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ABSTRACT 

An electrical test vehicle for fabricating direct self-assembly (DSA) sub-30 nm via interconnects has been 
fabricated employing a soft mask grapho-epitaxy contact-hole shrink. The generation of the resist pre-pattern 
was carried out using 193i lithography on three different stacks and the BCP assembly was evaluated with and 
without template affinity control on the resist pre-pattern. After DSA shrink, the holes were transferred in a 100
nm oxide for standard Tungsten metallization for electrical characterization.  

INTRODUCTION

In recent years, block copolymer (BCP) directed self-assembly (DSA) has been widely investigated as a 
potential technique to extend lithography to meet the challenging requirements of future nodes1,2,3. Versatility 
and low cost are the key points that make DSA so attractive when compared to 193i multiple patterning and
extreme ultraviolet lithography (EUVL), which requires further source development. Indeed, with DSA PS-b-
PMMA lithography, holes having sizes as small as 20 nm can be obtained with a single exposure. 

The critical points for a grapho-epitaxy contact-hole shrink DSA process in a template include obtaining a good 
quality resist pre-pattern and realizing proper phase separation of the BCP through the control of the free surface
energy in the template4. Therefore, the study of the pre-pattern formation of the targeted structures on three
stacks is first addressed. As for the BCP phase separation, the effect of template affinity control on the pre-
pattern for free surface energy control is investigated. 

The three layer test vehicle under study is called EVEREST (EV28), a 28 nm planar flow composed of two
metal layers (LI2 and M1) and V0 (figure 1). In the V0 layer the 193i resist pre-pattern is printed and constitutes
the pre-pattern for DSA-BCP shrink.
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This electrical test vehicle for contact-hole shrink has been previously used with a Si blend that allowed for a 60 
to 28 nm shrink5. Using a BCP instead, allows not only contact-hole shrink but also pitch multiplication and CD 
repair6.  

The EV28 test vehicle measures two types of electrical structures: Kelvin (or single resistance measurement) 
and chain structures where 10, 100 and 10000 holes are connected (see figure 1). The evaluation of BCP 
assembly as a function of CD, open hole yield, and template affinity control of the resist pre-pattern is studied in 
the staggered hole array. Specifically, this work focuses on the 55P90-110 staggered holes as shown in figure 1. 

 

Figure 1. EV28 stack and structures under evaluation 

As mentioned above, the surface energy is the key for obtaining good BCP assembly and typically a neutral 
layer is deposited to ensure good orientation of the BCP. With this in mind, aside from the EV28 standard or 
CVD stack, two more stacks are added to the study: the NLD or neutral layer stack and a trilayer stack (figure 2). 
The NLD stack ensures good BCP assembly but it negatively impacts the etch selectivity to open the hole and 
transfer the pattern (note that the neutral layer is a random PS-r-PMMA polymer, thus similar chemistry to the 
BCP). On the contrary, the trilayer stack provides good etch selectivity (spin-on SOG/SOC) and also doubles as 
a neutral layer. In addition, it provides reflectivity control, which is important for the resist pre-pattern definition.  

The CVD stack for the EV28 vehicle comprises a 15 nm Si3N4 etch stop, a dual dielectric layer (100 nm SiO2 + 
100 nm APF), and a 20 nm SiOC hardmask. For the neutral layer stack, a 10nm PS-r-PMMA layer is cast on the 
standard stack. Lastly, the trilayer stack is composed by 20/100nm SOG/SOC on top of 100 nm SiO2 and 15 nm 
Si3N4 etch stop layer. 

 

Figure 2. EV28-V0 DSA-BCP stacks under study 
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The grapho-epitaxy DSA contact shrink flow is depicted in figure 3. First, a 70 nm negative tone developable 
(NTD) photoresist is patterned. A NTD resist is employed because of its enhanced aerial image and capability 
for printing holes. Also, as a negative tone resist is insoluble in most organic solvents, our cylindrical PS-b-
PMMA BCP can be coated without impacting the resist pre-pattern. After litho, a hard-bake step is required to 
crosslink the resist in order to make it resistant to the high annealing temperatures of the BCP (>200°C). For 
BCP assembly the flow is as follows: first the BCP film is cast and annealed. During the phase separation, the 
PS is ideally positioned in the walls of the hole with the PMMA in the core. For this contact-hole shrink process 
we use a wet development process as described elsewhere7. In this wet process there is a combination of DUV 
exposure for PMMA chain scission followed by a solvent rinse that selectively removes the PMMA8. As the 
PMMA is removed, a better etch selectivity is provided for pattern transfer compared to RIE etch resulting in a 
contact-hole CD of approximately 23 nm. Next, etch and strip is performed until the Si3N4 stop layer. Note that 
at this step the holes are open to ∼37 nm (larger CD than after DSA) due to the restrictions of the standard W-
ALD metallization. This is necessary to understand the performance of DSA BCP hole shrink versus the 
standard etch shrink procedure. However, the DSA shrink holes are intended for testing new metallization 
schemes, for instance, NiB electroless9. Last, the holes are filled with W-ALD metallization, planarized, and M1 
is deposited to allow electrical measurements.  

 

Figure 3. EV28-V0 DSA-BCP shrink process flow 

EXPERIMENTAL 

EV28-VA0 pre-patterns were obtained by exposing wafers on an ASML 1950i immersion scanner using 
IMEC’s EVEREST-28 VA0 mask and a custom Flexray illumination setting (NA=1.35, Ɵ=0.776/0.614, XY-
polarized).  An NTD guide resist material (Gen 3) was employed. After exposure it was subjected to a hard bake 
step for 300s at 200°C. 

The CVD stack was treated with a dehydration bake (205°C; 60sec). The contact hole shrink grapho-epitaxial 
process flow was performed on TEL CLEAN TRACK ACT™ 12. It has been found that a 15-19 nm BCP film 
is the optimal thickness for filling the guide pattern. However, for the electrical wafers, 15 nm was found to be 
the optimal for filling the electrical structures. The BCP was coated to a film thickness of approximately 15-19 
nm (as determined for a similarly cast film on bare silicon) and annealed at 240°C for 600 seconds under an N2 
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environment. Next, the wafer was exposed to UV light for degrading the PMMA core of the BCP and it was 
selectively removed with organic solvent. 

Film thickness measurements were made on a KLA-Tencor SCD100 ellipsometer. Overlay measurements for 
the LI2-VA0, VA0-MT1, and LI2-MT1 layers were assessed with using either a KLA-Tencor Archer200 or 
Archer-AIM. CD SEM measurements were performed on a Hitachi CG-4000. All cross-section SEM 
measurements were performed on a Hitachi SU-8000. For FIB analysis, a Helios450HP dual-beam FIB/SEM 
system was employed. All etch studies reported herein were performed on the TEL TactrasTM platform.  

RESULTS AND DISCUSSION 

1-Resist pre-pattern definition 

In this section, the definition of the pre-pattern for our NTD resist in the three targeted DSA structures 
(staggered, Kelvin and Chain) is described.  

 

Figure 4. Resist pre-pattern definition with the resist for the STG and electrical structures 

Figure 4 shows the results for the targeted structures after litho for the three stacks. For a target CD of 60 nm at 
the best dose/ best focus, the staggered contact-hole array shows good results for the three stacks. However, for 
the electrical structures, the CD tends to shift for the CVD and NLD stacks. This is not the case for the trilayer 
which shows similar CD regardless of the dense (staggered), semi dense (chain), and isolated (kelvin) structures. 
Indeed, the exposure latitude versus depth of focus (DOF) plotted in figure 4 shows a superior performance for 
the trilayer stack. Next, hard-bake is performed at 200°C under N2 and a reflow of the resist is observed. The 
CD after hard-bake increases approximately 10 nm during the crosslinking of the resist, therefore, the target CD 
of 60 nm at litho becomes 70 nm after hard-bake. 

2-BCP phase separation and template affinity control of the pre-pattern 

As explained above, during the phase separation, ideally the PS is positioned in the walls of the hole with the 
PMMA in the core. However, PS wetting at the bottom of the hole has been observed7. This section aims to 
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study the effect of template affinity control on the pre-pattern during BCP phase separation. This study is 
focused on the dense staggered hole structures that offer the possibility to evaluate both the BCP assembly and 
the template affinity control. 

The first thing to establish for the grapho-epitaxy BCP assembly is the optimal BCP film thickness (FT). There 
are two boundary conditions to find the optimal FT: first, the film is too thin and the pre-pattern is not properly 
filled, second if it is too thick parallel orientation will be observed as a consequence of polymer overflow. In 
between these two scenarios lies the optimal film thickness which is between 15 and 19 nm for the polymer 
under study.  

For studying the CD influence, a 300 mm wafer having hole pre-patterns with CDs ranging from 80 to 55 nm 
was prepared by changing exposure dose and focus. As depicted in the CDSEM pictures in figure 5(a) and (b), 
the optimum CD pre-pattern for BCP assembly was between 75 and 65 nm after hard bake. At larger CDs the 
holes became elliptical until both parallel and cylindrical orientation was observed. The CD after DSA is 
approximately 23 nm (which translates to a 65% hole shrink). Further observation at higher magnification 
shows the presence of a top ring for the 19 nm and missing holes for 15nm FT. This means that 15 nm FT 
probably belongs to the regime where the polymer is too thin.  

However, even for the optimal 19 nm FT, remaining polymer is observed on top of the resist pre-pattern. The 
next step is the study of the template affinity control. This process is integrated in a specific module in the track 
and allows us to make the surface of the pre-pattern more hydrophilic. The effect of the template affinity control 
is observed in figure 5 (b) and (c) where no PS over ring and no polymer remaining are observed on the pre-
pattern after the pre-treatment. Contact angle measurements of the resist after template affinity control show a 
change from 70 to 40 degrees. Thus, as a result of making the surface more hydrophilic, the PS component of 
the BCP is more prone to diffuse into the hole instead of remaining on the pre-pattern surface. Indeed, further 
XSEM analysis of the 65 nm CD after etch shows that the over ring observed without template affinity control 
creates a closure on top of the hole, while with template affinity control a clean hole is obtained. Although 
figure 5 only depicts the result for the trilayer stack, the same effect has been observed for the three stacks under 
study and no missing holes were observed regardless of the stack after template affinity control as seen in figure 
6. From the top CDSEM is difficult to discern what happens at the bottom of the hole in terms of BCP phase 
separation, but the electrical measurements will determine if the template affinity control also helps the 
segregation of the polymer at the bottom of the hole. 

With this in mind, dose stripe electrical wafers with and without template affinity on the CVD and trilayer 
stacks are going to be studied. As for the NLD stack, only the influence of the NLD is studied (no affinity 
control). In addition to the DSA wafers, control wafers (no DSA) are included in order to evaluate the electrical 
performance of the stack versus the DSA shrink. For these dose/stripe electrical wafers, CDs ranging between 
75 and 60 nm have been targeted. 
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including etch development tailored towards the electrical structures will result in a higher percentage yield of 
electrical dies.  
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