
M_CAN
Controller Area Network

User’s Manual

Revision 3.2.1.1

24.03.2016

Robert Bosch GmbH
Automotive Electronics

FD



 M_CAN Revision 3.2.1.1
LEGAL NOTICE

© Copyright 2008-2016 by Robert Bosch GmbH and its licensors. All rights reserved.

"Bosch" is a registered trademark of Robert Bosch GmbH.

The content of this document is subject to continuous developments and improvements. All
particulars and its use contained in this document are given by BOSCH in good faith.

NO WARRANTIES: TO THE MAXIMUM EXTENT PERMITTED BY LAW, NEITHER THE
INTELLECTUAL PROPERTY OWNERS, COPYRIGHT HOLDERS AND CONTRIBUTORS,
NOR ANY PERSON, EITHER EXPRESSLY OR IMPLICITLY, WARRANTS ANY ASPECT
OF THIS SPECIFICATION, SOFTWARE RELATED THERETO, CODE AND/OR
PROGRAM RELATED THERETO, INCLUDING ANY OUTPUT OR RESULTS OF THIS
SPECIFICATION, SOFTWARE RELATED THERETO, CODE AND/OR PROGRAM
RELATED THERETO UNLESS AGREED TO IN WRITING. THIS SPECIFICATION,
SOFTWARE RELATED THERETO, CODE AND/OR PROGRAM RELATED THERETO IS
BEING PROVIDED "AS IS", WITHOUT ANY WARRANTY OF ANY TYPE OR NATURE,
EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE,
AND ANY WARRANTY THAT THIS SPECIFICATION, SOFTWARE RELATED THERETO,
CODE AND/OR PROGRAM RELATED THERETO IS FREE FROM DEFECTS.

ASSUMPTION OF RISK: THE RISK OF ANY AND ALL LOSS, DAMAGE, OR
UNSATISFACTORY PERFORMANCE OF THIS SPECIFICATION (RESPECTIVELY THE
PRODUCTS MAKING USE OF IT IN PART OR AS A WHOLE), SOFTWARE RELATED
THERETO, CODE AND/OR PROGRAM RELATED THERETO RESTS WITH YOU AS THE
USER. TO THE MAXIMUM EXTENT PERMITTED BY LAW, NEITHER THE
INTELLECTUAL PROPERTY OWNERS, COPYRIGHT HOLDERS AND CONTRIBUTORS,
NOR ANY PERSON EITHER EXPRESSLY OR IMPLICITLY, MAKES ANY
REPRESENTATION OR WARRANTY REGARDING THE APPROPRIATENESS OF THE
USE, OUTPUT, OR RESULTS OF THE USE OF THIS SPECIFICATION, SOFTWARE
RELATED THERETO, CODE AND/OR PROGRAM RELATED THERETO IN TERMS OF
ITS CORRECTNESS, ACCURACY, RELIABILITY, BEING CURRENT OR OTHERWISE.
NOR DO THEY HAVE ANY OBLIGATION TO CORRECT ERRORS, MAKE CHANGES,
SUPPORT THIS SPECIFICATION, SOFTWARE RELATED THERETO, CODE AND/OR
PROGRAM RELATED THERETO, DISTRIBUTE UPDATES, OR PROVIDE
NOTIFICATION OF ANY ERROR OR DEFECT, KNOWN OR UNKNOWN. IF YOU RELY
UPON THIS SPECIFICATION, SOFTWARE RELATED THERETO, CODE AND/OR
PROGRAM RELATED THERETO, YOU DO SO AT YOUR OWN RISK, AND YOU
ASSUME THE RESPONSIBILITY FOR THE RESULTS. SHOULD THIS SPECIFICATION,
SOFTWARE RELATED THERETO, CODE AND/OR PROGRAM RELATED THERETO
PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL LOSSES, INCLUDING, BUT
NOT LIMITED TO, ANY NECESSARY SERVICING, REPAIR OR CORRECTION OF ANY
PROPERTY INVOLVED TO THE MAXIMUM EXTEND PERMITTED BY LAW.

DISCLAIMER: IN NO EVENT, UNLESS REQUIRED BY LAW OR AGREED TO IN
WRITING, SHALL THE INTELLECTUAL PROPERTY OWNERS, COPYRIGHT HOLDERS
OR ANY PERSON BE LIABLE FOR ANY LOSS, EXPENSE OR DAMAGE, OF ANY TYPE
OR NATURE ARISING OUT OF THE USE OF, OR INABILITY TO USE THIS
SPECIFICATION, SOFTWARE RELATED THERETO, CODE AND/OR PROGRAM
ii 24.03.2016



Revision 3.2.1.1 M_CAN
RELATED THERETO, INCLUDING, BUT NOT LIMITED TO, CLAIMS, SUITS OR CAUSES
OF ACTION INVOLVING ALLEGED INFRINGEMENT OF COPYRIGHTS, PATENTS,
TRADEMARKS, TRADE SECRETS, OR UNFAIR COMPETITION.

INDEMNIFICATION: TO THE MAXIMUM EXTEND PERMITTED BY LAW YOU AGREE TO
INDEMNIFY AND HOLD HARMLESS THE INTELLECTUAL PROPERTY OWNERS,
COPYRIGHT HOLDERS AND CONTRIBUTORS, AND EMPLOYEES, AND ANY PERSON
FROM AND AGAINST ALL CLAIMS, LIABILITIES, LOSSES, CAUSES OF ACTION,
DAMAGES, JUDGMENTS, AND EXPENSES, INCLUDING THE REASONABLE COST OF
ATTORNEYS’ FEES AND COURT COSTS, FOR INJURIES OR DAMAGES TO THE
PERSON OR PROPERTY OF THIRD PARTIES, INCLUDING, WITHOUT LIMITATIONS,
CONSEQUENTIAL, DIRECT AND INDIRECT DAMAGES AND ANY ECONOMIC LOSSES,
THAT ARISE OUT OF OR IN CONNECTION WITH YOUR USE, MODIFICATION, OR
DISTRIBUTION OF THIS SPECIFICATION, SOFTWARE RELATED THERETO, CODE
AND/OR PROGRAM RELATED THERETO, ITS OUTPUT, OR ANY ACCOMPANYING
DOCUMENTATION.

GOVERNING LAW: THE RELATIONSHIP BETWEEN YOU AND ROBERT BOSCH GMBH
SHALL BE GOVERNED SOLELY BY THE LAWS OF THE FEDERAL REPUBLIC OF
GERMANY. THE STIPULATIONS OF INTERNATIONAL CONVENTIONS REGARDING
THE INTERNATIONAL SALE OF GOODS SHALL NOT BE APPLICABLE. THE
EXCLUSIVE LEGAL VENUE SHALL BE DUESSELDORF, GERMANY.

MANDATORY LAW SHALL BE UNAFFECTED BY THE FOREGOING PARAGRAPHS.

INTELLECTUAL PROPERTY OWNERS/COPYRIGHT OWNERS/CONTRIBUTORS:
ROBERT BOSCH GMBH, ROBERT BOSCH PLATZ 1, 70839 GERLINGEN, GERMANY
AND ITS LICENSORS.
24.03.2016 iii



 M_CAN Revision 3.2.1.1
SPECIFICATION REVISION HISTORY

REVISION DATE NOTES

0.1 18.01.2008 initial working revision

0.2 12.02.2008 first revised working revision

0.3 10.03.2008 second revised working revision

0.4 18.04.2008 third revised working revision

0.5 22.07.2008 fourth revised working revision

0.6 24.10.2008 fifth revised working revision

0.7 18.12.2008 sixth revised working revision

1.0 25.03.2009 first complete revision

1.1 25.06.2009 Tx Handler functionality updated

1.2 20.08.2009 register TXBSC removed, RAM Watchdog added

1.21 10.02.2010 address 0x08 reserved for customer defined register

1.22 26.11.2010 minor textual enhancements

1.23 18.02.2011 typos corrected

2.0 27.10.2011 debug on CAN, dedicated Rx Buffers, CAN FD, Extension IF

2.0.1 12.03.2012 minor corrections, interface signals to Clock Calibration on CAN unit
updated

2.0.2 23.05.2012 Section 3.1.3 CAN FD Operation corrected

3.0 17.10.2012 FIFO overwrite mode, transmit pause, support of CAN FD 64-byte frames

3.0.1 26.11.2012 registers FBTP and TEST updated, minor textual enhancements

3.0.2 14.02.2013 Section 2.4.1 Message RAM Configuration corrected, minor corrections/
enhancements
iv 24.03.2016



Revision 3.2.1.1 M_CAN
TRACKING OF MAJOR CHANGES

3.1.0 22.07.2014 Register FBTP renamed to DBTP and restructured
• TDCO moved to new register TDCR
• increased configuration range for data bit timing
Register TEST restructured
• TDCV moved to register PSR
Register CCCR restructured
• FDBS and FDO removed
• new control bit EFBI replaces status flag FDBS
• new control bit PXHD replaces status flag FDO
• CMR removed, transmit format configured in Tx Buffer element
• CME replaced by FDOE and BRSE
Register BTP renamed to NBTP and restructured
• BRP renamed to NBRP, range reduced
• TSEG1 renamed to NTSEG1, range expanded
• TSEG2 renamed to NTSEG2, range expanded
• SJW renamed to NSJW, range expanded
Register PSR updated
• TDCV moved from register TEST, range increased
• status flag PXE added
• FLEC renamed to DLEC
Register TDCR added
• TDCO moved from register DBTP, range expanded
• new configuration TDCF field
Register IR updated
• interrupt flags STE, FOE, ACKE, BE, CRCE replaced by
ARA, PED, PEA
Register IE updated
• interrupt enable bits STEE, FOEE, ACKEE, BEE, CRCEE replaced by
ARAE, PEDE, PEAE
Register ILS updated
• interrupt line select bits STEL, FOEL, ACKEL, BEL, CRCEL replaced by
ARAL, PEDL, PEAL
Rx buffer and FIFO element updated
• bit EDL renamed to FDF
Tx buffer element updated
• transmission of bit ESI recessive configurable
• selection of Classic/FD format transmission via flag FDF
• configuration of bit rate switching via BRS
Section 3.1.3 CAN FD Operation updated
Section 3.1.4 Transmitter Delay Compensation updated
Minor amendments and textual enhancements

3.1.5 14.10.2014 Bit NISO added to register CCCR

3.2.0 07.11.2014 Table 61: description of m_can_dis_mord updated
Baud Rate replaced by Bit Rate
Note about Message RAM initialization added

3.2.1 16.03.2015 minor textual enhancements and corrections

3.2.1.1 24.03.2016 References to ISO 11898-1 updated, range of NBTP.NTSEG2 updated to
fix erratum #16.

REVISION DATE NOTES
24.03.2016 v



vi 24.03.2016

 M_CAN Revision 3.2.1.1

TERMS AND ABBREVIATIONS

This document uses the following terms and abbreviations.

Term Meaning

BRP Bit Rate Prescaler

BSP Bit Stream Processor

BTL Bit Timing Logic

CAN Controller Area Network

CAN FD Controller Area Network with Flexible Data-rate

CRC Cyclic Redundancy Check

DLC Data Length Code

ECC Error Correction Code

ECU Electronic Control Unit

EML Error Management Logic

FSM Finite State Machine

mtq minimum time quantum = CAN clock period (m_can_cclk)

SSP Secondary Sample Point

TDC Transmitter Delay Compensation

tq time quantum

TSEG1 Time Segment before Sample Point

TSEG2 Time Segment after Sample Point

TTCAN Time-Triggered CAN

CONVENTIONS

The following conventions are used within this User’s Manual.

Arial bold Names of bits and ports

Arial italic States of bits and ports

REFERENCES

This document refers to the following documents:

Ref Author(s) Title

[1] ISO ISO 11898-1:2015: CAN data link layer and physical signalling

[2] AE/PJ-SCI M_(TT)CAN System Integration Guide

[3] AE/PJ-SCI M_CAN Module Integration Guide



Revision 3.2.1.1 M_CAN
Table of contents

1 Overview  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Block Diagram  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Dual Clock Sources  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Dual Interrupt Lines  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Programmer’s Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1 Hardware Reset Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Register Map  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2.1 Access to reserved Register Addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3.1 Customer Register  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3.2 Core Release Register (CREL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3.3 Endian Register (ENDN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3.4 Data Bit Timing & Prescaler Register (DBTP). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3.5 Test Register (TEST)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3.6 RAM Watchdog (RWD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3.7 CC Control Register (CCCR)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3.8 Nominal Bit Timing & Prescaler Register (NBTP) . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.9 Timestamp Counter Configuration (TSCC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.10 Timestamp Counter Value (TSCV) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.11 Timeout Counter Configuration (TOCC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.12 Timeout Counter Value (TOCV)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.13 Error Counter Register (ECR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.14 Protocol Status Register (PSR). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.15 Transmitter Delay Compensation Register (TDCR)  . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.16 Interrupt Register (IR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.17 Interrupt Enable (IE)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.3.18 Interrupt Line Select (ILS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.3.19 Interrupt Line Enable (ILE)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.3.20 Global Filter Configuration (GFC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.3.21 Standard ID Filter Configuration (SIDFC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.3.22 Extended ID Filter Configuration (XIDFC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.3.23 Extended ID AND Mask (XIDAM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.3.24 High Priority Message Status (HPMS)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.3.25 New Data 1 (NDAT1)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.3.26 New Data 2 (NDAT2)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.3.27 Rx FIFO 0 Configuration (RXF0C)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.3.28 Rx FIFO 0 Status (RXF0S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.3.29 Rx FIFO 0 Acknowledge (RXF0A)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.3.30 Rx Buffer Configuration (RXBC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.3.31 Rx FIFO 1 Configuration (RXF1C)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.3.32 Rx FIFO 1 Status (RXF1S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.3.33 Rx FIFO 1 Acknowledge (RXF1A)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.3.34 Rx Buffer / FIFO Element Size Configuration (RXESC) . . . . . . . . . . . . . . . . . . . . 36
2.3.35 Tx Buffer Configuration (TXBC)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.3.36 Tx FIFO/Queue Status (TXFQS). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.3.37 Tx Buffer Element Size Configuration (TXESC) . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.3.38 Tx Buffer Request Pending (TXBRP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.3.39 Tx Buffer Add Request (TXBAR). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.3.40 Tx Buffer Cancellation Request (TXBCR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.3.41 Tx Buffer Transmission Occurred (TXBTO)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.3.42 Tx Buffer Cancellation Finished (TXBCF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.3.43 Tx Buffer Transmission Interrupt Enable (TXBTIE). . . . . . . . . . . . . . . . . . . . . . . . 43
2.3.44 Tx Buffer Cancellation Finished Interrupt Enable (TXBCIE) . . . . . . . . . . . . . . . . . 43
2.3.45 Tx Event FIFO Configuration (TXEFC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
24.03.2016 vii



 M_CAN Revision 3.2.1.1
2.3.46 Tx Event FIFO Status (TXEFS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.3.47 Tx Event FIFO Acknowledge (TXEFA). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.4 Message RAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.4.1 Message RAM Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.4.2 Rx Buffer and FIFO Element  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.4.3 Tx Buffer Element. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
2.4.4 Tx Event FIFO Element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
2.4.5 Standard Message ID Filter Element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
2.4.6 Extended Message ID Filter Element. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3 Functional Description  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.1 Operating Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.1.1 Software Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.1.2 Normal Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.1.3 CAN FD Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.1.4 Transmitter Delay Compensation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.1.5 Restricted Operation Mode  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.1.6 Bus Monitoring Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.1.7 Disabled Automatic Retransmission. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.1.8 Power Down (Sleep Mode)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.1.9 Test Modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.2 Timestamp Generation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.3 Timeout Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.4 Rx Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.4.1 Acceptance Filtering. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.4.2 Rx FIFOs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.4.3 Dedicated Rx Buffers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.4.4 Debug on CAN Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.5 Tx Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.5.1 Transmit Pause  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.5.2 Dedicated Tx Buffers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.5.3 Tx FIFO  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.5.4 Tx Queue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
3.5.5 Mixed Dedicated Tx Buffers / Tx FIFO. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
3.5.6 Mixed Dedicated Tx Buffers / Tx Queue  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
3.5.7 Transmit Cancellation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
3.5.8 Tx Event Handling  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.6 FIFO Acknowledge Handling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.1 Register Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.2 Module Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
viii 24.03.2016



Chapter 1.
1. Overview

The M_CAN module is the new CAN Communication Controller IP-module that can be integrated
as stand-alone device or as part of an ASIC. It is described in VHDL on RTL level, prepared for
synthesis. The M_CAN performs communication according to ISO 11898-1:2015. Additional
transceiver hardware is required for connection to the physical layer.

The message storage is intended to be a single- or dual-ported Message RAM outside of the
module. It is connected to the M_CAN via the Generic Master Interface. Depending on the chosen
ASIC integration, multiple M_CAN controllers can share the same Message RAM.

All functions concerning the handling of messages are implemented by the Rx Handler and the Tx
Handler. The Rx Handler manages message acceptance filtering, the transfer of received messages
from the CAN Core to the Message RAM as well as providing receive message status information.
The Tx Handler is responsible for the transfer of transmit messages from the Message RAM to the
CAN Core as well as providing transmit status information.

Acceptance filtering is implemented by a combination of up to 128 filter elements where each one
can be configured as a range, as a bit mask, or as a dedicated ID filter.

The M_CAN can be connected to a wide range of Host CPUs via its 8/16/32-bit Generic Slave
Interface. The M_CAN’s clock domain concept allows the separation between the high precision
CAN clock and the Host clock, which may be generated by an FM-PLL.

1.1 Features

• Conform with ISO 11898-1:2015

• CAN FD with up to 64 data bytes supported

• CAN Error Logging

• AUTOSAR support

• SAE J1939 support

• Improved acceptance filtering

• Two configurable Receive FIFOs

• Separate signalling on reception of High Priority Messages

• Up to 64 dedicated Receive Buffers

• Up to 32 dedicated Transmit Buffers

• Configurable Transmit FIFO

• Configurable Transmit Queue

• Configurable Transmit Event FIFO

• Direct Message RAM access for Host CPU

• Multiple M_CANs may share the same Message RAM

• Programmable loop-back test mode

• Maskable module interrupts

• 8/16/32 bit Generic Slave Interface for connection customer-specific Host CPUs

• Two clock domains (CAN clock and Host clock)

• Power-down support

• Debug on CAN support
M_CAN - Revision 3.2.1.1 - 24.03.2016 1



 M_CAN Revision 3.2.1.1
1.2 Block Diagram

Figure 1 M_CAN Block Diagram

CAN Core

CAN Protocol Controller and Rx/Tx Shift Register. Handles all ISO 11898-1:2015 protocol functions.
Supports 11-bit and 29-bit identifiers.

Sync

Synchronizes signals from the Host clock domain to the CAN clock domain and vice versa.

Clk

Synchronizes reset signal to the Host clock domain and to the CAN clock domain.

Cfg & Ctrl

CAN Core related configuration and control bits.

Interrupt & Timestamp

Interrupt control and 16-bit CAN bit time counter for receive and transmit timestamp generation. An
externally generated 16-bit vector may substitute the integrated 16-bit CAN bit time counter for
receive and transmit timestamp generation.

Tx Handler

Controls the message transfer from the external Message RAM to the CAN Core. A maximum of 32
Tx Buffers can be configured for transmission. Tx buffers can be used as dedicated Tx Buffers, as
Tx FIFO, part of a Tx Queue, or as a combination of them. A Tx Event FIFO stores Tx timestamps
together with the corresponding Message ID. Transmit cancellation is also supported.

m_can_rx
m_can_tx

Sync

Rx Handler

C
fg

 &
 C

tr
l

Acceptance Filter

In
te

rr
u

p
t 

&
G

en
er

ic
 M

as
te

r 
IF

T
im

es
ta

m
p

Tx_State Tx_Req
C

fg
 &

 C
tr

l

M_CAN

CAN Core

Tx Handler
C

fg
 &

 C
tr

l
Tx Prioritization

Rx_State

Host Clock DomainCAN Clock Domain

G
en

er
ic

 S
la

ve
 IF

Clk

Host IF

Memory IF

8/16/32

32

Extension IF
2 24.03.2016



Revision 3.2.1.1 M_CAN
Rx Handler

Controls the transfer of received messages from the CAN Core to the external Message RAM. The
Rx Handler supports two Receive FIFOs, each of configurable size, and up to 64 dedicated Rx
Buffers for storage of all messages that have passed acceptance filtering. A dedicated Rx Buffer, in
contrast to a Receive FIFO, is used to store only messages with a specific identifier. An Rx
timestamp is stored together with each message. Up to 128 filters can be defined for 11-bit IDs and
up to 64 filters for 29-bit IDs.

Generic Slave Interface

Connects the M_CAN to a customer specific Host CPU. The Generic Slave Interface is capable to
connect to an 8/16/32-bit bus to support a wide range of interconnection structures.

Generic Master Interface

Connects the M_CAN access to an external 32-bit Message RAM. The maximum Message RAM
size is 16K • 32 bit. A single M_CAN can use at most 4.25K • 32 bit.

Extension Interface

All flags from the Interrupt Register IR as well as selected internal status and control signals are
routed to this interface. The interface is intended for connection of the M_CAN to a module-external
interrupt unit or to other module-external components. The connection of these signals is optional.

1.3 Dual Clock Sources

To improve the EMC behavior, a spread spectrum clock can be used for the Host clock domain
m_can_hclk. Due to the high precision clocking requirements of the CAN Core, a separate clock
without any modulation has to be provided as m_can_cclk.

Within the M_CAN module there is a synchronization mechanism implemented to ensure save data
transfer between the two clock domains.

Note: In order to achieve a stable function of the M_CAN, the Host clock must always be faster
than or equal to the CAN clock. Also the modulation depth of a spread spectrum clock
has to be regarded.

1.4 Dual Interrupt Lines

The module provides two interrupt lines. Interrupts can be routed either to m_can_int0 or to
m_can_int1. By default all interrupts are routed to interrupt line m_can_int0. By programming
ILE.EINT0 and ILE.EINT1 the interrupt lines can be enabled or disabled separately.
24.03.2016 3



 M_CAN Revision 3.2.1.1
4 24.03.2016



Chapter 2.
2. Programmer’s Model

2.1 Hardware Reset Description

After hardware reset, the registers of the M_CAN hold the reset values listed in Table 1. Additionally
the Bus_Off state is reset and the output m_can_tx is set to recessive (HIGH). The value 0x0001
(CCCR.INIT = ‘1’) in the CC Control Register enables software initialization. The M_CAN does not
influence the CAN bus until the CPU resets CCCR.INIT to ‘0’.

2.2 Register Map

The M_CAN module allocates an address space of 256 bytes. All registers are organized as 32-bit
registers. The M_CAN is accessible by the Host CPU via the Generic Slave Interface using a data
width of 8 bit (byte access), 16 bit (half-word access), or 32 bit (word access). Write access by the
Host CPU to registers/bits marked with “P=Protected Write” is possible only with CCCR.CCE=’1’
AND CCCR.INIT=’1’. There is a delay from writing to a command register until the update of the
related status register bits due to clock domain crossing.

ADDRESS SYMBOL NAME PAGE RESET ACC

0x00 CREL Core Release Register 7 rrrd dddd R

0x04 ENDN Endian Register 8 8765 4321 R

0x08 CUST Customer Register 7 t.b.d. t.b.d.

0x0C DBTP Data Bit Timing & Prescaler Register 8 0000 0A33 RP

0x10 TEST Test Register 9 0000 0000 RP

0x14 RWD RAM Watchdog 10 0000 0000 RP

0x18 CCCR CC Control Register 11 0000 0001 RWPp

0x1C NBTP Nominal Bit Timing & Prescaler Register 13 0600 0A03 RP

0x20 TSCC Timestamp Counter Configuration 14 0000 0000 RP

0x24 TSCV Timestamp Counter Value 14 0000 0000 RC

0x28 TOCC Timeout Counter Configuration 15 FFFF 0000 RP

0x2C TOCV Timeout Counter Value 15 0000 FFFF RC

0x30-3C reserved (4) 0000 0000 R

0x40 ECR Error Counter Register 16 0000 0000 RX

0x44 PSR Protocol Status Register 17 0000 0707 RXS

0x48 TDCR Transmitter Delay Compensation Register 19 0000 0000 RP

0x4C reserved (1) 0000 0000 R

0x50 IR Interrupt Register 20 0000 0000 RW

0x54 IE Interrupt Enable 23 0000 0000 RW

0x58 ILS Interrupt Line Select 25 0000 0000 RW

0x5C ILE Interrupt Line Enable 26 0000 0000 RW

0x60-7C reserved (8) 0000 0000 R

0x80 GFC Global Filter Configuration 27 0000 0000 RP

0x84 SIDFC Standard ID Filter Configuration 28 0000 0000 RP

Table 1 M_CAN Register Map
M_CAN - Revision 3.2.1.1 - 24.03.2016 5



 M_CAN Revision 3.2.1.1
2.2.1 Access to reserved Register Addresses

In case the application software wants to access one of the reserved addresses in the M_CAN
register map (read or write access), interrupt flag IR.ARA is set, and if enable the interrupt is
signalled via the assigned interrupt line (m_can_int0 or m_can_int1).

0x88 XIDFC Extended ID Filter Configuration 28 0000 0000 RP

0x8C reserved (1) 0000 0000 R

0x90 XIDAM Extended ID AND Mask 29 1FFF FFFF RP

0x94 HPMS High Priority Message Status 29 0000 0000 R

0x98 NDAT1 New Data 1 30 0000 0000 RW

0x9C NDAT2 New Data 2 30 0000 0000 RW

0xA0 RXF0C Rx FIFO 0 Configuration 31 0000 0000 RP

0xA4 RXF0S Rx FIFO 0 Status 32 0000 0000 R

0xA8 RXF0A Rx FIFO 0 Acknowledge 33 0000 0000 RW

0xAC RXBC Rx Buffer Configuration 33 0000 0000 RP

0xB0 RXF1C Rx FIFO 1 Configuration 34 0000 0000 RP

0xB4 RXF1S Rx FIFO 1 Status 34 0000 0000 R

0xB8 RXF1A Rx FIFO 1 Acknowledge 35 0000 0000 RW

0xBC RXESC Rx Buffer / FIFO Element Size Configuration 36 0000 0000 RP

0xC0 TXBC Tx Buffer Configuration 37 0000 0000 RP

0xC4 TXFQS Tx FIFO/Queue Status 38 0000 0000 R

0xC8 TXESC Tx Buffer Element Size Configuration 39 0000 0000 RP

0xCC TXBRP Tx Buffer Request Pending 40 0000 0000 R

0xD0 TXBAR Tx Buffer Add Request 41 0000 0000 RW

0xD4 TXBCR Tx Buffer Cancellation Request 41 0000 0000 RW

0xD8 TXBTO Tx Buffer Transmission Occurred 42 0000 0000 R

0xDC TXBCF Tx Buffer Cancellation Finished 42 0000 0000 R

0xE0 TXBTIE Tx Buffer Transmission Interrupt Enable 43 0000 0000 RW

0xE4 TXBCIE Tx Buffer Cancellation Finished Interrupt Enable 43 0000 0000 RW

0xE8-EC reserved (2) 0000 0000 R

0xF0 TXEFC Tx Event FIFO Configuration 44 0000 0000 RP

0xF4 TXEFS Tx Event FIFO Status 45 0000 0000 R

0xF8 TXEFA Tx Event FIFO Acknowledge 45 0000 0000 RW

0xFC reserved (1) 0000 0000 R
R = Read, S = Set on read, X = Reset on read, W = Write, P = Protected write, p = Protected set, C = Clear/preset on write, r = release, d = date

ADDRESS SYMBOL NAME PAGE RESET ACC

Table 1 M_CAN Register Map
6 24.03.2016



Revision 3.2.1.1 M_CAN
2.3 Registers

2.3.1 Customer Register

Address 0x08 is reserved for an optional 32 bit customer-specific register. The Customer Register
is intended to hold customer-specific configuration, control, and status bits. A description of the
functionality is not part of this document.

2.3.2 Core Release Register (CREL)

Bits 31:28 REL[3:0]: Core Release

One digit, BCD-coded.

Bits 27:24 STEP[3:0]: Step of Core Release

One digit, BCD-coded.

Bits 23:20 SUBSTEP[3:0]: Sub-step of Core Release

One digit, BCD-coded.

Bits 19:16 YEAR[3:0]: Time Stamp Year

One digit, BCD-coded. This field is set by generic parameter on M_CAN synthesis.

Bits 15:8 MON[7:0]: Time Stamp Month

Two digits, BCD-coded. This field is set by generic parameter on M_CAN synthesis.

Bits 7:0 DAY[7:0]: Time Stamp Day

Two digits, BCD-coded. This field is set by generic parameter on M_CAN synthesis.

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0x00 REL[3:0] STEP[3:0] SUBSTEP[3:0] YEAR[3:0]

R-r R-r R-r R-d

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MON[7:0] DAY[7:0]

R-d R-d

R = Read; -r = release, -d = time stamp, value defined at synthesis by generic parameter

Table 2 Core Release Register (addresses 0x00)

Release Step SubStep Year Month Day Name

0 2 0 9 03 26 Revision 0.2.0, Date 2009/03/26

Table 3 Example for Coding of Revisions
24.03.2016 7



 M_CAN Revision 3.2.1.1
2.3.3 Endian Register (ENDN)

Bits 31:0 ETV[31:0]: Endianness Test Value

The endianness test value is 0x87654321.

2.3.4 Data Bit Timing & Prescaler Register (DBTP)

This register is only writable if bits CCCR.CCE and CCCR.INIT are set. The CAN bit time may be
programed in the range of 4 to 49 time quanta. The CAN time quantum may be programmed in the
range of 1 to 32 m_can_cclk periods. tq = (DBRP + 1) mtq.

DTSEG1 is the sum of Prop_Seg and Phase_Seg1. DTSEG2 is Phase_Seg2.

Therefore the length of the bit time is (programmed values) [DTSEG1 + DTSEG2 + 3] tq
or (functional values) [Sync_Seg + Prop_Seg + Phase_Seg1 + Phase_Seg2] tq.

The Information Processing Time (IPT) is zero, meaning the data for the next bit is available at the
first clock edge after the sample point.

Bit 23 TDC: Transmitter Delay Compensation

0= Transmitter Delay Compensation disabled
1= Transmitter Delay Compensation enabled

Bits 20:16 DBRP[4:0]: Data Bit Rate Prescaler

0x00-0x1F The value by which the oscillator frequency is divided for generating the bit time
quanta. The bit time is built up from a multiple of this quanta. Valid values for the Bit
Rate Prescaler are 0 to 31. The actual interpretation by the hardware of this value is
such that one more than the value programmed here is used.

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0x04 ETV[31:16]

R-0x8765

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ETV[15:0]

R-0x4321

R = Read; -t = test value

Table 4 Endian Register (address 0x04)

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0x0C res TDC res DBRP[4:0]

R-0x0 RP-0 R-0x0 RP-0x0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

res DTSEG1[4:0] DTSEG2[3:0] DSJW[3:0]

R-0x0 RP-0xA RP-0x3 RP-0x3

R = Read, P = Protected write; -n = value after reset

Table 5 Data Bit Timing & Prescaler Register (address 0x0C)
8 24.03.2016



Revision 3.2.1.1 M_CAN
Bits 12:8 DTSEG1[4:0]: Data time segment before sample point

0x00-0x1F Valid values are 0 to 31. The actual interpretation by the hardware of this value is
such that one more than the programmed value is used.

Bits 7:4 DTSEG2[3:0]: Data time segment after sample point

0x0-0xF Valid values are 0 to 15. The actual interpretation by the hardware of this value is
such that one more than the programmed value is used.

Bits 3:0 DSJW[3:0]: Data (Re)Synchronization Jump Width

0x0-0xF Valid values are 0 to 15. The actual interpretation by the hardware of this value is
such that one more than the value programmed here is used.

Note: With a CAN clock (m_can_cclk) of 8 MHz, the reset value of 0x00000A33 configures the
M_CAN for a data phase bit rate of 500 kBit/s.

Note: The bit rate configured for the CAN FD data phase via DBTP must be higher or equal to
the bit rate configured for the arbitration phase via NBTP.

2.3.5 Test Register (TEST)

Write access to the Test Register has to be enabled by setting bit CCCR.TEST to ‘1’. All Test
Register functions are set to their reset values when bit CCCR.TEST is reset.

Loop Back Mode and software control of pin m_can_tx are hardware test modes. Programming of
TX ≠ “00” may disturb the message transfer on the CAN bus.

Bit 7 RX: Receive Pin

Monitors the actual value of pin m_can_rx
0= The CAN bus is dominant (m_can_rx = ‘0’)
1= The CAN bus is recessive (m_can_rx = ‘1’)

Bits 6:5 TX[1:0]: Control of Transmit Pin

00 Reset value, m_can_tx controlled by the CAN Core, updated at the end of the CAN bit time
01 Sample Point can be monitored at pin m_can_tx
10 Dominant (‘0’) level at pin m_can_tx
11 Recessive (‘1’) at pin m_can_tx

Bit 4 LBCK: Loop Back Mode

0= Reset value, Loop Back Mode is disabled
1= Loop Back Mode is enabled (see Chapter 3.1.9)

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0x10 res

R-0x0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

res RX TX[1:0] LBCK res

R-0x0 R-U RP-0x0 RP-0 R-0x0

R = Read, P = Protected write, -U = undefined; -n = value after reset

Table 6 Test Register (address 0x10)
24.03.2016 9



 M_CAN Revision 3.2.1.1
10 24.03.2016

2.3.6 RAM Watchdog (RWD)

The RAM Watchdog monitors the READY output of the Message RAM (m_can_aeim_ready). A
Message RAM access via the M_CAN’s Generic Master Interface (m_can_aeim_sel active) starts
the Message RAM Watchdog Counter with the value configured by RWD.WDC. The counter is
reloaded with RWD.WDC when the Message RAM signals successful completion by activating its
READY output. In case there is no response from the Message RAM until the counter has counted
down to zero, the counter stops and interrupt flag IR.WDI is set. The RAM Watchdog Counter is
clocked by the Host clock (m_can_hclk).

Bits 7:0 WDV[7:0]: Watchdog Value

Actual Message RAM Watchdog Counter Value.

Bits 7:0 WDC[7:0]: Watchdog Configuration

Start value of the Message RAM Watchdog Counter. With the reset value of “00” the counter is
disabled.

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0x14 res

R-0x0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

WDV[7:0] WDC[7:0]

R-0x0 RP-0x0

R = Read, W = Write, P = Protected write; -n = value after reset

Table 7 RAM Watchdog (address 0x14)



Revision 3.2.1.1 M_CAN
2.3.7 CC Control Register (CCCR)

For details about setting and resetting of single bits see Section 3.1.1.

Bit 15 NISO: Non ISO Operation

If this bit is set, the M_CAN uses the CAN FD frame format as specified by the Bosch CAN FD
Specification V1.0.

0= CAN FD frame format according to ISO 11898-1:2015
1= CAN FD frame format according to Bosch CAN FD Specification V1.0

Note: When the generic parameter iso_only_g is set to ‘1’ in hardware synthesis, this bit be-
comes reserved and is read as ‘0’. The M_CAN always operates with the CAN FD frame
format according to ISO 11898-1:2015.

Bit 14 TXP: Transmit Pause

If this bit is set, the M_CAN pauses for two CAN bit times before starting the next transmission after
itself has successfully transmitted a frame (see Section 3.5).

0= Transmit pause disabled
1= Transmit pause enabled

Bit 13 EFBI: Edge Filtering during Bus Integration

0= Edge filtering disabled
1= Two consecutive dominant tq required to detect an edge for hard synchronization

Bit 12 PXHD: Protocol Exception Handling Disable

0= Protocol exception handling enabled
1= Protocol exception handling disabled

Note: When protocol exception handling is disabled, the M_CAN will transmit an error frame
when it detects a protocol exception condition.

Bit 9 BRSE: Bit Rate Switch Enable

0= Bit rate switching for transmissions disabled
1= Bit rate switching for transmissions enabled

Note: When CAN FD operation is disabled FDOE = ‘0’, BRSE is not evaluated.

Bit 8 FDOE: FD Operation Enable

0= FD operation disabled
1= FD operation enabled

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0x18 res

R-0x0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

NISO TXP EFBI PXHD res BRSE FDOE TEST DAR MON CSR CSA ASM CCE INIT

RP-0 RP-0 RP-0 RP-0 R-0x0 RP-0 RP-0 Rp-0 RP-0 Rp-0 RW-0 R-0 Rp-0 RP-0 RW-1

R = Read, W = Write, P = Protected write, p = Protected set; -n = value after reset

Table 8 CC Control Register (address 0x18)
24.03.2016 11



 M_CAN Revision 3.2.1.1
Bit 7 TEST: Test Mode Enable

0= Normal operation, register TEST holds reset values
1= Test Mode, write access to register TEST enabled

Bit 6 DAR: Disable Automatic Retransmission

0= Automatic retransmission of messages not transmitted successfully enabled
1= Automatic retransmission disabled

Bit 5 MON Bus Monitoring Mode

Bit MON can only be set by the Host when both CCE and INIT are set to ‘1’. The bit can be reset by
the Host at any time.

0= Bus Monitoring Mode is disabled
1= Bus Monitoring Mode is enabled

Bit 4 CSR: Clock Stop Request

0= No clock stop is requested
1= Clock stop requested. When clock stop is requested, first INIT and then CSA will be set after

all pending transfer requests have been completed and the CAN bus reached idle.

Bit 3 CSA: Clock Stop Acknowledge

0= No clock stop acknowledged
1= M_CAN may be set in power down by stopping m_can_hclk and m_can_cclk

Bit 2 ASM Restricted Operation Mode

Bit ASM can only be set by the Host when both CCE and INIT are set to ‘1’. The bit can be reset by
the Host at any time. For a description of the Restricted Operation Mode see Section 3.1.5.

0= Normal CAN operation
1= Restricted Operation Mode active

Bit 1 CCE: Configuration Change Enable

0= The CPU has no write access to the protected configuration registers
1= The CPU has write access to the protected configuration registers (while CCCR.INIT = ‘1’)

Bit 0 INIT: Initialization

0= Normal Operation
1= Initialization is started

Note: Due to the synchronization mechanism between the two clock domains, there may be a
delay until the value written to INIT can be read back. Therefore the programmer has to
assure that the previous value written to INIT has been accepted by reading INIT before
setting INIT to a new value.
12 24.03.2016



Revision 3.2.1.1 M_CAN
2.3.8 Nominal Bit Timing & Prescaler Register (NBTP)

This register is only writable if bits CCCR.CCE and CCCR.INIT are set. The CAN bit time may be
programed in the range of 4 to 385 time quanta. The CAN time quantum may be programmed in the
range of 1 to 512 m_can_cclk periods. tq = (NBRP + 1) mtq.

NTSEG1 is the sum of Prop_Seg and Phase_Seg1. NTSEG2 is Phase_Seg2.

Therefore the length of the bit time is (programmed values) [NTSEG1 + NTSEG2 + 3] tq
or (functional values) [Sync_Seg + Prop_Seg + Phase_Seg1 + Phase_Seg2] tq.

The Information Processing Time (IPT) is zero, meaning the data for the next bit is available at the
first clock edge after the sample point.

Bits 31:25 NSJW[6:0]: Nominal (Re)Synchronization Jump Width

0x00-0x7F Valid values are 0 to 127. The actual interpretation by the hardware of this value is
such that one more than the value programmed here is used.

Bits 24:16 NBRP[8:0]: Nominal Bit Rate Prescaler

0x000-0x1FFThe value by which the oscillator frequency is divided for generating the bit time
quanta. The bit time is built up from a multiple of this quanta. Valid values for the Bit
Rate Prescaler are 0 to 511. The actual interpretation by the hardware of this value is
such that one more than the value programmed here is used.

Bits 15:8 NTSEG1[7:0]: Nominal Time segment before sample point

0x01-0xFF Valid values are 1 to 255. The actual interpretation by the hardware of this value is
such that one more than the programmed value is used.

Bits 6:0 NTSEG2[6:0]: Nominal Time segment after sample point

0x01-0x7F Valid values are 1 to 127. The actual interpretation by the hardware of this value is
such that one more than the programmed value is used.

Note: With a CAN clock (m_can_cclk) of 8 MHz, the reset value of 0x06000A03 configures the
M_CAN for a bit rate of 500 kBit/s.

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0x1C NSJW[6:0] NBRP[8:0]

RP-0x3 RP-0x0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

NTSEG1[7:0] res NTSEG2[6:0]

RP-0xA R-0 RP-0x3

R = Read, P = Protected write; -n = value after reset

Table 9 Nominal Bit Timing & Prescaler Register (address 0x1C)
24.03.2016 13



 M_CAN Revision 3.2.1.1
2.3.9 Timestamp Counter Configuration (TSCC)

For a description of the Timestamp Counter see Section 3.2, Timestamp Generation.

Bit 19:16 TCP[3:0]: Timestamp Counter Prescaler

0x0-0xF Configures the timestamp and timeout counters time unit in multiples of CAN bit times
[1…16]. The actual interpretation by the hardware of this value is such that one more
than the value programmed here is used.

Note: With CAN FD an external counter is required for timestamp generation (TSS = “10”)

Bits 1:0 TSS[1:0]: Timestamp Select

00= Timestamp counter value always 0x0000
01= Timestamp counter value incremented according to TCP
10= External timestamp counter value used
11= Same as “00”

2.3.10 Timestamp Counter Value (TSCV)

Bit 15:0 TSC[15:0]: Timestamp Counter

The internal/external Timestamp Counter value is captured on start of frame (both Rx and Tx).
When TSCC.TSS = “01”, the Timestamp Counter is incremented in multiples of CAN bit times
[1…16] depending on the configuration of TSCC.TCP. A wrap around sets interrupt flag IR.TSW.
Write access resets the counter to zero. When TSCC.TSS = “10”, TSC reflects the external
Timestamp Counter value. A write access has no impact.

Note: A “wrap around” is a change of the Timestamp Counter value from non-zero to zero not
caused by write access to TSCV.

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0x20 res TCP[3:0]

R-0x0 RP-0x0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

res TSS[1:0]

R-0x0 RP-0x0

R = Read, P = Protected write; -n = value after reset

Table 10 Timestamp Counter Configuration (address 0x20)

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0x24 res

R-0x0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TSC[15:0]

RC-0x0

R = Read, C = Clear on write; -n = Value after reset

Table 11 Timestamp Counter Value (address 0x24)
14 24.03.2016



Revision 3.2.1.1 M_CAN
2.3.11 Timeout Counter Configuration (TOCC)

For a description of the Timeout Counter see Section 3.3, Timeout Counter.

Bit 31:16 TOP[15:0]: Timeout Period

Start value of the Timeout Counter (down-counter). Configures the Timeout Period.

Bits 2:1 TOS[1:0]: Timeout Select

When operating in Continuous mode, a write to TOCV presets the counter to the value configured
by TOCC.TOP and continues down-counting. When the Timeout Counter is controlled by one of the
FIFOs, an empty FIFO presets the counter to the value configured by TOCC.TOP. Down-counting
is started when the first FIFO element is stored.

00= Continuous operation
01= Timeout controlled by Tx Event FIFO
10= Timeout controlled by Rx FIFO 0
11= Timeout controlled by Rx FIFO 1

Bit 0 ETOC: Enable Timeout Counter

0= Timeout Counter disabled
1= Timeout Counter enabled

Note: For use of timeout function with CAN FD see Section 3.3.

2.3.12 Timeout Counter Value (TOCV)

Bit 15:0 TOC[15:0]: Timeout Counter

The Timeout Counter is decremented in multiples of CAN bit times [1…16] depending on the
configuration of TSCC.TCP. When decremented to zero, interrupt flag IR.TOO is set and the
Timeout Counter is stopped. Start and reset/restart conditions are configured via TOCC.TOS.

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0x28 TOP[15:0]

RP-0xFFFF

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

res TOS[1:0] ETOC

R-0x0 RP-0x0 RP-0

R = Read, P = Protected write; -n = value after reset

Table 12 Timeout Counter Configuration (address 0x28)

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0x2C res

R-0x0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TOC[15:0]

RC-0xFFFF

R = Read, C = Clear on write; -n = value after reset

Table 13 Timeout Counter Value (address 0x2C)
24.03.2016 15



 M_CAN Revision 3.2.1.1
2.3.13 Error Counter Register (ECR)

Bits 23:16 CEL[7:0]: CAN Error Logging

The counter is incremented each time when a CAN protocol error causes the Transmit Error Counter
or the Receive Error Counter to be incremented. It is reset by read access to CEL. The counter stops
at 0xFF; the next increment of TEC or REC sets interrupt flag IR.ELO.

Bit 15 RP: Receive Error Passive

0= The Receive Error Counter is below the error passive level of 128
1= The Receive Error Counter has reached the error passive level of 128

Bits 14:8 REC[6:0]: Receive Error Counter

Actual state of the Receive Error Counter, values between 0 and 127

Bits 7:0 TEC[7:0]: Transmit Error Counter

Actual state of the Transmit Error Counter, values between 0 and 255

Note: When CCCR.ASM is set, the CAN protocol controller does not increment TEC and REC
when a CAN protocol error is detected, but CEL is still incremented.

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0x40 res CEL[7:0]

R-0x0 X-0x0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RP REC[6:0] TEC[7:0]

R-0 R-0x0 R-0x0

R = Read, X = Reset on read; -n = value after reset

Table 14 Error Counter Register (address 0x40)
16 24.03.2016



Revision 3.2.1.1 M_CAN
2.3.14 Protocol Status Register (PSR)

Bits 22:16 TDCV[6:0]: Transmitter Delay Compensation Value

0x00-0x7F Position of the secondary sample point, defined by the sum of the measured delay
from m_can_tx to m_can_rx and TDCR.TDCO. The SSP position is, in the data
phase, the number of mtq between the start of the transmitted bit and the secondary
sample point. Valid values are 0 to 127 mtq.

Bit 14 PXE: Protocol Exception Event

0= No protocol exception event occurred since last read access
1= Protocol exception event occurred

Bit 13 RFDF: Received a CAN FD Message

This bit is set independent of acceptance filtering.

0= Since this bit was reset by the CPU, no CAN FD message has been received
1= Message in CAN FD format with FDF flag set has been received

Bit 12 RBRS: BRS flag of last received CAN FD Message

This bit is set together with RFDF, independent of acceptance filtering.

0= Last received CAN FD message did not have its BRS flag set
1= Last received CAN FD message had its BRS flag set

Bit 11 RESI: ESI flag of last received CAN FD Message

This bit is set together with RFDF, independent of acceptance filtering.

0= Last received CAN FD message did not have its ESI flag set
1= Last received CAN FD message had its ESI flag set

Bits 10:8 DLEC[2:0]: Data Phase Last Error Code

Type of last error that occurred in the data phase of a CAN FD format frame with its BRS flag set.
Coding is the same as for LEC. This field will be cleared to zero when a CAN FD format frame with
its BRS flag set has been transferred (reception or transmission) without error.

Bit 7 BO: Bus_Off Status

0= The M_CAN is not Bus_Off
1= The M_CAN is in Bus_Off state

Bit 6 EW: Warning Status

0= Both error counters are below the Error_Warning limit of 96
1= At least one of error counter has reached the Error_Warning limit of 96

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0x44 res TDCV[6:0]

R-0x0 R-0x0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

res PXE RFDF RBRS RESI DLEC[2:0] BO EW EP ACT[1:0] LEC[2:0]

R-0 X-0 X-0 X-0 X-0 S-0x7 R-0 R-0 R-0 R-0x0 S-0x7

R = Read, S = Set on read, X = Reset on read; -n = value after reset

Table 15 Protocol Status Register (address 0x44)
24.03.2016 17



 M_CAN Revision 3.2.1.1
Bit 5 EP: Error Passive

0= The M_CAN is in the Error_Active state. It normally takes part in bus communication and
sends an active error flag when an error has been detected

1= The M_CAN is in the Error_Passive state

Bits 4:3 ACT[1:0]: Activity

Monitors the module’s CAN communication state.

00= Synchronizing - node is synchronizing on CAN communication
01= Idle - node is neither receiver nor transmitter
10= Receiver - node is operating as receiver
11= Transmitter - node is operating as transmitter

Note: ACT is set to “00” by a Protocol Exception Event.

Bits 2:0 LEC[2:0]: Last Error Code

The LEC indicates the type of the last error to occur on the CAN bus. This field will be cleared to ‘0’
when a message has been transferred (reception or transmission) without error.

0= No Error: No error occurred since LEC has been reset by successful reception or transmis-
sion.

1= Stuff Error: More than 5 equal bits in a sequence have occurred in a part of a received mes-
sage where this is not allowed.

2= Form Error: A fixed format part of a received frame has the wrong format.
3= AckError: The message transmitted by the M_CAN was not acknowledged by another node.
4= Bit1Error: During the transmission of a message (with the exception of the arbitration field),

the device wanted to send a recessive level (bit of logical value ‘1’), but the monitored bus
value was dominant.

5= Bit0Error: During the transmission of a message (or acknowledge bit, or active error flag, or
overload flag), the device wanted to send a dominant level (data or identifier bit logical value
‘0’), but the monitored bus value was recessive. During Bus_Off recovery this status is set
each time a sequence of 11 recessive bits has been monitored. This enables the CPU to
monitor the proceeding of the Bus_Off recovery sequence (indicating the bus is not stuck at
dominant or continuously disturbed).

6= CRCError: The CRC check sum of a received message was incorrect. The CRC of an incom-
ing message does not match with the CRC calculated from the received data.

7= NoChange: Any read access to the Protocol Status Register re-initializes the LEC to ‘7’.
When the LEC shows the value ‘7’, no CAN bus event was detected since the last CPU read
access to the Protocol Status Register.

Note: When a frame in CAN FD format has reached the data phase with BRS flag set, the next
CAN event (error or valid frame) will be shown in DLEC instead of LEC. An error in a fixed
stuff bit of a CAN FD CRC sequence will be shown as a Form Error, not Stuff Error.

Note: The Bus_Off recovery sequence (see ISO 11898-1:2015) cannot be shortened by setting
or resetting CCCR.INIT. If the device goes Bus_Off, it will set CCCR.INIT of its own accord,
stopping all bus activities. Once CCCR.INIT has been cleared by the CPU, the device will
then wait for 129 occurrences of Bus Idle (129 * 11 consecutive recessive bits) before
resuming normal operation. At the end of the Bus_Off recovery sequence, the Error
Management Counters will be reset. During the waiting time after the resetting of
CCCR.INIT, each time a sequence of 11 recessive bits has been monitored, a Bit0Error
code is written to PSR.LEC, enabling the CPU to readily check up whether the CAN bus
is stuck at dominant or continuously disturbed and to monitor the Bus_Off recovery
sequence. ECR.REC is used to count these sequences.
18 24.03.2016



Revision 3.2.1.1 M_CAN
2.3.15 Transmitter Delay Compensation Register (TDCR)

Bits 14:8 TDCO[6:0]: Transmitter Delay Compensation Offset

0x00-0x7F Offset value defining the distance between the measured delay from m_can_tx to
m_can_rx and the secondary sample point. Valid values are 0 to 127 mtq.

Bits 6:0 TDCF[6:0]: Transmitter Delay Compensation Filter Window Length

0x00-0x7F Defines the minimum value for the SSP position, dominant edges on m_can_rx that
would result in an earlier SSP position are ignored for transmitter delay measure-
ment. The feature is enabled when TDCF is configured to a value greater than
TDCO. Valid values are 0 to 127 mtq.

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0x048 res

R-0x0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

res TDCO[6:0] res TDCF[6:0]

R-0 RP-0x0 R-0 RP-0x0

R = Read, P = Protected write; -n = value after reset

Table 16 Transmitter Delay Compensation Register (address 0x048)
24.03.2016 19



 M_CAN Revision 3.2.1.1
2.3.16 Interrupt Register (IR)

The flags are set when one of the listed conditions is detected (edge-sensitive). The flags remain
set until the Host clears them. A flag is cleared by writing a ’1’ to the corresponding bit position.
Writing a ’0’ has no effect. A hard reset will clear the register. The configuration of IE controls
whether an interrupt is generated. The configuration of ILS controls on which interrupt line an
interrupt is signalled.

Bit 29 ARA: Access to Reserved Address

0= No access to reserved address occurred
1= Access to reserved address occurred

Bit 28 PED: Protocol Error in Data Phase (Data Bit Time is used)

0= No protocol error in data phase
1= Protocol error in data phase detected (PSR.DLEC ≠ 0,7)

Bit 27 PEA: Protocol Error in Arbitration Phase (Nominal Bit Time is used)

0= No protocol error in arbitration phase
1= Protocol error in arbitration phase detected (PSR.LEC ≠ 0,7)

Bit 26 WDI: Watchdog Interrupt

0= No Message RAM Watchdog event occurred
1= Message RAM Watchdog event due to missing READY

Bit 25 BO: Bus_Off Status

0= Bus_Off status unchanged
1= Bus_Off status changed

Bit 24 EW: Warning Status

0= Error_Warning status unchanged
1= Error_Warning status changed

Bit 23 EP: Error Passive

0= Error_Passive status unchanged
1= Error_Passive status changed

Bit 22 ELO: Error Logging Overflow

0= CAN Error Logging Counter did not overflow
1= Overflow of CAN Error Logging Counter occurred

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0x50 res ARA PED PEA WDI BO EW EP ELO BEU BEC DRX TOO MRAF TSW

R-0x0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TEFL TEFF TEFW TEFN TFE TCF TC HPM RF1L RF1F RF1W RF1N RF0L RF0F RF0W RF0N

RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0

R = Read, W = Write; -n = value after reset

Table 17 Interrupt Register (address 0x50)
20 24.03.2016



Revision 3.2.1.1 M_CAN
Bit 21 BEU: Bit Error Uncorrected

Message RAM bit error detected, uncorrected. Controlled by input signal m_can_aeim_berr[1]
generated by an optional external parity / ECC logic attached to the Message RAM. An uncorrected
Message RAM bit error sets CCCR.INIT to ‘1’. This is done to avoid transmission of corrupted data.

0= No bit error detected when reading from Message RAM
1= Bit error detected, uncorrected (e.g. parity logic)

Bit 20 BEC: Bit Error Corrected

Message RAM bit error detected and corrected. Controlled by input signal m_can_aeim_berr[0]
generated by an optional external parity / ECC logic attached to the Message RAM.

0= No bit error detected when reading from Message RAM
1= Bit error detected and corrected (e.g. ECC)

Bit 19 DRX: Message stored to Dedicated Rx Buffer

The flag is set whenever a received message has been stored into a dedicated Rx Buffer.

0= No Rx Buffer updated
1= At least one received message stored into an Rx Buffer

Bit 18 TOO: Timeout Occurred

0= No timeout
1= Timeout reached

Bit 17 MRAF: Message RAM Access Failure

The flag is set, when the Rx Handler

• has not completed acceptance filtering or storage of an accepted message until the arbitration
field of the following message has been received. In this case acceptance filtering or message
storage is aborted and the Rx Handler starts processing of the following message.

• was not able to write a message to the Message RAM. In this case message storage is aborted.

In both cases the FIFO put index is not updated resp. the New Data flag for a dedicated Rx Buffer
is not set, a partly stored message is overwritten when the next message is stored to this location.

The flag is also set when the Tx Handler was not able to read a message from the Message RAM
in time. In this case message transmission is aborted. In case of a Tx Handler access failure the
M_CAN is switched into Restricted Operation Mode (see Section 3.1.5). To leave Restricted
Operation Mode, the Host CPU has to reset CCCR.ASM.

0= No Message RAM access failure occurred
1= Message RAM access failure occurred

Bit 16 TSW: Timestamp Wraparound

0= No timestamp counter wrap-around
1= Timestamp counter wrapped around

Bit 15 TEFL: Tx Event FIFO Element Lost

0= No Tx Event FIFO element lost
1= Tx Event FIFO element lost, also set after write attempt to Tx Event FIFO of size zero

Bit 14 TEFF: Tx Event FIFO Full

0= Tx Event FIFO not full
1= Tx Event FIFO full

Bit 13 TEFW: Tx Event FIFO Watermark Reached

0= Tx Event FIFO fill level below watermark
1= Tx Event FIFO fill level reached watermark
24.03.2016 21



 M_CAN Revision 3.2.1.1
Bit 12 TEFN: Tx Event FIFO New Entry

0= Tx Event FIFO unchanged
1= Tx Handler wrote Tx Event FIFO element

Bit 11 TFE: Tx FIFO Empty

0= Tx FIFO non-empty
1= Tx FIFO empty

Bit 10 TCF: Transmission Cancellation Finished

0= No transmission cancellation finished
1= Transmission cancellation finished

Bit 9 TC: Transmission Completed

0= No transmission completed
1= Transmission completed

Bit 8 HPM: High Priority Message

0= No high priority message received
1= High priority message received

Bit 7 RF1L: Rx FIFO 1 Message Lost

0= No Rx FIFO 1 message lost
1= Rx FIFO 1 message lost, also set after write attempt to Rx FIFO 1 of size zero

Bit 6 RF1F: Rx FIFO 1 Full

0= Rx FIFO 1 not full
1= Rx FIFO 1 full

Bit 5 RF1W: Rx FIFO 1 Watermark Reached

0= Rx FIFO 1 fill level below watermark
1= Rx FIFO 1 fill level reached watermark

Bit 4 RF1N: Rx FIFO 1 New Message

0= No new message written to Rx FIFO 1
1= New message written to Rx FIFO 1

Bit 3 RF0L: Rx FIFO 0 Message Lost

0= No Rx FIFO 0 message lost
1= Rx FIFO 0 message lost, also set after write attempt to Rx FIFO 0 of size zero

Bit 2 RF0F: Rx FIFO 0 Full

0= Rx FIFO 0 not full
1= Rx FIFO 0 full

Bit 1 RF0W: Rx FIFO 0 Watermark Reached

0= Rx FIFO 0 fill level below watermark
1= Rx FIFO 0 fill level reached watermark

Bit 0 RF0N: Rx FIFO 0 New Message

0= No new message written to Rx FIFO 0
1= New message written to Rx FIFO 0
22 24.03.2016



Revision 3.2.1.1 M_CAN
2.3.17 Interrupt Enable (IE)

The settings in the Interrupt Enable register determine which status changes in the Interrupt
Register will be signalled on an interrupt line.

0= Interrupt disabled
1= Interrupt enabled

Bit 29 ARAE: Access to Reserved Address Enable

Bit 28 PEDE: Protocol Error in Data Phase Enable

Bit 27 PEAE: Protocol Error in Arbitration Phase Enable

Bit 26 WDIE: Watchdog Interrupt Enable

Bit 25 BOE: Bus_Off Status Interrupt Enable

Bit 24 EWE: Warning Status Interrupt Enable

Bit 23 EPE: Error Passive Interrupt Enable

Bit 22 ELOE: Error Logging Overflow Interrupt Enable

Bit 21 BEUE: Bit Error Uncorrected Interrupt Enable

Bit 20 BECE: Bit Error Corrected Interrupt Enable

Bit 19 DRXE: Message stored to Dedicated Rx Buffer Interrupt Enable

Bit 18 TOOE: Timeout Occurred Interrupt Enable

Bit 17 MRAFE: Message RAM Access Failure Interrupt Enable

Bit 16 TSWE: Timestamp Wraparound Interrupt Enable

Bit 15 TEFLE: Tx Event FIFO Event Lost Interrupt Enable

Bit 14 TEFFE: Tx Event FIFO Full Interrupt Enable

Bit 13 TEFWE: Tx Event FIFO Watermark Reached Interrupt Enable

Bit 12 TEFNE: Tx Event FIFO New Entry Interrupt Enable

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0x54 res ARAE PEDE PEAE WDIE BOE EWE EPE ELOE BEUE BECE DRXE TOOE MRAF
E TSWE

R-0x0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TEFLE TEFFE TEFWE TEFNE TFEE TCFE TCE HPME RF1LE RF1FE RF1WE RF1NE RF0LE RF0FE RF0WE RF0NE

RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0

R = Read, W = Write; -n = value after reset

Table 18 Interrupt Enable (address 0x54)
24.03.2016 23



 M_CAN Revision 3.2.1.1
Bit 11 TFEE: Tx FIFO Empty Interrupt Enable

Bit 10 TCFE: Transmission Cancellation Finished Interrupt Enable

Bit 9 TCE: Transmission Completed Interrupt Enable

Bit 8 HPME: High Priority Message Interrupt Enable

Bit 7 RF1LE: Rx FIFO 1 Message Lost Interrupt Enable

Bit 6 RF1FE: Rx FIFO 1 Full Interrupt Enable

Bit 5 RF1WE: Rx FIFO 1 Watermark Reached Interrupt Enable

Bit 4 RF1NE: Rx FIFO 1 New Message Interrupt Enable

Bit 3 RF0LE: Rx FIFO 0 Message Lost Interrupt Enable

Bit 2 RF0FE: Rx FIFO 0 Full Interrupt Enable

Bit 1 RF0WE: Rx FIFO 0 Watermark Reached Interrupt Enable

Bit 0 RF0NE: Rx FIFO 0 New Message Interrupt Enable
24 24.03.2016



Revision 3.2.1.1 M_CAN
2.3.18 Interrupt Line Select (ILS)

The Interrupt Line Select register assigns an interrupt generated by a specific interrupt flag from the
Interrupt Register to one of the two module interrupt lines. For interrupt generation the respective
interrupt line has to be enabled via ILE.EINT0 and ILE.EINT1.

0= Interrupt assigned to interrupt line m_can_int0
1= Interrupt assigned to interrupt line m_can_int1

Bit 29 ARAL: Access to Reserved Address Line

Bit 28 PEDL: Protocol Error in Data Phase Line

Bit 27 PEAL: Protocol Error in Arbitration Phase Line

Bit 26 WDIL: Watchdog Interrupt Line

Bit 25 BOL: Bus_Off Status Interrupt Line

Bit 24 EWL: Warning Status Interrupt Line

Bit 23 EPL: Error Passive Interrupt Line

Bit 22 ELOL: Error Logging Overflow Interrupt Line

Bit 21 BEUL: Bit Error Uncorrected Interrupt Line

Bit 20 BECL: Bit Error Corrected Interrupt Line

Bit 19 DRXL: Message stored to Dedicated Rx Buffer Interrupt Line

Bit 18 TOOL: Timeout Occurred Interrupt Line

Bit 17 MRAFL: Message RAM Access Failure Interrupt Line

Bit 16 TSWL: Timestamp Wraparound Interrupt Line

Bit 15 TEFLL: Tx Event FIFO Event Lost Interrupt Line

Bit 14 TEFFL: Tx Event FIFO Full Interrupt Line

Bit 13 TEFWL: Tx Event FIFO Watermark Reached Interrupt Line

Bit 12 TEFNL: Tx Event FIFO New Entry Interrupt Line

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0x58 res ARAL PEDL PEAL WDIL BOL EWL EPL ELOL BEUL BECL DRXL TOOL MRAF
L TSWL

R-0x0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TEFLL TEFFL TEFWL TEFNL TFEL TCFL TCL HPML RF1LL RF1FL RF1WL RF1NL RF0LL RF0FL RF0WL RF0NL

RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0

R = Read, W = Write; -n = value after reset

Table 19 Interrupt Line Select (address 0x58)
24.03.2016 25



 M_CAN Revision 3.2.1.1
Bit 11 TFEL: Tx FIFO Empty Interrupt Line

Bit 10 TCFL: Transmission Cancellation Finished Interrupt Line

Bit 9 TCL: Transmission Completed Interrupt Line

Bit 8 HPML: High Priority Message Interrupt Line

Bit 7 RF1LL: Rx FIFO 1 Message Lost Interrupt Line

Bit 6 RF1FL: Rx FIFO 1 Full Interrupt Line

Bit 5 RF1WL: Rx FIFO 1 Watermark Reached Interrupt Line

Bit 4 RF1NL: Rx FIFO 1 New Message Interrupt Line

Bit 3 RF0LL: Rx FIFO 0 Message Lost Interrupt Line

Bit 2 RF0FL: Rx FIFO 0 Full Interrupt Line

Bit 1 RF0WL: Rx FIFO 0 Watermark Reached Interrupt Line

Bit 0 RF0NL: Rx FIFO 0 New Message Interrupt Line

2.3.19 Interrupt Line Enable (ILE)

Each of the two interrupt lines to the CPU can be enabled / disabled separately by programming bits
EINT0 and EINT1.

Bit 1 EINT1: Enable Interrupt Line 1

0= Interrupt line m_can_int1 disabled
1= Interrupt line m_can_int1 enabled

Bit 0 EINT0: Enable Interrupt Line 0

0= Interrupt line m_can_int0 disabled
1= Interrupt line m_can_int0 enabled

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0x5C res

R-0x0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

res EINT1 EINT0

R-0x0 RW-0 RW-0

R = Read, W = Write; -n = value after reset

Table 20 Interrupt Line Select (address 0x5C)
26 24.03.2016



Revision 3.2.1.1 M_CAN
2.3.20 Global Filter Configuration (GFC)

Global settings for Message ID filtering. The Global Filter Configuration controls the filter path for
standard and extended messages as described in Figure 6 and Figure 7.

Bit 5:4 ANFS[1:0]: Accept Non-matching Frames Standard

Defines how received messages with 11-bit IDs that do not match any element of the filter list are
treated.

00= Accept in Rx FIFO 0
01= Accept in Rx FIFO 1
10= Reject
11= Reject

Bit 3:2 ANFE[1:0]: Accept Non-matching Frames Extended

Defines how received messages with 29-bit IDs that do not match any element of the filter list are
treated.

00= Accept in Rx FIFO 0
01= Accept in Rx FIFO 1
10= Reject
11= Reject

Bit 1 RRFS: Reject Remote Frames Standard

0= Filter remote frames with 11-bit standard IDs
1= Reject all remote frames with 11-bit standard IDs

Bit 0 RRFE: Reject Remote Frames Extended

0= Filter remote frames with 29-bit extended IDs
1= Reject all remote frames with 29-bit extended IDs

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0x80 res

R-0x0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

res ANFS[1:0] ANFE[1:0] RRFS RRFE

R-0x0 RP-0x0 RP-0x0 RP-0 RP-0

R = Read, P = Protected write; -n = value after reset

Table 21 Global Filter Configuration (address 0x80)
24.03.2016 27



 M_CAN Revision 3.2.1.1
2.3.21 Standard ID Filter Configuration (SIDFC)

Settings for 11-bit standard Message ID filtering. The Standard ID Filter Configuration controls the
filter path for standard messages as described in Figure 6.

Bit 23:16 LSS[7:0]: List Size Standard

0= No standard Message ID filter
1-128= Number of standard Message ID filter elements
>128= Values greater than 128 are interpreted as 128

Bit 15:2 FLSSA[15:2]: Filter List Standard Start Address

Start address of standard Message ID filter list (32-bit word address, see Figure 2).

2.3.22 Extended ID Filter Configuration (XIDFC)

Settings for 29-bit extended Message ID filtering. The Extended ID Filter Configuration controls the
filter path for standard messages as described in Figure 7.

Bit 22:16 LSE[6:0]: List Size Extended

0= No extended Message ID filter
1-64= Number of extended Message ID filter elements
>64= Values greater than 64 are interpreted as 64

Bit 15:2 FLESA[15:2]: Filter List Extended Start Address

Start address of extended Message ID filter list (32-bit word address, see Figure 2).

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0x84 res LSS[7:0]

R-0x0 RP-0x0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

FLSSA[15:2] res

RP-0x0 R-0x0

R = Read, P = Protected write; -n = value after reset

Table 22 Standard ID Filter Configuration (address 0x84)

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0x88 res LSE[6:0]

R-0x0 RP-0x0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

FLESA[15:2] res

RP-0x0 R-0x0

R = Read, P = Protected write; -n = value after reset

Table 23 Extended ID Filter Configuration (address 0x88)
28 24.03.2016



Revision 3.2.1.1 M_CAN
2.3.23 Extended ID AND Mask (XIDAM)

Bit 28:0 EIDM[28:0]: Extended ID Mask

For acceptance filtering of extended frames the Extended ID AND Mask is ANDed with the Message
ID of a received frame. Intended for masking of 29-bit IDs in SAE J1939. With the reset value of all
bits set to one the mask is not active.

2.3.24 High Priority Message Status (HPMS)

This register is updated every time a Message ID filter element configured to generate a priority
event matches. This can be used to monitor the status of incoming high priority messages and to
enable fast access to these messages.

Bit 15 FLST: Filter List

Indicates the filter list of the matching filter element.

0= Standard Filter List
1= Extended Filter List

Bit 14:8 FIDX[6:0]: Filter Index

Index of matching filter element. Range is 0 to SIDFC.LSS - 1 resp. XIDFC.LSE - 1.

Bit 7:6 MSI[1:0]: Message Storage Indicator

00= No FIFO selected
01= FIFO message lost
10= Message stored in FIFO 0
11= Message stored in FIFO 1

Bit 5:0 BIDX[5:0]: Buffer Index

Index of Rx FIFO element to which the message was stored. Only valid when MSI[1] = ‘1’.

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0x90 res EIDM[28:16]

R-0x0 RP-0x1FFF

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EIDM[15:0]

RP-0xFFFF

R = Read, P = Protected write; -n = value after reset

Table 24 Extended ID AND Mask (address 0x90)

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0x94 res

R-0x0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

FLST FIDX[6:0] MSI[1:0] BIDX[5:0]

R-0 R-0x0 R-0x0 R-0x0

R = Read; -n = Value after reset

Table 25 High Priority Message Status (address 0x94)
24.03.2016 29



 M_CAN Revision 3.2.1.1
2.3.25 New Data 1 (NDAT1)

Bit 31:0 ND[31:0]: New Data

The register holds the New Data flags of Rx Buffers 0 to 31. The flags are set when the respective
Rx Buffer has been updated from a received frame. The flags remain set until the Host clears them.
A flag is cleared by writing a ’1’ to the corresponding bit position. Writing a ’0’ has no effect. A hard
reset will clear the register.

0= Rx Buffer not updated
1= Rx Buffer updated from new message

2.3.26 New Data 2 (NDAT2)

Bit 31:0 ND[63:32]: New Data

The register holds the New Data flags of Rx Buffers 32 to 63. The flags are set when the respective
Rx Buffer has been updated from a received frame. The flags remain set until the Host clears them.
A flag is cleared by writing a ’1’ to the corresponding bit position. Writing a ’0’ has no effect. A hard
reset will clear the register.

0= Rx Buffer not updated
1= Rx Buffer updated from new message

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0x98 ND31 ND30 ND29 ND28 ND27 ND26 ND25 ND24 ND23 ND22 ND21 ND20 ND19 ND18 ND17 ND16

RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ND15 ND14 ND13 ND12 ND11 ND10 ND9 ND8 ND7 ND6 ND5 ND4 ND3 ND2 ND1 ND0

RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0

R = Read; -n = value after reset

Table 26 New Data 1 (address 0x98)

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0x9C ND63 ND62 ND61 ND60 ND59 ND58 ND57 ND56 ND55 ND54 ND53 ND52 ND51 ND50 ND49 ND48

RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ND47 ND46 ND45 ND44 ND43 ND42 ND41 ND40 ND39 ND38 ND37 ND36 ND35 ND34 ND33 ND32

RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0

R = Read; -n = value after reset

Table 27 New Data 2 (address 0x9C)
30 24.03.2016



Revision 3.2.1.1 M_CAN
2.3.27 Rx FIFO 0 Configuration (RXF0C)

Bit 31 F0OM: FIFO 0 Operation Mode

FIFO 0 can be operated in blocking or in overwrite mode (see Section 3.4.2).

0= FIFO 0 blocking mode
1= FIFO 0 overwrite mode

Bit 30:24 F0WM[6:0]: Rx FIFO 0 Watermark

0= Watermark interrupt disabled
1-64= Level for Rx FIFO 0 watermark interrupt (IR.RF0W)
>64= Watermark interrupt disabled

Bit 22:16 F0S[6:0]: Rx FIFO 0 Size

0= No Rx FIFO 0
1-64= Number of Rx FIFO 0 elements
>64= Values greater than 64 are interpreted as 64
The Rx FIFO 0 elements are indexed from 0 to F0S-1

Bit 15:2 F0SA[15:2]: Rx FIFO 0 Start Address

Start address of Rx FIFO 0 in Message RAM (32-bit word address, see Figure 2).

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0xA0 F0OM F0WM[6:0] res F0S[6:0]

RP-0 RP-0x0 R-0 RP-0x0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

F0SA[15:2] res

RP-0x0 R-0x0

R = Read, P = Protected write; -n = Value after reset

Table 28 Rx FIFO 0 Configuration (address 0xA0)
24.03.2016 31



 M_CAN Revision 3.2.1.1
2.3.28 Rx FIFO 0 Status (RXF0S)

Bit 25 RF0L: Rx FIFO 0 Message Lost

This bit is a copy of interrupt flag IR.RF0L. When IR.RF0L is reset, this bit is also reset.

0= No Rx FIFO 0 message lost
1= Rx FIFO 0 message lost, also set after write attempt to Rx FIFO 0 of size zero

Note: Overwriting the oldest message when RXF0C.F0OM = ‘1’ will not set this flag.

Bit 24 F0F: Rx FIFO 0 Full

0= Rx FIFO 0 not full
1= Rx FIFO 0 full

Bit 21:16 F0PI[5:0]: Rx FIFO 0 Put Index

Rx FIFO 0 write index pointer, range 0 to 63.

Bit 13:8 F0GI[5:0]: Rx FIFO 0 Get Index

Rx FIFO 0 read index pointer, range 0 to 63.

Bit 6:0 F0FL[6:0]: Rx FIFO 0 Fill Level

Number of elements stored in Rx FIFO 0, range 0 to 64.

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0xA4 res RF0L F0F res F0PI[5:0]

R-0x0 R-0 R-0 R-0x0 R-0x0x0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

res F0GI[5:0] res F0FL[6:0]

R-0x0 R-0x0 R-0 R-0x0

R = Read; -n = value after reset

Table 29 Rx FIFO 0 Status (address 0xA4)
32 24.03.2016



Revision 3.2.1.1 M_CAN
2.3.29 Rx FIFO 0 Acknowledge (RXF0A)

Bit 5:0 F0AI[5:0]: Rx FIFO 0 Acknowledge Index

After the Host has read a message or a sequence of messages from Rx FIFO 0 it has to write the
buffer index of the last element read from Rx FIFO 0 to F0AI. This will set the Rx FIFO 0 Get Index
RXF0S.F0GI to F0AI + 1 and update the FIFO 0 Fill Level RXF0S.F0FL.

2.3.30 Rx Buffer Configuration (RXBC)

Bit 15:2 RBSA[15:2]: Rx Buffer Start Address

Configures the start address of the Rx Buffers section in the Message RAM (32-bit word address).
Also used to reference debug messages A,B,C.

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0xA8 res

R-0x0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

res F0AI[5:0]

R-0x0 RW-0x0

R = Read, W = Write; -n = value after reset

Table 30 Rx FIFO 0 Acknowledge (address 0xA8)

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0xAC res

R-0x0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RBSA[15:2] res

RP-0x0 R-0x0

R = Read, P = Protected write; -n = value after reset

Table 31 Rx Buffer Configuration (address 0xAC)
24.03.2016 33



 M_CAN Revision 3.2.1.1
2.3.31 Rx FIFO 1 Configuration (RXF1C)

Bit 31 F1OM: FIFO 1 Operation Mode

FIFO 1 can be operated in blocking or in overwrite mode (see Section 3.4.2).

0= FIFO 1 blocking mode
1= FIFO 1 overwrite mode

Bit 30:24 F1WM[6:0]: Rx FIFO 1 Watermark

0= Watermark interrupt disabled
1-64= Level for Rx FIFO 1 watermark interrupt (IR.RF1W)
>64= Watermark interrupt disabled

Bit 22:16 F1S[6:0]: Rx FIFO 1 Size

0= No Rx FIFO 1
1-64= Number of Rx FIFO 1 elements
>64= Values greater than 64 are interpreted as 64
The Rx FIFO 1 elements are indexed from 0 to F1S - 1

Bit 15:2 F1SA[15:2]: Rx FIFO 1 Start Address

Start address of Rx FIFO 1 in Message RAM (32-bit word address, see Figure 2).

2.3.32 Rx FIFO 1 Status (RXF1S)

Bits 31:30 DMS[1:0]: Debug Message Status

00= Idle state, wait for reception of debug messages, DMA request is cleared
01= Debug message A received
10= Debug messages A, B received
11= Debug messages A, B, C received, DMA request is set

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0xB0 F1OM F1WM[6:0] res F1S[6:0]

RP-0 RP-0x0 R-0 RP-0x0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

F1SA[15:2] res

RP-0x0 R-0x0

R = Read, P = Protected write; -n = value after reset

Table 32 Rx FIFO 1 Configuration (address 0xB0)

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0xB4 DMS[1:0] res RF1L F1F res F1PI[5:0]

R-0x0 R-0x0 R-0 R-0 R-0x0 R-0x0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

res F1GI[5:0] res F1FL[6:0]

R-0x0 R-0x0 R-0 R-0x0

R = Read; -n = value after reset

Table 33 Rx FIFO 1 Status (address 0xB4)
34 24.03.2016



Revision 3.2.1.1 M_CAN
Bit 25 RF1L: Rx FIFO 1 Message Lost

This bit is a copy of interrupt flag IR.RF1L. When IR.RF1L is reset, this bit is also reset.

0= No Rx FIFO 1 message lost
1= Rx FIFO 1 message lost, also set after write attempt to Rx FIFO 1 of size zero

Note: Overwriting the oldest message when RXF1C.F1OM = ‘1’ will not set this flag.

Bit 24 F1F: Rx FIFO 1 Full

0= Rx FIFO 1 not full
1= Rx FIFO 1 full

Bit 21:16 F1PI[5:0]: Rx FIFO 1 Put Index

Rx FIFO 1 write index pointer, range 0 to 63.

Bit 13:8 F1GI[5:0]: Rx FIFO 1 Get Index

Rx FIFO 1 read index pointer, range 0 to 63.

Bit 6:0 F1FL[6:0]: Rx FIFO 1 Fill Level

Number of elements stored in Rx FIFO 1, range 0 to 64.

2.3.33 Rx FIFO 1 Acknowledge (RXF1A)

Bit 5:0 F1AI[5:0]: Rx FIFO 1 Acknowledge Index

After the Host has read a message or a sequence of messages from Rx FIFO 1 it has to write the
buffer index of the last element read from Rx FIFO 1 to F1AI. This will set the Rx FIFO 1 Get Index
RXF1S.F1GI to F1AI + 1 and update the FIFO 1 Fill Level RXF1S.F1FL.

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0xB8 res

R-0x0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

res F1AI[5:0]

R-0x0 RW-0x0

R = Read, W = Write; -n = value after reset

Table 34 Rx FIFO 1 Acknowledge (address 0xB8)
24.03.2016 35



 M_CAN Revision 3.2.1.1
2.3.34 Rx Buffer / FIFO Element Size Configuration (RXESC)

Configures the number of data bytes belonging to an Rx Buffer / Rx FIFO element. Data field sizes
>8 bytes are intended for CAN FD operation only.

Bits 10:8 RBDS[2:0]: Rx Buffer Data Field Size

000= 8 byte data field
001= 12 byte data field
010= 16 byte data field
011= 20 byte data field
100= 24 byte data field
101= 32 byte data field
110= 48 byte data field
111= 64 byte data field

Bits 6:4 F1DS[2:0]: Rx FIFO 1 Data Field Size

000= 8 byte data field
001= 12 byte data field
010= 16 byte data field
011= 20 byte data field
100= 24 byte data field
101= 32 byte data field
110= 48 byte data field
111= 64 byte data field

Bits 2:0 F0DS[2:0]: Rx FIFO 0 Data Field Size

000= 8 byte data field
001= 12 byte data field
010= 16 byte data field
011= 20 byte data field
100= 24 byte data field
101= 32 byte data field
110= 48 byte data field
111= 64 byte data field

Note: In case the data field size of an accepted CAN frame exceeds the data field size configured
for the matching Rx Buffer or Rx FIFO, only the number of bytes as configured by RXESC
are stored to the Rx Buffer resp. Rx FIFO element. The rest of the frame’s data field is
ignored.

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0xBC res

R-0x0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

res RBDS[2:0] res F1DS[2:0] res F0DS[2:0]

R-0x0 RP-0x0 R-0 RP-0x0 R-0 RP-0x0

R = Read, P = Protected write, -U = undefined; -n = value after reset

Table 35 Rx Buffer / FIFO Element Size Configuration (address 0xBC)
36 24.03.2016



Revision 3.2.1.1 M_CAN
2.3.35 Tx Buffer Configuration (TXBC)

Bit 30 TFQM: Tx FIFO/Queue Mode

0= Tx FIFO operation
1= Tx Queue operation

Bit 29:24 TFQS[5:0]: Transmit FIFO/Queue Size

0= No Tx FIFO/Queue
1-32= Number of Tx Buffers used for Tx FIFO/Queue
>32= Values greater than 32 are interpreted as 32

Bit 21:16 NDTB[5:0]: Number of Dedicated Transmit Buffers

0= No Dedicated Tx Buffers
1-32= Number of Dedicated Tx Buffers
>32= Values greater than 32 are interpreted as 32

Bit 15:2 TBSA[15:2]: Tx Buffers Start Address

Start address of Tx Buffers section in Message RAM (32-bit word address, see Figure 2).

Note: Be aware that the sum of TFQS and NDTB may be not greater than 32. There is no check
for erroneous configurations. The Tx Buffers section in the Message RAM starts with the
dedicated Tx Buffers.

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0xC0 res TFQM TFQS[5:0] res NDTB[5:0]

R-0 RP-0 RP-0x0 R-0x0 RP-0x0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TBSA[15:2] res

RP-0x0 R-0x0

R = Read, P = Protected write; -n = value after reset

Table 36 Tx Buffer Configuration (address 0xC0)
24.03.2016 37



 M_CAN Revision 3.2.1.1
2.3.36 Tx FIFO/Queue Status (TXFQS)

The Tx FIFO/Queue status is related to the pending Tx requests listed in register TXBRP. Therefore
the effect of Add/Cancellation requests may be delayed due to a running Tx scan (TXBRP not yet
updated).

Bit 21 TFQF: Tx FIFO/Queue Full

0= Tx FIFO/Queue not full
1= Tx FIFO/Queue full

Bit 20:16 TFQPI[4:0]: Tx FIFO/Queue Put Index

Tx FIFO/Queue write index pointer, range 0 to 31.

Bit 12:8 TFGI[4:0]: Tx FIFO Get Index

Tx FIFO read index pointer, range 0 to 31. Read as zero when Tx Queue operation is configured
(TXBC.TFQM = ‘1’).

Bit 5:0 TFFL[5:0]: Tx FIFO Free Level

Number of consecutive free Tx FIFO elements starting from TFGI, range 0 to 32. Read as zero when
Tx Queue operation is configured (TXBC.TFQM = ‘1’)

Note: In case of mixed configurations where dedicated Tx Buffers are combined with a Tx FIFO
or a Tx Queue, the Put and Get Indices indicate the number of the Tx Buffer starting with
the first dedicated Tx Buffers.
Example: For a configuration of 12 dedicated Tx Buffers and a Tx FIFO of 20 Buffers a
Put Index of 15 points to the fourth buffer of the Tx FIFO.

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0xC4 res TFQF TFQPI[4:0]

R-0x0 R-0 R-0x0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

res TFGI[4:0] res TFFL[5:0]

R-0x0 R-0x0 R-0x0 R-0x0

R = Read; -n = value after reset

Table 37 Tx FIFO/Queue Status (address 0xC4)
38 24.03.2016



Revision 3.2.1.1 M_CAN
2.3.37 Tx Buffer Element Size Configuration (TXESC)

Configures the number of data bytes belonging to a Tx Buffer element. Data field sizes > 8 bytes are
intended for CAN FD operation only.

Bits 2:0 TBDS[2:0]: Tx Buffer Data Field Size

000= 8 byte data field
001= 12 byte data field
010= 16 byte data field
011= 20 byte data field
100= 24 byte data field
101= 32 byte data field
110= 48 byte data field
111= 64 byte data field

Note: In case the data length code DLC of a Tx Buffer element is configured to a value higher
than the Tx Buffer data field size TXESC.TBDS, the bytes not defined by the Tx Buffer
are transmitted as “0xCC” (padding bytes).

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0xC8 res

R-0x0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

res TBDS[2:0]

R-0x0 RP-0x0

R = Read, P = Protected write, -U = undefined; -n = value after reset

Table 38 Tx Buffer Element Size Configuration (address 0xC8)
24.03.2016 39



 M_CAN Revision 3.2.1.1
2.3.38 Tx Buffer Request Pending (TXBRP)

Bit 31:0 TRP[31:0]: Transmission Request Pending

Each Tx Buffer has its own Transmission Request Pending bit. The bits are set via register TXBAR.
The bits are reset after a requested transmission has completed or has been cancelled via register
TXBCR.

TXBRP bits are set only for those Tx Buffers configured via TXBC. After a TXBRP bit has been set,
a Tx scan (see Section 3.5, Tx Handling) is started to check for the pending Tx request with the
highest priority (Tx Buffer with lowest Message ID).

A cancellation request resets the corresponding transmission request pending bit of register
TXBRP. In case a transmission has already been started when a cancellation is requested, this is
done at the end of the transmission, regardless whether the transmission was successful or not. The
cancellation request bits are reset directly after the corresponding TXBRP bit has been reset.

After a cancellation has been requested, a finished cancellation is signalled via TXBCF

• after successful transmission together with the corresponding TXBTO bit

• when the transmission has not yet been started at the point of cancellation

• when the transmission has been aborted due to lost arbitration

• when an error occurred during frame transmission

In DAR mode all transmissions are automatically cancelled if they are not successful. The
corresponding TXBCF bit is set for all unsuccessful transmissions.

0= No transmission request pending
1= Transmission request pending

Note: TXBRP bits which are set while a Tx scan is in progress are not considered during this
particular Tx scan. In case a cancellation is requested for such a Tx Buffer, this Add
Request is cancelled immediately, the corresponding TXBRP bit is reset.

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0xCC TRP31 TRP30 TRP29 TRP28 TRP27 TRP26 TRP25 TRP24 TRP23 TRP22 TRP21 TRP20 TRP19 TRP18 TRP17 TRP16

R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TRP15 TRP14 TRP13 TRP12 TRP11 TRP10 TRP9 TRP8 TRP7 TRP6 TRP5 TRP4 TRP3 TRP2 TRP1 TRP0

R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0

R = Read; -n = value after reset

Table 39 Tx Buffer Request Pending (address 0xCC)
40 24.03.2016



Revision 3.2.1.1 M_CAN
2.3.39 Tx Buffer Add Request (TXBAR)

Bit 31:0 AR[31:0]: Add Request

Each Tx Buffer has its own Add Request bit. Writing a ‘1’ will set the corresponding Add Request
bit; writing a ‘0’ has no impact. This enables the Host to set transmission requests for multiple Tx
Buffers with one write to TXBAR. TXBAR bits are set only for those Tx Buffers configured via TXBC.
When no Tx scan is running, the bits are reset immediately, else the bits remain set until the Tx scan
process has completed.

0= No transmission request added
1= Transmission requested added

Note: If an add request is applied for a Tx Buffer with pending transmission request (corre-
sponding TXBRP bit already set), this add request is ignored.

2.3.40 Tx Buffer Cancellation Request (TXBCR)

Bit 31:0 CR[31:0]: Cancellation Request

Each Tx Buffer has its own Cancellation Request bit. Writing a ‘1’ will set the corresponding
Cancellation Request bit; writing a ‘0’ has no impact. This enables the Host to set cancellation
requests for multiple Tx Buffers with one write to TXBCR. TXBCR bits are set only for those Tx
Buffers configured via TXBC. The bits remain set until the corresponding bit of TXBRP is reset.

0= No cancellation pending
1= Cancellation pending

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0xD0 AR31 AR30 AR29 AR28 AR27 AR26 AR25 AR24 AR23 AR22 AR21 AR20 AR19 AR18 AR17 AR16

RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

AR15 AR14 AR13 AR12 AR11 AR10 AR9 AR8 AR7 AR6 AR5 AR4 AR3 AR2 AR1 AR0

RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0

R = Read, W = Write; -n = value after reset

Table 40 Tx Buffer Add Request (address 0xD0)

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0xD4 CR31 CR30 CR29 CR28 CR27 CR26 CR25 CR24 CR23 CR22 CR21 CR20 CR19 CR18 CR17 CR16

RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CR15 CR14 CR13 CR12 CR11 CR10 CR9 CR8 CR7 CR6 CR5 CR4 CR3 CR2 CR1 CR0

RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0

R = Read, W = Write; -n = value after reset

Table 41 Tx Buffer Cancellation Request (address 0xD4)
24.03.2016 41



 M_CAN Revision 3.2.1.1
2.3.41 Tx Buffer Transmission Occurred (TXBTO)

Bit 31:0 TO[31:0]: Transmission Occurred

Each Tx Buffer has its own Transmission Occurred bit. The bits are set when the corresponding
TXBRP bit is cleared after a successful transmission. The bits are reset when a new transmission
is requested by writing a ‘1’ to the corresponding bit of register TXBAR.

0= No transmission occurred
1= Transmission occurred

2.3.42 Tx Buffer Cancellation Finished (TXBCF)

Bit 31:0 CF[31:0]: Cancellation Finished

Each Tx Buffer has its own Cancellation Finished bit. The bits are set when the corresponding
TXBRP bit is cleared after a cancellation was requested via TXBCR. In case the corresponding
TXBRP bit was not set at the point of cancellation, CF is set immediately. The bits are reset when a
new transmission is requested by writing a ‘1’ to the corresponding bit of register TXBAR.

0= No transmit buffer cancellation
1= Transmit buffer cancellation finished

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0xD8 TO31 TO30 TO29 TO28 TO27 TO26 TO25 TO24 TO23 TO22 TO21 TO20 TO19 TO18 TO17 TO16

R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TO15 TO14 TO13 TO12 TO11 TO10 TO9 TO8 TO7 TO6 TO5 TO4 TO3 TO2 TO1 TO0

R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0

R = Read; -n = value after reset

Table 42 Tx Buffer Transmission Occurred (address 0xD8)

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0xDC CF31 CF30 CF29 CF28 CF27 CF26 CF25 CF24 CF23 CF22 CF21 CF20 CF19 CF18 CF17 CF16

R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CF15 CF14 CF13 CF12 CF11 CF10 CF9 CF8 CF7 CF6 CF5 CF4 CF3 CF2 CF1 CF0

R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0

R = Read; -n = value after reset

Table 43 Transmit Buffer Cancellation Finished (address 0xDC)
42 24.03.2016



Revision 3.2.1.1 M_CAN
2.3.43 Tx Buffer Transmission Interrupt Enable (TXBTIE)

Bit 31:0 TIE[31:0]: Transmission Interrupt Enable

Each Tx Buffer has its own Transmission Interrupt Enable bit.

0= Transmission interrupt disabled
1= Transmission interrupt enable

2.3.44 Tx Buffer Cancellation Finished Interrupt Enable (TXBCIE)

Bit 31:0 CFIE[31:0]: Cancellation Finished Interrupt Enable

Each Tx Buffer has its own Cancellation Finished Interrupt Enable bit.

0= Cancellation finished interrupt disabled
1= Cancellation finished interrupt enabled

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0xE0 TIE31 TIE30 TIE29 TIE28 TIE27 TIE26 TIE25 TIE24 TIE23 TIE22 TIE21 TIE20 TIE19 TIE18 TIE17 TIE16

RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TIE15 TIE14 TIE13 TIE12 TIE11 TIE10 TIE9 TIE8 TIE7 TIE6 TIE5 TIE4 TIE3 TIE2 TIE1 TIE0

RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0

R = Read, W = Write; -n = value after reset

Table 44 Tx Buffer Transmission Interrupt Enable (address 0xE0)

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0xE4 CFIE31 CFIE30 CFIE29 CFIE28 CFIE27 CFIE26 CFIE25 CFIE24 CFIE23 CFIE22 CFIE21 CFIE20 CFIE19 CFIE18 CFIE17 CFIE16

RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CFIE15 CFIE14 CFIE13 CFIE12 CFIE11 CFIE10 CFIE9 CFIE8 CFIE7 CFIE6 CFIE5 CFIE4 CFIE3 CFIE2 CFIE1 CFIE0

RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0

R = Read, W = Write; -n = value after reset

Table 45 Tx Buffer Cancellation Finished Interrupt Enable (address 0xE4)
24.03.2016 43



 M_CAN Revision 3.2.1.1
2.3.45 Tx Event FIFO Configuration (TXEFC)

Bit 29:24 EFWM[5:0]: Event FIFO Watermark

0= Watermark interrupt disabled
1-32= Level for Tx Event FIFO watermark interrupt (IR.TEFW)
>32= Watermark interrupt disabled

Bit 21:16 EFS[5:0]: Event FIFO Size

0= Tx Event FIFO disabled
1-32= Number of Tx Event FIFO elements
>32= Values greater than 32 are interpreted as 32
The Tx Event FIFO elements are indexed from 0 to EFS - 1

Bit 15:2 EFSA[15:2]: Event FIFO Start Address

Start address of Tx Event FIFO in Message RAM (32-bit word address, see Figure 2).

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0xF0 res EFWM[5:0] res EFS[5:0]

R-0x0 RP-0x0 R-0x0 RP-0x0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EFSA[15:2] res

RP-0x0 R-0x0

R = Read, P = Protected write; -n = value after reset

Table 46 Tx Event FIFO Configuration (address 0xF0)
44 24.03.2016



Revision 3.2.1.1 M_CAN
2.3.46 Tx Event FIFO Status (TXEFS)

Bit 25 TEFL: Tx Event FIFO Element Lost

This bit is a copy of interrupt flag IR.TEFL. When IR.TEFL is reset, this bit is also reset.

0= No Tx Event FIFO element lost
1= Tx Event FIFO element lost, also set after write attempt to Tx Event FIFO of size zero.

Bit 24 EFF: Event FIFO Full

0= Tx Event FIFO not full
1= Tx Event FIFO full

Bit 20:16 EFPI[4:0]: Event FIFO Put Index

Tx Event FIFO write index pointer, range 0 to 31.

Bit 12:8 EFGI[4:0]: Event FIFO Get Index

Tx Event FIFO read index pointer, range 0 to 31.

Bit 5:0 EFFL[5:0]: Event FIFO Fill Level

Number of elements stored in Tx Event FIFO, range 0 to 32.

2.3.47 Tx Event FIFO Acknowledge (TXEFA)

Bit 4:0 EFAI[4:0]: Event FIFO Acknowledge Index

After the Host has read an element or a sequence of elements from the Tx Event FIFO it has to write
the index of the last element read from Tx Event FIFO to EFAI. This will set the Tx Event FIFO Get
Index TXEFS.EFGI to EFAI + 1 and update the Event FIFO Fill Level TXEFS.EFFL.

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0xF4 res TEFL EFF res EFPI[4:0]

R-0x0 R-0 R-0 R-0x0 R-0x0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

res EFGI[4:0] res EFFL[5:0]

R-0x0 R-0x0 R-0x0 R-0x0

R = Read; -n = value after reset

Table 47 Tx Event FIFO Status (address 0xF4)

Bits 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0xF8 res

R-0x0

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

res EFAI[4:0]

R-0x0 RW-0x0

R = Read, W = Write; -n = value after reset

Table 48 Tx Event FIFO Acknowledge (address 0xF8)
24.03.2016 45



 M_CAN Revision 3.2.1.1
2.4 Message RAM

For storage of Rx/Tx messages and for storage of the filter configuration a single- or dual-ported
Message RAM has to be connected to the M_CAN module.

Note: In case the Message RAM is equipped with parity or ECC functionality, it is recommended
to initialize the Message RAM after hardware reset by writing e.g. 0x00000000 to each
Message RAM word to create valid parity/ECC checksums. This avoids that reading from
uninitialized Message RAM sections will activate interrupt IR.BEC (Bit Error Corrected)
or IR.BEU (Bit Error Uncorrected).

2.4.1 Message RAM Configuration

The Message RAM has a width of 32 bits. In case parity checking or ECC is used a respective
number of bits has to be added to each word. The M_CAN module can be configured to allocate up
to 4352 words in the Message RAM. It is not necessary to configure each of the sections listed in
Figure 2, nor is there any restriction with respect to the sequence of the sections.

When operated in CAN FD mode the required Message RAM size strongly depends on the element
size configured for Rx FIFO0, Rx FIFO1, Rx Buffers, and Tx Buffers via RXESC.F0DS,
RXESC.F1DS, RXESC.RBDS, and TXESC.TBDS.

Figure 2 Message RAM Configuration

When the M_CAN addresses the Message RAM it addresses 32-bit words, not single bytes. The
configurable start addresses are 32-bit word addresses i.e. only bits 15 to 2 are evaluated, the two
least significant bits are ignored.

Note: The M_CAN does not check for erroneous configuration of the Message RAM. Especially
the configuration of the start addresses of the different sections and the number of
elements of each section has to be done carefully to avoid falsification or loss of data.

Rx FIFO 0

Rx FIFO 1

Tx Buffers

Tx Event FIFO

11-bit Filter

29-bit Filter

max. 4352 words

0-64 elements / 0-1152 words

0-64 elements / 0-1152 words

0-32 elements / 0-576 words

0-32 elements / 0-64 words

0-128 elements / 0-128 words

0-64 elements / 0-128 words

32 bit

RXF0C.F0SA

RXF1C.F1SA

TXBC.TBSA

TXEFC.EFSA

SIDFC.FLSSA

XIDFC.FLESA

Start Address

Rx Buffers 0-64 elements / 0-1152 words

RXBC.RBSA
46 24.03.2016



Revision 3.2.1.1 M_CAN
2.4.2 Rx Buffer and FIFO Element

Up to 64 Rx Buffers and two Rx FIFOs can be configured in the Message RAM. Each Rx FIFO
section can be configured to store up to 64 received messages. The structure of a Rx Buffer / FIFO
element is shown in Table 49 below. The element size can be configured for storage of CAN FD
messages with up to 64 bytes data field via register RXESC.

Table 49 Rx Buffer and FIFO Element

R0 Bit 31 ESI: Error State Indicator

0= Transmitting node is error active
1= Transmitting node is error passive

R0 Bit 30 XTD: Extended Identifier

Signals to the Host whether the received frame has a standard or extended identifier.
0= 11-bit standard identifier
1= 29-bit extended identifier

R0 Bit 29 RTR: Remote Transmission Request

Signals to the Host whether the received frame is a data frame or a remote frame.
0= Received frame is a data frame
1= Received frame is a remote frame

Note: There are no remote frames in CAN FD format. In CAN FD frames (FDF = 1’), the dominant
RRS (Remote Request Substitution) bit replaces bit RTR (Remote Transmission Re-
quest).

R0 Bits 28:0 ID[28:0]: Identifier

Standard or extended identifier depending on bit XTD. A standard identifier is stored into ID[28:18].

R1 Bit 31 ANMF: Accepted Non-matching Frame

Acceptance of non-matching frames may be enabled via GFC.ANFS and GFC.ANFE.
0= Received frame matching filter index FIDX
1= Received frame did not match any Rx filter element

31 24 23 16 15 8 7 0

R0 E
S

I

X
T

D

R
T

R ID[28:0]

R1

A
N

M
F

FIDX[6:0] re
s

F
D

F

B
R

S
DLC[3:0] RXTS[15:0]

R2 DB3[7:0] DB2[7:0] DB1[7:0] DB0[7:0]

R3 DB7[7:0] DB6[7:0] DB5[7:0] DB4[7:0]

... ... ... ... ...

Rn DBm[7:0] DBm-1[7:0] DBm-2[7:0] DBm-3[7:0]
24.03.2016 47



 M_CAN Revision 3.2.1.1
R1 Bits 30:24  FIDX[6:0]: Filter Index

0-127=Index of matching Rx acceptance filter element (invalid if ANMF = ‘1’).
Range is 0 to SIDFC.LSS - 1 resp. XIDFC.LSE - 1.

R1 Bit 21 FDF: FD Format

0= Standard frame format
1= CAN FD frame format (new DLC-coding and CRC)

R1 Bit 20 BRS: Bit Rate Switch

0= Frame received without bit rate switching
1= Frame received with bit rate switching

R1 Bits 19:16  DLC[3:0]: Data Length Code

0-8= CAN + CAN FD: received frame has 0-8 data bytes
9-15= CAN: received frame has 8 data bytes
9-15= CAN FD: received frame has 12/16/20/24/32/48/64 data bytes

R1 Bits 15:0 RXTS[15:0]: Rx Timestamp

Timestamp Counter value captured on start of frame reception. Resolution depending on
configuration of the Timestamp Counter Prescaler TSCC.TCP.

R2 Bits 31:24 DB3[7:0]: Data Byte 3

R2 Bits 23:16 DB2[7:0]: Data Byte 2

R2 Bits 15:8 DB1[7:0]: Data Byte 1

R2 Bits 7:0 DB0[7:0]: Data Byte 0

R3 Bits 31:24 DB7[7:0]: Data Byte 7

R3 Bits 23:16 DB6[7:0]: Data Byte 6

R3 Bits 15:8 DB5[7:0]: Data Byte 5

R3 Bits 7:0 DB4[7:0]: Data Byte 4

... ... ...

Rn Bits 31:24 DBm[7:0]: Data Byte m

Rn Bits 23:16 DBm-1[7:0]: Data Byte m-1

Rn Bits 15:8 DBm-2[7:0]: Data Byte m-2

Rn Bits 7:0 DBm-3[7:0]: Data Byte m-3

Note: Depending on the configuration of the element size (RXESC), between two and sixteen
32-bit words (Rn = 3 ..17) are used for storage of a CAN message’s data field.
48 24.03.2016



Revision 3.2.1.1 M_CAN
2.4.3 Tx Buffer Element

The Tx Buffers section can be configured to hold dedicated Tx Buffers as well as a Tx FIFO / Tx
Queue. In case that the Tx Buffers section is shared by dedicated Tx buffers and a Tx FIFO / Tx
Queue, the dedicated Tx Buffers start at the beginning of the Tx Buffers section followed by the
buffers assigned to the Tx FIFO or Tx Queue. The Tx Handler distinguishes between dedicated Tx
Buffers and Tx FIFO / Tx Queue by evaluating the Tx Buffer configuration TXBC.TFQS and
TXBC.NDTB. The element size can be configured for storage of CAN FD messages with up to 64
bytes data field via register TXESC.

Table 50 Tx Buffer Element

T0 Bit 31 ESI: Error State Indicator

0= ESI bit in CAN FD format depends only on error passive flag
1= ESI bit in CAN FD format transmitted recessive

Note: The ESI bit of the transmit buffer is or’ed with the error passive flag to decide the value
of the ESI bit in the transmitted FD frame. As required by the CAN FD protocol specifi-
cation, an error active node may optionally transmit the ESI bit recessive, but an error
passive node will always transmit the ESI bit recessive

T0 Bit 30 XTD: Extended Identifier

0= 11-bit standard identifier
1= 29-bit extended identifier

T0 Bit 29 RTR: Remote Transmission Request

0= Transmit data frame
1= Transmit remote frame

Note: When RTR = 1, the M_CAN transmits a remote frame according to ISO 11898-1:2015, even
if CCCR.FDOE enables the transmission in CAN FD format.

T0 Bits 28:0 ID[28:0]: Identifier

Standard or extended identifier depending on bit XTD. A standard identifier has to be written to
ID[28:18].

31 24 23 16 15 8 7 0

T0 E
S

I

X
T

D

R
T

R ID[28:0]

T1 MM[7:0]

E
F

C

re
s

F
D

F

B
R

S

DLC[3:0] res

T2 DB3[7:0] DB2[7:0] DB1[7:0] DB0[7:0]

T3 DB7[7:0] DB6[7:0] DB5[7:0] DB4[7:0]

... ... ... ... ...

Tn DBm[7:0] DBm-1[7:0] DBm-2[7:0] DBm-3[7:0]
24.03.2016 49



 M_CAN Revision 3.2.1.1
T1 Bits 31:24 MM[7:0]: Message Marker

Written by CPU during Tx Buffer configuration. Copied into Tx Event FIFO element for identification
of Tx message status.

T1 Bit 23 EFC: Event FIFO Control

0= Don’t store Tx events
1= Store Tx events

T1 Bit 21 FDF: FD Format

0= Frame transmitted in Classic CAN format
1= Frame transmitted in CAN FD format

T1 Bit 20 BRS: Bit Rat Switching

0= CAN FD frames transmitted without bit rate switching
1= CAN FD frames transmitted with bit rate switching

Note: Bits ESI, FDF, and BRS are only evaluated when CAN FD operation is enabled
CCCR.FDOE = 1’. Bit BRS is only evaluated when in addition CCCR.BRSE = ‘1’.

T1 Bits 19:16 DLC[3:0]: Data Length Code

0-8= CAN + CAN FD: transmit frame has 0-8 data bytes
9-15= CAN: transmit frame has 8 data bytes
9-15= CAN FD: transmit frame has 12/16/20/24/32/48/64 data bytes

T2 Bits 31:24 DB3[7:0]: Data Byte 3

T2 Bits 23:16 DB2[7:0]: Data Byte 2

T2 Bits 15:8 DB1[7:0]: Data Byte 1

T2 Bits 7:0 DB0[7:0]: Data Byte 0

T3 Bits 31:24 DB7[7:0]: Data Byte 7

T3 Bits 23:16 DB6[7:0]: Data Byte 6

T3 Bits 15:8 DB5[7:0]: Data Byte 5

T3 Bits 7:0 DB4[7:0]: Data Byte 4

... ... ...

Tn Bits 31:24 DBm[7:0]: Data Byte m

Tn Bits 23:16 DBm-1[7:0]: Data Byte m-1

Tn Bits 15:8 DBm-2[7:0]: Data Byte m-2

Tn Bits 7:0 DBm-3[7:0]: Data Byte m-3

Note: Depending on the configuration of the element size (TXESC), between two and sixteen
32-bit words (Tn = 3 ..17) are used for storage of a CAN message’s data field.
50 24.03.2016



Revision 3.2.1.1 M_CAN
2.4.4 Tx Event FIFO Element

Each element stores information about transmitted messages. By reading the Tx Event FIFO the
Host CPU gets this information in the order the messages were transmitted. Status information
about the Tx Event FIFO can be obtained from register TXEFS.

Table 51 Tx Event FIFO Element

E0 Bit 31 ESI: Error State Indicator

0= Transmitting node is error active
1= Transmitting node is error passive

E0 Bit 30 XTD: Extended Identifier

0= 11-bit standard identifier
1= 29-bit extended identifier

E0 Bit 29 RTR: Remote Transmission Request

0= Data frame transmitted
1= Remote frame transmitted

E0 Bits 28:0 ID[28:0]: Identifier

Standard or extended identifier depending on bit XTD. A standard identifier is stored into ID[28:18].

E1 Bits 31:24  MM[7:0]: Message Marker

Copied from Tx Buffer into Tx Event FIFO element for identification of Tx message status.

E1 Bit 23:22 ET[1:0]: Event Type

00= Reserved
01= Tx event
10= Transmission in spite of cancellation (always set for transmissions in DAR mode)
11= Reserved

E1 Bit 21 FDF: FD Format

0= Standard frame format
1= CAN FD frame format (new DLC-coding and CRC)

E1 Bit 20 BRS: Bit Rate Switch

0= Frame transmitted without bit rate switching
1= Frame transmitted with bit rate switching

E1 Bits 19:16 DLC[3:0]: Data Length Code

0-8= CAN + CAN FD: frame with 0-8 data bytes transmitted
9-15= CAN: frame with 8 data bytes transmitted
9-15= CAN FD: frame with 12/16/20/24/32/48/64 data bytes transmitted

31 24 23 16 15 8 7 0

E0 E
S

I

X
T

D

R
T

R ID[28:0]

E1 MM[7:0] ET[1:0]
F

D
F

B
R

S

DLC[3:0] TXTS[15:0]
24.03.2016 51



 M_CAN Revision 3.2.1.1
E1 Bits 15:0 TXTS[15:0]: Tx Timestamp

Timestamp Counter value captured on start of frame transmission. Resolution depending on
configuration of the Timestamp Counter Prescaler TSCC.TCP.

2.4.5 Standard Message ID Filter Element

Up to 128 filter elements can be configured for 11-bit standard IDs. When accessing a Standard
Message ID Filter element, its address is the Filter List Standard Start Address SIDFC.FLSSA plus
the index of the filter element (0…127).

Table 52 Standard Message ID Filter Element

Bits 31:30 SFT[1:0]: Standard Filter Type

00= Range filter from SFID1 to SFID2 (SFID2 ≥ SFID1)
01= Dual ID filter for SFID1 or SFID2
10= Classic filter: SFID1 = filter, SFID2 = mask
11= Filter element disabled

Note: With SFT = “11” the filter element is disabled and the acceptance filtering continues
(same behaviour as with SFEC = “000”)

Bit 29:27 SFEC[2:0]: Standard Filter Element Configuration

All enabled filter elements are used for acceptance filtering of standard frames. Acceptance filtering
stops at the first matching enabled filter element or when the end of the filter list is reached. If SFEC
= “100”, “101”, or “110” a match sets interrupt flag IR.HPM and, if enabled, an interrupt is generated.
In this case register HPMS is updated with the status of the priority match.

000= Disable filter element
001= Store in Rx FIFO 0 if filter matches
010= Store in Rx FIFO 1 if filter matches
011= Reject ID if filter matches
100= Set priority if filter matches
101= Set priority and store in FIFO 0 if filter matches
110= Set priority and store in FIFO 1 if filter matches
111= Store into Rx Buffer or as debug message, configuration of SFT[1:0] ignored

Bits 26:16 SFID1[10:0]: Standard Filter ID 1

First ID of standard ID filter element.

When filtering for Rx Buffers or for debug messages this field defines the ID of a standard message
to be stored. The received identifiers must match exactly, no masking mechanism is used.

Bits 10:0 SFID2[10:0]: Standard Filter ID 2

This bit field has a different meaning depending on the configuration of SFEC:

1) SFEC = “001”...”110” Second ID of standard ID filter element

2) SFEC = “111” Filter for Rx Buffers or for debug messages

31 24 23 16 15 8 7 0

S0

S
F

T
[1

:0
]

SFEC[2:0] SFID1[10:0] res SFID2[10:0]
52 24.03.2016



Revision 3.2.1.1 M_CAN
SFID2[10:9] decides whether the received message is stored into an Rx Buffer or treated as
message A, B, or C of the debug message sequence.

00= Store message into an Rx Buffer
01= Debug Message A
10= Debug Message B
11= Debug Message C

SFID2[8:6] is used to control the filter event pins m_can_fe[2:0] at the Extension Interface. A one
at the respective bit position enables generation of a pulse at the related filter event pin with the
duration of one m_can_hclk period in case the filter matches.

SFID2[5:0] defines the offset to the Rx Buffer Start Address RXBC.RBSA for storage of a matching
message.

2.4.6 Extended Message ID Filter Element

Up to 64 filter elements can be configured for 29-bit extended IDs. When accessing an Extended
Message ID Filter element, its address is the Filter List Extended Start Address XIDFC.FLESA plus
two times the index of the filter element (0…63).

Table 53 Extended Message ID Filter Element

F0 Bit 31:29 EFEC[2:0]: Extended Filter Element Configuration

All enabled filter elements are used for acceptance filtering of extended frames. Acceptance filtering
stops at the first matching enabled filter element or when the end of the filter list is reached. If EFEC
= “100”, “101”, or “110” a match sets interrupt flag IR.HPM and, if enabled, an interrupt is generated.
In this case register HPMS is updated with the status of the priority match.

000= Disable filter element
001= Store in Rx FIFO 0 if filter matches
010= Store in Rx FIFO 1 if filter matches
011= Reject ID if filter matches
100= Set priority if filter matches
101= Set priority and store in FIFO 0 if filter matches
110= Set priority and store in FIFO 1 if filter matches
111= Store into Rx Buffer or as debug message, configuration of EFT[1:0] ignored

F0 Bits 28:0 EFID1[28:0]: Extended Filter ID 1

First ID of extended ID filter element.

When filtering for Rx Buffers or for debug messages this field defines the ID of an extended message
to be stored. The received identifiers must match exactly, only XIDAM masking mechanism (see
Section 3.4.1.5, Extended Message ID Filtering) is used.

31 24 23 16 15 8 7 0

F0 EFEC[2:0] EFID1[28:0]

F1

E
F

T
[1

:0
]

re
s EFID2[28:0]
24.03.2016 53



 M_CAN Revision 3.2.1.1
F1 Bits 31:30  EFT[1:0]: Extended Filter Type

00= Range filter from EFID1 to EFID2 (EFID2 ≥ EFID1)
01= Dual ID filter for EFID1 or EFID2
10= Classic filter: EFID1 = filter, EFID2 = mask
11= Range filter from EFID1 to EFID2 (EFID2 ≥ EFID1), XIDAM mask not applied

F1 Bits 28:0 EFID2[28:0]: Extended Filter ID 2

This bit field has a different meaning depending on the configuration of EFEC:

1) EFEC = “001”...”110” Second ID of extended ID filter element

2) EFEC = “111” Filter for Rx Buffers or for debug messages

EFID2[10:9] decides whether the received message is stored into an Rx Buffer or treated as
message A, B, or C of the debug message sequence.

00= Store message into an Rx Buffer
01= Debug Message A
10= Debug Message B
11= Debug Message C

EFID2[8:6] is used to control the filter event pins m_can_fe[2:0] at the Extension Interface. A one
at the respective bit position enables generation of a pulse at the related filter event pin with the
duration of one m_can_hclk period in case the filter matches.

EFID2[5:0] defines the offset to the Rx Buffer Start Address RXBC.RBSA for storage of a matching
message.
54 24.03.2016



Chapter 3.
3. Functional Description

3.1 Operating Modes

3.1.1 Software Initialization

Software initialization is started by setting bit CCCR.INIT, either by software or by a hardware reset,
when an uncorrected bit error was detected in the Message RAM, or by going Bus_Off. While
CCCR.INIT is set, message transfer from and to the CAN bus is stopped, the status of the CAN bus
output m_can_tx is recessive (HIGH). The counters of the Error Management Logic EML are
unchanged. Setting CCCR.INIT does not change any configuration register. Resetting CCCR.INIT
finishes the software initialization. Afterwards the Bit Stream Processor BSP synchronizes itself to
the data transfer on the CAN bus by waiting for the occurrence of a sequence of 11 consecutive
recessive bits (≡ Bus_Idle) before it can take part in bus activities and start the message transfer.

Access to the M_CAN configuration registers is only enabled when both bits CCCR.INIT and
CCCR.CCE are set (protected write).

CCCR.CCE can only be set/reset while CCCR.INIT = ‘1’. CCCR.CCE is automatically reset when
CCCR.INIT is reset.

The following registers are reset when CCCR.CCE is set

• HPMS - High Priority Message Status

• RXF0S - Rx FIFO 0 Status

• RXF1S - Rx FIFO 1 Status

• TXFQS - Tx FIFO/Queue Status

• TXBRP - Tx Buffer Request Pending

• TXBTO - Tx Buffer Transmission Occurred

• TXBCF - Tx Buffer Cancellation Finished

• TXEFS - Tx Event FIFO Status

The Timeout Counter value TOCV.TOC is preset to the value configured by TOCC.TOP when
CCCR.CCE is set.

In addition the state machines of the Tx Handler and Rx Handler are held in idle state while
CCCR.CCE = ‘1’.

The following registers are only writeable while CCCR.CCE = ‘0’

• TXBAR - Tx Buffer Add Request

• TXBCR - Tx Buffer Cancellation Request

CCCR.TEST and CCCR.MON can only be set by the Host while CCCR.INIT = ‘1’ and CCCR.CCE
= ‘1’. Both bits may be reset at any time. CCCR.DAR can only be set/reset while CCCR.INIT = ‘1’
and CCCR.CCE = ‘1’.

Note: In case the Message RAM is equipped with parity or ECC functionality, it is recommended
to initialize the Message RAM after hardware reset by writing e.g. 0x00000000 to each
Message RAM word to create valid parity/ECC checksums. This avoids that reading from
uninitialized Message RAM sections will activate interrupt IR.BEC (Bit Error Corrected)
or IR.BEU (Bit Error Uncorrected).
M_CAN - Revision 3.2.1.1 - 24.03.2016 55



 M_CAN Revision 3.2.1.1
3.1.2 Normal Operation

Once the M_CAN is initialized and CCCR.INIT is reset to zero, the M_CAN synchronizes itself to the
CAN bus and is ready for communication.

After passing the acceptance filtering, received messages including Message ID and DLC are
stored into a dedicated Rx Buffer or into Rx FIFO 0 or Rx FIFO 1.

For messages to be transmitted dedicated Tx Buffers and/or a Tx FIFO or a Tx Queue can be
initialized or updated. Automated transmission on reception of remote frames is not implemented.

3.1.3 CAN FD Operation

There are two variants in the CAN FD frame transmission, first the CAN FD frame without bit rate
switching. The second variant is the CAN FD frame where control field, data field, and CRC field are
transmitted with a higher bit rate than the beginning and the end of the frame.

The previously reserved bit in CAN frames with 11-bit identifiers and the first previously reserved bit
in CAN frames with 29-bit identifiers will now be decoded as FDF bit. FDF = recessive signifies a
CAN FD frame, FDF = dominant signifies a Classic CAN frame. In a CAN FD frame, the two bits
following FDF, res and BRS, decide whether the bit rate inside of this CAN FD frame is switched. A
CAN FD bit rate switch is signified by res = dominant and BRS = recessive. The coding of
res = recessive is reserved for future expansion of the protocol. In case the M_CAN receives a
frame with FDF = recessive and res = recessive, it will signal a Protocol Exception Event by setting
bit PSR.PXE. When Protocol Exception Handling is enabled (CCCR.PXHD = ‘0’), this causes the
operation state to change from Receiver (PSR.ACT = “10”) to Integrating (PSR.ACT = “00”) at the
next sample point. In case Protocol Exception Handling is disabled (CCCR.PXHD = ‘1’), the M_CAN
will treat a recessive res bit as an form error and will respond with an error frame.

CAN FD operation is enabled by programming CCCR.FDOE. In case CCCR.FDOE = ‘1’,
transmission and reception of CAN FD frames is enabled. Transmission and reception of Classic
CAN frames is always possible. Whether a CAN FD frame or a Classic CAN frame is transmitted
can be configured via bit FDF in the respective Tx Buffer element. With CCCR.FDOE = ‘0’, received
frames are interpreted as Classic CAN frames, which leads to the transmission of an error frame
when receiving a CAN FD frame. When CAN FD operation is disabled, no CAN FD frames are
transmitted even if bit FDF of a Tx Buffer element is set. CCCR.FDOE and CCCR.BRSE can only
be changed while CCCR.INIT and CCCR.CCE are both set.

With CCCR.FDOE = ‘0’, the setting of bits FDF and BRS is ignored and frames are transmitted in
Classic CAN format. With CCCR.FDOE = ‘1’ and CCCR.BRSE = ‘0’, only bit FDF of a Tx Buffer
element is evaluated. With CCCR.FDOE = ‘1’ and CCCR.BRSE = ‘1’, transmission of CAN FD
frames with bit rate switching is enabled. All Tx Buffer elements with bits FDF and BRS set are
transmitted in CAN FD format with bit rate switching.

A mode change during CAN operation is only recommended under the following conditions:

• The failure rate in the CAN FD data phase is significant higher than in the CAN FD arbitration
phase. In this case disable the CAN FD bit rate switching option for transmissions.

• During system startup all nodes are transmitting Classic CAN messages until it is verified that
they are able to communicate in CAN FD format. If this is true, all nodes switch to CAN FD
operation.

• Wake-up messages in CAN Partial Networking have to be transmitted in Classic CAN format.

• End-of-line programming in case not all nodes are CAN FD capable. Non CAN FD nodes are held
in Silent mode until programming has completed. Then all nodes switch back to Classic CAN
communication.
56 24.03.2016



Revision 3.2.1.1 M_CAN
In the CAN FD format, the coding of the DLC differs from the standard CAN format. The DLC codes
0 to 8 have the same coding as in standard CAN, the codes 9 to 15, which in standard CAN all code
a data field of 8 bytes, are coded according to Table 54 below.

Table 54 Coding of DLC in CAN FD

In CAN FD frames, the bit timing will be switched inside the frame, after the BRS (Bit Rate Switch)
bit, if this bit is recessive. Before the BRS bit, in the CAN FD arbitration phase, the nominal CAN bit
timing is used as defined by the Nominal Bit Timing & Prescaler Register NBTP. In the following
CAN FD data phase, the data phase bit timing is used as defined by the Data Bit Timing & Prescaler
Register DBTP. The bit timing is switched back from the data phase timing at the CRC delimiter or
when an error is detected, whichever occurs first.

The maximum configurable bit rate in the CAN FD data phase depends on the CAN clock frequency
(m_can_cclk). Example: with a CAN clock frequency of 20MHz and the shortest configurable bit
time of 4 tq, the bit rate in the data phase is 5 Mbit/s.

In both data frame formats, CAN FD and CAN FD with bit rate switching, the value of the bit ESI
(Error Status Indicator) is determined by the transmitter’s error state at the start of the transmission.
If the transmitter is error passive, ESI is transmitted recessive, else it is transmitted dominant.

3.1.4 Transmitter Delay Compensation

During the data phase of a CAN FD transmission only one node is transmitting, all others are
receivers. The length of the bus line has no impact. When transmitting via pin m_can_tx the M_CAN
receives the transmitted data from its local CAN transceiver via pin m_can_rx. The received data is
delayed by the transmitter delay. In case this delay is greater than TSEG1 (time segment before
sample point), a bit error is detected. In order to enable a data phase bit time that is even shorter
than the transmitter delay, the delay compensation is introduced. Without transmitter delay
compensation, the bit rate in the data phase of a CAN FD frame is limited by the transmitter delay.

3.1.4.1 Description

The M_CAN’s protocol unit has implemented a delay compensation mechanism to compensate the
transmitter delay, thereby enabling transmission with higher bit rates during the CAN FD data phase
independent of the delay of a specific CAN transceiver.

To check for bit errors during the data phase of transmitting nodes, the delayed transmit data is
compared against the received data at the Secondary Sample Point SSP. If a bit error is detected,
the transmitter will react on this bit error at the next following regular sample point. During arbitration
phase the delay compensation is always disabled.

The transmitter delay compensation enables configurations where the data bit time is shorter than
the transmitter delay, it is described in detail in ISO 11898-1:2015. It is enabled by setting bit
DBTP.TDC.

The received bit is compared against the transmitted bit at the SSP. The SSP position is defined as
the sum of the measured delay from the M_CAN’s transmit output m_can_tx through the transceiver
to the receive input m_can_rx plus the transmitter delay compensation offset as configured by
TDCR.TDCO. The transmitter delay compensation offset is used to adjust the position of the SSP
inside the received bit (e.g. half of the bit time in the data phase). The position of the secondary
sample point is rounded down to the next integer number of mtq.

PSR.TDCV shows the actual transmitter delay compensation value. PSR.TDCV is cleared when
CCCR.INIT is set and is updated at each transmission of an FD frame while DBTP.TDC is set.

DLC 9 10 11 12 13 14 15

Number of Data Bytes 12 16 20 24 32 48 64
24.03.2016 57



 M_CAN Revision 3.2.1.1
The following boundary conditions have to be considered for the transmitter delay compensation
implemented in the M_CAN:

• The sum of the measured delay from m_can_tx to m_can_rx and the configured transmitter
delay compensation offset TDCR.TDCO has to be less than 6 bit times in the data phase.

• The sum of the measured delay from m_can_tx to m_can_rx and the configured transmitter
delay compensation offset TDCR.TDCO has to be less or equal 127 mtq. In case this sum
exceeds 127 mtq, the maximum value of 127 mtq is used for transmitter delay compensation.

• The data phase ends at the sample point of the CRC delimiter, that stops checking of receive bits
at the SSPs

3.1.4.2 Transmitter Delay Compensation Measurement

If transmitter delay compensation is enabled by programming DBTP.TDC = ‘1’, the measurement is
started within each transmitted CAN FD frame at the falling edge of bit FDF to bit res. The
measurement is stopped when this edge is seen at the receive input m_can_rx of the transmitter.
The resolution of this measurement is one mtq.

Figure 3 Transmitter Delay Measurement

To avoid that a dominant glitch inside the received FDF bit ends the delay compensation
measurement before the falling edge of the received res bit, resulting in a to early SSP position, the
use of a transmitter delay compensation filter window can be enabled by programming TDCR.TDCF.
This defines a minimum value for the SSP position. Dominant edges on m_can_rx, that would result
in an earlier SSP position are ignored for transmitter delay measurement. The measurement is
stopped when the SSP position is at least TDCR.TDCF AND m_can_rx is low.

arbitration phase data phase

m_can_tx

m_can_rx

Delay Counter

Start Stop

BRS DLCFDF

E
S
Ires

Transmitter

data phasearbitration phase

Delay Compensation Offset

SSP Position

Delay

m_can_cclk
Delay

TDCR.TDCO
58 24.03.2016



Revision 3.2.1.1 M_CAN
3.1.5 Restricted Operation Mode

In Restricted Operation Mode the node is able to receive data and remote frames and to give
acknowledge to valid frames, but it does not send data frames, remote frames, active error frames,
or overload frames. In case of an error condition or overload condition, it does not send dominant
bits, instead it waits for the occurrence of bus idle condition to resynchronize itself to the CAN
communication. The error counters (ECR.REC, ECR.TEC) are frozen while Error Logging
(ECR.CEL) is active. The Host can set the M_CAN into Restricted Operation mode by setting bit
CCCR.ASM. The bit can only be set by the Host when both CCCR.CCE and CCCR.INIT are set to
‘1’. The bit can be reset by the Host at any time.

Restricted Operation Mode is automatically entered when the Tx Handler was not able to read data
from the Message RAM in time. To leave Restricted Operation Mode, the Host CPU has to reset
CCCR.ASM.

The Restricted Operation Mode can be used in applications that adapt themselves to different CAN
bit rates. In this case the application tests different bit rates and leaves the Restricted Operation
Mode after it has received a valid frame.

If the M_CAN is connected to a Clock Calibration on CAN unit, CCCR.ASM is controlled by input
m_can_cok. In case m_can_cok switches to ‘0’, bit CCCR.ASM is set. When m_can_cok switches
back to ‘1’, bit CCCR.ASM returns to the previously written value. When there is no Clock Calibration
on CAN unit connected input m_can_cok is hardwired to ‘1’.

Note: The Restricted Operation Mode must not be combined with the Loop Back Mode (internal
or external).

3.1.6 Bus Monitoring Mode

The M_CAN is set in Bus Monitoring Mode by programming CCCR.MON to one. In Bus Monitoring
Mode (see ISO 11898-1:2015, 10.14 Bus monitoring), the M_CAN is able to receive valid data
frames and valid remote frames, but cannot start a transmission. In this mode, it sends only
recessive bits on the CAN bus. If the M_CAN is required to send a dominant bit (ACK bit, overload
flag, active error flag), the bit is rerouted internally so that the M_CAN monitors this dominant bit,
although the CAN bus may remain in recessive state. In Bus Monitoring Mode register TXBRP is
held in reset state.

The Bus Monitoring Mode can be used to analyze the traffic on a CAN bus without affecting it by the
transmission of dominant bits. Figure 5 shows the connection of signals m_can_tx and m_can_rx
to the M_CAN in Bus Monitoring Mode.

Figure 4 Pin Control in Bus Monitoring Mode

m_can_tx m_can_rx

Tx Rx

M_CAN

••

=1

 Bus Monitoring Mode
24.03.2016 59



 M_CAN Revision 3.2.1.1
3.1.7 Disabled Automatic Retransmission

According to the CAN Specification (see ISO 11898-1:2015, 8.3.4 Recovery Management), the
M_CAN provides means for automatic retransmission of frames that have lost arbitration or that
have been disturbed by errors during transmission. By default automatic retransmission is enabled.
To support time-triggered communication as described in ISO 11898-1:2015, chapter 9.2, the
automatic retransmission may be disabled via CCCR.DAR.

3.1.7.1 Frame Transmission in DAR Mode

In DAR mode all transmissions are automatically cancelled after they started on the CAN bus. A Tx
Buffer’s Tx Request Pending bit TXBRP.TRPx is reset after successful transmission, when a
transmission has not yet been started at the point of cancellation, has been aborted due to lost
arbitration, or when an error occurred during frame transmission.

• Successful transmission:
Corresponding Tx Buffer Transmission Occurred bit TXBTO.TOx set
Corresponding Tx Buffer Cancellation Finished bit TXBCF.CFx not set

• Successful transmission in spite of cancellation:
Corresponding Tx Buffer Transmission Occurred bit TXBTO.TOx set
Corresponding Tx Buffer Cancellation Finished bit TXBCF.CFx set

• Arbitration lost or frame transmission disturbed:
Corresponding Tx Buffer Transmission Occurred bit TXBTO.TOx not set
Corresponding Tx Buffer Cancellation Finished bit TXBCF.CFx set

In case of a successful frame transmission, and if storage of Tx events is enabled, a Tx Event FIFO
element is written with Event Type ET = “10” (transmission in spite of cancellation).

3.1.8 Power Down (Sleep Mode)

The M_CAN can be set into power down mode controlled by input signal m_can_clkstop_req or
via CC Control Register CCCR.CSR. As long as the clock stop request signal m_can_clkstop_req
is active, bit CCCR.CSR is read as one.

When all pending transmission requests have completed, the M_CAN waits until bus idle state is
detected. Then the M_CAN sets then CCCR.INIT to one to prevent any further CAN transfers. Now
the M_CAN acknowledges that it is ready for power down by setting output signal
m_can_clkstop_ack to one and CCCR.CSA to one. In this state, before the clocks are switched
off, further register accesses can be made. A write access to CCCR.INIT will have no effect. Now
the module clock inputs m_can_hclk and m_can_cclk may be switched off.

To leave power down mode, the application has to turn on the module clocks before resetting signal
m_can_clkstop_req resp. CC Control Register flag CCCR.CSR. The M_CAN will acknowledge this
by resetting output signal m_can_clkstop_ack and resetting CCCR.CSA. Afterwards, the
application can restart CAN communication by resetting bit CCCR.INIT.

3.1.9 Test Modes

To enable write access to register TEST (see Section 2.3.5), bit CCCR.TEST has to be set to one.
This allows the configuration of the test modes and test functions.

Four output functions are available for the CAN transmit pin m_can_tx by programming TEST.TX.
Additionally to its default function – the serial data output – it can drive the CAN Sample Point signal
to monitor the M_CAN’s bit timing and it can drive constant dominant or recessive values. The actual
value at pin m_can_rx can be read from TEST.RX. Both functions can be used to check the CAN
bus’ physical layer.

Due to the synchronization mechanism between CAN clock and Host clock domain, there may be a
delay of several Host clock periods between writing to TEST.TX until the new configuration is visible
at output pin m_can_tx. This applies also when reading input pin m_can_rx via TEST.RX.
60 24.03.2016



Revision 3.2.1.1 M_CAN
Note: Test modes should be used for production tests or self test only. The software control
for pin m_can_tx interferes with all CAN protocol functions. It is not recommended to
use test modes for application.

3.1.9.1 External Loop Back Mode

The M_CAN can be set in External Loop Back Mode by programming TEST.LBCK to one. In Loop
Back Mode, the M_CAN treats its own transmitted messages as received messages and stores
them (if they pass acceptance filtering) into an Rx Buffer or an Rx FIFO. Figure 5 shows the
connection of signals m_can_tx and m_can_rx to the M_CAN in External Loop Back Mode.

This mode is provided for hardware self-test. To be independent from external stimulation, the
M_CAN ignores acknowledge errors (recessive bit sampled in the acknowledge slot of a data/remote
frame) in Loop Back Mode. In this mode the M_CAN performs an internal feedback from its Tx
output to its Rx input. The actual value of the m_can_rx input pin is disregarded by the M_CAN. The
transmitted messages can be monitored at the m_can_tx pin.

3.1.9.2 Internal Loop Back Mode

Internal Loop Back Mode is entered by programming bits TEST.LBCK and CCCR.MON to one. This
mode can be used for a “Hot Selftest”, meaning the M_CAN can be tested without affecting a
running CAN system connected to the pins m_can_tx and m_can_rx. In this mode pin m_can_rx
is disconnected from the M_CAN and pin m_can_tx is held recessive. Figure 5 shows the
connection of m_can_tx and m_can_rx to the M_CAN in case of Internal Loop Back Mode.

Figure 5 Pin Control in Loop Back Modes

3.2 Timestamp Generation

For timestamp generation the M_CAN supplies a 16-bit wrap-around counter. A prescaler
TSCC.TCP can be configured to clock the counter in multiples of CAN bit times (1…16). The counter
is readable via TSCV.TSC. A write access to register TSCV resets the counter to zero. When the
timestamp counter wraps around interrupt flag IR.TSW is set.

On start of frame reception / transmission the counter value is captured and stored into the
timestamp section of an Rx Buffer / Rx FIFO (RXTS[15:0]) or Tx Event FIFO (TXTS[15:0]) element.

By programming bit TSCC.TSS an external 16-bit timestamp can be used.

External Loop Back Mode Internal Loop Back Mode

Tx Rx

M_CAN

••

m_can_rxm_can_tx

Tx Rx

M_CAN

••

=1

m_can_rxm_can_tx
24.03.2016 61



 M_CAN Revision 3.2.1.1
3.3 Timeout Counter

To signal timeout conditions for Rx FIFO 0, Rx FIFO 1, and the Tx Event FIFO the M_CAN supplies
a 16-bit Timeout Counter. It operates as down-counter and uses the same prescaler controlled by
TSCC.TCP as the Timestamp Counter. The Timeout Counter is configured via register TOCC. The
actual counter value can be read from TOCV.TOC. The Timeout Counter can only be started while
CCCR.INIT = ‘0’. It is stopped when CCCR.INIT = ‘1’, e.g. when the M_CAN enters Bus_Off state.

The operation mode is selected by TOCC.TOS. When operating in Continuous Mode, the counter
starts when CCCR.INIT is reset. A write to TOCV presets the counter to the value configured by
TOCC.TOP and continues down-counting.

When the Timeout Counter is controlled by one of the FIFOs, an empty FIFO presets the counter to
the value configured by TOCC.TOP. Down-counting is started when the first FIFO element is stored.
Writing to TOCV has no effect.

When the counter reaches zero, interrupt flag IR.TOO is set. In Continuous Mode, the counter is
immediately restarted at TOCC.TOP.

Note: The clock signal for the Timeout Counter is derived from the CAN Core’s sample point
signal. Therefore the point in time where the Timeout Counter is decremented may vary
due to the synchronization / re-synchronization mechanism of the CAN Core. If the bit
rate switch feature in CAN FD is used, the timeout counter is clocked differently in arbi-
tration and data field.
62 24.03.2016



Revision 3.2.1.1 M_CAN
3.4 Rx Handling

The Rx Handler controls the acceptance filtering, the transfer of received messages to the Rx
Buffers or to one of the two Rx FIFOs, as well as the Rx FIFO’s Put and Get Indices.

3.4.1 Acceptance Filtering

The M_CAN offers the possibility to configure two sets of acceptance filters, one for standard
identifiers and one for extended identifiers. These filters can be assigned to an Rx Buffer or to Rx
FIFO 0,1. For acceptance filtering each list of filters is executed from element #0 until the first
matching element. Acceptance filtering stops at the first matching element. The following filter
elements are not evaluated for this message.

The main features are:

• Each filter element can be configured as
- range filter (from - to)
- filter for one or two dedicated IDs
- classic bit mask filter

• Each filter element is configurable for acceptance or rejection filtering

• Each filter element can be enabled / disabled individually

• Filters are checked sequentially, execution stops with the first matching filter element

Related configuration registers are:

• Global Filter Configuration GFC

• Standard ID Filter Configuration SIDFC

• Extended ID Filter Configuration XIDFC

• Extended ID AND Mask XIDAM

Depending on the configuration of the filter element (SFEC/EFEC) a match triggers one of the
following actions:

• Store received frame in FIFO 0 or FIFO 1

• Store received frame in Rx Buffer

• Store received frame in Rx Buffer and generate pulse at filter event pin

• Reject received frame

• Set High Priority Message interrupt flag IR.HPM

• Set High Priority Message interrupt flag IR.HPM and store received frame in FIFO 0 or FIFO 1

Acceptance filtering is started after the complete identifier has been received. After acceptance
filtering has completed, and if a matching Rx Buffer or Rx FIFO has been found, the Message
Handler starts writing the received message data in portions of 32 bit to the matching Rx Buffer or
Rx FIFO. If the CAN protocol controller has detected an error condition (e.g. CRC error), this
message is discarded with the following impact on the affected Rx Buffer or Rx FIFO:

Rx Buffer
New Data flag of matching Rx Buffer is not set, but Rx Buffer (partly) overwritten with received data.
For error type see PSR.LEC respectively PSR.DLEC.

Rx FIFO
Put index of matching Rx FIFO is not updated, but related Rx FIFO element (partly) overwritten with
received data. For error type see PSR.LEC respectively PSR.DLEC. In case the matching Rx FIFO
is operated in overwrite mode, the boundary conditions described in Section 3.4.2.2 have to be
considered.
24.03.2016 63



 M_CAN Revision 3.2.1.1
Note: When an accepted message is written to one of the two Rx FIFOs, or into an Rx Buffer,
the unmodified received identifier is stored independent of the filter(s) used. The result
of the acceptance filter process is strongly depending on the sequence of configured
filter elements.

3.4.1.1 Range Filter

The filter matches for all received frames with Message IDs in the range defined by SF1ID/SF2ID
resp. EF1ID/EF2ID.

There are two possibilities when range filtering is used together with extended frames:

EFT = “00”: The Message ID of received frames is ANDed with the Extended ID AND Mask (XIDAM)
before the range filter is applied

EFT = “11”: The Extended ID AND Mask (XIDAM) is not used for range filtering

3.4.1.2 Filter for specific IDs

A filter element can be configured to filter for one or two specific Message IDs. To filter for one
specific Message ID, the filter element has to be configured with SF1ID = SF2ID resp. EF1ID =
EF2ID.

3.4.1.3 Classic Bit Mask Filter

Classic bit mask filtering is intended to filter groups of Message IDs by masking single bits of a
received Message ID. With classic bit mask filtering SF1ID/EF1ID is used as Message ID filter, while
SF2ID/EF2ID is used as filter mask.

A zero bit at the filter mask will mask out the corresponding bit position of the configured ID filter,
e.g. the value of the received Message ID at that bit position is not relevant for acceptance filtering.
Only those bits of the received Message ID where the corresponding mask bits are one are relevant
for acceptance filtering.

In case all mask bits are one, a match occurs only when the received Message ID and the Message
ID filter are identical. If all mask bits are zero, all Message IDs match.
64 24.03.2016



Revision 3.2.1.1 M_CAN
3.4.1.4 Standard Message ID Filtering

Figure 6 below shows the flow for standard Message ID (11-bit Identifier) filtering. The Standard
Message ID Filter element is described in Section 2.4.5.

Controlled by the Global Filter Configuration GFC and the Standard ID Filter Configuration SIDFC
Message ID, Remote Transmission Request bit (RTR), and the Identifier Extension bit (IDE) of
received frames are compared against the list of configured filter elements.

Figure 6 Standard Message ID Filter Path

receive filter list enabled

valid frame received

11 / 29 bit identifier

remote frame

11 bit

reject remote frames

discard frame

match filter element #0

match filter element #SIDFC.LSS

yes

no

accept non-matching frames

acceptance / rejection
accept

reject

SIDFC.LSS[7:0] > 0

GFC.ANFS[1] = ‘0’

GFC.RRFS = ‘1’

GFC.RRFS = ‘0’

29 bit

S
ID

F
C

.L
S

S
[7

:0
] =

 0

GFC.ANFS[1] = ‘1’

no
yes

no

yes

yes

FIFO selected and

no

target FIFO full (blocking)

store frame
24.03.2016 65



 M_CAN Revision 3.2.1.1
3.4.1.5 Extended Message ID Filtering

Figure 7 below shows the flow for extended Message ID (29-bit Identifier) filtering. The Extended
Message ID Filter element is described in Section 2.4.6.

Controlled by the Global Filter Configuration GFC and the Extended ID Filter Configuration XIDFC
Message ID, Remote Transmission Request bit (RTR), and the Identifier Extension bit (IDE) of
received frames are compared against the list of configured filter elements.

The Extended ID AND Mask XIDAM is ANDed with the received identifier before the filter list is
executed.

Figure 7 Extended Message ID Filter Path

valid frame received

11 / 29 bit identifier

remote frame

29 bit

reject remote frames

discard frame

match filter element #0

match filter element #XIDFC.LSE

yes

no

accept non-matching frames

acceptance / rejection
accept

reject

receive filter list enabled

XIDFC.LSE[6:0] > 0

GFC.ANFE[1] = ‘0’

GFC.RRFE = ‘1’

GFC.RRFE = ‘0’

11 bit

X
ID

F
C

.LS
E

[6:0] = 0

GFC.ANFE[1] = ‘1’

no
yes

no

yes

yes

FIFO selected and

no

target FIFO full (blocking)

store frame
66 24.03.2016



Revision 3.2.1.1 M_CAN
3.4.2 Rx FIFOs

Rx FIFO 0 and Rx FIFO 1 can be configured to hold up to 64 elements each. Configuration of the
two Rx FIFOs is done via registers RXF0C and RXF1C.

Received messages that passed acceptance filtering are transferred to the Rx FIFO as configured
by the matching filter element. For a description of the filter mechanisms available for Rx FIFO 0 and
Rx FIFO 1 see Section 3.4.1. The Rx FIFO element is described in Section 2.4.2.

To avoid an Rx FIFO overflow, the Rx FIFO watermark can be used. When the Rx FIFO fill level
reaches the Rx FIFO watermark configured by RXFnC.FnWM, interrupt flag IR.RFnW is set. When
the Rx FIFO Put Index reaches the Rx FIFO Get Index an Rx FIFO Full condition is signalled by
RXFnS.FnF. In addition interrupt flag IR.RFnF is set.

Figure 8 Rx FIFO Status

When reading from an Rx FIFO, Rx FIFO Get Index RXFnS.FnGI • FIFO Element Size has to be
added to the corresponding Rx FIFO start address RXFnC.FnSA.

Table 55 Rx Buffer / FIFO Element Size

RXESC.RBDS[2:0]
RXESC.FnDS[2:0]

Data Field
[bytes]

FIFO Element Size
[RAM words]

000 8 4

001 12 5

010 16 6

011 20 7

100 24 8

101 32 10

110 48 14

111 64 18

0

1

2

34

5

6

Fill Level

Get Index

Put Index

RXFnS.FnFL

RXFnS.FnGI

RXFnS.FnPI

7

24.03.2016 67



 M_CAN Revision 3.2.1.1
3.4.2.1 Rx FIFO Blocking Mode

The Rx FIFO blocking mode is configured by RXFnC.FnOM = ‘0’. This is the default operation mode
for the Rx FIFOs.

When an Rx FIFO full condition is reached (RXFnS.FnPI = RXFnS.FnGI), no further messages are
written to the corresponding Rx FIFO until at least one message has been read out and the Rx FIFO
Get Index has been incremented. An Rx FIFO full condition is signalled by RXFnS.FnF = ‘1’. In
addition interrupt flag IR.RFnF is set.

In case a message is received while the corresponding Rx FIFO is full, this message is discarded
and the message lost condition is signalled by RXFnS.RFnL = ‘1’. In addition interrupt flag IR.RFnL
is set.

3.4.2.2 Rx FIFO Overwrite Mode

The Rx FIFO overwrite mode is configured by RXFnC.FnOM = ‘1’.

When an Rx FIFO full condition (RXFnS.FnPI = RXFnS.FnGI) is signalled by RXFnS.FnF = ‘1’, the
next message accepted for the FIFO will overwrite the oldest FIFO message. Put and get index are
both incremented by one.

When an Rx FIFO is operated in overwrite mode and an Rx FIFO full condition is signalled, reading
of the Rx FIFO elements should start at least at get index + 1. The reason for that is, that it might
happen, that a received message is written to the Message RAM (put index) while the CPU is
reading from the Message RAM (get index). In this case inconsistent data may be read from the
respective Rx FIFO element. Adding an offset to the get index when reading from the Rx FIFO
avoids this problem. The offset depends on how fast the CPU accesses the Rx FIFO. Figure 9 shows
an offset of two with respect to the get index when reading the Rx FIFO. In this case the two
messages stored in element 1 and 2 are lost.

Figure 9 Rx FIFO Overflow Handling

After reading from the Rx FIFO, the number of the last element read has to be written to the Rx FIFO
Acknowledge Index RXFnA.FnA. This increments the get index to that element number. In case the
put index has not been incremented to this Rx FIFO element, the Rx FIFO full condition is reset
(RXFnS.FnF = ‘0’).

0

1

2

34

5

6

Rx FIFO Full

RXFnS.FnPI

7

= RXFnS.FnGI

0

1

2

34

5

6

Rx FIFO Overwrite

RXFnS.FnPI7
= RXFnS.FnGI

element 0 overwritten

read Get Index + 2

(RXFnS.FnF = ‘1’) (RXFnS.FnF = ‘1’)
68 24.03.2016



Revision 3.2.1.1 M_CAN
3.4.3 Dedicated Rx Buffers

The M_CAN supports up to 64 dedicated Rx Buffers. The start address of the dedicated Rx Buffer
section is configured via RXBC.RBSA.

For each Rx Buffer a Standard or Extended Message ID Filter Element with SFEC / EFEC = “111”
and SFID2 / EFID2[10:9] = “00” has to be configured (see Section 2.4.5 and Section 2.4.6).

After a received message has been accepted by a filter element, the message is stored into the Rx
Buffer in the Message RAM referenced by the filter element. The format is the same as for an Rx
FIFO element. In addition the flag IR.DRX (Message stored in Dedicated Rx Buffer) in the interrupt
register is set.

Table 56 Example Filter Configuration for Rx Buffers

After the last word of a matching received message has been written to the Message RAM, the
respective New Data flag in register NDAT1,2 is set. As long as the New Data flag is set, the
respective Rx Buffer is locked against updates from received matching frames. The New Data flags
have to be reset by the Host by writing a ‘1’ to the respective bit position.

While an Rx Buffer’s New Data flag is set, a Message ID Filter Element referencing this specific Rx
Buffer will not match, causing the acceptance filtering to continue. Following Message ID Filter
Elements may cause the received message to be stored into another Rx Buffer, or into an Rx FIFO,
or the message may be rejected, depending on filter configuration.

3.4.3.1 Rx Buffer Handling

• Reset interrupt flag IR.DRX

• Read New Data registers

• Read messages from Message RAM

• Reset New Data flags of processed messages

Filter
Element

SFID1[10:0]
EFID1[28:0]

SFID2[10:9]
EFID2[10:9]

SFID2[5:0]
EFID2[5:0]

0 ID message 1 00 00 0000

1 ID message 2 00 00 0001

2 ID message 3 00 00 0010
24.03.2016 69



 M_CAN Revision 3.2.1.1
3.4.4 Debug on CAN Support

Debug messages are stored into Rx Buffers. For debug handling three consecutive Rx buffers (e.g.
#61, #62, #63) have to be used for storage of debug messages A, B, and C. The format is the same
as for an Rx Buffer or an Rx FIFO element (see M_CAN User’s Manual section 2.4.2).

Advantage: Fixed start address for the DMA transfers (relative to RXBC.RBSA), no additional
configuration required.

For filtering of debug messages Standard / Extended Filter Elements with SFEC / EFEC = “111”
have to be set up. Messages matching these filter elements are stored into the Rx Buffers addressed
by SFID2 / EFID2[5:0].

After message C has been stored, the DMA request output m_can_dma_req is activated and the
three messages can be read from the Message RAM under DMA control. The RAM words holding
the debug messages will not be changed by the M_CAN while m_can_dma_req is activated. The
behaviour is similar to that of an Rx Buffers with its New Data flag set.

After the DMA has completed the DMA unit sets m_can_dma_ack. This resets m_can_dma_req.
Now the M_CAN is prepared to receive the next set of debug messages.

3.4.4.1 Filtering for Debug Messages

Filtering for debug messages is done by configuring one Standard / Extended Message ID Filter
Element for each of the three debug messages. To enable a filter element to filter for debug
messages SFEC / EFEC has to be programmed to “111”. In this case fields SFID1 / SFID2 and
EFID1 / EFID2 have a different meaning (see Section 2.4.5 and Section 2.4.6). While SFID2 /
EFID2[10:9] controls the debug message handling state machine, SFID2 / EFID2[5:0] controls the
location for storage of a received debug message.

When a debug message is stored, neither the respective New Data flag nor IR.DRX are set. The
reception of debug messages can be monitored via RXF1S.DMS.

Table 57 Example Filter Configuration for Debug Messages

3.4.4.2 Debug Message Handling

The debug message handling state machine assures that debug messages are stored to three
consecutive Rx Buffers in correct order. In case of missing messages the process is restarted. The
DMA request is activated only when all three debug messages A, B, C have been received in correct
order.

Filter
Element

SFID1[10:0]
EFID1[28:0]

SFID2[10:9]
EFID2[10:9]

SFID2[5:0]
EFID2[5:0]

0 ID debug message A 01 11 1101

1 ID debug message B 10 11 1110

2 ID debug message C 11 11 1111
70 24.03.2016



Revision 3.2.1.1 M_CAN
The status of the debug message handling state machine is signalled via RXF1S.DMS.

Figure 10 Debug Message Handling State Machine

HW reset or
Init state

T0

DMS = 01

DMS = 00

DMS = 11

T2

T0: reset m_can_dma_req output, enable reception of debug messages A, B, and C

T1: reception of debug message A

T2: reception of debug message A

DMS = 10

T3

T4

T5

T6

T7

T3: reception of debug message C

T4: reception of debug message B

T5: reception of debug messages A, B

T6: reception of debug message C

T7: DMA transfer completed

T1T8

T8: reception of debug message A,B,C (message rejected)
24.03.2016 71



 M_CAN Revision 3.2.1.1
3.5 Tx Handling

The Tx Handler handles transmission requests for the dedicated Tx Buffers, the Tx FIFO, and the
Tx Queue. It controls the transfer of transmit messages to the CAN Core, the Put and Get Indices,
and the Tx Event FIFO. Up to 32 Tx Buffers can be set up for message transmission. The CAN mode
for transmission (Classic CAN or CAN FD) can be configured separately for each Tx Buffer element.
The Tx Buffer element is described in Section 2.4.3. Table 58 below describes the possible
configurations for frame transmission.

Table 58 Possible Configurations for Frame Transmission

Note: AUTOSAR requires at least three Tx Queue Buffers and support of transmit cancellation

The Tx Handler starts a Tx scan to check for the highest priority pending Tx request (Tx Buffer with
lowest Message ID) when the Tx Buffer Request Pending register TXBRP is updated, or when a
transmission has been started.

3.5.1 Transmit Pause

The transmit pause feature is intended for use in CAN systems where the CAN message identifiers
are (permanently) specified to specific values and cannot easily be changed. These message
identifiers may have a higher CAN arbitration priority than other defined messages, while in a
specific application their relative arbitration priority should be inverse. This may lead to a case where
one ECU sends a burst of CAN messages that cause another ECU’s CAN messages to be delayed
because that other messages have a lower CAN arbitration priority.

If e.g. CAN ECU-1 has the transmit pause feature enabled and is requested by its application
software to transmit four messages, it will, after the first successful message transmission, wait for
two CAN bit times of bus idle before it is allowed to start the next requested message. If there are
other ECUs with pending messages, those messages are started in the idle time, they would not
need to arbitrate with the next message of ECU-1. After having received a message, ECU-1 is
allowed to start its next transmission as soon as the received message releases the CAN bus.

The transmit pause feature is controlled by bit CCCR.TXP. If the bit is set, the M_CAN will, each time
it has successfully transmitted a message, pause for two CAN bit times before starting the next
transmission. This enables other CAN nodes in the network to transmit messages even if their
messages have lower prior identifiers. Default is transmit pause disabled (CCCR.TXP = ‘0’).

This feature looses up burst transmissions coming from a single node and it protects against
"babbling idiot" scenarios where the application program erroneously requests too many
transmissions.

3.5.2 Dedicated Tx Buffers

Dedicated Tx Buffers are intended for message transmission under complete control of the Host
CPU. Each Dedicated Tx Buffer is configured with a specific Message ID. In case that multiple Tx
Buffers are configured with the same Message ID, the Tx Buffer with the lowest buffer number is
transmitted first.

CCCR Tx Buffer Element
Frame Transmission

BRSE FDOE FDF BRS

ignored 0 ignored ignored Classic CAN

0 1 0 ignored Classic CAN

0 1 1 ignored FD without bit rate switching

1 1 0 ignored Classic CAN

1 1 1 0 FD without bit rate switching

1 1 1 1 FD with bit rate switching
72 24.03.2016



Revision 3.2.1.1 M_CAN
If the data section has been updated, a transmission is requested by an Add Request via
TXBAR.ARn. The requested messages arbitrate internally with messages from an optional Tx FIFO
or Tx Queue and externally with messages on the CAN bus, and are sent out according to their
Message ID.

A Dedicated Tx Buffer allocates Element Size 32-bit words in the Message RAM (see Table 59).
Therefore the start address of a dedicated Tx Buffer in the Message RAM is calculated by adding
transmit buffer index (0…31) • Element Size to the Tx Buffer Start Address TXBC.TBSA.

Table 59 Tx Buffer / FIFO / Queue Element Size

3.5.3 Tx FIFO

Tx FIFO operation is configured by programming TXBC.TFQM to ‘0’. Messages stored in the Tx
FIFO are transmitted starting with the message referenced by the Get Index TXFQS.TFGI. After
each transmission the Get Index is incremented cyclically until the Tx FIFO is empty. The Tx FIFO
enables transmission of messages with the same Message ID from different Tx Buffers in the order
these messages have been written to the Tx FIFO. The M_CAN calculates the Tx FIFO Free Level
TXFQS.TFFL as difference between Get and Put Index. It indicates the number of available (free)
Tx FIFO elements.

New transmit messages have to be written to the Tx FIFO starting with the Tx Buffer referenced by
the Put Index TXFQS.TFQPI. An Add Request increments the Put Index to the next free Tx FIFO
element. When the Put Index reaches the Get Index, Tx FIFO Full (TXFQS.TFQF = ‘1’) is signalled.
In this case no further messages should be written to the Tx FIFO until the next message has been
transmitted and the Get Index has been incremented.

When a single message is added to the Tx FIFO, the transmission is requested by writing a ‘1’ to
the TXBAR bit related to the Tx Buffer referenced by the Tx FIFO’s Put Index.

When multiple (n) messages are added to the Tx FIFO, they are written to n consecutive Tx Buffers
starting with the Put Index. The transmissions are then requested via TXBAR. The Put Index is then
cyclically incremented by n. The number of requested Tx buffers should not exceed the number of
free Tx Buffers as indicated by the Tx FIFO Free Level.

When a transmission request for the Tx Buffer referenced by the Get Index is cancelled, the Get
Index is incremented to the next Tx Buffer with pending transmission request and the Tx FIFO Free
Level is recalculated. When transmission cancellation is applied to any other Tx Buffer, the Get
Index and the FIFO Free Level remain unchanged.

A Tx FIFO element allocates Element Size 32-bit words in the Message RAM (see Table 59).
Therefore the start address of the next available (free) Tx FIFO Buffer is calculated by adding Tx
FIFO/Queue Put Index TXFQS.TFQPI (0…31) • Element Size to the Tx Buffer Start Address
TXBC.TBSA.

TXESC.TBDS[2:0]
Data Field

[bytes]
Element Size
[RAM words]

000 8 4

001 12 5

010 16 6

011 20 7

100 24 8

101 32 10

110 48 14

111 64 18
24.03.2016 73



 M_CAN Revision 3.2.1.1
3.5.4 Tx Queue

Tx Queue operation is configured by programming TXBC.TFQM to ‘1’. Messages stored in the Tx
Queue are transmitted starting with the message with the lowest Message ID (highest priority). In
case that multiple Queue Buffers are configured with the same Message ID, the Queue Buffer with
the lowest buffer number is transmitted first.

New messages have to be written to the Tx Buffer referenced by the Put Index TXFQS.TFQPI. An
Add Request cyclically increments the Put Index to the next free Tx Buffer. In case that the Tx Queue
is full (TXFQS.TFQF = ’1’), the Put Index is not valid and no further message should be written to
the Tx Queue until at least one of the requested messages has been sent out or a pending
transmission request has been cancelled.

The application may use register TXBRP instead of the Put Index and may place messages to any
Tx Buffer without pending transmission request.

A Tx Queue Buffer allocates Element Size 32-bit words in the Message RAM (see Table 59).
Therefore the start address of the next available (free) Tx Queue Buffer is calculated by adding Tx
FIFO/Queue Put Index TXFQS.TFQPI (0…31) • Element Size to the Tx Buffer Start Address
TXBC.TBSA.

3.5.5 Mixed Dedicated Tx Buffers / Tx FIFO

In this case the Tx Buffers section in the Message RAM is subdivided into a set of Dedicated Tx
Buffers and a Tx FIFO. The number of Dedicated Tx Buffers is configured by TXBC.NDTB. The
number of Tx Buffers assigned to the Tx FIFO is configured by TXBC.TFQS. In case TXBC.TFQS
is programmed to zero, only Dedicated Tx Buffers are used.

Figure 11 Example of mixed Configuration Dedicated Tx Buffers / Tx FIFO

Tx prioritization:

• Scan Dedicated Tx Buffers and oldest pending Tx FIFO Buffer (referenced by TXFS.TFGI)

• Buffer with lowest Message ID gets highest priority and is transmitted next

ID3 ID15 ID8 ID24 ID4 ID2

0 1 2 3 4 5 6 7 8 9

Dedicated Tx Buffers Tx FIFO

1. 2. 3.4.5. 6.

Get Index Put Index

Buffer Index

Tx Sequence
74 24.03.2016



Revision 3.2.1.1 M_CAN
3.5.6 Mixed Dedicated Tx Buffers / Tx Queue

In this case the Tx Buffers section in the Message RAM is subdivided into a set of Dedicated Tx
Buffers and a Tx Queue. The number of Dedicated Tx Buffers is configured by TXBC.NDTB. The
number of Tx Queue Buffers is configured by TXBC.TFQS. In case TXBC.TFQS is programmed to
zero, only Dedicated Tx Buffers are used.

Figure 12 Example of mixed Configuration Dedicated Tx Buffers / Tx Queue

Tx prioritization:

• Scan all Tx Buffers with activated transmission request

• Tx Buffer with lowest Message ID gets highest priority and is transmitted next

3.5.7 Transmit Cancellation

The M_CAN supports transmit cancellation. This feature is especially intended for gateway applica-
tions and AUTOSAR based applications. To cancel a requested transmission from a dedicated Tx
Buffer or a Tx Queue Buffer the Host has to write a ‘1’ to the corresponding bit position (=number of
Tx Buffer) of register TXBCR. Transmit cancellation is not intended for Tx FIFO operation.

Successful cancellation is signalled by setting the corresponding bit of register TXBCF to ‘1’.

In case a transmit cancellation is requested while a transmission from a Tx Buffer is already
ongoing, the corresponding TXBRP bit remains set as long as the transmission is in progress. If the
transmission was successful, the corresponding TXBTO and TXBCF bits are set. If the transmission
was not successful, it is not repeated and only the corresponding TXBCF bit is set.

Note: In case a pending transmission is cancelled immediately before this transmission could
have been started, there follows a short time window where no transmission is started
even if another message is also pending in this node. This may enable another node to
transmit a message which may have a lower priority than the second message in this
node.

ID3 ID15 ID8 ID24 ID4 ID2

0 1 2 3 4 5 6 7 8 9

Dedicated Tx Buffers Tx Queue

2. 3. 1.4.5. 6.

Put Index

Buffer Index

Tx Sequence
24.03.2016 75



 M_CAN Revision 3.2.1.1
3.5.8 Tx Event Handling

To support Tx event handling the M_CAN has implemented a Tx Event FIFO. After the M_CAN has
transmitted a message on the CAN bus, Message ID and timestamp are stored in a Tx Event FIFO
element. To link a Tx event to a Tx Event FIFO element, the Message Marker from the transmitted
Tx Buffer is copied into the Tx Event FIFO element.

The Tx Event FIFO can be configured to a maximum of 32 elements. The Tx Event FIFO element
is described in Section 2.4.4.

The purpose of the Tx Event FIFO is to decouple handling transmit status information from transmit
message handling i.e. a Tx Buffer holds only the message to be transmitted, while the transmit
status is stored separately in the Tx Event FIFO. This has the advantage, especially when operating
a dynamically managed transmit queue, that a Tx Buffer can be used for a new message
immediately after successful transmission. There is no need to save transmit status information from
a Tx Buffer before overwriting that Tx Buffer.

When a Tx Event FIFO full condition is signalled by IR.TEFF, no further elements are written to the
Tx Event FIFO until at least one element has been read out and the Tx Event FIFO Get Index has
been incremented. In case a Tx event occurs while the Tx Event FIFO is full, this event is discarded
and interrupt flag IR.TEFL is set.

To avoid a Tx Event FIFO overflow, the Tx Event FIFO watermark can be used. When the Tx Event
FIFO fill level reaches the Tx Event FIFO watermark configured by TXEFC.EFWM, interrupt flag
IR.TEFW is set.

When reading from the Tx Event FIFO, two times the Tx Event FIFO Get Index TXEFS.EFGI has to
be added to the Tx Event FIFO start address TXEFC.EFSA.

3.6 FIFO Acknowledge Handling

The Get Indices of Rx FIFO 0, Rx FIFO 1, and the Tx Event FIFO are controlled by writing to the
corresponding FIFO Acknowledge Index (see Section 2.3.29, Section 2.3.33, and Section 2.3.47).
Writing to the FIFO Acknowledge Index will set the FIFO Get Index to the FIFO Acknowledge Index
plus one and thereby updates the FIFO Fill Level. There are two use cases:

When only a single element has been read from the FIFO (the one being pointed to by the Get
Index), this Get Index value is written to the FIFO Acknowledge Index.

When a sequence of elements has been read from the FIFO, it is sufficient to write the FIFO
Acknowledge Index only once at the end of that read sequence (value: Index of the last element
read), to update the FIFO’s Get Index.

Due to the fact that the CPU has free access to the M_CAN’s Message RAM, special care has to
be taken when reading FIFO elements in an arbitrary order (Get Index not considered). This might
be useful when reading a High Priority Message from one of the two Rx FIFOs. In this case the
FIFO’s Acknowledge Index should not be written because this would set the Get Index to a wrong
position and also alters the FIFO’s Fill Level. In this case some of the older FIFO elements would be
lost.

Note: The application has to ensure that a valid value is written to the FIFO Acknowledge Index.
The M_CAN does not check for erroneous values.
76 24.03.2016



Chapter 4.
4. Appendix

4.1 Register Overview

Address 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Symbol

Reset Value

0x00 RE14.10.20
11L[4:0] STEP[4:0] SUBSTEP

[4:0] YEAR[4:0] MON[7:0] DAY[7:0]
CREL

rrrd_dddd

0x04 ETV[31:0]
ENDN

8765_4321

0x08 CUST[31:0]
CUST
t.b.d.

0x0C

T
D

C DBRP[4:0] DTSEG1[4:0]

D
T

S
E

G
2[

3:
0]

DSJW[3:0] DBTP
0000_0A33

0x10 R
X

T
X

[1
:0

]

LB
C

K TEST
0000_0000

0x14 WDV[7:0] WDC[7:0] RWD
0000_0000

0x18

N
IS

O

T
X

P

E
F

B
I

P
X

H
D

B
R

S
E

F
D

O
E

T
E

S
T

D
A

R

M
O

N

C
S

R

C
S

A

A
S

M

C
C

E

IN
IT CCCR

0000_0001

0x1C NSJW[6:0] NBRP[8:0] NTSEG1[7:0] NTSEG2[6:0] NBTP
0000_0A33

0x20 TCP[3:0]

T
S

S
[1

:0
]

TSCC
0000_0000

0x24 TSC[15:0]
TSCV

0000_0000

0x28 TOP[15:0]

TO
S

[1
:0

]

E
TO

C TOCC
FFFF_0000

Table 60 M_CAN Register Overview
M_CAN - Revision 3.2.1.1 - 24.03.2016 77



 M_CAN Revision 3.2.1.1
0x2C TOC[15:0]
TOCV

0000_FFFF

0x40 CEL[7:0] R
P REC[6:0] TEC[7:0]

ECR
0000_0000

0x44 TDCV[6:0]

P
X

E
R

F
D

F

R
B

R
S

R
E

S
I

D
LE

C
[2

:0
]

B
O

E
W E
P

A
C

T
[1

:0
]

LE
C

[2
:0

]

PSR
0000_0707

0x48 TDCO[6:0] TDCF[6:0] TDCR
0000_0000

0x50

A
R

A

P
E

D

P
E

A

W
D

I

B
O

E
W E
P

E
LO

B
E

U

B
E

C

D
R

X

TO
O

M
R

A
F

T
S

W

T
E

F
L

T
E

F
F

T
E

F
W

T
E

F
N

T
F

E

T
C

F

T
C

H
P

M

R
F

1L

R
F

1F

R
F

1W

R
F

1N

R
F

0L

R
F

0F

R
F

0W

R
F

0N IR
0000_0000

0x54

A
R

A
E

P
E

D
E

P
E

A
E

W
D

IE

B
O

E

E
W

E

E
P

E

E
LO

E

B
E

U
E

B
E

C
E

D
R

X
E

TO
O

E

M
R

A
F

E

T
S

W
E

T
E

F
LE

T
E

F
F

E

T
E

F
W

E

T
E

F
N

E

T
F

E
E

T
C

F
E

T
C

E

H
P

M
E

R
F

1L
E

R
F

1F
E

R
F

1W
E

R
F

1N
E

R
F

0L
E

R
F

0F
E

R
F

0W
E

R
F

0N
E IE

0000_0000

0x58

A
R

A
L

P
E

D
L

P
E

A
L

W
D

IL

B
O

L

E
W

L

E
P

L

E
LO

L

B
E

U
L

B
E

C
L

D
R

X
L

TO
O

L

M
R

A
F

L

T
S

W
L

T
E

F
LL

T
E

F
F

L

T
E

F
W

L

T
E

F
N

L

T
F

E
L

T
C

F
L

T
C

L

H
P

M
L

R
F

1L
L

R
F

1F
L

R
F

1W
L

R
F

1N
L

R
F

0L
L

R
F

0F
L

R
F

0W
L

R
F

0N
L ILS

0000_0000

0x5C
E

IN
T

1

E
IN

T
0 ILE

0000_0000

0x80

A
N

F
S

[1
:0

]

A
N

F
E

[1
:0

]

R
R

F
S

R
R

F
E GFC

0000_0000

0x84 LSS[7:0] FLSSA[15:2]
SIDFC

0000_0000

0x88 LSE[6:0] FLESA[15:2]
XIDFC

0000_0000

0x90 EIDM[28:0]
XIDAM

1FFF_FFFF

0x94

F
LS

T

FIDX[6:0]

M
S

I[1
:0

]

BIDX[5:0]
HPMS

0000_0000

Address 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Symbol

Reset Value

Table 60 M_CAN Register Overview
78 24.03.2016



Revision 3.2.1.1 M_CAN
0x98
N

D
31

N
D

30

N
D

29

N
D

28

N
D

27

N
D

26

N
D

25

N
D

24

N
D

23

N
D

22

N
D

21

N
D

20

N
D

19

N
D

18

N
D

17

N
D

16

N
D

15

N
D

14

N
D

13

N
D

12

N
D

11

N
D

10

N
D

9

N
D

8

N
D

7

N
D

6

N
D

5

N
D

4

N
D

3

N
D

2

N
D

1

N
D

0 NDAT1
0000_0000

0x9C

N
D

63

N
D

62

N
D

61

N
D

60

N
D

59

N
D

58

N
D

57

N
D

56

N
D

55

N
D

54

N
D

53

N
D

52

N
D

51

N
D

50

N
D

49

N
D

48

N
D

47

N
D

46

N
D

45

N
D

44

N
D

43

N
D

42

N
D

41

N
D

40

N
D

39

N
D

38

N
D

37

N
D

36

N
D

35

N
D

34

N
D

33

N
D

32 NDAT2
0000_0000

0xA0

F
0O

M

F0WM[6:0] F0S[6:0] F0SA[15:2]
RXF0C

0000_0000

0xA4

R
F

0L

F
0F F0PI[5:0] F0GI[5:0] F0FL[6:0]

RXF0S
0000_0000

0xA8 F0AI[5:0]
RXF0A

0000_0000

0xAC RBSA[15:2]
RXBC

0000_0000

0xB0

F
1O

M

F1WM[6:0] F1S[6:0] F1SA[15:2]
RXF1C

0000_0000

0xB4

D
M

S
[1

:0
]

R
F

1L

F
1F F1PI[5:0] F1GI[5:0] F1FL[6:0]

RXF1S
0000_0000

0xB8 F1AI[5:0]
RXF1A

0000_0000

0xBC

R
B

D
S

[2
:0

]

F
1D

S
[2

:0
]

F
0D

S
[2

:0
]

RXESC
0000_0000

0xC0

T
F

Q
M

TFQS[5:0] NDTB[5:0] TBSA[15:2]
TXBC

0000_0000

0xC4

T
F

Q
F

TFQPI[4:0] TFGI[4:0] TFFL[5:0]
TXFQS

0000_0000

0xC8

T
B

D
S

[2
:0

]

TXESC
0000_0000

Address 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Symbol

Reset Value

Table 60 M_CAN Register Overview
24.03.2016 79



 M_CAN Revision 3.2.1.1
0xCC

T
R

P
31

T
R

P
30

T
R

P
29

T
R

P
28

T
R

P
27

T
R

P
26

T
R

P
25

T
R

P
24

T
R

P
23

T
R

P
22

T
R

P
21

T
R

P
20

T
R

P
19

T
R

P
18

T
R

P
17

T
R

P
16

T
R

P
15

T
R

P
14

T
R

P
13

T
R

P
12

T
R

P
11

T
R

P
10

T
R

P
9

T
R

P
8

T
R

P
7

T
R

P
6

T
R

P
5

T
R

P
4

T
R

P
3

T
R

P
2

T
R

P
1

T
R

P
0 TXBRP

0000_0000

0xD0

A
R

31

A
R

30

A
R

29

A
R

28

A
R

27

A
R

26

A
R

25

A
R

24

A
R

23

A
R

22

A
R

21

A
R

20

A
R

19

A
R

18

A
R

17

A
R

16

A
R

15

A
R

14

A
R

13

A
R

12

A
R

11

A
R

10

A
R

9

A
R

8

A
R

7

A
R

6

A
R

5

A
R

4

A
R

3

A
R

2

A
R

1

A
R

0 TXBAR
0000_0000

0xD4

C
R

31

C
R

30

C
R

29

C
R

28

C
R

27

C
R

26

C
R

25

C
R

24

C
R

23

C
R

22

C
R

21

C
R

20

C
R

19

C
R

18

C
R

17

C
R

16

C
R

15

C
R

14

C
R

13

C
R

12

C
R

11

C
R

10

C
R

9

C
R

8

C
R

7

C
R

6

C
R

5

C
R

4

C
R

3

C
R

2

C
R

1

C
R

0 TXBCR
0000_0000

0xD8

TO
31

TO
30

TO
29

TO
28

TO
27

TO
26

TO
25

TO
24

TO
23

TO
22

TO
21

TO
20

TO
19

TO
18

TO
17

TO
16

TO
15

TO
14

TO
13

TO
12

TO
11

TO
10

TO
9

TO
8

TO
7

TO
6

TO
5

TO
4

TO
3

TO
2

TO
1

TO
0 TXBTO

0000_0000

0xDC

C
F

31

C
F

30

C
F

29

C
F

28

C
F

27

C
F

26

C
F

25

C
F

24

C
F

23

C
F

22

C
F

21

C
F

20

C
F

19

C
F

18

C
F

17

C
F

16

C
F

15

C
F

14

C
F

13

C
F

12

C
F

11

C
F

10

C
F

9

C
F

8

C
F

7

C
F

6

C
F

5

C
F

4

C
F

3

C
F

2

C
F

1

C
F

0 TXBCF
0000_0000

0xE0

T
IE

31

T
IE

30

T
IE

29

T
IE

28

T
IE

27

T
IE

26

T
IE

25

T
IE

24

T
IE

23

T
IE

22

T
IE

21

T
IE

20

T
IE

19

T
IE

18

T
IE

17

T
IE

16

T
IE

15

T
IE

14

T
IE

13

T
IE

12

T
IE

11

T
IE

10

T
IE

9

T
IE

8

T
IE

7

T
IE

6

T
IE

5

T
IE

4

T
IE

3

T
IE

2

T
IE

1

T
IE

0 TXBTIE
0000_0000

0xE4

C
F

IE
31

C
F

IE
30

C
F

IE
29

C
F

IE
28

C
F

IE
27

C
F

IE
26

C
F

IE
25

C
F

IE
24

C
F

IE
23

C
F

IE
22

C
F

IE
21

C
F

IE
20

C
F

IE
19

C
F

IE
18

C
F

IE
17

C
F

IE
16

C
F

IE
15

C
F

IE
14

C
F

IE
13

C
F

IE
12

C
F

IE
11

C
F

IE
10

C
F

IE
9

C
F

IE
8

C
F

IE
7

C
F

IE
6

C
F

IE
5

C
F

IE
4

C
F

IE
3

C
F

IE
2

C
F

IE
1

C
F

IE
0 TXBCIE

0000_0000

0xF0 EFWM[5:0] EFS[5:0] EFSA[15:2]
TXEFC

0000_0000

0xF4

T
E

F
L

E
F

F EFPI[4:0] EFGI[4:0] EFFL[5:0]
TXEFS

0000_0000

0xF8 EFAI[4:0]
TXEFA

0000_0000

Address 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Symbol

Reset Value

Table 60 M_CAN Register Overview
80 24.03.2016



Revision 3.2.1.1 M_CAN
4.2 Module Interface

The M_CAN module’s toplevel entity has the ports listed in the table below. More details on how to
connect the M_CAN to a customer-specific design can be found in [2] and [3].

PORT DIR DOMAIN DESCRIPTION

Clocks and Reset

m_can_hclk IN HCLK Host clock

m_can_cclk IN CCLK CAN clock

m_can_reset IN ASYNC module reset

Physical Layer Interface

m_can_rx IN ASYNC CAN receive input

m_can_tx OUT CCLK CAN transmit output

Generic Slave Interface

m_can_aei_sel IN HCLK module select

m_can_aei_w1r0 IN HCLK module write

m_can_aei_byteen[3:0] IN HCLK module byte enable

m_can_aei_addr[8:2] IN HCLK module address bus

m_can_aei_wdata[31:0] IN HCLK module data bus input

m_can_aei_ready OUT HCLK module ready

m_can_aei_rdata[31:0] OUT HCLK module data bus output

Generic Master Interface

m_can_aeim_ready IN HCLK memory ready

m_can_aeim_rdata[31:0] IN HCLK memory data bus input

m_can_aeim_berr[1:0] IN HCLK Message RAM bit error

m_can_aeim_sel OUT HCLK memory select

m_can_aeim_w1r0 OUT HCLK memory write

m_can_aeim_addr[15:2] OUT HCLK memory address bus, 32-bit word address

m_can_aeim_wdata[31:0] OUT HCLK memory data bus output

Miscellaneous

m_can_ext_ts[15:0] IN HCLK external timestamp vector

m_can_clkstop_req IN HCLK clock stop request

m_can_scanmode IN ASYNC scan mode enable

m_can_dis_mord IN HCLK
disable modification on read
(ECR.CEL, PSR.PXE, PSR.RFDF, PSR.RBRS,
PSR.RESI, PSR.DLEC, PSR.LEC)

m_can_int0 OUT HCLK interrupt 0

m_can_int1 OUT HCLK interrupt 1

m_can_clkstop_ack OUT HCLK clock stop acknowledge

DMA Interface

m_can_dma_ack IN HCLK DMA acknowledge

m_can_dma_req OUT HCLK DMA request

Extension Interface

m_can_cok IN HCLK
calibration OK, has to be hardwired to ‘1’ in case no
Clock Calibration on CAN unit is connected

m_can_ir[31:0] OUT HCLK Interrupt Register flags

m_can_txbrp[31:0] OUT HCLK Tx Buffer Request Pending (TXBRP)

Table 61 M_CAN Module Interface
24.03.2016 81



 M_CAN Revision 3.2.1.1
Note: Signals m_can_cok, m_can_spt, m_can_mrx, m_can_calf, m_can_aff, and one of the filter
event outputs m_can_fe are interfacing to an optional Clock Calibration on CAN unit. In
case the M_CAN is used without Clock Calibration on CAN unit, input m_can_cok has to
be hardwired to ‘1’.

m_can_rxfd OUT CCLK receive fast data

m_can_txfd OUT CCLK transmit fast data

m_can_fe[2:0] OUT HCLK filter events 0..2

m_can_cce OUT HCLK Configuration Change Enable (CCCR.CCE)

m_can_spt OUT CCLK sample point delayed by one m_can_cclk period

m_can_mrx OUT CCLK message received

m_can_calf OUT CCLK calibration field

m_can_aff OUT HCLK acceptance filtering finished

PORT DIR DOMAIN DESCRIPTION

Table 61 M_CAN Module Interface
82 24.03.2016



24.03.2016 83

Revision 3.2.1.1 M_CAN

List of Figures

Figure 1 M_CAN Block Diagram............................................................................................................ 2
Figure 2 Message RAM Configuration................................................................................................. 46
Figure 3 Transmitter Delay Measurement ............................................................................................ 58
Figure 4 Pin Control in Bus Monitoring Mode ...................................................................................... 59
Figure 5 Pin Control in Loop Back Modes ........................................................................................... 61
Figure 6 Standard Message ID Filter Path........................................................................................... 65
Figure 7 Extended Message ID Filter Path .......................................................................................... 66
Figure 8 Rx FIFO Status ...................................................................................................................... 67
Figure 9 Rx FIFO Overflow Handling................................................................................................... 68
Figure 10 Debug Message Handling State Machine ............................................................................. 71
Figure 11 Example of mixed Configuration Dedicated Tx Buffers / Tx FIFO ......................................... 74
Figure 12 Example of mixed Configuration Dedicated Tx Buffers / Tx Queue....................................... 75



 M_CAN Revision 3.2.1.1
List of Tables

Table 1 M_CAN Register Map.............................................................................................................. 5
Table 2 Core Release Register (addresses 0x00) ............................................................................... 7
Table 3 Example for Coding of Revisions............................................................................................. 7
Table 4 Endian Register (address 0x04) .............................................................................................. 8
Table 5 Data Bit Timing & Prescaler Register (address 0x0C) ............................................................ 8
Table 6 Test Register (address 0x10)................................................................................................... 9
Table 7 RAM Watchdog (address 0x14)............................................................................................. 10
Table 8 CC Control Register (address 0x18) ..................................................................................... 11
Table 9 Nominal Bit Timing & Prescaler Register (address 0x1C)..................................................... 13
Table 10 Timestamp Counter Configuration (address 0x20)................................................................ 14
Table 11 Timestamp Counter Value (address 0x24) ............................................................................ 14
Table 12 Timeout Counter Configuration (address 0x28) .................................................................... 15
Table 13 Timeout Counter Value (address 0x2C) ................................................................................ 15
Table 14 Error Counter Register (address 0x40) ................................................................................. 16
Table 15 Protocol Status Register (address 0x44)............................................................................... 17
Table 16 Transmitter Delay Compensation Register (address 0x048) ................................................. 19
Table 17 Interrupt Register (address 0x50).......................................................................................... 20
Table 18 Interrupt Enable (address 0x54) ............................................................................................ 23
Table 19 Interrupt Line Select (address 0x58) ..................................................................................... 25
Table 20 Interrupt Line Select (address 0x5C)..................................................................................... 26
Table 21 Global Filter Configuration (address 0x80)............................................................................ 27
Table 22 Standard ID Filter Configuration (address 0x84) ................................................................... 28
Table 23 Extended ID Filter Configuration (address 0x88) .................................................................. 28
Table 24 Extended ID AND Mask (address 0x90)................................................................................ 29
Table 25 High Priority Message Status (address 0x94) ....................................................................... 29
Table 26 New Data 1 (address 0x98) ................................................................................................... 30
Table 27 New Data 2 (address 0x9C) .................................................................................................. 30
Table 28 Rx FIFO 0 Configuration (address 0xA0) .............................................................................. 31
Table 29 Rx FIFO 0 Status (address 0xA4) ......................................................................................... 32
Table 30 Rx FIFO 0 Acknowledge (address 0xA8) .............................................................................. 33
Table 31 Rx Buffer Configuration (address 0xAC) ............................................................................... 33
Table 32 Rx FIFO 1 Configuration (address 0xB0) .............................................................................. 34
Table 33 Rx FIFO 1 Status (address 0xB4) ......................................................................................... 34
Table 34 Rx FIFO 1 Acknowledge (address 0xB8) .............................................................................. 35
Table 35 Rx Buffer / FIFO Element Size Configuration (address 0xBC) .............................................. 36
Table 36 Tx Buffer Configuration (address 0xC0) ................................................................................ 37
Table 37 Tx FIFO/Queue Status (address 0xC4)................................................................................. 38
Table 38 Tx Buffer Element Size Configuration (address 0xC8) .......................................................... 39
Table 39 Tx Buffer Request Pending (address 0xCC).......................................................................... 40
Table 40 Tx Buffer Add Request (address 0xD0)................................................................................. 41
Table 41 Tx Buffer Cancellation Request (address 0xD4) ................................................................... 41
Table 42 Tx Buffer Transmission Occurred (address 0xD8)................................................................. 42
Table 43 Transmit Buffer Cancellation Finished (address 0xDC) ......................................................... 42
Table 44 Tx Buffer Transmission Interrupt Enable (address 0xE0) ...................................................... 43
Table 45 Tx Buffer Cancellation Finished Interrupt Enable (address 0xE4)......................................... 43
Table 46 Tx Event FIFO Configuration (address 0xF0)........................................................................ 44
Table 47 Tx Event FIFO Status (address 0xF4) ................................................................................... 45
Table 48 Tx Event FIFO Acknowledge (address 0xF8)........................................................................ 45
Table 49 Rx Buffer and FIFO Element ................................................................................................. 47
Table 50 Tx Buffer Element .................................................................................................................. 49
Table 51 Tx Event FIFO Element ......................................................................................................... 51
84 24.03.2016



Revision 3.2.1.1 M_CAN
Table 52 Standard Message ID Filter Element..................................................................................... 52
Table 53 Extended Message ID Filter Element .................................................................................... 53
Table 54 Coding of DLC in CAN FD..................................................................................................... 57
Table 55 Rx Buffer / FIFO Element Size .............................................................................................. 67
Table 56 Example Filter Configuration for Rx Buffers........................................................................... 69
Table 57 Example Filter Configuration for Debug Messages ............................................................... 70
Table 58 Possible Configurations for Frame Transmission ................................................................... 72
Table 59 Tx Buffer / FIFO / Queue Element Size ................................................................................. 73
Table 60 M_CAN Register Overview.................................................................................................... 77
Table 61 M_CAN Module Interface ...................................................................................................... 81
24.03.2016 85


	Table of contents
	1. Overview
	1.1 Features
	1.2 Block Diagram
	1.3 Dual Clock Sources
	1.4 Dual Interrupt Lines

	2. Programmer’s Model
	2.1 Hardware Reset Description
	2.2 Register Map
	2.2.1 Access to reserved Register Addresses

	2.3 Registers
	2.3.1 Customer Register
	2.3.2 Core Release Register (CREL)
	2.3.3 Endian Register (ENDN)
	2.3.4 Data Bit Timing & Prescaler Register (DBTP)
	2.3.5 Test Register (TEST)
	2.3.6 RAM Watchdog (RWD)
	2.3.7 CC Control Register (CCCR)
	2.3.8 Nominal Bit Timing & Prescaler Register (NBTP)
	2.3.9 Timestamp Counter Configuration (TSCC)
	2.3.10 Timestamp Counter Value (TSCV)
	2.3.11 Timeout Counter Configuration (TOCC)
	2.3.12 Timeout Counter Value (TOCV)
	2.3.13 Error Counter Register (ECR)
	2.3.14 Protocol Status Register (PSR)
	2.3.15 Transmitter Delay Compensation Register (TDCR)
	2.3.16 Interrupt Register (IR)
	2.3.17 Interrupt Enable (IE)
	2.3.18 Interrupt Line Select (ILS)
	2.3.19 Interrupt Line Enable (ILE)
	2.3.20 Global Filter Configuration (GFC)
	2.3.21 Standard ID Filter Configuration (SIDFC)
	2.3.22 Extended ID Filter Configuration (XIDFC)
	2.3.23 Extended ID AND Mask (XIDAM)
	2.3.24 High Priority Message Status (HPMS)
	2.3.25 New Data 1 (NDAT1)
	2.3.26 New Data 2 (NDAT2)
	2.3.27 Rx FIFO 0 Configuration (RXF0C)
	2.3.28 Rx FIFO 0 Status (RXF0S)
	2.3.29 Rx FIFO 0 Acknowledge (RXF0A)
	2.3.30 Rx Buffer Configuration (RXBC)
	2.3.31 Rx FIFO 1 Configuration (RXF1C)
	2.3.32 Rx FIFO 1 Status (RXF1S)
	2.3.33 Rx FIFO 1 Acknowledge (RXF1A)
	2.3.34 Rx Buffer / FIFO Element Size Configuration (RXESC)
	2.3.35 Tx Buffer Configuration (TXBC)
	2.3.36 Tx FIFO/Queue Status (TXFQS)
	2.3.37 Tx Buffer Element Size Configuration (TXESC)
	2.3.38 Tx Buffer Request Pending (TXBRP)
	2.3.39 Tx Buffer Add Request (TXBAR)
	2.3.40 Tx Buffer Cancellation Request (TXBCR)
	2.3.41 Tx Buffer Transmission Occurred (TXBTO)
	2.3.42 Tx Buffer Cancellation Finished (TXBCF)
	2.3.43 Tx Buffer Transmission Interrupt Enable (TXBTIE)
	2.3.44 Tx Buffer Cancellation Finished Interrupt Enable (TXBCIE)
	2.3.45 Tx Event FIFO Configuration (TXEFC)
	2.3.46 Tx Event FIFO Status (TXEFS)
	2.3.47 Tx Event FIFO Acknowledge (TXEFA)

	2.4 Message RAM
	2.4.1 Message RAM Configuration
	2.4.2 Rx Buffer and FIFO Element
	2.4.3 Tx Buffer Element
	2.4.4 Tx Event FIFO Element
	2.4.5 Standard Message ID Filter Element
	2.4.6 Extended Message ID Filter Element


	3. Functional Description
	3.1 Operating Modes
	3.1.1 Software Initialization
	3.1.2 Normal Operation
	3.1.3 CAN FD Operation
	3.1.4 Transmitter Delay Compensation
	3.1.4.1 Description
	3.1.4.2 Transmitter Delay Compensation Measurement

	3.1.5 Restricted Operation Mode
	3.1.6 Bus Monitoring Mode
	3.1.7 Disabled Automatic Retransmission
	3.1.7.1 Frame Transmission in DAR Mode

	3.1.8 Power Down (Sleep Mode)
	3.1.9 Test Modes
	3.1.9.1 External Loop Back Mode
	3.1.9.2 Internal Loop Back Mode


	3.2 Timestamp Generation
	3.3 Timeout Counter
	3.4 Rx Handling
	3.4.1 Acceptance Filtering
	3.4.1.1 Range Filter
	3.4.1.2 Filter for specific IDs
	3.4.1.3 Classic Bit Mask Filter
	3.4.1.4 Standard Message ID Filtering
	3.4.1.5 Extended Message ID Filtering

	3.4.2 Rx FIFOs
	3.4.2.1 Rx FIFO Blocking Mode
	3.4.2.2 Rx FIFO Overwrite Mode

	3.4.3 Dedicated Rx Buffers
	3.4.3.1 Rx Buffer Handling

	3.4.4 Debug on CAN Support
	3.4.4.1 Filtering for Debug Messages
	3.4.4.2 Debug Message Handling


	3.5 Tx Handling
	3.5.1 Transmit Pause
	3.5.2 Dedicated Tx Buffers
	3.5.3 Tx FIFO
	3.5.4 Tx Queue
	3.5.5 Mixed Dedicated Tx Buffers / Tx FIFO
	3.5.6 Mixed Dedicated Tx Buffers / Tx Queue
	3.5.7 Transmit Cancellation
	3.5.8 Tx Event Handling

	3.6 FIFO Acknowledge Handling

	4. Appendix
	4.1 Register Overview
	4.2 Module Interface


	List of Figures
	List of Tables

