
BICEPS-8051
Emulator Manual

Version 7.9a

BRENDES DATENTECHNIK GmbH
Dresdener Str. 10 D-26160 Bad Zwischenahn Germany

Tel.: +49 4403 816838 Fax: +49 4403 816839 eMail: info@brendes.de
Internet: http://www.brendes.de

Contents

1 Introduction .. 1

2 Configurating and Starting .. 5
2.1 Start of the BICEPS emulator .. 6
2.2 Banking ... 7
2.3 Keil µVision integration .. 7

3 Function of the BICEPS Emulator 8
3.1 Structure of the BICEPS emulator 8
3.2 An outline of the Emulation Process 10

4 The BicWin User Interface... 11
4.1 Survey of the operating facilities 11
4.2 General aspects of the BicWin user interface.................... 13
4.3 Windows and context menues ... 14
4.4 Status line and mouse panel .. 15
4.5 Dialogs ... 15

5 Memory Access ... 16
5.1 Basic Information ... 16
5.2 Saving and loading files .. 17
5.3 Access to Special Function Registers 18
5.4 Access to the Program and Data Memory, 19
5.5 Modification of single memory cells and variables 20
5.6 Watched variables... 21
5.7 Initializing and copying of memory blocks 21
5.8 Mapping .. 22
5.9 Disassembled representation of the program memory........ 23

6 Break Possibilities .. 24
6.1 Basic information ... 24
6.2 Break mode .. 25
6.3 Definition of break events .. 26

7 The Real Time Trace Memory 27
7.1 Overview .. 27
7.2 Time measurement .. 27
7.3 Search function .. 30
7.4 Sourcetext trace mode .. 30
7.5 Control of tracing during program execution 31

8 Program Execution .. 32
8.1 Overview .. 32
8.2 Execution of a program in real time, reset 32
8.3 Execution of single steps .. 34
8.4 Debugging with Assembler and Sourcetext window 35

9 Sourcetext Debugging .. 37
9.1 Introduction .. 37
9.2 Invoking the compiler, loading a program 38
9.3 Program execution ... 39
9.4 Handling of several Modules .. 40

10 Options for P0/P2 emulation ... 41
10.1 The BICEPS Softhooks.. 43
10.2 Compatibility with C51 compiler....................................... 44
10.3 Hints for assembler programming...................................... 45
10.4 Specialities for Winbond Turbo51 controller (77E58) 46
10.5 Specialities for Maxim/ Dallas and TI MSC controller 49
10.6 Adavantages and disadvantages of Softhooks.................... 50
10.7 Necessary conditions for BICEPS Softhooks 51
10.8 Softhook sample program.. 52

11 BICEPS Debug Connector .. 53
11.1 Basic information ... 53
11.2 Emulation without external bus .. 55
11.3 Emulation with external bus ... 56
11.4 BICEPS ICE-connect .. 57

12 Processor Adapters (PODs) ... 58
12.1 POD B51 for standard PLCC44 controllers 58
12.2 More processor adapters ... 60

13 External Program Memory Connector 61
13.1 Memory circuit types .. 61
13.2 Jumper settings ... 64
13.3 Connections via clips cables.. 65

Appendix

A BicWin Short Keys ... A-1

B External Inputs .. B-1

Introduction 1

1 Introduction

The in-circuit-emulator BICEPS is a professional tool, which considerably
eases the development of electronic circuits on the base of microcontrollers of
the 80C51 family. The hardware components of the controller as well as the
programs executed by it can be emulated in real time, i.e. at the original speed.

For in-circuit emulation the target board is connected to the BICEPS emulator
via a Debug Connector. Optionally, the processor of the board can be replaced
by a processor adapter (POD); several different PODs are available.
Connected to a standard PC by an USB interface, the BICEPS emulator offers
sophisticated real-time debugging features:
 Presentation and altering of all internal registers and memories of the

CPU, but also of external memories and assemblies, located on the circuit
under test and reachable by the CPU

 Alterations of the program memory contents
 Start of a program to be tested, execution of a program in real time and

stop of the program run at different, free chooseable break conditions
 Tracing of states of buses and external signals in a real time trace

memory.

The reader of this manual should be familiar with the architecture of processors
of the 80C51 family as well as with the fundamental progression of a hardware
and software development for microcontrollers. Suitable data books should be
at hand, because an exact knowledge of the emulated processor is a supposi-
tion for a successful development work.

Introduction 2

The performance characteristics of the BICEPS emulator are separated in
BASIC features and PROFESSIONAL features. The BASIC features are in
detail:

 Adaption to different processors of 80C51 family by adapter boards
(PODs)

 No restrictions with respect to memory space, ports and interrupts
 Emulation of external bus application as well as single chip applications
 Support of single chip emulation with Brendes SofthooksTM

 Debug connector for connection via pin header
 Emulation memory: 64k RAM program
 Breakpoints on program and extdata memory
 CPU clock: external from user board or internal (choosable frequency)
 BicWin source level debugging software for Windows
 Macros
 Supports file formats of several compilers
 USB interface

The PROFESSIONAL features include the BASIC features and additional:

 Emulation memory: 128k RAM
 can be configured as: 64k program and 64k Extdata RAM

128k program RAM (banked)
 expandable to 512k program memory
 emulator internal or external memory (mapping)

 Watchdog support
 16 external inputs for break and trace
 32 bit real time counter for time measurements in the range of 100 ns

up to ca. 12 h
 32k/128k x 96 bit real time trace memory with tracing of all states of

buses, the external signals and the real time counter (time stamp)
 comfortable search and filter functions for the trace memory
 Performance analysis

The PROFESSIONAL features are activated by professional licences. For
details see BicWin online help.

Introduction 3

EMC

Hint: The BICEPS-Emulator is a device for testing of
electronic circuits. It is designed for the cooperation with
such circuits and therefore no device to operate standalone
according to §5 point 5 EMVG (German EMC Law). It is
restricted to exclusive use by development laboratories or
other enterprises with know-how in the field of EMC.

We explicitly indicate that according to §5 point 6 EMVG
at development of devices, testing and installation precau-
tions have to be taken to avoid interferences of third par-
ties. Since under certain circumstances dejam measures
must be eliminated (e.g. remove the cover) to execute the
test, suitable measures for the complete test arrangement
have in case to be provided.

Introduction 4

Attention !

The BICEPS hardware and the BicWin-software are pro-
tected by copyright. A copy of the software is only permitted
for backup purposes and for own use; a transfer to others is
explicitly prohibited. Software updates and support are given
only to customers of BRENDES DATENTECHNIK GmbH.

H I N T !

You will find descriptions of current changes of software as
well as additional user hints to this manual in the ”READ.ME”
files on the enclosed system CD. Kindly notice the contents of
these files absolutly.

Configurating and Starting 5

2 Configurating and Starting of the BICEPS Emulator

In the following chapter the steps for starting the BICEPS emulator are
described. If you want to get an overview over the features of the emulator,
you should read the chapters 3-10. Detailed descriptions of the several
functions (user interface ect.) you find in the BICEPS online help, which can
be started without emulator.

To adapt the BICEPS emulator to the operation mode needed, several
configuration options can be used. The configuration is done on the hardware
side by jumpers and on the software side by the „Options“ menue of the
BicWin software. This configurating procedure has to be done before the
emulator is started the first time.

Basically, there are three options for connecting the BICEPS emulator to the
target board

1. Debug connector
The BICEPS emulator is connected to a pin header, which is provided
by the target board and should be located near the CPU. The debug
connector enables the emulator to control the CPU. The user software is
executed by the microcontroller on the target board.

2. Processor adapter (POD)
The CPU on the board is replaced by an adapter (POD). The user
software is executed by the microcontroller on the POD.

3. External Program Memory connector (universal adapter)
Special form of the Debug connector, which has the pinout of a standard
memory circuit.

Pinouts and jumper configuration can be found in chapters 11-13.

Configurating and Starting 6

2.1 Start of the BICEPS Emulator

For the start of the BICEPS emulator, it is recommended to proceed in the
here given sequence:

1.) Start the installation program on the BICEPS disc (setup.exe). It installs
the BicWin software on your PC.

2.) Connect emulator and PC by means of the enclosed USB cable.

3.) Switch on the power supply of the BICEPS emulator (indicated by the
green LED). The USB driver software installation is started automatically
when the emulator is switched on the first time. The BICEPS USB driver
is found on the BicWin-CD.

4.) Switch the emulator off and start the BicWin software. After a short
delay, you will be asked for configuring the emulator. Confirm this
questions with “Yes”. You will get the BicWin “Options” dialog. You
must set the following options (in the register cards "Interface",
"Processor" and “Hardware”). Further options settings as directories,
compiler etc. can be done now, but also later after the start of the
emulator.
Interface: Select emulator type BICEPS-6 and USB interface
Processor: defines the controller to be emulated and the clock frequency
Hardware: selects the kind of adapter (debug connector, processor
adapter) and the mode of ports P0/P2. The emulator hardware initia-
lization depends on this setting.

5.) Click on the “Ok” button of the BicWin options dialog now. The
emulator is started and BicWin presents the default desktop with
Register-, Intdata- and Assembler window. The contents of the Special
function registers must contain the reset values (e.g. PC=0000, SP=07).

6.) Much success for your work with the BICEPS emulator.

Configurating and Starting 7

2.2 Banking

To emulate banking applications a program memory with more than 64k must
be addressed. Therefore additional address lines are necessary (A16..A18). If a
POD is used, A16..A18 are connected to a special pins on the POD named
E0..E3. If universal adapter or debug connector are used, banking signals are
connected via this adapters.

In banking applications with bank sizes of 32k or 16k, the address of the
common bank is generated by setting the bank nummer to 0 if A15=0 resp.
A15=A14=0 (AND function). The BICEPS emulator supports this banking
variants; it is assumed, that the universal adapter or the debug connector is
used and that A15 and A14 are generated correctly by the test board.

2.3 Keil µVision integration

As alternative to the BicWin debugging software, the BICEPS emulator can
be integrated in the Keil µVision IDE. Brendes offers a special DLL which
expands the µVision software.

The debugger is used as known by the simlutor, but the user programs are
loaded in the BICEPS emulator and executed in real-time. There is no need for
learning a second debugging environment if µVision is already in use. Please
refer to the Brendes software package for more information on installing this
feature.

Basics of the BICEPS emulator 8

3 Basics of the BICEPS-Emulator

3.1 Structure of the BICEPS-Emulator

The BICEPS emulator consists of eight essential components:

 The Control Processor takes over the control of the emulation process as
well as the communication with the host computer (PC) via an USB
interface.

 For the Emulation Memory 128k bytes are available, which can be
configured as
- 64k RAM program memory and 64k RAM external data memory or
- 128k RAM banked program memory (Professional version)
The emulation memory can be expanded to 512k RAM.

 A 32-bit-Real Time Counter allows exact time measurements of the
program executing duration with a solution of 100 ns. A measurement
range of up to 12 h is achieved by a switchable time base. (Professional
version)

 The bus signals, the external signals, which can be fed-in from the circuit
under test by means of test clipses (Logic Probes) as well as the state of
the real time counter can be traced in the Real Time Trace Memory. In
this way the temporal progression of the program run or the access to the
external data memory and the execution time of program parts can be
represented (also during a running program). (Professional version)

 The Address Range Selection is used for marking either addresses or
address ranges. For each address of the address area it can be defined
whether a memory access of these address resp. this address range
 shall lead to a program break
 shall be traced in the real time trace memory

Basics of the BICEPS emulator 9

 Besides the possibility of defining address ranges for program breaks,
using the Break Logic one can also determine conditions for the data bus
and for external logic probes. Up to two break events can be defined,
which are counted (break counter) and combined in real time. The break
events can:
 interrupt the real time program execution (break)
 start or stop the real time trace
 trigger an external device.
Real time program execution can be interrupted automatically at certain
events or manually by user inputs.

 The Port replacement unit (PRU) generates the P0 and P2 signals for
the test board, because these signals of the controller are needed as bus
signals. Depending on the operation mode the external signals can be bus
or static I/O-port signals. More information about P0/P2 emulation can be
found in chap. 10.

Basics of the BICEPS emulator 10

3.2 An Outline of the Emulation Process

After the initialization phase (the RESET command) the emulation processor
transfers the contents of its internal registers to the control processor and is
stopped by the latter. Now one can access the contents of the recovered
register as well as those of the emulation memory from the host computer by
the help of the control processor. Moreover, one can display and alter memory
contents, which are accessible only from the emulation CPU (externally
mapped memory ranges). Should the emulation processor now execute a user's
program, the (eventually changed) register contents are read and a jump into
this program follows. After termination of the program's execution the new
register contents are again transferred to the control processor.

The simplest form of program processing is execution in single steps. In this
case the internal state of the emulation processor is presented after each
program step. However, the normal procedure is the execution of a program in
real time. Then the emulation processor is started at a certain position of the
user's program. The program execution can be stopped either manually by the
user or automatically by previously defined break conditions and the state of
the emulation CPU is displayed. The break options are presented in chapt. 6.

If the Universal adapter or the Debug connector of the BICEPS emulator is
used, the emulator must be able to control the processor of the circuit under
test. This is possible by a sophisticated emulator control logic which surveys
the program execution in real time and switches between user program and
hidden emulator-internal routines. The emulator maintains in this way the
control about the processor also during program execution. An additional
communiction logic permits the transfer of the internal register contents to the
PC. No accesses to the external data memory are used for that purpose to
avoid restrictions related to the functionallity of the ports.

BicWin User Interface 11

4 The BicWin User Interface

4.1 Survey of the Operation Facilities

In order to facilitate a comfortable operation of the BICEPS emulator, the user
interface BicWin offers multiple functions. The representation is given in a
clear window technique with pull-down menus and status line. All windows
can be opened and closed arbitraryly and changed in size and position. The
operation is carried out with mouse or keyboard.

General information to the possibilities of the BicWin user interface are
presented in the following chapters; more detailed descriptions, especially of
dialogs and menus are offered by the Online help of the BicWin software.

Following a short survey is given .

1.) All the memory cells accessible from the emulation processor can be
represented and altered. For this serve the windows Extdata, Intdata and
Program and the "Modify" functions. "Watch" variables can be defined
and represented in special watch windows. With "Copy" memory ranges
can be moved and with "Initialize" set to a certain value. With the "Map"
function it is defined which memory ranges internally in the emulator and
which ones externally on the user board are addressed. There is the
possibility to copy the contents of an external EPROM directly into the
emulation memory (see chapter 4).

2.) The special function registers of the CPU are displayed in the Register
window. They can also be retrieved and changed directly by means of the
"Modify" function, respectively (chapter 4).

3.) Execution of a program is initiated by function keys or by the "Debug"
menue. In the single step mode there is a possibility of executing the
subroutines in real time ("jump over calls").

BicWin User Interface 12

4.) The program memory contents can be represented in disassembled form.
The input of mnemonic instructions will be done with the BicWin line
assembler.

5.) There is the possibility to set or clear breakpoints in the Assembler or
Sourcetext window directly. More complex break conditions (e.g.
combination of break events or break counters) are defined via the
“Break” dialog.

6.) By means of the "Trace" functions one can either display the contents of
the real time trace memory of the BICEPS emulator or select various
options of tracing data in the trace memory (see chapter 7). Further
functions are e.g. searching of certain contents or calculating of time
differences.

7.) The memory contents of the emulator as well as the contents of the real
time trace memory can be saved on or loaded from a disc. Several
standard file formats are supported.

8.) Besides absolute addresses symbolic addresses can be used, which were
created by an assembler or a compiler. If the use of symbols can be
helpful, this is offered by BicWin with the “?” button.

9.) Sourcetext Debugging allows the test of a program on source text level.
The high level language program can be executed in single steps, i.e. line
by line. Breakpoints are set directly in the source text. (chapter 9).

10.) All debugging commands are recorded in the “Command” window and
can be altered and repeated easily.

11.) User-own macros provide the summarization of BicWin commands under
a free chooseable name. These can be executed by entering the macro
name but also automatically at the start of emulator and in case of a break.

12.) To handle several projects, the actual configuration of desktop, break and
trace settings etc. can be loaded and saved. A context sensitive Help
Function offers additional support at the work with the BicWin user
interface

BicWin User Interface 13

4.2 General Information to BicWin

The BicWin user interface consists of a screen divided into four parts:
 in the middle the working plane with windows and dialogs
 above that the selection menu
 below the status line
 the mouse panel with the most important actual functions.
In addition to that every window posseses a local context menu.

All functions can be invoked either with the keyboard or with the mouse.

Opened windows can be moved arbitrarily on the working area resp. enlarged
or reduced. Only one window is always selected; this is recognizeable by the
highlighted bar.

For all functions and windows short keys (function keys and ALT-key-
combinations) are available. The most important are the ALT-keys, with which
menu items and windows are selected and the function keys for releasing
BicWin actions.

The context sensitive BicWin help system offers detailed descriptions of every
function or windows. In the help window you find key words that can be
selected by the mouse and lead you to more help information.

BicWin User Interface 14

4.3 Windows and context menues

A window is a part of the screen, which you can shift, enlarge and reduce,
cover with other windows , open and close. Several windows can be opened,
but always only one window can be active (recognizeable at the highlighted
bar at the head of the window).

Wih the ALT-key combinations a window can aimed to be opened or activated
(e.g. ALT+A = assembler window, ALT+1 = watch window 1). With
CTRL+F4 a window is closed, with F6 and Shift+F6 the next or the previous
window is activated (see also overview short keys).

An own context menu is assigned to every window, which can be activated
with the right mouse key or the context menu key. The context menu key is
also designated as PopUp key. For this reason the offered key combinations
are called "Pop+letter" so e.g. Pop+B. In comparison with the CTRL key the
PopUp key has the advantage that it need not be activated synchronously with
the letter key and it can therefore better be operated with one hand.

The following windows are available:

Label Function ALT key
Assembler Disassembled presentation of the program memory ALT+A
Intdata Hex presentation of the internal data memory ALT+I
Extdata Hex presentation of the external data memory ALT+E
Program Hex presentation of the program memory ALT+P
Register Special function registers of the CPU ALT+R
Sourcetext Presentation of source text or other text files ALT+S
Trace Trace memory content ALT+T
Watch1..4 Output of watched variables ALT+1 ... ALT+4
Command Records BicWin commands (with possibility to repeat) ALT+C

BicWin User Interface 15

4.4 Mouse palette and Status line

In the mouse palette the most important functions, which are just available, are
offered. These can either be executed directly by mouse click or by input of the
highlighted short key. The mouse palette can be oriented horizontally or
vertically.

The mouse palette consists of a general part, which stays unchanged and a
locally assigned part, where the offered functions change, depending on the
just selected window. For instance the function F7 (single step) is always
available at the same position, while Pop+B (break point set/reset) is only
offered in the assembler window and in the source text window.

The status line at the lower margin of the BicWin window represents the
following information:
1. The runtime of the program executed in real-time or in single steps since

the last reset of the real-time counter.
2. The status of the external digital inputs (logic probes)
3. A message when the program to be tested is executed.
4. A message about the just executed macro

4.5 Dialog boxes

Menu options with dots (...) open a dialog box, in which settings can be shown
and altered. A dialog box must at first be closed, before another window can
be activated.

In a dialogue window there are different operating elements:
 Action switches: release an action by activating with mouse or keyboard
 Marking and switching fields: switching options on and off
 Input fields: for input of text
 List window: Selection of elements with the mouse or arrow keys

Accessing Memory 16

5 Accessing the Memory

5.1 Basic Information

The BICEPS emulator is equipped with various emulation memories according
to the achitecture of the emulated processor. The memory contents can be
displayed (output) and changed in order to create specific test conditions.
Besides this, we must naturally be able to enter or load the programs to be
tested, and possibly also modify them.

Processors of the 80C51 family possess five different memory ranges
altogether:
 the Program Memory
 the external Data Memory
 the internal Data Memory
 the bit-addressable Memory
 the Special Function Registers;
the three latter are partially overlapping. A special BicWin window is
allocated to each memory range, where the bit-addresable memory is displayed
in the Intdata window.

In principle, we can distinguish the following access possibilities for various
memory types:
 Loading and saving of memory contents
 Displaying and changing the Special Function Registers
 Displaying and changing memory cells (Extdata, Intdata, Program

window)
 Modifying of memory cells, registers and variables
 Initializing and copying of memory blocks
 Mapping, i.e. determining whether the RAM internal to the emulator

should be accessed or whether we should access the circuit to be tested
 Disassembled representation of the Program Memory (Assembler

window)
 Assembling 80C51 Opcodes

Accessing Memory 17

5.2 Saving and loading files

The BicWin user interface offers various functions for loading and saving of
memory contents with different formats.

We can load:
 Contents of the program and data memories
 Source text files for highlevel language debugging
 Symbol information
and we can save:
 Contents of the program and data memories
 Trace memory contents

For loading and saving of memory contents four different file formats are
available.

BicWin can save memory contents of the emulator also as text files, e.g. to
evaluate these files with other programs or to edit them with a text editor.
Distinguished are
 hexadecimal representation of memory contents (Hexdump)
 disassembled representation of the program memory

It is to be noticed, that significant limits are stated for creating of text files,
since the files can otherwise reach a considerable size (several tenthousend
lines). At saving the program memory in disassembled form two formats are
distinguished:
 in the list format (same contents as in the Assembler window)
 in the sourcetext format the columns with addresses and file contents are

omitted, to make the text files usable as source for an assembler

Accessing Memory 18

5.3 Access to the Special Function Registers

The contents of the special function registers are displayed in the Register
window. The names of the registers are preset, and depend on the CPU type
selected in the “Options” dialog. In addition to the real special function
registers, the display includes the program counter PC, and the register bank
R0..R7.

The registers are separated in groups; each group has an own box with title bar
(e.g. Timer). The groups can be moved inside the register window; so even if
only a small register window is visible, the most interesting registers can be
displayed. The names, addresses and groups are contained in the external file
“BICREGS.TXT”, which can be edited if necessary.

The arrow keys or the mouse can be used to select a register and open the
“Modify” dialog to enter a new content. Ports are set at once, i.e. the new
content appears at the port pins immediately after entering the new value.

Attention:
The internal data memory and the special function registers overlap in the
address range 80H..0FFH. In the Intdata window no special function
registers can be accessed, but only the internal RAM cells of the
processor (if there are any).

Accessing Memory 19

5.4 Access to the Program Memory, to the internal and
external Data Memories

Memory contents are represented in hexadecimal form in the Extdata, Intdata
and Program windows. By means of the arrow keys we can select specific
addresses and set at a new value, with the “Got to” function it can be jumped
to a new address.

Altogether three fields can be distinguished: the address field, the hexadecimal
field and the ASCII field. The cursor can be moved to any position of the
hexadecimal and the ASCII field. New memory contents in hexadecimal form
or as ASCII character can be entered.

For the individual functions one should keep in mind:

Program:
Entering data is possible only for internal mapped memory ranges.

Extdata:
Entering data is always possible. If the test board should be accessed
directly, then the considered memory range must be mapped externally
(default setting).

Intdata:
In the address range 80H..0FFH the internal Data Memory overlaps with
the Special Function Registers. The Special Function Registers cannot be
accessed in the Intdata window.

Accessing Memory 20

5.5 Output and Change of single Memory Cells and
Registers (Modify)

If a single memory cell or variable shall be aimed accessed without
hexadecimal representation of a memory block, the Modify function must be
used. This enables also other formats for input and the output, i.e. memory
cells can be entered or represented in binary or decimal form, as ASCII
characters or as highlevel language variable. Which variable type can be
selected depends on the compiler defined under "Options Highlevel".

The function Modify can be invoked directly from the Register, Assembler and
Sourcetext window. For that purpose the requested variable must be only
selected by a double click with the mouse. If it is a valid variable then one gets
the current value immediately and can enter a new value.

As a speciality the function "Modify write only" is still available, which
enables the writing to memory cells, without accessing the corresponding
address by previous reading. This is necessary e.g. with I/O components,
which can change their state already by the reading access.

Accessing Memory 21

5.6 Watched variables

With the Watch function memory contents and variables can be displayed in up
to four different watch windows. Which variable shall be represented is
determined by the “Watch list” dialog. Variable type (e.g. Unsigned) and
format (e.g. binary) can be selected.

Up to four windows are available, into which watch variables can be issued
(Watch windows 1..4). By the distinction of up to four windows it can be
exchanged in an easy way between sets of variables to be issued without
altering the definition in the list of watched variables. Only the windows with
the desired variables had to be opened or the not relevant windows closed
again. For this the key combinations ALT+1 until ALT+4 are provided.

The watch windows are actualized by choice either automatically after each
program execution or only at selection of the watch window.

5.7 Initializing and Copying of Memory blocks

The function "Initialize" writes a constant value into a memory block, defined
by start address and end address.

By means of "Memory Copy" we can move memory blocks, i.e. copy them.
The source and target areas may overlap. As extension hereto there is the
function "Copy EPROM", which transfers the program memory contents from
the user's circuit into the Emulation RAM (see chapter 4.8 "Mapping").

Accessing Memory 22

5.8 Mapping

The memory types program memory and Extdata memory can be mapped.
This means that the user can determine with help of the "Memory Map"-
function whether
 the RAM internal to the emulator (emulation memory), or else
 a memory possibly present on the circuit to be tested (e.g. an EPROM)
should be accessed.

The default setting for map is an internal mapped program memory and an
external mapped Extdata memory.

The BICEPS Universal adapter offers as well a mapping possibility. This is
true only for the program memory, the Extdata memory is mapped external
always. To access the original EPROM, the EPROM of the test board must be
removed, replaced by the adapter and be plugged on the adapter. This means,
that an emulation is possible with the original CPU and the original EPROM.

Accessing Memory 23

5.9 Disassembled representation of the program memory

The Assembler window gives out the contents of the Program Memory in the
form of executable commands, i.e. in disassembled form. The code undergoing
this representation is always the code executed by the emulation processor, i.e.
- depending on the relevant map configuration - the contents of either a
memory internal to the emulator or an external one.

One can move through the memory forwards and backwards, using the cursor
keys. The line with the current program counter position, i.e. the command to
be executed next, is highlighted.

Besides the the representation of the program additional functions are possible:
 Execution of the program
 Set and clear of breakpoints and trace filter ranges
 Modifying of memory cells and variables
For more information see chapter 7.

The BicWin Line Assembler (integrated in the Assembler window) serves as
comfortable input of 80C51 program code into the program memory RAM.
Before entering a mnemonic command, the command currently present in the
program memory is displayed in disassembled form. Entering code is only
possible in internal mapped memory ranges.

For denoting the addresses of the program memory, the bit memory and the
internal and external data memories one can use arbitrary symbols - provided
that they are known, i.e. entered into the corresponding symbol table. The
predefined symbols known to the BicWin Line Assembler are the names of the
special function registers (bit and byte addresses). They correspond to the type
of processor selected in the “Options” dialog. Furthermore complex arithmetic
expressions can be formed at the declaration of addresses and constants, which
can contain symbolic names as well as number constants.

Breaks 24

6 Break possibilities

6.1 Basic Information

Breaks are defined in order to stop the program execution of the emulation
CPU at certain conditions, interesting for the program test. For example, these
condition may be the execution of a certain part of the program, or an access to
some specific ranges of the Data Memory. The BICEPS emulator offers the
following possibilities for defining a break condition:
 Access to one or several addresses or address ranges (64k breakpoint

memory)
 State of the data bus by accesses to the data memory and program

memory
 State of the external inputs (Logic Probes)
 Event counter for breaks (Break Counter)
 conditional breaks
 Overflow of the real time trace memory

The defined state of the address bus, the data bus and the logic probes forms a
break event, where the combination is predetermined

(addresses AND data AND Cycle type)
An event is additionally connected with an event counter (break counter).

Altogether there are two break events “Break1” and “Break2”, which can
generate a break alone or together. The following break actions are possible:
 interruption of the real time program execution (break)
 enabling the second break event for conditional breaks
 start or stop of the real time trace
 triggering external devices.

Breaks 25

6.2 Break mode

“Break1” and “Break2” can be combined in several ways. Beside OR and
AND combination there are conditional combinations, that allows to enable
one break event by the otherone. Furthermore there are the two events
“Clear1” and “Clear2”, which can reset detected events “Break1” or
“Break2”. In this way it is possible for example to define an event, which is
only enabled in a special subroutine.

The events “Break1” and “Berak2” are available as signal outputs to trigger
external devices (see chapter “Interfaces”).

In the BicWin help function you can find several examples of the break and
controlling possibilities of the BICEPS emulator.

In addition to states of the address and data buses, we can also define a state of
the external inputs as a break event. When the signals at the external inputs
become effective and what qualities they must possess is described in chapter
B.2. The definition is made as binary combination, i.e. as a sequence consisting
of the symbols "0", "1" and "x", where to the external inputs 16 characters
(corresponding to the 16 inputs) are assigned.. "x" stands for don't care, these
bits are not rated.

Breaks 26

6.3 Definition of Break Events

The most important function of the break logic of the BICEPS emulator is
interrupting the program execution at a specific position of the program. This
position is defined by its address.

For the four break events “Break1”, “Break2”, “Clear1” and “Clear2” one can
define as many addresses or address ranges as one likes. By the definition of
the “Cycle type” it is possible to distinguish between Program and Extdata
memory accesses; in addition a specific data bus state can be defined. A
defined break address is only then valid when during the program execution the
defined state of the data bus occurs at the same time.

For accesses to the program memory the options “Opcodes” (default), “Line
numbers” and “All accesses” are available. "Opcodes" means, that a break is
only then recognized when the first byte of a command is executed
(independent of of the value of the read date). This is a very important option,
since CPUs of the 80C51 family access addresses, partly unnecessarily, and
reject the read data afterwards. With “All accesses” this restriction is omitted;
with “Line numbers” the opcodes cycles are restricted to sourcetext line
beginnings.

The data bus conditions Read and Write contain the ranges 00-FF as
presetting, i.e no restriction to a specific state. Each reading or writing access
to an address of the external data memory leads to a valid break event, as far
as the address is marked as break address.

Each of the possible break events is assigned an event counter (break counter).
In order to effect a break, an event defined by the states of the address bus, the
data bus and the logical probes must occur as often as it is predetermined in the
break counter. Preset is a value of 1, i.e. the event is immediately valid at its
first occurrence. For “Break1” a 24 bit counter is available, but this is reduced
if break counter capacity is needed by other events.

Real-Time-Trace 27

7 The Real Time Trace Memory

7.1 Overview

The BICEPS emulator can be provided with a Real-Time Trace Memory of a
32k x 96 bit capacity. It is used for recording certain signals during a real time
program execution, similar to a logic analyser. Additionally existent is a 32 bit
real time counter, which runs synchronously with each program execution and
therefore enables exact time measurements.

The data recorded in the trace memory are:
 24 bits address bus signals
 16 bits data bus signals (see app. B)
 16 bits external signals (logical probes)
 32 bits status of the real time counter (time stamp)
 8 control signals

On the basis of the traced information one can easily obtain an overview of the
run and the time duration of a program or the external signals.

The real time trace memory of the BICEPS emulator can store up to 32768
(131072 bei 128k) entries. Each entry has a size of 96 bit and is named a
"frame". The frame number is jointly represented in the trace window, where
number 0 corresponds to the oldest entry and the largest frame number to the
entry traced at last.

Traced are all program steps, i.e. single steps as well as program fragments
executed in realtime.

The contents of the real time trace memory is displayed in the “Trace”
window. This is also possible during the program execution, without
influencing it ("on the fly" access).

Real-Time-Trace 28

The real time trace memory of the BICEPS emulator offers the following
functions:
 representation of the traced data either as program or as sequences of

cycles with time stamp and state of the external inputs
 show context in the Assembler or Sourcetext window while scrolling in

the trace window
 calculating of time differences of the traced time stamp
 search functions for traced data
 Sourcetext trace mode (tracing of source text lines)
 selecting of address ranges and access modes for the tracing
 real time filter to enable/disable memory address ranges for tracing
 start and stop of tracing by break events
 Program break by overflow of the trace memory with a predetermined

number of frames to be traced
 Performance analysis, i.e. calculating the execution time for different parts

of the program

Real-Time-Trace 29

7.2 Time Measurements

The BICEPS emulator possesses a 32 bit real time counter, which counts
timing marks during a program execution.The time base is switchable between
 100 ns (measurement range up to ca. 7 min)
 1 µs (measurement range up to ca. 70 min)
 10 µs (measurement range up to ca. 12 h)

The actual value of the real time counter is displayed in the status line. It can
be set directly to 0.0 with the function "Reset real time counter" or together
with a CPU reset with the function "Debug Reset all". The status line displays
the time of program execution since the last reset of the real time counter.

Time measurements come in connection with the real time trace memory, since
the position of the counter is traced as time stamp. The time of program
execution yields to the difference of traced time stamps. Since their calculation
from absolute values is too troublesome, the trace window offers several
possibilities for forming of time differences:
1. The time stamp at the current cursor position in the trace window can be

set to 0. All following time stamp entries are represented then relative to
this zero mark.

2. The multiple manual setting to zero of the time stamp can be simplified
with the time filter function. In the time filter dialogue conditions can be
defined to which the continous time stamp representation starts again with
0.0. Is e.g. the address of a subroutine entered as condition, then the
duration of execution of this subroutine is automatically represented in the
trace memory window. Besides addresses also conditions for the data bus
or the external inputs can be defined as time filter condition.

Real-Time-Trace 30

7.3 Search function

A complex search function allows to find those information in the large amount
of traced data, which are interesting for the debugging. Default setting is no
restriction, that means all traced frames met this condition. By restricting the
search conditions (e.g. address range 1000-1020 instead of 0000-FFFF) the
search function becomes more sensible.

In addition to address and data bus contents it is possible to search changes in
break events “Break1” and “Break2”.

7.4 Sourcetext Trace Mode

In the sourcetext trace mode only the execution of lines of a loaded highlevel
language program is traced instead of the complete program run. Assumption
for this is, that a source text as well as the corresponding symbol information
were loaded (see chapter 9).

Each line of a highlevel language program is related to a memory range of the
program memory. Since in the sourcetext language trace mode only the start of
this address range is traced, the real time trace memory can trace up to 32766
sourcetext lines.

When scrolling in the Trace window, it is possible to display automatically the
part of the program in the Assembler and Sourcetext window, which belongs to
the actual selected trace address.

Real-Time-Trace 31

7.5 Controlling the real time trace

The tracing is controlled by trace filter conditions. Single addresses or address
ranges can be defined; also symbolic names, in particular module names, are
admissible there. Only accesses to the addresses defined in this way are traced
in the real time trace memory of the BICEPS emulator.

Three real time filters are available. Default setting is one filter for each cycle
type, i.e.
 accesses to the program memory
 writing accesses to the external data memory (Write)
 reading accesses to the external data memory (Read).
For the program memory filter “Opcodes”, “Line numbers” and “all accesses”
are distinguished.

It is possible to switch from one filter to another during program execution,
controlled by a break event.

The BICEPS emulator allows to start or stop the real time tracing at
predefined events. For this purpose break events are used. It can be defined,
which action should be released by break events. Possible are:
1. Start of tracing at program execution start

Stop of tracing at program execution end
2. Start of tracing at program execution start

Stop of tracing at an event
3. Start of tracing at an event

Stop of tracing at program execution end
4. Start of tracing at an event

Stop of tracing at another event
5. Start of tracing at program execution start

Switch to another filter at an event
Stop of tracing at program execution end

Program execution 32

8 Program Execution

8.1 Overwiev

The BICEPS emulator offers various functions for executing a user's program.

 Execution of a program in real time (Run)
 Execution of a single step
 Execution of a single step, but with the condition that subroutines are

executed in real time (Jump over calls)
 Generation of a hardware reset of the emulation CPU (Reset processor)
 Execution of a program in real time until a break address is reached
 Set and clear of breakpoints

8.2 Execution of a program in real time, Reset

One of the essential functions of an in-circuit emulator is the execution of
programs under real time conditions until the program's run is stopped. In the
simplest case the break follows after executing a single step of the program
(Single Step). However, the real time relation can be obtained only by
executing several program steps.

By means of the "Run"-function we initialize the break logic and start the
program.

The execution of a program in real time is indicated by a light diode in the field
"Running" on the front panel of the emulator. The real time trace memory can
be accessed, while the program is executed, and its contents displayed without

Program execution 33

disturbing the program execution. An interruption of the program can be
performed
 by the user with the mouse or the keyboard or
 by occurrence of a break condition.

After a break, the actual values of the open windows and the status line are
displayed. Very important for program debugging are the register window with
the actual PC and registers and the actual part of the program in the Assembler
window. After a break, an access to all memory ranges is possible in order that
the current memory contents could be changed.

The function "Reset processor" resets the emulated CPU by executing a
hardware reset.

Program execution 34

8.3 Execution of single Steps

The emulated CPU can execute a user's program either in real time or in single
steps. In the first case, the program is started up and executed until a break
occurs. In case of single steps, the internal state of the processor is displayed
after each program step.

The "Jump over Calls" function allows to execute single steps with executing
of subroutines in real time. This means: if the next command to be executed is
a CALL opcode, then a break point is set immediately after this opcode, and
the program is started up in real time; otherwise a normal single step is
executed. If the processor fails to return from the subprogram, then the
program execution must be stopped by the user.

Single steps are traced in the real time trace memory as programs executed in
real time are.

Program execution 35

8.4 Debugging with the Assembler and Sourcetext window

The most important debugging functions can be executed and monitored
directly in the Assembler and Sourcetext window. This functions are:

 Reset of the processor
 Execution of a single step, i.e. an assembler opcode or a sourcetext line
 Single step with "Jump over Calls"
 Execution of the program in real time
 Program execution to the cursor, i.e. the command marked by the cursor

is provided with a breakpoint and the program is started
 Setting the program counter PC on the command marked by the cursor
 Setting and clearing of breakpoints
 Marking of program ranges and setting/clearing of trace filters for this

program ranges. By this feature it is possible to disable the tracing of
program loops whose execution leads to an overflow of the trace memory

 Opening the “Modify” dialog by a double click of the mouse with the
selected variable name.

 representation of another part of the program

Most of this functions can be executed directly by a click with the mouse in the
mouse palette or by a function key. The remaining functions can be activated
via the local context menue.

In combination with the Trace window it is possible to show the actual part of
the program in the Assembler or Sourcetext window when scrolling in the
Trace window. The address of the just selected trace frame is shown as
highlighted bar in the Assembler or Sourcetext window. The user can watch
the traced program flow in a representation with a moving bar just like the
execution of single steps.

By deactivating the option “Follow program counter” it is possible to freeze a
representation of the Assembler or Sourcetext window. The shown part of the

Program execution 36

program is not adapted when the program counter is changed by execution of
the program.

The following lines are shown highlighted:
1. the actual program counter address
2. breakpoints
3. disabled trace filter ranges
4. the address of the just selected frame in the trace window
5. marked areas.

Source level debugging 37

9 Sourcetext Debugging

9.1 Introduction

The BicWin user interface supports a program test on the base of highlevel
language debugging. This means that the source text of programs, which is
written in a highlevel language (e.g. C51) or in assembler language, can be
loaded by BicWin and is represented during the debugging process.

The sourcetext is shown in the Sourcetext window. All debugging features
known from the Assembler window are available in the Sourcetext window,
too (e.g. execution of the program line by line). In the real time trace memory
sourcetext lines instead of assembler opcodes can be traced. Highlevel
language variables are represented and altered corresponding to their type
definition.

The switching between Assembler and Sourcetext window makes it possible to
execute a program in different “resolution”.

The assumption is, that the relation between the line numbers of the original
source text and the addresses of the executable code is known. The used
compiler or assembler software must generate the necessary symbolic and line
number information.

Source level debugging 38

9.2 Invoking the Compiler, Loading a Program

The BicWin user interface uses different files for handling sourcetext during
debugging. They are:
 a file with the program code and the symbolic information
 one or more files containing the source text

For the cooperation with the BicWin software it is important to correctly select
the various options of the compiler, so that the program and symbol files could
be created in a form readable by the emulator. Very important are the line
number symbols because they are needed for the relation of program code and
source text line. To access highlevel language variables, symbolic names and
typedef information are needed. Check in your compiler manual, which
options must be set to generate this information (e.g. Keil-C51: objectextend).
The function “Load status” of the BicWin software shows how many symbol
names and line numbers were loaded.

After starting up the emulation software BicWin, a program to be tested is
loaded by means of the function "File Load”. This function loads the program
file as well as the symbol file and the source text, if source text information are
contained in the symbol file. More sourcetext modules are loaded by the
function “File Open”. It should be noticed that the program file and the source
text are loaded from the directories determined under "Options Directories".

Source level debugging 39

9.3 Program execution

The loaded source text is represented in the Sourcetext window. Every line of
the text can be selected by the mouse or the cursor keys. The line with the
actual program counter, i.e. that line of the source text, which is to be executed
next, is optically highlighted.

The Sourcetext window offers the same functions for executing a program and
for debugging as the Assembler window (see chapter 8.4). The execution of a
program in a high-level language does not differ in principle from that of an
assembler program. The essential differences are the representation of the
current program sector and the execution of single steps.

Breakpoints can be set only on the lines which have been translated into the
corresponding program code by the compiler, so they cannot be set e.g. on
empty lines, or on comment lines. If either the program counter of the CPU or
a breakpoint cannot be set on some line, since no corresponding line number
symbol for this line has been generated by the compiler, then an error message
is given.

It can always be switched between Assembler window and Sourcetext window
and therewith between the highlevel language representation and the assembler
one. We can also determine in this way whether in case of single steps an
assembler command is executed or whether the program will be executed line
by line (i.e a single step corresponds to a line of the source program).
Highlevel language single steps are only executed, when the Assembler
window is not selected and the program counter points to a line number.

Source level debugging 40

9.4 Handling of several modules

If the program is composed of several source text files (modules), more than
one text files can be represented in the Sourcetext window. With the function
“File Open” every text file can be loaded.

If the option “Follow program counter” is activated (default setting), more
sourcetext files are reloaded automatically when the program counter points to
another module after a break or a single step.

More than one Sourcetext window can be opened. In this windows the option
“Follow PC” is switched off to enable one window for the actual program
section and other windows for fixed program representations.

Switching between different modules is possible only, if sourcetext file names
and module names are contained in the symbol table.

Options for P0/P2 emulation 41

10 Options for P0/P2 Emulation

An in-circuit-emulator needs the bus signals of the emulated controller, to
control the emulation memory, the real time trace memory ect. So it is no
severe problem to emulate applications which use an external bus. More
difficulties arise if true single chip applications without an external bus have to
be emulated, because port pins are lost if used as bus signals. Therefore the
bus signals must be connected in another way or the ports must be regenerated.
For 80C51 controllers this is true for ports P0 and P2.

The BICEPS emulator supports the following modes of the emulated
controller:

1. Applications with external bus. P0 and P2 operate as address and data
bus.

2. If P0 and/or P2 operate in I/O mode (no external bus), the BICEPS
emulator uses the Softhook emulation technique developed by Brendes.
The I/O information of ports P0 and P2 are generated by the emulator and
not by the controller. Nearly all bit and most byte operations to P0 and P2
can be emulated in real time. Using the Keil C51 compiler, Softhook
compatible code can be generated.

Options for P0/P2 emulation 42

10.1 The BICEPS Softhooks

For the controller, which can not support bondout or hardware-hook mode
emulation for ports P0 and P2, the BICEPS emulator offers Softhook
emulation. This method emulates the port P0 and P2 and the opcodes accessing
this ports; the port registers are located in the emulator hardware and not in the
controller. During program execution P0/P2 operations are detected and
executed in real time by the emulator while the controller excutes opcodes
which have exactly the same clock cycles as the emulated opcode. Therefore
the emulated controllers works like a single chip, although it is running in
external bus mode.

Most opcodes accessing P0 or P2 – including nearly all bit opcodes - can be
emulated. Those opcodes which can’t be emulated directly (e.g. MOV P0,A)
are replaced by 3 byte intrinsic functions. The C51 compiler can be forced to
generate Softhook compatible code; nearly no loss in performance can be
detected. If the Softhook compatible opcodes are used only, Assembler
programming is possible without problems (see chapter 10.3)

The basic function of the SoftHook methode is:
1. Regeneration of ports P0 and P2 and the operations accessing these ports

by emulator hardware (port-replacement-unit PRU).
2. The code generated by compiler or assembler is checked automatically for

Softhook compatibility. Source text lines, which are not compatible, can be
selected by mouse click. Normaly more than 95% of all C51-statements
with P0/P2 accesses can be emulated without changes.

3. The generated hex file can be programmed in the controller or loaded in the
emulator directly.

4. Therefore the result is no or a minimal loss in perfomance.
5. The controller operates during emulation in normal bus mode. All P0/P2

opcodes are recognized by the BICEPS emulator in real time. They are
replaced by compatible opcodes, which have the same execution time and
which can trigger the port replacement unit.

It is important to know for the user:
 no difference in code size or timing between emulator and controller
 no or minimal loss of performance
 C51 compiler compatible

Options for P0/P2 emulation 43

10.2 Compatibility with C51-Compiler

The following method is used to make sure that the C51 compiler generates
Softhook compatible code:

After the link process, it is checked, wether the generated code is Softhook
compatible. If a “MOV portbit,C” opcode is detected (the only bit operation
which cannot be emulated directly), a “_nop_” statement has to be inserted in
the corresponding source text line. This statement is compiled to a “NOP”
opcode.

For incompatible byte access opcodes the BICEPS emulator supports four
routines to access P0 and P2. This are:

Set port byte: WriteP0, WriteP2
Read port byte: ReadP0, ReadP2

This function calls have to be used in source lines with a incompatible code
generation; the right Softhook intrinsic functions (3 bytes, see chapter 10.3)
are inserted then automatically.

Examples:
C51 statement replaced by Softhook Intrinsic

function (3 Bytes)
P2_3 = bitvar; P2_3 = bitvar;

nop;
MOV P2.3,C
NOP

P0 = variab; WriteP0(variab); MOV P0,R7
MOV A,R7

This four routines requires that they are executed in register bank 0. If port
accesses with different register bank are needed, the following routines have to
be used:

Set port byte: WriteP0RegBank, WriteP2RegBank
Read port byte: ReadP0RegBank, ReadP2RegBank

Configure register bank to use in options dialog on register card hardware.

The Softhook emulation method is optimized for the Keil C51 compiler. The
user interface µVision is extended by a special tool: the Softhook checker. It
checks the code generated by the compiler and generates the right hex and
object file. If an incompatible opcode is detected, an error message is

Options for P0/P2 emulation 44

presented; the corresponding line of the source text can be selected directly by
mouse click. In this line the right function call (WritePx, ReadPx) or an
“_nop_;” statement has to be used.

If the compiler, linker and Softhook checker have been executed without error
messages, the generated code can be used to program the controller or to load
in the emulator. There are not different program versions for emulator and
controller.

Because only a few source text lines have to be altered and because in this
cases only 3 bytes for the intrinsic functions are necessary, there is no or a
minimal loss in performance, which is not significant normally.

10.3 Hints for assembler programming

The Softhook checker utility makes sure that compiled programs are Softhook
compatible. It can be used for A51 assembler programs, too. But the assembler
programmer has to know, which 8051 opcode can be emulated and which not.
The opcodes can be classified in three classes:
1. can be emulated without restrictions
2. can be emulated by an intrinsic function
3. can not be emulated.

The following tables show, which bit and byte opcodes with P0/P2 accesses
can be emulated by Softhooks:

Opcode can be emulated intrinsic
function

CLR bit yes -
SETB bit yes -
CPL bit yes -
MOV C,bit yes -
ANL C,bit yes -
ANL C,/bit yes -
ORL C,bit yes -
ORL C,/bit yes -

Options for P0/P2 emulation 45

JB bit,rel yes -
JNB bit,rel yes -
JBC bit,rel yes -
MOV bit,C with intrinsic

function
MOV bit,C
NOP

table 10.1 bit opcodes

Opcode can be emulated intrinsic function
MOV A,Px yes -
MOV direct,Px yes -
MOV Px,#data yes -
ANL/ORL/XRL Px,#data yes -
ANL/ORL/XRL A,Px yes -
ADD/ADDC/SUBB A,Px yes -
INC/DEC Px yes -
DJNZ Px,rel yes -
CJNE A,Px,rel yes -
MOV Px,A with

intrinsic
function

MOV R7,A
MOV Px,R7
(register bank 0)

MOV Px,R7 with intrinsic
function WritePx();

MOV Px,R7
MOV A,R7
(register bank 0)

MOV R7,Px with intrinsic
function ReadPx();

MOV 07H,Px
(register bank 0)

ANL/ORL/XRL Px,A no -
MOV Px , Ri/@Ri/direct no -
MOV Ri/@Ri , Px no -
PUSH/POP Px no -
XCH A,Px no -

table 10.2 Byte opcodes

Options for P0/P2 emulation 46

Additionally the following opcode sequences with P0/P2 accesses are
recognized as Softhooks:

Opcode sequence can be emulated
MOV bit,C
CLR A

yes

MOV A,#data
MOV Px,A

yes

CLR A
MOV Px,A

yes

MOV Ri,#data
MOV Px,Ri

yes

table 10.3 Emulatable opcode sequences

Not executable code in program memory (e.g. constant tables accessed by
MOVC instructions) can detected wrongly as Softhook only, if the assembler
generates no line number symbols. In this case
 two 00 bytes can appended to the constant table or
 the first opcode following the constant table can be marked by a label with

the beginning “_sh_” (e.g. “_sh_label1”)

Options for P0/P2 emulation 47

10.4 Specialties for Winbond Turbo51-Controllers (77Exx)

The Turbo51 controllers of Winbond have a faster program execution than
standard 80C51 CPUs. Therefore other intrinisc functions are necessary for
this controllers.

The Winbond Turbo51 controllers need more program bytes for Softhook
compatibility. For this reason in C51 statements additional „_nop_;“
statements must be inserted, if a Softhook intrinsic function is used:

Original C51
statement

C51 statement
(Winbond 77x)

Intrinsic function
(Winbond 77x)

Hex codes Bytes /
Cycles

Px = (...); WritePx(...);
nop;

SJMP $+2
MOV Px,R7

80 00
8F 80/A0

4 / 5

Px_y = (...); Px_y = (...);
nop; _nop_;

MOV bit,C
SJMP $+2

92 8y/Ay
80 00

4 / 5

Assembler programmers can use the following opcodes:

Original
opcode

Bytes /
Cycles

Softhook
compatible opcodes

Hex
codes

Bytes /
Cycles

MOV Px,A 2 / 2 SJMP $+2
MOV Px,A

80 00
F5 80/A0

4 / 5

MOV Px.y,C 2 / 2 MOV Px.y,C
SJMP $+2

92 8y/Ay
80 00

4 / 5

Contrary to standard 8051 controllers, the reading access
MOV Ri,Px

can be emulated without restrictions.

Options for P0/P2 emulation 48

10.5 Specialties for Maxim/Dallas 80C320/323/520/530 and TI
MSC1210 controllers

The Maxim/Dallas controllers and the MSC12xx controllers of Texas Instru-
ments have a faster program execution than standard 80C51 CPUs. Therefore
other intrinisc functions are necessary for this controllers.

The Dallas/Maxim and TI MSC12xx controllers need more program bytes for
Softhook compatibility. For this reason in C51 statements additional „_nop_;“
statements must be inserted, if a Softhook intrinsic function is used:

Original C51
statement

C51 statement
(MSC12xx)

Intrinsic function
(MSC12xx)

Hex codes Bytes /
Cycles

Px = (...); WritePx(...);
nop;

MOV Px,R7
SJMP $+1
MOV R7,A

8F 80/A0
80 FF

4 / 6

Px_y = (...); Px_y = (...);
nop; _nop_;
nop;

MOV bit,C
SJMP $+2
NOP

92 8y/Ay
80 00
00

5 / 6

Assembler programmers can use the following opcodes

Original
opcode

Bytes /
Cycles

Softhook
compatible opcodes

Hex codes Bytes /
Cycles

MOV Px,A 2 / 2 SJMP $+2
MOV Px,ACC

80 00
85 E0 80/A0

5 / 6

MOV Px.y,C 2 / 2 MOV Px.y,C
SJMP $+2
NOP

92 8y/Ay
80 00
00

5 / 6

Contrary to standard 8051 controllers, the reading access
MOV Ri,Px

can be emulated without restrictions.

Options for P0/P2 emulation 49

10.6 Advantages and disadvantages of Softhooks

The advantages of SoftHook emulation are:
 No difference between emulation and controller (timing and code size)
 Bit- and byte-access to P0 and P2
 Compatible with C51-compilery by use of intrinsic functions
 No critical bus timing for higher frequencies, because a lower bus clock is

used compared with the hardware-hook mode.
 Independent of silicon vendors, suits all controllers with 80C51 architecture
 lower price

The disadvantages are:
 Current 80C51 programs have to be checked by the the Softhook utility for

compatibility
 At some few program parts there can be a minimal loss in performance

(typical 1 cycle)

Options for P0/P2 emulation 50

10.7 Necessary conditions for BICEPS Softhooks

At the moment the BICEPS Softhook routines are compatible with Keil-C51-
compiler, i.e. parameters are transfered in register R7 of registerbank 0.

The expansion tool “Softhook checker” is integrated in the µVision user
interface by definig it as „Run User Program #1“ in the menue
„Project/Options for Target/Output“.

For the Softhook functions (ReadPx and WritePx) 4 dummy addresses are
used (0FFF8H-0FFFBH). The correct definition files for the C51-compiler (see
files Shook.h, Shook.a51) and a sample program come with the BicWin de-
bugging software. The IAP entry point at 0FFF0H can be used without
restrictions.

The following files are on the disc:
ShChecker.exe

checkes a linked OMF or HEX file for Softhook compatibility and
generates the correct hex file for programming

ShChecker.txt
Describes softhook checker incl. command parameters

Shook.h, Shook.a51, Shook.obj:
Definition file for Softhook addresses

Shdemo.omf
Demo program for Softhook use with softhook intrinsic functions with
the files ShDemo.c, ShDemo.obj, ShDemo.uv2, ShDemo.opt

ShRotP51:
Demo pogram for Softhook use with the files ShRotP51.c,
ShRotP51.obj, ShRotP51.uv2, ShRotP51.opt

The project- and option-files of Keil µVision are correctly defined in that way,
that ShChecker is called after link process.

Options for P0/P2 emulation 51

10.8 Softhook sample program

here you find a C51 sample program with typical bit- and byte-accesses to P0
and P2. The example shows, which routines can be used and which 80C51
code is generated:

void main (void)
{
uchar i;

while (TRUE)
{
P2_3 = 1;
if (P0_4) i=1;
else i=i+1;
i = P2;
P0 = i;

}
}

The Softhook checker detects a problem with the line P0 = i; , only:

Demo.C(20): ERROR: MOV P0,A can’t be emulated: replace with: WriteP0()

The statement in this line is replaced by an intrinsic function call:

void main (void)
{
uchar i;

while (TRUE)
{
P2_3 = 1;
if (P0_4) i=1;
else i=i+1;
i = P2;
WriteP0(i);

}

Options for P0/P2 emulation 52

The following final program is generated by the compiler:

; FUNCTION main (BEGIN)
?C0001:

SETB P2.3
JNB P0.4,?C0003
MOV i,#01H
SJMP ?C0004

?C0003:
INC i

?C0004:
MOV A,P2
MOV i,A
MOV R7,i
MOV A,R7 ; Intrinsic Function
MOV P0,A
SJMP ?C0001
RET

; FUNCTION main (END)

BICEPS Debug Connector 53

11 BICEPS-Debug-Connector

11.1 Basic information

By use of the pin headers described in this chapter it is possible to connect the
test board and the BICEPS emulator by a flat ribbon cable. The controller is
not replaced, a special POD is not needed.

Some signals of the controller have to be separated from the rest of the circuit.
Their connection is done via the debug connector. The signals which are
connected directly with the controller have the extension „_CPU“. The signals
which are connected with the rest of the circuit have the extension „_Board“ .

If the board is to be operated without emulator, the emulator cable is removed
and replaced by short-circuit jumpers, i.e. „_CPU“- and „_Board“-signals are
connected.

It can be choosen between two pin header types:
1. 40 pin BICEPS debug connector emulates bus and true single chip

applications
2. 30 pin older ICE-connect adapter designed for applications with external

bus. Softhook generated P0/P2 signals are available on an additional
connector

The following picture shows the adapter board (labeled A5) with both possible
connectors:

BICEPS Debug Connector 54

XC : BICEPS debug connector, 40 pin
XB : Former debug connector, 30 pin (ICE-connect)

PCB layout for 40 pin connector and PLCC44 controller:

BICEPS Debug Connector 55

11.2 Applications without external bus
P0=Port, P2=Port (Softhook emulation)

XC high-density pin header, 40 pins, grid 1.27/2.54

P00_CPU 1 2 P00_Board
P01_CPU 3 4 P01_Board
P02_CPU 5 6 P02_Board
P03_CPU 7 8 P03_Board
P04_CPU 9 10 P04_Board
P05_CPU 11 12 P05_Board
P06_CPU 13 14 P06_Board
P07_CPU 15 16 P07_Board
EA_CPU 17 18 EA_Board
Rst_CPU 19 20 Rst_Board
ALE_CPU 21 22 GND
PSEN_CPU 23 24 GND
P27_CPU 25 26 P27_Board
P26_CPU 27 28 P26_Board
P25_CPU 29 30 P25_Board
P24_CPU 31 32 P24_Board
P23_CPU 33 34 P23_Board
P22_CPU 35 36 P22_Board
P21_CPU 37 38 P21_Board
P20_CPU 39 40 P20_Board

Separated signals: EA, RST, P00..P07 and P20..P27

BICEPS Debug Connector 56

11.3 Applications with external bus
P0=Bus, P2=Bus or
P0=Bus, P2=Port (Softhook emulation)

XC high-density pin header, 40 pins, grid 1.27/2.54

P00_CPU 1 2
P01_CPU 3 4
P02_CPU 5 6
P03_CPU 7 8
P04_CPU 9 10
P05_CPU 11 12
P06_CPU 13 14
P07_CPU 15 16
EA_CPU 17 18 EA_Board
Rst_CPU 19 20 Rst_Board
ALE_CPU 21 22 GND
PSEN_CPU 23 24 GND
P27_CPU 25 26 P27_Board
P26_CPU 27 28 P26_Board
P25_CPU 29 30 P25_Board
P24_CPU 31 32 P24_Board
P23_CPU 33 34 P23_Board
P22_CPU 35 36 P22_Board
P21_CPU 37 38 P21_Board
P20_CPU 39 40 P20_Board

Separated signals: EA, RST, P00..P07 and P20..P27

BICEPS Debug Connector 57

11.4 BICEPS ICE-connect

For compatibility with older debug connectors (ICE-connect), the BICEPS
emulator adapter board A5 has an additional 30-pin connector. It combines the
ICE-connect (designed for bus mode only) with the Softhook emulation
technique.

P0/P2 static I/O signals can be additionally connected via pins 2..16 (P00..P07)
and 26..40 (P27..P20) of XC .

XB Standard pin header, 30 pins, grid 1.27/2.54 mm

GND 1 2 AD0_CPU
AD1_CPU 3 4 AD2_CPU
AD3_CPU 5 6 AD4_CPU
AD5_CPU 7 8 AD6_CPU
AD7_CPU 9 10 GND
A8_CPU 11 12 A9_CPU
A10_CPU 13 14 A11_CPU
A12_CPU 15 16 VCC
A13_CPU 17 18 A14_CPU
A15_CPU 19 20 GND
PSEN_CPU 21 22 PSEN_Board
RD_CPU 23 24 RD_Board
WR_CPU 25 26 WR_Board
Rst_CPU 27 28 Rst_Board
GND 29 30 ALE-CPU

Condition: EA_CPU = GND
Separated signals: RST, PSEN, RD and WR

Processor Adapters 58

12 Processor Adapters (PODs)

For different controller derivates and package variants there are different PODs
with the controller emulated, and converters. By replacing the POD the
BICEPS emulator is adapted to the controller.

12.1 POD B51 for controllers in PLC44 package

This POD is used for all controllers with standard pinout. It has an PLCC44
output, which can be plugged directly in a PLCC socket. DIL and QFP layouts
are contacted by additional converters. The POD B51 is plugged directly under
the adapter board A5 (see chap. 11.1).

Processor Adapters 59

Jumper settings:

CPU clock (Jumper A)
A1 : Emulator clock (default)
A2,A3: external clock or crystal

(XTAL pins are connected directly with the board)

RD- and WR signals (Jumper B)
B1, B2, B4: P3.7 = RD, P3.6 = WR (default)
B3: P3.7 = Port, P3.6 = Port

Power supply of the controller on the POD
5V: internal 5V of the emulator
3.3V: internal 3.3V of the emulator (default)
EXT: external power supply by the user board

External reset input (Jumper D)
D1: set: PullDown,

open: PullUp (default)

Additional connector:
E0..E3: Banking signals A16..A19

Processor Adapters 60

12.2 More processor adapters

All processor adapters of former Brendes emulators named BICEPS-V and
BICEPS-IV can be used. Because these PODs have larger mechanical
dimensions, the adapter board A5 must be replaced by the board A4.

Available are:
1. POD B51-4 for all standard PLCC44 controllers
2. POD B51CC for Atmel89C51CC01/02/03/AC2/AC3
3. POD BC51CC-52 for Atmel89C51CC03 (PLCC52)
4. POD B51-68 for Atmel 8xC51RD2/ED2 (PLCC68)
5. POD B5131USB for Atmel 89C5131 (PLCC52)
6. POD B51SND1 for Atmel 8xC51SND1 (QFP80)
7. POD BuC8xx for AnalogDevices ADµC812/816/824
8. POD B552 for Philips 8xC552
9. POD B592 for Philips 8xC592
10. POD B537 for Infineons C515, C517, 80C535, 80C537

12.2.1 Jumper settings

CPU clock (Jumper A)
A1=2-3: Emulator clock (oscillator of partA, default)
A1=1-2, A2: external clock or crystal (XTAL pins are connected directly with the board)

RD- and WR signals (Jumper B)
B1, B2, B4: P3.7 = RD, P3.6 = WR (default)
B3: P3.7 = Port, P3.6 = Port

Power supply of the adapter (Jumper C)
JC=1-2: internal power supply (default)
JC=2-3: exteral power supply by the user board

Reset logic (Jumper D)
D1=2-3, D2=2-3: Standard-80C51-RESET, high activ (default)
D1=1-2, D2=1-2: Inverted reset: /RESET, low activ (for example 8xC591)

For details of the mechanical dimensions and jumper locations refer to the
BICEPS-V emulator manual.

Universal Adapter 61

13 External Program Memory Connector (Universal
Adapter)

A special form of debug connector of the BICEPS emulator is called Universal
adapter: It has the same pin layout as a standard memory circuit. So it can be
plugged in a socket of an external program memory (Flash Eprom) for
example.

Besides the signals of the program memory socket two further signals are of
importance:
 The emulator gets control about the processor on the circuit via a reset

output. The RESET signal has to be fed into the circuit or connected to
the RESET pin of the processor.

 The ALE signal of the processor must be taken off.
These two necessary connections are realized by means of two additional
cables (with test clipses), which are connected to the Universal adapter.

13.1 Memory circuit type

The address bus signals A0...A15 are taken via the Universal adapter, the data
bus signals D0...D7 as well as the /PSEN signal via the /CS or the /OE pin of
the program memory socket. For this a DIL plug with 32 pins is provided.
PLCC versions can be adapted by means of a corresponding PLCC converter
DIL28-PLCC32 or DIL32-PLCC32.

If the program memory does not use all 16 address lines, i.e. the program
memory is <64k, this option has to be set in the “Options” menue of the
BicWin software.

Universal Adapter 62

EPROM up to 64k, DIL28, PLCC32 (nc 1,12,17,26):

Pin number Signal Pin number Signal
DIL PLCC DIL PLCC

3 2 A15 30 32
4 3 A12 29 31 A14
5 4 A7 28 30 A13
6 5 A6 27 29 A8
7 6 A5 26 28 A9
8 7 A4 25 27 A11
9 8 A3 24 25 /OE

10 9 A2 23 24 A10
11 10 A1 22 23 /CS
12 11 A0 21 22 D7
13 13 D0 20 21 D6
14 14 D1 19 20 D5
15 15 D2 18 19 D4
16 16 GND 17 18 D3

The DIL32 layout is compatible with the DIL28 layout: Pins 1,2,31,32 remain
unconnected

Universal Adapter 63

EPROM larger than 64k, DIL32, PLCC32:

Pin number Signal Pin number Signal
DIL PLCC DIL PLCC

1 1 A18 32 32
2 2 A16 31 31 /WR
3 3 A15 30 30 A17
4 4 A12 29 29 A14
5 5 A7 28 28 A13
6 6 A6 27 27 A8
7 7 A5 26 26 A9
8 8 A4 25 25 A11
9 9 A3 24 24 /OE

10 10 A2 23 23 A10
11 11 A1 22 22 /CS
12 12 A0 21 21 D7
13 13 D0 20 20 D6
14 14 D1 19 19 D5
15 15 D2 18 18 D4
16 16 GND 17 17 D3

If a banking memory application is emulated (program memory >64k), the
address lines A16..A18 are connected via this program memory socket.

Universal Adapter 64

13.2 Jumper Settings

PSEN

WR
Clips cable

1 2 3

1 2 3 4 5

CSOE RST

1 2 3

Reset logic (Jumper RST)
RST=1-2: Inverted reset: /RESET, low activ (for example 80C535)
RST=2-3: Standard-80C51-RESET, high activ (default)

Connection of /PSEN signal (Jumper JP1)
PSEN=1-2: /PSEN exists at pin 24 of the socket (/OE) (default)
PSEN=2-3: /PSEN exists at pin 22 of the socket (/CS)

WR-signal (Jumper WR)
set: WR is used to write to program memory (Flash circuits)
removed: WR is not used for program memory (default)

Universal Adapter 65

13.3 Connections via Clips Cable

The Universal adapter of the BICEPS emulator has up to 5 connections for
signals, which cannot be contacted directly via the EPROM socket. Two
signals have to be connected in any case; the remaining signals are optional:
1: RESET-Out (necessary)
2: RD (optional)
3: WR (optional)
4: RESET-In (optional)
5: ALE (necessary)

Reset Output (Clips cable 1)
The feeding of a reset signal into the circuit under test is absolutely
necessary to control the processor of the circuit. It is to notice here that
the Reset signal output is not disturbed by the user board. Admissible is
e.g. a voltage monitoring and reset device with an open collector output.
Problems can occur with an electrolytic capacitor parallel to the reset
signal, it must be eliminated during the test phase.
Must be connected!

Write and Read (Clips cables 2,3)
The connections 2 (/RD) and 3 (/WR) are provided for systems with
external data memory. If the signals are connected, accesses to the
external data memory can be defined as break condition and traced in the
real time trace memory. If the /WR-signal is connected via the socket
(jumper /WR), clips cable 3 is not necessary.

Input for external Reset (clips cable 4)
Not supported.

ALE signal (clips cable 5)
Must be connected!

Appendix

Appendix

BicWin short keys A-1

A BicWin short keys

A.1 Function keys

ALT CTRL SHIFT
F1 Help
F2 CPU Reset Reset all Clear trace Macro short key
F3 Search Again Macro short key
F4 Run to Cursor Terminate Close window Macro short key
F5 Go to Go to symbol Macro short key
F6 Next window Previous window
F7 Single step Macro short key
F8 Jump over Call Macro short key
F9 Run Macro short key
F10 Menue Context menue

A.2 ALT-keys
key function type
Alt+A Assembler (window)
Alt+B Break (dialog)
Alt+C Command (window)
Alt+D Debug (menue)
Alt+E Trace (menue)
Alt+F File (menue)
Alt+H Help (menue)
Alt+I IntData (window)
Alt+K Break (menue)
Alt+M Macro (menue)
Alt+N Window (menue)
Alt+O Options (menue)
Alt+P Program (window)
Alt+R Register (Fenster)
Alt+S Sourcetext (window)
Alt+T Trace (window)
Alt+V Views (menue)
Alt+W Watch (menue)
Alt+X ExtData (window)
Alt+Y Memory (menue)
Alt+1 Watch 1 (window)
Alt+2 Watch 2 (window)
Alt+3 Watch 3 (window)
Alt+4 Watch 4 (window)

External Inputs B-1

B External Inputs

Up to 16 external digital inputs (logic probes) are available; the signals are
traced in the real-time trace memory or can be used as break inputs (see
chapter 6 and 7). The inputs have pull-up-resistors.

GND 1 2
3 4

EXT15 5 6 EXT14
EXT13 7 8 EXT12
EXT11 9 10 EXT10
EXT9 11 12 EXT8
EXT7 13 14 EXT6
EXT5 15 16 EXT4
EXT3 17 18 EXT2
EXT1 19 20 EXT0

To connect the external inputs to the target board, the emulator case must be
opened. A 20-pin flat ribbon cable is connected to conncetor X4 on the
BICEPS emulator board.

	1. Introduction
	2. Configurating and Starting of the BICEPS Emulator
	2.1 Start of the BICEPS Emulator
	2.2 Banking
	2.3 Keil µVision integration

	3. Basics of the BICEPS-Emulator
	3.1 Structure of the BICEPS-Emulator
	3.2 An Outline of the Emulation Process

	4. The BicWin User Interface
	4.1 Survey of the Operation Facilities
	4.2 General Information to BicWin
	4.3 Windows and context menues
	4.4 Mouse palette and Status Line

	5. Accessing the Memory
	5.1 Basic Information
	5.2 Saving and loading files
	5.3 Access to the Special Function Registers
	5.4 Access to the Program Memory, to the internal and external Data Memories
	5.5 Output and Change of singel Memory Cells and Registers (Modify)
	5.6 Watched variables
	5.7 Initializing and Copying of Memory blocks
	5.8 Mapping
	5.9 Disassembled representation of the program memory

	6. Break possibilities
	6.1 Basic Information
	6.2 Break mode
	6.3 Definition of Break Events

	7. The Real Time Trace Memory
	7.1 Overview
	7.2 Time Measurements
	7.3 Search function
	7.4 Sourcetext Trace Mode
	7.5 Controlling the real time trace

	8. Program Execution
	8.1 Overview
	8.2 Execution of a program in real time, Reset
	8.3 Execution of single Steps
	8.4 Debugging with the Assembler and Sourcetext window

	9. Sourcetext Debugging
	9.1 Introduction
	9.2 Invoking the Compiler, Loading a Program
	9.3 Program execution
	9.4 Handling of several modules

	10. Options for P0/P2 Emulation
	10.1 The BICEPS Softhooks
	10.2 Compatibility with C51-Compiler
	10.3 Hints for assembler programming
	 table 10.1 bit opcodes
	 table 10.2 Byte opcodes
	 table 10.3 Emulatable opcode sequences

	10.4 Specialities for Winbond Turbo51-Controllers (77Exx)
	10.5 Specialities for Maxim/Dallas and TI MSC1210 controllers
	10.6 Advantages and disadvantages of Softhooks
	10.7 Necessary conditions for BICEPS Softhooks
	10.8 Softhook sample program

	11. BICEPS Debug connector
	11.1 Basic information
	11.2 Application without external bus
	11.3 Application with external bus
	11.4 BICEPS Ice-connect

	12. Processor Adapters (PODs)
	12.1 POD B51 for PLCC44 controllers
	12.2 More processor adapters

	13. External Program Memory connector
	13.1 Memory circuit type
	13.2 Jumper settings
	13.3 Connections via clips cable

	Appendix
	A BicWin short keys
	B External inputs

