

Robert Bosch GmbH
Automotive Electronics

M_CAN
Modular CAN IP-module

Reception Handling

Application Note M_CAN_AN001

Document Revision 2.1
28.09.2015

M_CAN_AN001 Reception Handling Application Note

i 28.09.2015

LEGAL NOTICE

© Copyright 2015 by Robert Bosch GmbH and its licensors. All rights reserved.

“Bosch” is a registered trademark of Robert Bosch GmbH.

The content of this document is subject to continuous developments and
improvements. All particulars and its use contained in this document are given by
BOSCH in good faith.

NO WARRANTIES: TO THE MAXIMUM EXTENT PERMITTED BY LAW, NEITHER
THE INTELLECTUAL PROPERTY OWNERS, COPYRIGHT HOLDERS AND
CONTRIBUTORS, NOR ANY PERSON, EITHER EXPRESSLY OR IMPLICITLY,
WARRANTS ANY ASPECT OF THIS SPECIFICATION, SOFTWARE RELATED
THERETO, CODE AND/OR PROGRAM RELATED THERETO, INCLUDING ANY
OUTPUT OR RESULTS OF THIS SPECIFICATION, SOFTWARE RELATED
THERETO, CODE AND/OR PROGRAM RELATED THERETO UNLESS AGREED TO
IN WRITING. THIS SPECIFICATION, SOFTWARE RELATED THERETO, CODE
AND/OR PROGRAM RELATED THERETO IS BEING PROVIDED "AS IS", WITHOUT
ANY WARRANTY OF ANY TYPE OR NATURE, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, AND ANY
WARRANTY THAT THIS SPECIFICATION, SOFTWARE RELATED THERETO,
CODE AND/OR PROGRAM RELATED THERETO IS FREE FROM DEFECTS.

ASSUMPTION OF RISK: THE RISK OF ANY AND ALL LOSS, DAMAGE, OR
UNSATISFACTORY PERFORMANCE OF THIS SPECIFICATION (RESPECTIVELY
THE PRODUCTS MAKING USE OF IT IN PART OR AS A WHOLE), SOFTWARE
RELATED THERETO, CODE AND/OR PROGRAM RELATED THERETO RESTS
WITH YOU AS THE USER. TO THE MAXIMUM EXTENT PERMITTED BY LAW,
NEITHER THE INTELLECTUAL PROPERTY OWNERS, COPYRIGHT HOLDERS
AND CONTRIBUTORS, NOR ANY PERSON EITHER EXPRESSLY OR IMPLICITLY,
MAKES ANY REPRESENTATION OR WARRANTY REGARDING THE
APPROPRIATENESS OF THE USE, OUTPUT, OR RESULTS OF THE USE OF THIS
SPECIFICATION, SOFTWARE RELATED THERETO, CODE AND/OR PROGRAM
RELATED THERETO IN TERMS OF ITS CORRECTNESS, ACCURACY,
RELIABILITY, BEING CURRENT OR OTHERWISE. NOR DO THEY HAVE ANY
OBLIGATION TO CORRECT ERRORS, MAKE CHANGES, SUPPORT THIS
SPECIFICATION, SOFTWARE RELATED THERETO, CODE AND/OR PROGRAM
RELATED THERETO, DISTRIBUTE UPDATES, OR PROVIDE NOTIFICATION OF
ANY ERROR OR DEFECT, KNOWN OR UNKNOWN. IF YOU RELY UPON THIS
SPECIFICATION, SOFTWARE RELATED THERETO, CODE AND/OR PROGRAM
RELATED THERETO, YOU DO SO AT YOUR OWN RISK, AND YOU ASSUME THE
RESPONSIBILITY FOR THE RESULTS. SHOULD THIS SPECIFICATION,
SOFTWARE RELATED THERETO, CODE AND/OR PROGRAM RELATED
THERETO PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL LOSSES,
INCLUDING, BUT NOT LIMITED TO, ANY NECESSARY SERVICING, REPAIR OR
CORRECTION OF ANY PROPERTY INVOLVED TO THE MAXIMUM EXTEND
PERMITTED BY LAW.

M_CAN_AN001 Reception Handling Application Note

ii 28.09.2015

DISCLAIMER: IN NO EVENT, UNLESS REQUIRED BY LAW OR AGREED TO IN
WRITING, SHALL THE INTELLECTUAL PROPERTY OWNERS, COPYRIGHT
HOLDERS OR ANY PERSON BE LIABLE FOR ANY LOSS, EXPENSE OR DAMAGE,
OF ANY TYPE OR NATURE ARISING OUT OF THE USE OF, OR INABILITY TO USE
THIS SPECIFICATION, SOFTWARE RELATED THERETO, CODE AND/OR
PROGRAM RELATED THERETO, INCLUDING, BUT NOT LIMITED TO, CLAIMS,
SUITS OR CAUSES OF ACTION INVOLVING ALLEGED INFRINGEMENT OF
COPYRIGHTS, PATENTS, TRADEMARKS, TRADE SECRETS, OR UNFAIR
COMPETITION.

INDEMNIFICATION: TO THE MAXIMUM EXTEND PERMITTED BY LAW YOU
AGREE TO INDEMNIFY AND HOLD HARMLESS THE INTELLECTUAL PROPERTY
OWNERS, COPYRIGHT HOLDERS AND CONTRIBUTORS, AND EMPLOYEES,
AND ANY PERSON FROM AND AGAINST ALL CLAIMS, LIABILITIES, LOSSES,
CAUSES OF ACTION, DAMAGES, JUDGMENTS, AND EXPENSES, INCLUDING
THE REASONABLE COST OF ATTORNEYS’ FEES AND COURT COSTS, FOR
INJURIES OR DAMAGES TO THE PERSON OR PROPERTY OF THIRD PARTIES,
INCLUDING, WITHOUT LIMITATIONS, CONSEQUENTIAL, DIRECT AND INDIRECT
DAMAGES AND ANY ECONOMIC LOSSES, THAT ARISE OUT OF OR IN
CONNECTION WITH YOUR USE, MODIFICATION, OR DISTRIBUTION OF THIS
SPECIFICATION, SOFTWARE RELATED THERETO, CODE AND/OR PROGRAM
RELATED THERETO, ITS OUTPUT, OR ANY ACCOMPANYING
DOCUMENTATION.

GOVERNING LAW: THE RELATIONSHIP BETWEEN YOU AND ROBERT BOSCH
GMBH SHALL BE GOVERNED SOLELY BY THE LAWS OF THE FEDERAL
REPUBLIC OF GERMANY. THE STIPULATIONS OF INTERNATIONAL
CONVENTIONS REGARDING THE INTERNATIONAL SALE OF GOODS SHALL
NOT BE APPLICABLE. THE EXCLUSIVE LEGAL VENUE SHALL BE
DUESSELDORF, GERMANY.

MANDATORY LAW SHALL BE UNAFFECTED BY THE FOREGOING
PARAGRAPHS.

INTELLECTUAL PROPERTY OWNERS/COPYRIGHT OWNERS/CONTRIBUTORS:
ROBERT BOSCH GMBH, ROBERT BOSCH PLATZ 1, 70839 GERLINGEN,
GERMANY AND ITS LICENSORS.

M_CAN_AN001 Reception Handling Application Note

iii 28.09.2015

Revision History

Version Date Remark

1.0 07.06.2011 First version for M_CAN 2.0

2.0 15.07.2015 New revision for M_CAN Revision 3.0.0 - 3.2.1

2.1 28.09.2015 - Titel changed to “Reception Handling”
- Updated software examples (c code)
- Rephrased some descriptions
- Added a new section: Timeout Counter

Conventions

The following conventions are used within this document:

Register Names RXBC, SIDFC

Names of files and directories directoryname/filename

Source code m_can_rx_fifo_init(..)

References

This document refers to the following documents:

Ref Author Title

[1] AE/PJ-SCI M_CAN User’s Manual
[2] AE/PJ-SCI M_CAN System Integration Guide

Terms and Abbreviations

This document uses the following terms and abbreviations:

Term Meaning

BRP Baud Rate Prescaler
CAN Controller Area Network
CRC Cyclic Redundancy Check
DLC Data Length Code

M_CAN_AN001 Reception Handling Application Note

iv 28.09.2015

Table of Contents

1 Target .. 1
2 Receive Buffers .. 2

2.1 Rx FIFOs .. 2
2.2 Dedicated Rx Buffers .. 5
3 Acceptance Filtering .. 8
3.1 Introduction .. 8
3.2 Functionality ... 8

3.2.1 Overview ... 8
3.2.2 Range Filter ... 9
3.2.3 Filter for dedicated IDs.. 9

3.2.4 Classic Bit Mask Filter .. 9
3.3 Standard Message ID Filtering ... 10
3.4 Extended Message ID Filtering ... 11
3.5 Example ... 12

4 High Priority Messages ..14
5 Timeout Counter ...16
6 Software Example ...17
7 List of Tables ...18

8 List of Figures ...19

M_CAN_AN001 Reception Handling Application Note

1/19 28.09.2015

1 Target

This application note describes the handling of received messages in the M_CAN
versions 3.0.0 up to 3.2.1

The topics included are:

 Rx Buffer configuration – Rx FIFO and dedicated Rx buffers

 Acceptance filtering – for Standard and Extended message IDs

 High priority message signalling

Note: Software examples in this application note are only for illustration
purposes. Use the examples on own risk.

M_CAN_AN001 Reception Handling Application Note

2/19 28.09.2015

2 Receive Buffers

2.1 Rx FIFOs

The M_CAN provides two Rx FIFOs called Rx FIFO0 and Rx FIFO1. Each FIFO is
capable to store up to 64 messages. Each message is stored in one Rx FIFO element.
The M_CAN User’s manual describes the structure of an Rx FIFO element. The size
of an Rx FIFO element can be configured via register RXESC for each FIFO
individually. The Rx FIFO element size defines how many data field bytes of a received
message can be stored.

The size of an Rx FIFO element is:

2 * 4 byte header information + data field size configured in RXESC

Example for a 64 byte data field size: (2 * 4 + 64) = 72 bytes or 18 words. The memory
requirement for an Rx FIFO in the Message RAM depends on the configured Rx FIFO
element size RXESC.FnDS. Configuration of the two Rx FIFOs is done via registers
RXF0C and RXF1C.

Figure 1: Message RAM Rx FIFO section

Figure 1 shows the section of the Message RAM with the two Rx FIFOs and their
respective start addresses. The start address of a FIFO is the address of the first word
of the first Rx FIFO element. Received messages that passed acceptance filtering are
stored in the appropriate Rx FIFO based on the matching filter element. Acceptance
filtering configurations are explained in chapter 3.

If the receive FIFO is full, the newly arriving messages can be handled according to
two different modes. The used mode is configured in RXFnC.FnOM.

 Blocking Mode: No further messages are written to the Rx FIFO until at least
one message has been read out from the Rx FIFO. This is the default operation
mode of the Rx FIFOs.

 Overwrite Mode: The new message accepted in the Rx FIFO will overwrite the
oldest message in the Rx FIFO and the put and get indices of the FIFO are
incremented by one.

Rx FIFO 0

Rx FIFO 1

0-64 Rx FIFO elements

0-64 Rx FIFO elements

RXF0C.F0SA

RXF1C.F1SA

32 bit

M_CAN_AN001 Reception Handling Application Note

3/19 28.09.2015

The following interrupt flags exist, to inform the CPU that the status of an Rx FIFO has
changed:

 IR.RFnN: Rx FIFO n New Message
When a new message has arrived in the Rx FIFO, this interrupt flag is set.

 IR.RFnW: Rx FIFO n Watermark reached
To avoid an Rx FIFO overflow, the Rx FIFO watermark can be used. When the
Rx FIFO fill level reaches the Rx FIFO watermark configured by
RXFnC.FnWM, this interrupt flag is set.

 IR.RFnF: Rx FIFO n Full
When an Rx FIFO full condition is reached i.e. the get and put indices of the
FIFO becomes equal (RXFnS.FnPI = RXFnS.FnGI), this interrupt flag is set.

 IR.RFnL: Rx FIFO n Message Lost
If a message is received while the corresponding Rx FIFO is full, this interrupt
flag is set.

To read a message from an Rx FIFO, the CPU has to perform the following steps:

1. Read the register RXFnS to know the status of the FIFO.
2. Calculate the address of the oldest message in the Message RAM.

RXFnS.FnGI addresses the oldest message. The Address is calculated
according to the Formula:

Message_RAM_base_address + RXFnC.FnSA
+ RXFnS.FnGI * Rx_FIFO_element_size

Example (byte address): 0x100000 + 0x200 + 2 * (18 * 4)

3. Read the message from the calculated address

After the host has read a message or a sequence of messages from the Rx FIFO, it
has to acknowledge the read. After acknowledgement, the M_CAN can reuse the
corresponding Rx FIFO buffer for a new message. To acknowledge one or more
messages, write the buffer index of the last element read from Rx FIFO to register
RXFnA. As a consequence, the M_CAN updates the FIFO fill level and the Get index.

Summary of registers used for Rx FIFO operation:

 RXFnC: Rx FIFO 0/1 Configuration

 RXFnS: Rx FIFO 0/1 Status

 RXESC: Rx Buffer/FIFO Element Size Configuration

 RxFnA: Rx FIFO 0/1 Acknowledge

M_CAN_AN001 Reception Handling Application Note

4/19 28.09.2015

Software Example

Table 1 lists C functions that demonstrate Rx FIFO operations. The functions are
provided with this application note.

Table 1: C functions that demonstrate Rx FIFO operations

Name:

File:

Description:

m_can_rx_fifo_init(..)

m_can/m_can.c

This function configures an RX FIFO of the M_CAN. M_CAN has to
be in configuration change enable mode (CCCR.CCE=‘1’) when this
function is called.

Name:

File:

Description:

m_can_rx_fifo_copy_msg_to_msg_list(..)

m_can/m_can.c

Function copies and acknowledges all the received messages from
the Rx FIFO section of the Message RAM. This function serves as an
interrupt service routine for the interrupts IR.RFnN.

Name:

File:

Description:

m_can_read_msg_from_msg_ram(..)

m_can/m_can.c

Function that actually copies an Rx FIFO element/RX buffer from a
calculated address in the Message RAM to an own data structure in
the software.

M_CAN_AN001 Reception Handling Application Note

5/19 28.09.2015

2.2 Dedicated Rx Buffers

Overview

The M_CAN supports up to 64 dedicated Rx buffers. Each dedicated Rx buffer can
store one CAN message. The M_CAN User’s manual describes the structure of an Rx
buffer element. The size of a dedicated Rx buffer can be configured via the register
RXESC. The Rx buffer size defines how many data field bytes of a received message
can be stored.

The size of a dedicated Rx buffer is:

2 * 4 byte header information + data field size configured in RXESC.

Example for a 64 byte data field: (2 * 4 + 64) = 72 bytes or 18 words. The memory
requirement for a dedicated Rx buffer in the Message RAM depends on the configured
Rx buffer data field size RXESC.RBDS.

Figure 2 shows the Rx buffer section in the Message RAM. The user has to configure
the start address of the section in the M_CAN register RXBC.

Figure 2: Message RAM dedicated Rx Buffer section

To let the M_CAN store a message in an Rx buffer, the user has to configure a
Standard or Extended ID Filter. A filter contains the information where to store a
message in case when the filter matches. This means a filter can reference an Rx
buffer. Chapter 3 describes how to use acceptance filtering in the M_CAN.

Rx Buffers 0-64 dedicated Rx Buffers

RXBC.RBSA

32 bit

M_CAN_AN001 Reception Handling Application Note

6/19 28.09.2015

Arrival of New Messages

When a message is stored in a dedicated Rx buffer, the M_CAN sets the interrupt flag
IR.DRX and the corresponding bit in NDAT1/2. When bits in NDAT1/2 are set the
respective Rx buffer is locked (will not be overwritten by a new message) and the
corresponding filter will not match. After reading a message, the host has to reset the
bit in NDAT1/2, in order to unlock the respective Rx buffer.

To read a message from a dedicated Rx buffer, the CPU has to perform the following
steps:

1. Check the bits in NDAT1/2 to know if a new message has arrived in a
dedicated Rx buffer.

2. Calculate the address of the message in the Message RAM according to
formula:

Message_RAM_base_address + RXBC.RBSA
+ dedicated Rx buffer index * Rx_Buffer_element_size

Example (byte address): 0x100000 + 0x2800 + * (18 * 4)

3. Read the message from the calculated address

Configure the number of used Rx Buffers

The number of Rx buffers to be used by the M_CAN is configured indirectly by the
standard and extended filters elements (see Chapter 3). This means, the M_CAN
contains no register to configure the number of Rx buffers.

A standard or extended filter element can reference Rx buffers 0 to 63 as destination
for a received message. The M_CAN will only perform a write to a referenced Rx buffer
location, if the corresponding filter matches. In other words, the M_CAN will not write
to unreferenced Rx buffer locations.

Good example: If the used standard and extended filter elements only reference to
Rx buffer 0 to 15, then the Rx buffer section in the Message RAM can be dimensioned
to the following size: 16 * Rx_Buffer_element_size.

The size of the Rx buffer section in the Message RAM depends on the highest
referenced Rx buffer. To keep the Rx buffer section size small start using Rx buffer 0
up to the required number of Rx buffers, e.g. Rx buffers 0 to 7.

Bad example: If two filter elements are used, where the first references Rx buffer 0
and the second Rx buffer 63, then the Rx buffer section size is
64 * Rx_Buffer_element_size. If the second filter references Rx buffer 1, then the Rx
buffer section size is just 2 * Rx_Buffer_element_size.

M_CAN_AN001 Reception Handling Application Note

7/19 28.09.2015

Register Summary

Summary of registers used for a dedicated Rx Buffer operation:

 RXBC: Rx Buffer Configuration

 RXESC: Rx Buffer/FIFO Element Size Configuration

 NDAT1: New Data 1

 NDAT2: New Data 2

Software Example

Table 2 lists C functions that demonstrate operation of dedicated Rx Buffers. The
functions are provided with this application note.

Table 2: C functions that demonstrate dedicated Rx buffer operations

Name:

File:

Description:

m_can_rx_dedicated_buffers_init(..)

m_can/m_can.c

This function configures the usage of dedicated Rx buffers in the
M_CAN. M_CAN has to be in the configuration change enable mode
(CCCR.CCE=‘1’) when this function is called.

Name:

File:

Description:

m_can_rx_dedicated_buffer_process_new_msg(..)

m_can/m_can_irq_handling.c

This function reads received messages from the dedicated Rx buffer
section of the Message RAM based on bits set in registers NDAT1/2.
After a successful read, the corresponding bits in NDAT1/2 are reset.
This function serves as an interrupt service routine for the interrupt
IR.DRX.

Name:

File:

Description:

m_can_rx_dedicated_buffer_copy_msg_to_msg_list(..)

m_can/m_can.c

Function copies a message from the Rx Buffer section of the Message
RAM to a message list in the software. Therefore it calculates the
address of the desired RX buffer.

Name:

File:

Description:

m_can_read_msg_from_msg_ram(..)

m_can/m_can.c

Function that actually copies an Rx FIFO element/RX buffer from a
calculated address in the Message RAM to an own data structure in
the software.

M_CAN_AN001 Reception Handling Application Note

8/19 28.09.2015

3 Acceptance Filtering

3.1 Introduction

The M_CAN supports acceptance filtering in hardware. This means the user can
configure the so called filter elements. Based on these, the M_CAN stores or rejects
received messages. Up to 128 filter elements can be configured for 11-bit standard IDs
and up to 64 filter elements can be configured for 29-bit extended IDs. The M_CAN
User’s manual describes the size and structure of a filter element. Figure 3 shows a
section of the Message RAM with the filter elements and their start addresses.

Figure 3: Message RAM Filters section

The registers used to configure the acceptance filters are:

 GFC: Global Filter Configuration
GFC controls the filter path for standard and extended messages as described
in Figure 4 and Figure 5.

 SIDFC: Standard ID Filter Configuration
This register configures the setups for 11-bit standard message ID filtering

 XIDFC: Extended ID Filter Configuration
This register configures the setups for 29-bit extended message ID filtering

 XIDAM: Extended ID AND Mask
For acceptance filtering of extended frames the Extended ID AND Mask is
ANDed with the Message ID of a received frame. Intended for masking of 29-
bit IDs in SAE J1939. With the reset value of all bits set to one, the mask is not
active.

3.2 Functionality

The Rx Handler controls the acceptance filtering, the transfer of received messages
to the Rx FIFOs and the dedicated Rx buffers as well as the Put and Get Indices.

3.2.1 Overview

The M_CAN offers the possibility to configure two sets of acceptance filters, one for
standard identifiers and one for extended identifiers. These filters can be assigned to
the Rx FIFO’s or to the dedicated Rx buffers. When the M_CAN performs acceptance
filtering, it starts always at filter element #0 and proceeds through the filter list to find a
matching element. Acceptance filtering stops at the first matching element and the

11-bit Filter

29-bit Filter

0-128 standard message ID
 filter elements

0-64 extended message ID
 filter elements

SIDFC.FLSSA

XIDFC.FLESA

32 bit

M_CAN_AN001 Reception Handling Application Note

9/19 28.09.2015

following filter elements are not evaluated for this message. Therefore the sequence
of configured filter elements has a significant impact on the performance of the filtering
process.

The main features are:

 Each filter element can be configured as

‒ Range filter (from – to)

‒ Filter for one or two dedicated IDs

‒ Classic bit mask filter

 Each filter element is configured for acceptance or rejection filtering

 Each filter element can be enabled / disabled individually

 Filters are checked sequentially starting at element #0; execution stops with the
first matching element

Depending on the configuration of the filter element (SFEC/EFEC) a match triggers
one of the following actions:

 Store received frame in FIFO 0 or FIFO 1 or a dedicated Rx Buffer

 Reject received frame

 Set High Priority Message interrupt flag IR.HPM

 Set High Priority Message interrupt flag IR.HPM and store received frame in
FIFO 0 or FIFO 1

 Store received frame in an Rx buffer or as a debug message

3.2.2 Range Filter

The filter matches for all frames with Message IDs in the range defined by
SF1ID/SF2ID respectively EF1ID/EF2ID.

3.2.3 Filter for dedicated IDs

A filter element can be configured to filter for one or two specific Message IDs. To filter
for one specific Message ID, the filter element has to be configured with SF1ID=SF2ID
resp. EF1ID=EF2ID.

3.2.4 Classic Bit Mask Filter

Classic bit mask filtering is intended to filter groups of Message IDs by masking single
bits of a received Message ID. With classic bit mask filtering SF1ID/EF1ID is used as
Message ID filter, while SF2ID/EF2ID is used as filter mask.

A zero bit at the filter mask will mask out the corresponding bit position of the
configured ID filter, e.g. the value of the received Message ID at that bit position is not
relevant for acceptance filtering. Only those bits of the received Message ID where the
corresponding mask bits are one are relevant for acceptance filtering. In case all bits
are one, a match occurs only when the received Message ID and the Message ID filter
are identical. If all mask bits are zero, all Message IDs match.

M_CAN_AN001 Reception Handling Application Note

10/19 28.09.2015

3.3 Standard Message ID Filtering

Figure 4 shows the flow for standard Message ID (11-bit Identifier) filtering. The
standard filtering is controlled by the Global Filter Configuration (GFC) and the
Standard ID Filter Configuration (SIDFC). The list of configured filter elements is
compared against the following components of the received frames:

 Message ID

 Remote Transmission Request (RTR)

 Identifier Extension Bit (IDE)

Figure 4: Standard Message ID Filter Path

M_CAN_AN001 Reception Handling Application Note

11/19 28.09.2015

3.4 Extended Message ID Filtering

Figure 5 shows the flow for extended Message ID (29-bit Identifier) filtering. This
filtering is controlled by Global Filter Configuraton, GFC and Extended ID Filter
Configuration, XIDFC. The Extended ID AND Mask XIDAM is ANDed with the received
identifier before the filter list is executed. The list of configured filter elements is
compared against the following components of the received frames:

 Message ID

 Remote Transmission Request (RTR)

 Identifier Extension Bit (IDE)

Figure 5: Extended Message ID Filter Path

M_CAN_AN001 Reception Handling Application Note

12/19 28.09.2015

3.5 Example

The numerous filter possibilities of the M_CAN allow a complex message filtering in
hardware. This makes software filtering redundant and saves CPU resources.

Table 3 shows different standard 11-bit message ID filters. These filters are used as
an example to illustrate acceptance filtering.

Table 3: Filter configuration

Filter SFT SFEC SFID1 SFID2

0 Range Filter reject 0x017 0x019
1 Range Filter Store in FIFO 0 0x014 0x01A
2 Dual ID Store in FIFO 0 0x0184 0x0187
3 Dual ID Store in FIFO 0 0x0189 0x0189
4 Classic Filter Store in FIFO 0 0x200 0x39F
5 Classic Filter reject 0x201 0x39F
6 Not applicable Store in Rx buffer 0x325 0x02 (ded. buffer index)
7 Not applicable Store in Rx buffer 0x326 0x05 (ded. buffer index)

Table 4 shows the result of the acceptance filtering based on the filter elements in
Table 3.

Table 4: Result of message ID Filtering

Identifier accept/reject Matching Filter Store in

0x014 accept Filter 1 FIFO0
0x015 accept Filter 1 FIFO0

0x016 accept Filter 1 FIFO0

0x017 reject Filter 0
0x018 reject Filter 0
0x019 reject Filter 0
0x01A accept Filter 1 FIFO0

0x184 accept Filter 2 FIFO1
0x187 accept Filter 2 FIFO1
0x189 accept Filter 3 FIFO0

0x200 accept Filter 4 FIFO0
0x201 reject Filter 5
0x220 accept Filter 4 FIFO0
0x221 reject Filter 5
0x240 accept Filter 4 FIFO0
0x241 reject Filter 5
0x260 accept Filter 4 FIFO0
0x261 reject

0x325 accept Filter 6 Rx buffer at index 2
0x326 accept Filter 7 Rx buffer at index 5

others accept accept non matching frames FIFO 1

M_CAN_AN001 Reception Handling Application Note

13/19 28.09.2015

Software Example

Table 5 lists C functions that demonstrate how to configure the various filter elements.
The functions are provided with this application note.

Table 5: C functions that demonstrate acceptance filter configurations

Name:

File:

Description:

m_can_global_filter_configuration(..)

m_can/m_can.c

This function configures the GFC register for global filters. M_CAN
has to be in the configuration change enable mode (CCCR.CCE=‘1’).

Name:

File:

Description:

m_can_filter_init_standard_id(..)

m_can/m_can.c

This function configures the SIDFC register for standard 11-bit
message ID filter usage. M_CAN has to be in the configuration change
enable mode (CCCR.CCE=‘1’).

Name:

File:

Description:

m_can_filter_init_extended_id(..)

m_can/m_can.c

This function configures the XIDFC register for extended 29-bit
message ID filter usage. M_CAN has to be in the configuration change
enable mode (CCCR.CCE=‘1’).

Name:

File:

Description:

m_can_filter_write_standard_id(..)

m_can/m_can.c

This function writes a standard 11-bit message ID filter element into
the Message RAM.

Name:

File:

Description:

m_can_filter_write_extended_id(..)

m_can/m_can.c

This function writes an extended 29-bit message ID filter element into
the Message RAM.

M_CAN_AN001 Reception Handling Application Note

14/19 28.09.2015

4 High Priority Messages

The M_CAN can notify the user, that a high priority message was received. This can
be used to monitor the status of incoming high priority messages and to enable fast
access to these messages.

Overview

Figure 6 shows the sequence of events when a high priority message is received.

Figure 6: Handling of High Priority Messages

Configuration

The M_CAN detects a high priority message with help of a message filter. A filter
element (standard or extended ID) provides the following settings related to high
priority messages. This settings are made in SFEC (standard ID) or EFEC (extended
ID) field of the filter element configuration.

 “Set priority if filter matches”: If this message filter matches, the M_CAN
notifies about high priority message arrival but does not store the message.

 “Set priority and store in FIFO 0 if filter matches”: If this messages filter
matches, the M_CAN Informs about high priority message arrival and stores
message in RX FIFO0.

 “Set priority and store in FIFO 1 if filter matches”: Same as the last item,
but the M_CAN stores the message in RX FIFO1.

Notification

When the M_CAN finds a matching filter and this is configured to generate a priority
event, then the M_CAN does the following.

 The M_CAN updates HPMS (High Priority Message Status) register. HPMS
contains information about the filter element that matched and where the
M_CAN stored the message.

 The M_CAN sets IR.HPM (High Priority Message Interrupt) interrupt flag.

M_CAN_AN001 Reception Handling Application Note

15/19 28.09.2015

Hint 1: General usage of high priority messages

The M_CAN overwrites the register HPMS and sets the IR.HPM flag each time when
a message ID filter element matches, that has the according configuration. In high load
situation, if two high priority messages arrive back to back, it is possible that the CPU
misses to execute the interrupt before the second high priority message arrives. As the
register HPMS is overwritten, it is not possible to find out that there was an unhandled
IR.HPM interrupt before.

This means the application should tolerate that it misses some of the M_CAN
notifications about high priority messages. This potential “miss” refers only to the
notification of the high priority message. The M_CAN stores the message (if
configured) and the user can access it as any other received message.

For applications that need to get informed about the arrival of every high priority
message in time, we recommend to use one of the following setups.

 Use dedicated RX buffers for important messages.

 In case RX FIFOs are used, use RX FIFO0 for low priority messages and
RX FIFO1 for high priority messages.

The high priority message feature of the M_CAN is not required in these cases,
because the user knows that all messages in RX FIFO1 are high priority messages.

Hint 2: Reading a priority message from an RX FIFO

A High Priority Message is indexed via HPMS.BIDX instead of the FIFO read index
pointer (Get Index). The Host has to take care about the acknowledging of a read
message because the HPMS.BIDX and Rx FIFO 0/1 Get Index will be usually
different. If a wrong acknowledgment is done, the Get index of the FIFO would be set
wrong and some of the older FIFO elements could be lost.

Possibilities for acknowledging a High Priority Message.

1. Read the high priority message from Rx FIFO and acknowledge the read later

‒ Read the high priority message

‒ Remember the Get Index of the high priority message

‒ Do not acknowledge the high priority message, if this is not the oldest
message in the FIFO

‒ Later, when the “Get Index of the FIFO” == ”Get index high priority
message”, acknowledge this message without reading it again.

2. Read and acknowledge all messages in the FIFO up to the high priority
message. This means the HPM interrupt is used as trigger to read the RX FIFO.

M_CAN_AN001 Reception Handling Application Note

16/19 28.09.2015

5 Timeout Counter

Overview

M_CAN provides a 16-bit timeout counter to signal a timeout condition. It operates as
down counter. When the counter reaches zero, the M_CAN sets interrupt flag IR.TOO.

This feature is not recommended for CAN FD operation with bit rate switching.
This is because the internal timeout counter in the M_CAN counts “CAN bit times”. In
CAN FD with bit rate switching, the bit times in data phase and arbitration phase
typically have different lengths. Consequently, the “time” would progress faster in the
data phase.

Configuration

 The timeout counter can be configured via register TOCC (Timeout Counter
Configuration)

 Note: The Timeout Counter feature uses the same prescaler as the timestamp
counter TSCC.TCP

Operation

Two different operation modes can be set in TOCC.TOS.

 When operating in Continuous Mode: The counter starts when CCCR.INIT is
reset. A write to register TOCV (Timeout Counter Value) presets the counter to
the value configured by TOCC.TOP. After preset the counter continues down-
counting. This mode could be used in a setup where the M_CAN is periodically
polled by the host CPU to check for new messages.

 Controlled by Rx FIFO0, Rx FIFO1, or TX Event FIFO: When one of the FIFOs
controls the Timeout Counter, an empty FIFO presets the counter to the value
configured by TOCC.TOP. Counting down is started when the first FIFO
element is stored. This mode can be used as a watchdog to detect if the Host
CPU didn’t read all FIFO elements in a specific time frame.

Software Example

Table 6 lists C functions that demonstrate timeout counter usage. The functions are
provided with this application note.

Table 6: C functions that demonstrate timeout counter usage

Name:

File:

Description:

m_can_timestampcounter_and_timeoutcounter_init(..)

m_can/m_can.c

Function configures the timeout usage and the timestamp usage.

M_CAN_AN001 Reception Handling Application Note

17/19 28.09.2015

6 Software Example

The software examples were written for M_CAN version 3.2.1.

Table 7 lists examples that demonstrate handling of Rx messages and acceptance
filtering. The functions are provided with this application note.

Table 7: Example C functions that demonstrate Rx handling.

Name:

File:

Description:

m_can_an001_receive_messages_simple(..)

app_notes/app_note_001_rx_handling.c

This function demonstrates message reception by an M_CAN node.
Two M_CAN nodes participate in the example. M_CAN_0 transmits
messages and all these messages are received by M_CAN_1 in its
Rx FIFO0.

The example
demonstrates

Rx FIFO configurations, Global filter configuration

Name:

File:

Description:

m_can_an001_receive_messages_with_filtering(..)

app_notes/app_note_001_rx_handling.c

This function demonstrates message reception with acceptance
filtering. This example is similar to the example in chapter 3.5. Two
M_CAN nodes participate in the test. M_CAN_0 transmits
messages and M_CAN_1 receives messages according to the
configured filter elements.

The example
demonstrates:

Rx FIFO configurations, dedicated Rx buffer configuration, Global
filter configurations, standard and extended ID message filtering

Name:

File:

Description:

m_can_an001_high_priority_message_handling(..)

app_notes/app_note_001_rx_handling.c

This function demonstrates one approach to handle a High Priority
message. IR.HPM interrupt is used as a trigger to read the Rx FIFO.
Additionally IR.RF0WL is also used as a trigger to read and empty
the Rx FIFO.

The example
demonstrates:

Rx FIFO configurations, M_CAN interrupt configurations, Handling
of a High Priority Message, Global filter configuration, Standard ID
filter configuration.

Name:

File:

Description:

m_can_an001_timeoutcounter_usage_with_rx_fifo(..)

app_notes/app_note_001_rx_handling.c

Function demonstrates timeout counter operation when controlled
by Rx FIFO0.

This application note contains all C-source files that are necessary to compile the

examples. The file _info.txt contains a short description of each provided source

file.

M_CAN_AN001 Reception Handling Application Note

18/19 28.09.2015

7 List of Tables

Table 1: C functions that demonstrate Rx FIFO operations ... 4
Table 2: C functions that demonstrate dedicated Rx buffer operations 7
Table 3: Filter configuration .. 12
Table 4: Result of message ID Filtering ... 12
Table 5: C functions that demonstrate acceptance filter configurations 13

Table 6: C functions that demonstrate timeout counter usage 16
Table 7: Example C functions that demonstrate Rx handling. 17

M_CAN_AN001 Reception Handling Application Note

19/19 28.09.2015

8 List of Figures

Figure 1: Message RAM Rx FIFO section ... 2
Figure 2: Message RAM dedicated Rx Buffer section .. 5
Figure 3: Message RAM Filters section ... 8
Figure 4: Standard Message ID Filter Path ... 10
Figure 5: Extended Message ID Filter Path ... 11

Figure 6: Handling of High Priority Messages ... 14

