
Introduction

The electronics revolution continues to accelerate at a faster and faster pace.
According to industry estimates by ARM, Gartner, IDC, and SIA, by 2020 we
will connect 8 billion people worldwide, with 6 billion cell phones alone. At
that time, the overall unit chip shipments may reach 48 billion across the
mobile, home consumer, enterprise, and embedded markets—an average of
6 chips per human on earth. At those volumes, it is mandatory that system on
chips (SoCs)—from sensors combined with microcontrollers to complex multi-
core application processors—work correctly within their system environments,
together with the associated software executing on them. This complexity
poses a huge challenge to the electronic design automation (EDA) industry.

While there are certainly differences in other application domains, let’s
consider prototyping in applications for mobile communications as an example
to analyze challenges. When comparing the block diagrams of some of the
enabling SoCs like the Qualcomm MSM8960 Snapdragon S4 processor [1],
the TI OMAP4 platform [2], the NVIDIA Tegra 2 [3], and ST Ericsson’s DB9500
[4], a couple of common characteristics can be derived: all of these devices
have multiple processing cores, 2D/3D graphics engines, video and audio
acceleration engines, complex interconnect, and peripherals to connect to the
environment.

Productivity, Predictability, and Use-Model Versatility:
The Three Key “Care-Abouts” of Choosing Hardware-
Assisted Verification
By Frank Schirrmeister, Cadence Design Systems

Hardware-assisted verification and prototyping has become a mandatory requirement to allow
design teams to gain confidence that a chip tapeout can be initiated. The choice of the right
hardware-accelerated engine is driven by its productivity, predictability, and use-model versatility,
all impacting the key concern of users how to remove bugs. The Cadence® Palladium® XP Platform
allows design teams to get to the point at which they are confident enough to tapeout much
faster, often shaving off two to four months off development cycles.

Contents

Introduction1

Challenges2

System Development Project Flow

and Key Challenges3

Core Execution Engines for

Verification and Software

Development4

Key Users and Development Tasks

Drive Sweet Spots of the Core

Execution Engines5

Productivity, Predictability,

and Use-Model Versatility7

Different Configurations of

Hardware Acceleration and

Simulation9

Conclusion 10

Further Information.................... 11

Hardware/Software Development Challenges

All these different components, shown in Figure 1, have different characteristics as they relate to processing and
throughput needs, which significantly impact the ways they can be prototyped. And as the illustration clearly
shows, the chip hardware and software must be considered within the system they reside in.

LPDDR
DRAM NAND

FLASH

NAND
FLASH

Cellular
Modem

WiFi
LLI

DigRF

LP
DD

R
2

eM
M

C
4.

5
UF

S

LP
DD

R
3

SD
 3

.0
SD

 4
.0

UF
S

SLIMbus

DSI

CSI2
CSI3

Bluetooth

SDIO

FM
Receiver

GPS
Receiver

RF
FE

SL
IM

bu
s

Motion
Sensors

cJTAG

GBT

SP
M

I

Power
Control

Multimedia
Processor

I2C

US
B

2.
0

Memory
Card

HDMI 1.4

Touch Screen
Controller

Display
Driver

Audio
Interface

Camera
Interface

USB 3.0 OTG

OCP 2.0
OCP 3.0

System on PCB

Application -Specific Components

SoC Interconnect Fabric

ARM CPU Subsystem

3D
GFX

DSP
A/V

High -Speed , Wired Interface Peripherals

DDR3

PHY

Other Peripherals

SATA

MIPI

HDMI

WLAN

LTE
Low -speed peripheral

subsystem

Low -Speed Peripherals

PMU

MIPI

JTAG

INTC

I2C

SPI

Timer

GPIO

Display

UART

Apps
Accel

Modem
A15

L2 cache

USB3.0

3.0
PHY

2.0
PHY

PCIe
Gen 2,3

PHY

Ethernet

PHY

A15 A7

L2 cache

A7

Cache Coherent Fabric

System on Chip (SOC)

SoC Interconnect Fabric

ARM CPU Subsystem

3D
GFX

DSP
A/V

High -Speed , Wired Interface Peripherals

DDR3

PHY

Other Peripherals

SATA

MIPI

HDMI

WLAN

LTE
Low -speed peripheral

subsystem

Low -Speed Peripherals

PMU

MIPI

JTAG

INTC

I2C

SPI

Timer

GPIO

Display

UART

Apps
Accel

Modem
A15

L2 cache

USB3.0

3.0
PHY

2.0
PHY

PCIe
Gen 2, Gen3

PHY

Ethernet

PHY

A15 A7

L2 cache

A7

Cache Coherent Fabric

SoC

Software

Applications

Middleware

Operating Systems

Drivers

Firmware/HAL

Communications L3
Communications L2
Communications L1

RTOS
Drivers

Firmware/HALBa
re

-M
et

al

So
ftw

ar
e

Ba
re

-M
et

al

So
ftw

ar
e

DS
P

So
ftw

ar
e

Application-Specific Components

Figure 1: A typical SoC with software in its system context.

Challenges for the chip development itself include:

•	 Multi-core software development and hardware/software verification

•	 SoC software and IP integration with 10s to 100s of IPs

•	 Configuration and verification of the more and more complex growing SoC interconnect that may include
AXI Coherency Extension (ACE) protocols introducing new complexity to verify and verification of complex
performance aspects

•	 Low-power design features spanning hardware/software, which must be verified at the SoC level.

At the system-level, users must bring up software stacks and use them for verification, and must represent the SoC
environment appropriately with the right test scenarios to drive all the test cases to debug all of the hardware and
software effectively. The challenges can be daunting.

www.cadence.com 2

Productivity, Predictability, and Use-Model Versatility

Recognizing the growing importance of software and verification, the electronics industry has accepted the fact
that system development without hardware-assisted prototyping is too risky, and today most companies demand
the use of prototypes prior to silicon tapeout. There are, however, several different types of prototypes—both
software and hardware based—that allow hardware/software integration, verification, and debugging. In addition,
different users within a design team have potentially different needs for prototype capabilities. Just exactly what
type of prototype to choose is not always 100% clear, and the multitude of choices can make it hard for design
teams to find the right combination of prototypes to support their needs.

System Development Project Flow and Key Challenges

Analysts IBS and Semico estimate that by 2015, design teams will need to integrate on average more than 130 IP
blocks, with reuse exceeding 70% of their design. More than 60% of the chip-related development effort will have
moved into software, with multicore designs requiring software to be distributed across cores. Design teams will
face significant low-power issues, and designs will become more and more application specific, with high analog/
mixed-signal content and very complex on-chip interconnect structures.

Figure 2 shows an example chip-design flow with some of the key milestones and dependencies. The lower half
indicates some of the major project steps as averaged from an analysis of 12 projects.

Only Small
Gate-Level

Changes and
ECO’s

RTL
Becomes
Stable

Idea to Spec Production
Post Silicon
Validation

Spec
Post SiNetlist to GDSII

RTL-Design, IP Integration and Verification

FabIP Qualification

M
ay hold final tape out
if bug too critical

Software
development on
SoC in System

More and more software is b
ecoming

 requirement fo
r ta

peout

LPDDR
DRAM NAND

FLASH

NAND
FLASH

Cellular
Modem

WiFi
LLI

DigRF

LP
DD

R
2

eM
M

C
4.

5
UF

S

LP
DD

R
3

SD
 3

.0
SD

 4
.0

UF
S

SLIMbus

DSI

CSI2
CSI3

Bluetooth

SDIO

FM
Receiver

GPS
Receiver

RF
FE

SL
IM

bu
s

Motion
Sensors

cJTAG

GBT

SP
M

I

Power
Control

Multimedia
Processor

I2C

US
B

2.
0

Memory
Card

HDMI 1.4

Touch Screen
Controller

Display
Driver

Audio
Interface

Camera
Interface

USB 3.0 OTG

OCP 2.0
OCP 3.0

System on Printed Circuit Board (PCB)

Application -Specific Components

SoC Interconnect Fabric

ARM CPU Subsystem

3D
GFX

DSP
A/V

High -Speed , Wired Interface Peripherals

DDR3

PHY

Other Peripherals

SATA

MIPI

HDMI

WLAN

LTE
Low -speed peripheral

subsystem

Low -Speed Peripherals

PMU

MIPI

JTAG

INTC

I2C

SPI

Timer

GPIO

Display

UART

Apps
Accel

Modem
A15

L2 cache

USB3.0

3.0
PHY

2.0
PHY

PCIe
Gen 2,3

PHY

Ethernet

PHY

A15 A7

L2 cache

A7

Cache Coherent Fabric

System on Chip (SOC)

SoC Interconnect Fabric

ARM CPU Subsystem

3D
GFX

DSP
A/V

High -Speed , Wired Interface Peripherals

DDR3

PHY

Other Peripherals

SATA

MIPI

HDMI

WLAN

LTE
Low -speed peripheral

subsystem

Low -Speed Peripherals

PMU

MIPI

JTAG

INTC

I2C

SPI

Timer

GPIO

Display

UART

Apps
Accel

Modem
A15

L2 cache

USB3.0

3.0
PHY

2.0
PHY

PCIe
Gen 2,3

PHY

Ethernet

PHY

A15 A7

L2 cache

A7

Cache Coherent Fabric

System on Chip (SOC)

Software

Applications

Middleware

Operating Systems

Drivers

Firmware / HAl

Communications L3
Communications L2
Communications L1

RTOS
Drivers

Firmware / HALBa
re

-M
et

al

So
ftw

ar
e

Ba
re

-M
et

al

So
ftw

ar
e

DS
P

So
ftw

ar
e

Application-Specific Components

)

Data-

, …)

Time for critical bugs in SoC within the
System Environment to be removed

Applications
(Browser, file managers to

games like “Angry Birds”)

IP Blocks
(Peripherals like USB, PCI ,

interconnect, and processors

Sub-System
(ARM big.Little, Tensilica

Plane Processor)

Bare-Metal Software
(Defining functionality of

hardware)

OS and Drivers
(Linux, Android, iOS

SoC

Middleware
(Graphics, audio)

SoC in System

Figure 2: An example chip design flow with key milestones and dependencies.

A specification phase of 8 to 12 weeks is followed by a phase combining register transfer level (RTL) design,
integration, and verification, with a major factor these days being the qualification of IP. The overall duration
from RTL to GDSII at tapeout ranges from 49 to 83 weeks. A key point is that only small gate-level changes and
engineering change orders (ECOs) are allowed in the last 10 to 12 weeks, as the focus of development shifts to
silicon realization. The actual tapeout is followed by an 11 to 17 week production phase and 14 to 18 weeks of
post-silicon validation.

The left axis indicates the hardware/software development stack. The SoC is integrating sub-systems and IP blocks
and then operates within its system environment, i.e., the PCB board and package. Different types of software
execute on the SoC, from bare-metal software that, together with its associated hardware, actually defines
functionality of the chip, to drivers and operating systems (OSs) like Linux, Android, iOS, Windows, or real-time
OSs like OSE or vxWorks. These OSs are hosting middleware for audio, video, graphics, and networking that in turn
enable the end applications that define our end-user experiences.

www.cadence.com 3

Productivity, Predictability, and Use-Model Versatility

A couple of key dependency aspects are also indicated in Figure 2. As RTL matures during the design flow, there
comes a point at which hardware functionality must be frozen as the focus shifts towards silicon implementation,
and only changes at the gate level can be easily implemented. At that point, all the aspects of the chip within its
system environment also must be verified, posing unique challenges to execution platforms for the RTL at that
stage in the project.

The other aspect relates to software development. Usually, the interactions at the hardware/software interfaces
must be validated as early as possible and today proper boot of OSs has become a de-facto requirement to allow
tapeout. Again, this requirement poses unique challenges for the RTL execution engines as a large number of
cycles must be executed to get OSs to boot. While the actual execution will continue during the final phase prior to
tapeout, decisions to hold the tapeout at that point due to software issues must be considered very carefully. Once
the chip is back from production, software development can be finalized using the actual chip prototypes.

Core Execution Engines for Verification and Software Development

During the project phases mentioned earlier, verification and software development is mainly done on four
different core execution engines—“virtual prototypes,” “RTL simulation,” “acceleration and emulation,” and
“FPGA-based prototypes.”

 Virtual prototypes either architectural or software based. Architectural virtual prototypes are mixed-accuracy
models that enable architecture decision making. The items in question—bus latency and contention, memory
delays, etc.—are described in detail, maybe even as small portions of RTL. The rest of the system is abstracted as
it may not exist yet. The main target users are system architects. Architecture virtual platforms are typically not
functionally complete and they abstract environment functionality into traffic driving the architectural model.
Specifically, the interconnect fabric of the previous examples is modeled in full detail, but the analysis is done per
sub-system. Execution speed may vary greatly depending on the amount of timing accuracy, but normally is limited
to 10s to low-100s of KHz.

Software-based virtual prototypes run the actual software binary without re-compilation at speeds close to real
time—50s to 100s of MHz. Target users are software developers, both apps developers and hardware-aware
software developers. Depending on the need of the developer, some timing of the hardware may be more
accurately represented. This prototype can be also used by hardware/software validation engineers who need to
see both hardware and software details. Due to the nature of “just-in-time binary translation,” the code stream of
a given processor can be executed very fast natively on the host. The fast execution makes virtual prototypes great
for software development, but modeling other components of the example systems—like the 3D engines—would
result in significant speed degradation.

RTL simulation executes the same hardware representation that is later fed into logic synthesis and implemen-
tation. This core engine is the main vehicle for hardware verification and it executes in the Hertz range, but it is
fully accurate as the RTL becomes the golden model for implementation, allowing detailed debug.XVerification
acceleration executes a mix of RTL simulation and hardware-assisted verification, with the testbench residing on
the host and the design under test (DUT) executing in hardware. As indicated by the name, the primary use case
is acceleration of simulation. This combination allows engineers to utilize the advanced verification capabilities of
language-based testbenches with a faster DUT that is mapped into the hardware accelerator. Typical speed-ups
over RTL simulation can reach or exceed 1000x but is typically limited to 10s of KHz.

Emulation executes the design using specialized hardware—verification computing platforms—into which the RTL
is mapped automatically and for which the hardware debug is as capable as in RTL simulation. Interfaces to the
outside world (Ethernet, USB, and so on) can be made using rate adapters. In-circuit emulation (ICE) takes the full
design and maps it into the verification computing platform, allowing much higher speed-up into the MHz range,
and enabling hardware/software co-development. While ICE typically does not consider testbenches but instead
executes the design within its system environment, in-between verification acceleration and in-circuit emulation, so
called synthesizable or embedded testbenches (STBs, ETBs) are mapping both the test environment and the design
itself into the verification computing platform, allowing faster execution than verification acceleration itself.

FPGA-based prototyping uses an array of FPGAs into which the design is mapped directly. Due to the need to
partition the design, re-map it to a different implementation technology, and re-verify that the result is still
exactly what the incoming RTL represented, the re-targeting and bring-up of an FPGA-based prototype can be
cumbersome and take months (as opposed to hours or minutes in emulation) and hardware debug is a difficult
process. In exchange, speeds will go into the 10s of MHz range, making software development a realistic use case.

www.cadence.com 4

Productivity, Predictability, and Use-Model Versatility

Figure 3 illustrates the key upsides and downsides of the four core engines together with two additional flanking
engines, software development kits (SDKs) in the front, and the actual silicon-based prototype after the four
core engines.

SDKs typically do not run the actual software binary but require re-compilation of the software. The main target
users are application software developers who do not need to look into hardware details. SDKs offer the best
speed but lack accuracy. The software executing on the processors, as in the SoC examples given earlier, runs
natively on the host first or executes on abstraction layers like Java. Complex computation, as used in graphics and
video engines, is abstracted using high-level APIs that map those functions to the capabilities of the development
workstation.

Silicon-based prototypes come in two incarnations. First, like the SDK in the pre-RTL case, the chip from the last
project can still be used, especially for apps development. However, the latest features of the development for the
new chip are not available until the appropriate drivers, OS ports, and middleware become available. Second, there
is the actual silicon prototype once the chip is back from fabrication. Now users can run at real speeds, with all
connections, but debug becomes harder as execution control is not trivial. At that level, the execution is also hard
to control. Starting, stopping, and pausing execution at specific breakpoints is not as easy as in software-based
execution, FPGA-based prototyping, and acceleration and emulation.

• Highest speed

• Earliest in the
flow

• Ignore
hardware

SDK OS Sim

• Almost at
speed

• Less accurate
(or slower)

• Before RTL

• Great to debug
(but less detail)

• Easy
replication

Virtual
Platform

• KHz range

• Accurate

• Excellent
hardware
debug

• Little software
execution

RTL
Simulation

• MHz range

• RTL accurate

• After RTL is
available

• Good to debug
with full detail

• Expensive to
replicate

Acceleration
Emulation

• 10s of MHz

• RTL accurate

• After stable RTL
is available

• OK to debug

• More expensive
than software
to replicate

FPGA
Prototype

• Real-time
speed

• Fully accurate

• Post silicon

• Difficult to
debug

• Sometimes
hard to
replicate

Prototyping
Board

Figure 3: Key characteristics of hardware/software development engines.

Key Users and Development Tasks Drive Sweet Spots of the Core Execution Engines

Let’s compare the main users, use models, and care-abouts that can be satisfied by the different characteristics of
core execution engines.

Application software developers need a representation of the hardware as early as possible. It must execute as fast
as possible and must be functionally accurate. This type of software developer would like to be as independent
from the hardware as possible, and specifically does not need full timing detail. For example, detailed memory
latency and bus delays are usually not of concern.

Similarly, hardware-aware software developers, i.e., developers of low-level software like firmware, also would
like representations of the hardware to be available as early as possible. However, they must see the details of the
register interfaces and they expect the prototype to look exactly like the target hardware will look. Depending on
their task, timing information may be required. In exchange, this type of developer is likely to compromise on speed
to gain the appropriate accuracy.

System architects care about early availability of the prototype, as they must make decisions even before all the
characteristics of the hardware are defined. They must be able to trade off hardware versus software and make
decisions about resource usage. For them, the actual functionality counts less than some of the details. For
example, functionality can be abstracted into representations of the traffic it creates, but for items like the inter-
connect fabric and the memory architecture, very accurate models are desirable. In exchange, this type of user is
willing to compromise on speed and does not typically require complete functionality as the decisions are often
made at a sub-system level.

www.cadence.com 5

Productivity, Predictability, and Use-Model Versatility

Hardware verification engineers typically do need precise timing accuracy of the hardware, at least on a clock
cycle basis for the digital domain. Depending on the scope of their verification assignment, they must be able to
model the impact of software as it interacts with the hardware. Accuracy definitely trumps speed, but the faster
the prototype executes, the better the verification efficiency. This type of user also cares about being able to reuse
testbenches once they have been developed.

Hardware/software validation engineers make sure the integration of hardware and software works as specified,
and they need a balance of speed and accuracy to execute tests of significant length to pinpoint defects if they
occur. This type of user especially must be able to connect to the environment of the chip and system to verify
functionality in the system context.

The resulting key tasks to be performed by those users during the development include:

•	 System modeling and tradeoffs

•	 Early software development

•	 IP selection and design verification

•	 SoC and sub-system verification

•	 Gate-level timing and power signoff

•	 Hardware/software validation for SoC and bare-metal software

•	 Software integration and QA

•	 System and silicon validation

Figure 4 outlines the different engine sweet spots as an overlay on the main user tasks.

Applications
(Browser, file managers to

games like “Angry Birds”)

IP Blocks
(Peripherals like USB, PCI ,

interconnect, and processors)

Sub-System
(ARM big.Little, Tensilica Data-

Plane Processor)

Bare-Metal Software
(Defining functionality of

hardware)

OS and Drivers
(Linux, Android, iOS, …)

SoC

Middleware
(Graphics, audio)

SoC in System

SoC and Sub-System
Verification

Hardware/Software
Validation:
SoC with

Bare Metal

IP Selection and
Design Verification

System
 M

odeling
and Tradeoffs

G
ate-Level Tim

ing
and Pow

er Signoff

Spec
Post SiNetlist to GDSII FabIP Qualification

RTL-Design, IP Integration and Verification

Early Software
Development

Software Integration
and QA

System and
Silicon

Validation

RTL Simulation

Chip

Acceleration

Emulation FPGA-Based
Prototyping

Emulation/Virtual Prototyping Hybrid

Virtual
Prototyping

Figure 4: Sweet spots for execution engines to run verification and software development.

As indicated earlier, depending on whether models are available, virtual prototyping can enable software devel-
opment as early as a couple of weeks after the spec is available. It is fast, allows good software debug insight
and execution control, and is typically the quickest way to bring up software on a new design. By itself, it does
not allow detailed hardware debug, which is the strength of RTL simulation. Used initially for RTL development, IP
integration, and design verification, RTL simulation can extend to the complexity of sub-systems and certainly is a
sign-off criterion for gate-level simulation and timing sign-off. It allows the fastest turnaround time for new RTL
and offers excellent hardware debug, but is typically too slow to execute meaningful amounts of software.

www.cadence.com 6

Productivity, Predictability, and Use-Model Versatility

To better extend to sub-systems and the full SoC, simulation acceleration moves the DUT into hardware and can
allow enough speedup for bare-metal software development. With its in-circuit capabilities, emulation extends
the verification to the full chip and chip-in-system level by enabling connections to real system environments like
PCI, USB, and Ethernet. The main advantage of processor-based emulation is fast turnaround time for bring-up,
which makes it ideal for the project phase in which RTL is not quite yet mature. In addition, it allows multi-user
access and excellent hardware debug insight in the context of real software that can be executed at MHz speeds,
resulting in very efficient hardware/software debug cycles. Standard software debuggers can be attached using
JTAG adaptors or virtual connections. FPGA-based emulators are typically weaker with respect to debug efficiency
and turnaround time.

FPGA-based prototyping allows the extension of the speed range into the 10s of MHz range and often offers the
best cost per gate per MHz for software development and hardware regressions. In the project phase, the RTL is
stable enough that fast turnaround time and hardware debug matter less. The downside to standard FPGA-based
prototyping is the capacity limitations as well as longer bring-up due to the changes that must be made to map the
RTL to FPGAs.

Productivity, Predictability, and Use-Model Versatility

To summarize, the key issues to consider when choosing a development platform fall into three main categories:
productivity, preditability, and use-model versatility

Productivity

Productivity is a more general aspect not limited to execution speed. It includes other aspects like emulation
capacity, debug visibility, the number of users that can use the emulator in parallel, available memory capacity, and
bring-up time. Features like debug trace depth and the number of parallel possible users can mean that an offering
with a buffer not big enough or that is accessible only by 1/16th of the users must run multiple times to get the
same amount of debug information, very quickly eliminating any alleged advantages in power consumption as they
must run multiple times to yield the same results, which also takes much longer. Specifically, our user feedback
shows that the key care-about is the ability to remove bugs as fast and efficiently as possible, getting the design to
a point that the confidence for its correctness is high enough that tapeout can take place. It all boils down to the
loop of: (1) design bring-up, (2) execution of test, (3) efficient debug, (4) bug fix, and back to (1) to confirm that
the bug has indeed been removed. To enable best-in-class productivity, the following care-abouts influence the
user’s choice:

•	 Speed—How fast does the execution engine execute? Previous-generation chips and actual samples are
executing at actual target speed. Software virtual prototypes without timing annotation are next in line,
followed by FPGA-based prototypes and in-circuit emulation and acceleration. Speed is often seen as the main
concern, but it must be balanced with accuracy, bring-up efforts, and debug insight.

•	 Accuracy—How detailed is the hardware that is represented compared to the actual implementation? Software
virtual prototypes based on transaction-level models (TLMs), with their register accuracy, are sufficient for
a number of software development tasks including driver development. However, with significant timing
annotation, speed slows down so much that RTL in hardware-based prototypes often is actually faster.

•	 Capacity—How big can the executed design be? Here the different hardware-based execution engines
differ greatly. Emulation is available in standard configurations of up to multiple billion gates, and standard
products for FPGA-based prototyping are in the range of up to about 100 million gates, but often suffer speed
degradation with larger designs when multiple boards are connected to enable higher capacity. Software-based
techniques for RTL simulation and virtual prototypes are only limited by the memory capabilities of the executing
host. Hybrid connections to software-based virtual platforms allow additional capacity extensions.

•	 Development cost and bring-up time—How much effort must be spent to build the execution engine on
top of the traditional development flow? Virtual prototypes are still expensive because they are not yet part of
the standard flow and often TLM models must be developed. Emulation is well understood and bring-up is very
predictable, in the order of days/weeks. FPGA-based prototyping from scratch is still a much bigger effort, often
taking several months. Significant acceleration is possible when the software front-end of emulation can be
shared.

www.cadence.com 7

Productivity, Predictability, and Use-Model Versatility

•	 Software debug, hardware debug, and execution control—How easily can software debuggers be
attached for hardware/software analysis and how easily can the execution be controlled? Debugger attachment
to software-based techniques is straightforward using standard interfaces, and execution control is excellent
as simulation can be controlled easily. However, the lack of speed in RTL simulation makes software debug
feasible only for very low-level software. For hardware debug, the different hardware-based engines again vary
greatly―hardware debug in emulation is very powerful and comparable to RTL simulation, while in FPGA-based
prototyping it is very limited. Hardware insight into software-based techniques is great, but the lack of accuracy
in TLMs limits what can be observed. With respect to execution control, software-based execution allows users
to efficiently start and stop the design, and users can selectively run only a subset of processors enabling unique
multi-core debug capabilities.

•	 System connections—How can the system environment be included? In hardware execution engines, rate
adapters enable speed conversions and a large number of connections are available as standard add-ons. RTL
simulation is typically too slow to connect to the actual environment. TLM-based virtual prototypes execute fast
enough and have virtual I/O to connect to real-world interfaces like USB, Ethernet, and PCI, which has become a
standard feature of commercial virtual prototyping environments.

Predictability

Predictability is important and relates to the partitioning aspects and compile-time required. Processor-based
emulation is very predictable with a compiler, while FPGA-based prototyping and FPGA-based emulation have
challenges due to complex FPGA routing and interconnect issues.

•	 Development cost and bring-up time—From a development cost and bring-up time perspective, the key
question is how much effort must be spent to build the execution engine on top of the traditional development
flow? Here virtual prototypes are still expensive because they are not yet part of the standard flow and often
TLM models must be developed. Emulation is well understood and bring-up is very predictable, in the order
of weeks. FPGA-based prototyping from scratch is still a much bigger effort, often taking several months.
Significant acceleration is possible when the software front-end of emulation can be shared.

•	 Time of availability during a project—When can I get the development engine after project start? Software
virtual prototypes win here as the loosely timed TLM development effort is much lower than RTL development.
When models are not easily available, then hybrid execution with a hardware-based engine alleviates
re-modeling concerns for legacy IP that does not exist yet as a TLM. This is why hybrid use models with both
acceleration and emulation and FPGA-based prototyping have gained popularity in the last couple of years.

Versatility

Versatility relates to the tasks that can be executed with hardware-assisted verification, which includes the choice
of target designs (SoCs and CPUs), APIs to RTL and TLM simulation, availability of transactors and rate adaptors
to connect to real-world interfaces, support for advanced verification-like coverage support, and native support
for verification languages. In addition, hardware-assisted verification includes support for acceleration use models
(transaction based, signal based, in-circuit acceleration, and gate-level acceleration), low-power verification, and
emulation use models (in-circuit, synthesizable testbenches, dynamic power analysis, and hardware/software
co-verification).

The three traditional use models for in-circuit emulation and verification acceleration are:

•	 Functional verification

•	 Performance validation

•	 System emulation, including software development/validation for drivers, OS bring-up, and middleware

There are less conventional, but no-less-proven use models available:

•	 Regression runs

•	 Post-silicon debug

•	 Test pattern preparation

•	 Failure reproduction and analysis

www.cadence.com 8

Productivity, Predictability, and Use-Model Versatility

•	 Virtual silicon support making the “chip-to be” available to customers for early access

Two use models are very unique to the Cadence Palladium XP Platform due to its processor-based architecture and
truly make Palladium’s versatility unmatched by alternative FPGA-based emulators:

•	 Gate-level acceleration—Something FPGA-based emulators cannot support due to the explosion in complexity
in re-mapping the target technology to FPGA gates

•	 Dynamic low-power analysis—Power has become a crucial issue for most application. Can users run power
analysis on the execution engine? How accurate is the power analysis? With accurate switching information at
the RTL level, power consumption can be analyzed fairly accurately. Emulation adds the appropriate speed to
execute long-enough sequences to understand the impact of software. At the TLM level, annotation of power
information allows early power-aware software development, but the results are not nearly as accurate as at the
RTL level.

All these care-abouts within the three basic categories of productivity, predictability and use-model versatility then
must be compared to the actual cost, the cost of both replicating and operating the execution engine (not counting
the bring-up cost and time). Pricing for RTL simulation has been under competitive pressure and is well understood.
TLM execution is in a similar price range, but the hardware-based techniques of emulation and FPGA-based proto-
typing require more significant capital investment.

Different Configurations of Hardware Acceleration and Simulation

As the description above clearly shows, there is no one-size-fits-all engine. Users must carefully select the right
engine for the task at hand. Not surprisingly, the engines are used more and more in hybrid combinations to
make use of the combined advantages. For example, combinations between virtual prototypes and emulation can
speed-up the OS bring-up significantly, and in exchange, enabling designers to get to tests intended for software-
driven verification much faster.

System Development Suite

TB/RTL

TLM / RTL

TLM / RTL

TLM/RTL RTL/RTL

Virtual
Prototype

RTL
Simulation

Hardware
Emulation

FPGA
Prototype

Virtual Platform + Emulation Hybrid

Workstation

TLM

Virtual with RTL

Workstation

TLM

Palladium XP

RTL
Design

RTL
Design

Virtual Platform + FPGA Hybrid

Emulation + FPGA Hybrid Flows

FPGA Prototype Palladium XP

RTL
Design

RTL
Design

FPGA-Based Prototyping

FPGA Prototype

RTL
Design

Acceleration

Workstation

RTL
TB

Palladium XP

RTL
Design

Workstation

TLM

FPGA Prototype

RTL
Design

Simulation

Workstation

TB
RTL

Design

Emulation

Palladium XP

RTL
Design

Palladium XP

TB RTL
Design

Figure 5: Configurations of execution engines extend to hybrid-use models.

www.cadence.com 9

Productivity, Predictability, and Use-Model Versatility

As the different execution engines grow closer together, efficient transfer of designs from engine to engine with
efficient verification reuse as well as hybrid execution of engines will gain further importance. Figure 5 shows some
of the combinations possible today and a couple of reference examples can be found in [5].

Starting with RTL simulation in Figure 5 and going counter-clockwise, the different configurations can be summa-
rized as follows:

•	 RTL simulation is primarily used for IP and sub-system verification and extends to full chip and gate-level sign-off
simulation. Given the need for accuracy for analysis of interconnect, it is also used as engine performance
analysis. It runs in the Hz to KHz range

•	 Emulation is used for in-circuit emulation in which the full design is run in the emulator and connected to its
actual system environment using rate-adaptors called Speed bridges to adjust for speed. Emulation is also used
with synthesizable test-benches representing either actual tests for the hardware or representing the peripherals
of the system environment mapped into the emulator as embedded test-bench. Emulation runs in the MHz range
and is primarily used for hardware verification, early software development, OS and above software bring-up,
and system validation on accurate, still maturing, and no-stable RTL.

•	 FPGA-based prototyping typically runs in the 10s of MHz range, which makes it suitable for software
development with the design mapped into the prototype and software debugging using JTAG-attached software
debuggers. The higher execution speed allows FPGA-based prototypes to directly interface to the system
environment of the design. Given the longer time required to re-map the hardware into FPGAs, it is not used
that much for hardware verification, given the emergence of automated front-end flows that can be shared
between emulation and FPGA-based prototyping (like with the Cadence Palladium XP Series and Cadence RPP).
FPGA-based prototypes find additional use as an adjacency for emulation to run hardware regressions. Its sweet
spot is lower cost and faster pre-silicon software development and regressions and subsystem validation on
mature and stable hardware with real-world interfaces.

•	 Emulation and FPGA-based prototypes can be combined, with the less mature portion of the RTL being used in
the emulator utilizing the fast bring-up and re-used IP together with the already stable RTL in the FPGA-based
prototype enjoying the higher speed range.

•	 Acceleration is the combination of RTL simulation and emulation, keeping the test-bench in RTL simulation
on the host, enabling advanced debug and non-synthesizable test bench usage in combination with a higher
speed for the DUT in emulation. Acceleration, as the other hybrids of hardware acceleration with simulation, is
enabled using transactors as part of an Accelerated Verification IP (AVIP) portfolio. Acceleration is measured in
speed differential to pure RTL simulation and users typically see between 25X and 1000X speed improvement,
depending on their design.

•	 Virtual prototypes using TLMs find their sweet spot in pre-RTL software development and system validation.
Together with RTL simulation, enabled by connections through AVIP, they can be used for driver verification
with accurate peripherals represented in RTL. Typical speeds depend on the RTL/TLM partitioning, but can reach
speeds of 10s of KHz or even faster if most of the design runs as TLM in the virtual prototype.

•	 Hybrids of virtual prototypes and emulation enable OS and above software bring-up as well as software-driven
verification on accurate, still maturing, and non-stable RTL. Primary motivation is speed-up, which is measured as
the differential of pure emulation and users typically see up to 60X speed improvement for OS bring-up and up
to 10X speed-up for software-driven verification executing on top of an OS that is booted.

•	 Hybrids of virtual and FPGA-based prototypes are used for lower cost and faster pre-silicon software
development and regressions and subsystem validation on mature and stable hardware. In contrast to hybrids
with emulation, the primary motivation here is not speed but a better balance of capacity, which often poses
a limitation to FPGA-based systems. Moving significant portions, such as a processor sub-system into a virtual
prototype at the transaction-level, can save significant capacity and allow the overall design to fit into a hybrid of
virtual prototype and FPGA-based prototypes.

Conclusion

As shown above, a specific return on investment of the different verification engines is hard to calculate, but as
indicated earlier, the risk of a fatal bug slipping into final silicon has simply become unmanageable as the cost per
bug simply bears too much risk. As a result, users require to run more and more verification cycles and make issues

www.cadence.com 10

Productivity, Predictability, and Use-Model Versatility

like low-power optimization and software bring-up of OSs like Android, iOS, and Linux a gating requirement for
tapeout. Hardware-assisted verification and prototyping has become a mandatory requirement to allow design
teams to gain confidence that a chip tapeout can be initiated.

The choice of the right hardware-accelerated engine is driven by its productivity, predictability, and use-model
versatility, all impacting the key concern of users how to remove bugs. In a typical bug removal cycle, users first
compile the design into the accelerator, then execute it until a bug has been identified, debug the root-cause issues
for the bug, fix it and then start from the beginning again. The Palladium XP Platform’s best-in-class compile time,
execution speed, software debug, hardware debug trace depth, and data transfer speed allow about 2.5X faster
bug finding than with the closest competitor, allowing design teams to get to the point at which they are confident
enough to tapeout much faster, often shaving of two to four months off development cycles.

Further Information

1. Qualcomm white paper—“Snapdragon S4 Processors: System on Chip Solutions for a New Mobile Age”:
www.qualcomm.com/media/documents/files/snapdragon-s4-processors-system-on-chip-solutions-for-a-new-
mobile-age.pdf

2. Texas Instruments—OMAP 5 Processors: www.ti.com/lsds/ti/omap-applications-processors/omap-5-processors-
products.page

3. AnandTech—“NVIDIA Introduces Dual Cortex-A9-Based Tegra 2,” by Anand Lal Shimpi, 7 January 2010:
www.anandtech.com/show/2911

4. AnandTech—“ST-Ericsson Announces Inclusion in Future Nokia Windows Phones,” by Brian Klug, 2 November
2011: www.anandtech.com/show/5038/stericsson-announces-inclusion-in-future-windows-phones

5. “System to Silicon Verification—CDNLive Gives a Reality Check on How Hardware and Software Meet”:
www.cadence.com/Community/blogs/sd/archive/2013/03/08/system-to-silicon-verification-a-reality-check-on-
how-hardware-and-software-meet.aspx?postID=1321185

Cadence Design Systems enables global electronic design innovation and plays an essential role in the
creation of today’s electronics. Customers use Cadence software, hardware, IP, and expertise to design
and verify today’s mobile, cloud and connectivity applications. www.cadence.com www.cadence.com

© 2013 Cadence Design Systems, Inc. All rights reserved. Cadence, the Cadence logo, and Palladium are registered trademarks of Cadence Design
Systems, Inc. 1362 09/13 SA/DM/PDF

Productivity, Predictability, and Use-Model Versatility

http://www.qualcomm.com/media/documents/files/snapdragon-s4-processors-system-on-chip-solutions-for-a-new-mobile-age.pdf
http://www.qualcomm.com/media/documents/files/snapdragon-s4-processors-system-on-chip-solutions-for-a-new-mobile-age.pdf
http://www.ti.com/lsds/ti/omap-applications-processors/omap-5-processors-products.page
http://www.ti.com/lsds/ti/omap-applications-processors/omap-5-processors-products.page
http://www.anandtech.com/show/2911
http://www.anandtech.com/show/5038/stericsson-announces-inclusion-in-future-windows-phones
http://www.cadence.com/Community/blogs/sd/archive/2013/03/08/system-to-silicon-verification-a-reality-check-on-how-hardware-and-software-meet.aspx?postID=1321185
http://www.cadence.com/Community/blogs/sd/archive/2013/03/08/system-to-silicon-verification-a-reality-check-on-how-hardware-and-software-meet.aspx?postID=1321185

