 basic cycles and widely spread distributed
arbitrating windows

CAN in Automation Session

As already mentioned, we neglect any
precedence and exclusion constraints and
consider merely the required period times
of the messages. Thus, it is straight
forward to generate a first schedule in a
rate monotonic fashion.
Figure 1 qualitatively shows the result
(reference message is neglected here).
The time windows are chosen as 0.3ms
which is sufficiently wide for eight byte
messages on a 500kbit/s system. Only the
messages up to the period time 40ms are
considered as periodic messages;
messages with longer period times are
treated here as asynchronous messages
and will be sent within arbitrating windows.
Thus the longest period is 40ms and since
all other periods are integer factors of this
value, the cycle time after which the
communication structure is repeated is
40ms as well.
Figure 2 demonstrates an almost one to
one realization of the rate monotonic
result. It shows a realizable TTCAN
schedule with eight basic cycles and a
basic cycle length of 5ms. The reference
message is denoted with the ID F0H. The
free spaces (the blank windows in figure 1)
have been filled with arbitrating windows.
Since consecutive arbitrating windows
may be (if some certain requirements are
met) combined to so called merged
arbitrating windows, for the envisaged
case three merged arbitrating windows
with the dummy IDs 1FFH, 2FFH and 4FFH
are introduced. The number behind the
dummy ID indicates the position of the
current window within the merged
arbitrating window. For instance, the
notation 1FFH,1 indicates that it is the first
window and 1FFH,3 that it is the last
window within a merged arbitrating
window, respectively. Merely three
message objects have to be defined here,
but there is a high demand for triggers
since every time window in the merged
arbitration window needs a dedicated
trigger.
In general the number of triggers will
depend on the structure of the
communication matrix. The following table
shows the influence of the number of the
basic cycles on the number of triggers for
the considered exemplary message set. It
is assumed that the considered node
participates in all messages which is a

less likely occurrence but represents the
worst case. Additionally, the values
consider the reference message.

basic cycles # triggers
1 (d = 40ms) 57
2 (d = 20ms) 31
4 (d = 10ms) 20
8 (d = 5ms) 17
16 (d= 2.5ms) 17
32 (d= 1.25ms) 17

The number of triggers decreases with the
number of basic cycles. A realization with
one basic cycle is not possible, since the
number of necessary triggers exceeds the
value of 32 (Bosch TTCAN evaluation
chip). For the two basic cycle solution
there will be for instance merely one
trigger be left for the definition of an
additional arbitrating window. Starting from
eight basic cycles, the worst case number
of triggers for the periodic messages
equals 17.

As one can imagine (it will be verified in
section 5) the solution in figure 2 is not
very appropriate from the real-time
performance point of view. For instance,
the system is not able to transmit any
additional non periodic message in basic
cycle 0, meaning that the system will not
be able to react to any asynchronous
event within a time range of more than
5ms. The realization in figure 3 shows a
sparser allocation of the time-triggered
messages and provides a better real-time
performance. By the way the number of
triggers is significantly decreased, since
the messages within the merged
arbitrating windows can be defined as
messages with high repetition rates.
Merely 9 triggers are required in contrast
to 25 triggers for the realization in figure 2
(see also subsequent table). The number
of message objects for the arbitrating
windows is unchanged and equals three.
As figure 4 shows, it is possible to further
distribute the time-triggered messages and
to achieve an even better real-time
performance; merely the number of
message objects is increased.
The following table summarizes the
necessary number of arbitration message

iCC 2005 CAN in Automation

objects and the corresponding number of
triggers for the different realizations.

 # arbitration

mess. objects
triggers for arbit.
Mess. objects

vers. 1 3 25
vers. 2 3 9
vers. 3 8 9

One has to take care that for every node
the sum of number of triggers required for
the periodic messages and the arbitrating
messages as well as the number of
message objects must not exceed the
value 32.

4 Reaction to asynchronous external events

As presented in [4,5] it is possible to
evaluate the ability of a communication
systems to react to an asynchronous
event by the so called 'Distinctness of
Reaction' (DoR) [6]. The method is based
on an orthogonal Walsh correlation and
yields a reliability measure given by the
average latency response time and the
jitter when reacting to asynchronous
external events.
In order to measure the DoR, the
communication system is excited at node
A by a square wave signal i(t) with an
adjustable frequency as is shown in figure
5. Every rising edge of i(t) simulates the

occurrence of a critical situation. The
system reacts in a predefined manner with
a so called A B A cycle. Node A
informs another node B about the
occurrence of the critical situation and
waits for its response. After the A B A
cycle the system reacts in a predefined
manner with its response x(t). The signals
i(t) and x(t) are processed by a FPGA
board which quantifies the DoR. The result

is delivered via a serial interface. The DoR
is a measure for the jitter in the system's
response and takes on values from 100%
(no jitter) to 0% (at least sporadic loss of
excitations).
Not only the determination of a sole value
is carried out (constant frequency of the
excitation i(t)), but the recording of an
entire frequency response, which consists
of an amplitude response and a phase
response. The DoR determines the
amplitude response. The phase response
is determined by the average response
time τ of the system's response. In order
to achieve a standard of comparison a
normalization is carried out and the
'average skew' s = -τ/T is introduced. The
skew s is scaled downwards from 0% to -
100%. This choice provides the advantage
that it allows to evaluate the system's
quality from the plot by the simple rule 'the
higher, the better' which holds true in the
same manner also for the comparison by
means of the DoR plots.
The figures 6 and 7 show the best and
worst case for the schedule in figure 2.
Figure 6 shows the situation where the
excitation of the system occurs within an
merged arbitrating window. The system is
able to perform the A B A cycle within
two consecutive windows of the merged
arbitrating window, leading to the minimum
response time. In the situation of figure 7

the worst case is illustrated. The system is
excited at the end of basic cycle 7 such
that it is not possible to perform the entire
A B A cycle within that cycle. In fact,
the reply message is transmitted in basic
cycle 1 (since there is no possibility for a
transmission in basic cycle 0), resulting in
a system’s response time of more than
6ms.

Figure 5: Relevant part
of the system’s
configuration in order to
evaluate the ability of
the system to react to
asynchronous events

CAN in Automation Session

5 Results

Figure 8 illustrates the measured
‘frequency response’ (DoR and skew) for
the system realization in figure 2.
The curve ends for the excitation
frequency 143Hz. I.e., for higher excitation
frequencies there are losses of excitations.
The value of 143Hz can be derived from
the worst case scenario in figure 7.
Both curves, the DoR and the skew,
decrease with increasing excitation
frequencies. I.e., the higher the frequency,
the higher the jitter in the system’s
response and the higher the delay in
relation to the period of the excitation
signal.
The skew shows an almost linear
characteristic which means a quite regular

behavior, since a linear skew means a
constant average delay of the system.

Figure 6: Best case
response time for the
schedule in figure 2

Figure 7: Worst case
response time for the
schedule in figure 2

Some interesting peculiarities occur for
excitation frequencies which correspond to
multiples of the basic cycle period of 5ms.
For instance, we get resonances for
100Hz and 50Hz, since then the system is
always excited in the same situation and
thus behaves any time in the same way.
As a result there is no jitter and the DoR
equals approximately 1. For this cases the
value of the skew is of no meaning and
depends on the relative phase relation
between both time bases, the bus and the
excitation.
Figure 9 compares the different
realizations with eight basic cycles,
corresponding to the matrices in figures 2,
3, and 4. The real-time performance is
significantly increased by the distribution
of the arbitrating windows. The realization

iCC 2005 CAN in Automation

0 20 40 60 80 100 120 140
0,6

0,7

0,8

0,9

1,0

 DoR_8bc_version_1

0 20 40 60 80 100 120 140
-30
-25
-20
-15
-10
-5
0 excitation in Hz

 skew_8bc_version_1

Figure 8: DoR and skew for the realization with 8 basic cycles and 3 merged arbitrating
windows (8bc_version_1)

0 50 100 150 200 250 300 350 400 450 500 550 600 650
0,6

0,7

0,8

0,9

1,0

 DoR_8bc_version_1
 DoR_8bc_version_2
 DoR_8bc_version_3

0 50 100 150 200 250 300 350 400 450 500 550 600 650
-80

-60

-40

-20

0 excitation in Hz

 skew_8bc_version_1
 skew_8bc_version_2
 skew_8bc_version_3

Figure 9: DoR and skew for the different realizations with 8 basic cycles (see figures 2,3,4)

CAN in Automation Session

‘8bc_version2’ already permits the
occurrence of asynchronous events with
approximately 500Hz, whereas the
realization ‘8bc_version3’ even enables up
to 670Hz. For these realization there is
less jitter as well as less average delay.

6 Summary

This paper compared some heuristic
scheduling concepts for TTCAN networks.
For that purpose we have selected an
exemplary set of messages close to real-
world automotive applications. Within this

paper we neglected any precedence and
exclusion constraints and considered
merely the required period times for the
messages. Since all considered heuristic
approaches fulfilled the corresponding
(time-triggered) demands they differed
only in their real-time performance. For the
comparison we have presented
measurements which yielded the average
delay and the jitter when the system is
reacting to asynchronous events.

In order to investigate the influence of the
number of basic cycles we have further
compared different realizations with 8, 16
and 32 basic cycles. All communication
matrices have been constructed in
correspondence to figure 2. Figure10
shows the results. The more basic cycles
are used, the worse is the real-time
performance. I.e., there is more jitter and
more average latency. This result is due to
the fact that there is a worse usage of the
potential band width with more basic
cycles. On the one hand the reference
message is sent more frequently; on the
other hand the relative waste of time
between the last realizable time window
within the basic cycle and the end of the
basic cycle may be increased.

0 20 40 60 80 100 120 140
0,6

0,7

0,8

0,9

1,0

 DoR_8bc
 DoR_16bc
 DoR_32bc

0 20 40 60 80 100 120 140
-30

-20

-10

0 excitation in Hz

 skew_8bc
 skew_16bc
 skew_32bc

Figure 10: DoR and skew for the rate monotonic schedule realized with 8, 16 and 32 basic
cycles

The results with respect to the here
considered conditions are summarized as
follows:
• It is advantageous to use long basic

cycles, since then the decrease in
band width usage due to the reference
message and bad fitness of the last

iCC 2005 CAN in Automation

time window into the basic cycle length
is lower.
A limiting factor might be the number
of necessary triggers which is
increased for basic cycles with many
time windows. An appropriate
compromise seems to be to set the
basic cycle length equal to the lowest
message period.

• A very significant increase in the real-
time performance may be achieved by
a well distribution of the arbitrating
windows within the communication
matrix. For the presented example we
have gained an improvement by a
factor of approximately 4. A limiting
factor for the distribution might be the
number of available triggers and/or the
number of message objects.

References

[1] International Standardization
Organization. ISO 11898-1 (Controller
Area Network, Data Link Layer), ISO
11898-2 (High-Speed Transceiver), ISO
11898-3 (Fault-Tolerant Low-Speed
Transceiver), ISO 11898-4 (Time-
Triggered Communication).

[2] J.A. Fonseca, F. Coutinho, and J.
Barreiros. Scheduling for a TTCAN
Network with a Stochastic Optimization
Algorithm. 8th international CAN in
Automation Conference, Las Vegas,
pages 07/10–07/16, 2002.

[3] R. Johannson. Time and event
triggered communication scheduling for
automotive applications. Technical Report
17, Chalmers Lindholmen University
College, Göteborg, Sweden, 2004.

[4] A. Albert and W. Gerth. Evaluation and
Comparison of the Real-Time
Performance of CAN and TTCAN. 9th
international CAN in Automation
Conference, Munich, pages 05/01–05/08,
2003.

[5] A. Albert. Comparison of Event-
Triggered and Time-Triggered Concepts
with Regard to Distributed Control
Systems. Embedded World 2004, pages
235–253, Feb. 2004.

[6] B. Wolter. Messung der Dienstgüte von
Echtzeitbetriebssystemen durch Walsh-
Korrelation. PhD thesis, Fortschrittberichte
VDI, Reihe 8, Nr. 964, VDI-Verlag,
Düsseldorf, 2002.

Dr.-Ing. Amos Albert
Robert Bosch GmbH
71701 Schwieberdingen
++49 (0)711-811/43607
amos.albert@de.bosch.com
Robert Hugel
Robert Bosch GmbH
71701 Schwieberdingen
++49 (0)711-811/8517
robert.hugel@de.bosch.com

