
Introduction

The electronics revolution continues to accelerate at a faster and faster pace. 
According to industry estimates by ARM, Gartner, IDC, and SIA, by 2020 we 
will connect 8 billion people worldwide, with 6 billion cell phones alone. At 
that time, the overall unit chip shipments may reach 48 billion across the 
mobile, home consumer, enterprise, and embedded markets—an average of 
6 chips per human on earth. At those volumes, it is mandatory that system on 
chips (SoCs)—from sensors combined with microcontrollers to complex multi-
core application processors—work correctly within their system environments, 
together with the associated software executing on them. This complexity 
poses a huge challenge to the electronic design automation (EDA) industry.

While there are certainly differences in other application domains, let’s 
consider prototyping in applications for mobile communications as an example 
to analyze challenges. When comparing the block diagrams of some of the 
enabling SoCs like the Qualcomm MSM8960 Snapdragon S4 processor [1], 
the TI OMAP4 platform [2], the NVIDIA Tegra 2 [3], and ST Ericsson’s DB9500 
[4], a couple of common characteristics can be derived: all of these devices 
have multiple processing cores, 2D/3D graphics engines, video and audio 
acceleration engines, complex interconnect, and peripherals to connect to the 
environment. 

Productivity, Predictability, and Use-Model Versatility: 
The Three Key “Care-Abouts” of Choosing Hardware-
Assisted Verification
By Frank Schirrmeister, Cadence Design Systems

Hardware-assisted verification and prototyping has become a mandatory requirement to allow 
design teams to gain confidence that a chip tapeout can be initiated. The choice of the right 
hardware-accelerated engine is driven by its productivity, predictability, and use-model versatility, 
all impacting the key concern of users how to remove bugs. The Cadence® Palladium® XP Platform 
allows design teams to get to the point at which they are confident enough to tapeout much 
faster, often shaving off two to four months off development cycles.
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Hardware/Software Development Challenges

All these different components, shown in Figure 1, have different characteristics as they relate to processing and 
throughput needs, which significantly impact the ways they can be prototyped. And as the illustration clearly 
shows, the chip hardware and software must be considered within the system they reside in.
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Figure 1: A typical SoC with software in its system context.

Challenges for the chip development itself include:

•	 Multi-core software development and hardware/software verification

•	 SoC software and IP integration with 10s to 100s of IPs

•	 Configuration and verification of the more and more complex growing SoC interconnect that may include 
AXI Coherency Extension (ACE) protocols introducing new complexity to verify and verification of complex 
performance aspects

•	 Low-power design features spanning hardware/software, which must be verified at the SoC level. 

At the system-level, users must bring up software stacks and use them for verification, and must represent the SoC 
environment appropriately with the right test scenarios to drive all the test cases to debug all of the hardware and 
software effectively. The challenges can be daunting.

www.cadence.com 2

Productivity, Predictability, and Use-Model Versatility



Recognizing the growing importance of software and verification, the electronics industry has accepted the fact 
that system development without hardware-assisted prototyping is too risky, and today most companies demand 
the use of prototypes prior to silicon tapeout. There are, however, several different types of prototypes—both 
software and hardware based—that allow hardware/software integration, verification, and debugging. In addition, 
different users within a design team have potentially different needs for prototype capabilities. Just exactly what 
type of prototype to choose is not always 100% clear, and the multitude of choices can make it hard for design 
teams to find the right combination of prototypes to support their needs.

System Development Project Flow and Key Challenges

Analysts IBS and Semico estimate that by 2015, design teams will need to integrate on average more than 130 IP 
blocks, with reuse exceeding 70% of their design. More than 60% of the chip-related development effort will have 
moved into software, with multicore designs requiring software to be distributed across cores. Design teams will 
face significant low-power issues, and designs will become more and more application specific, with high analog/
mixed-signal content and very complex on-chip interconnect structures.

Figure 2 shows an example chip-design flow with some of the key milestones and dependencies. The lower half 
indicates some of the major project steps as averaged from an analysis of 12 projects. 
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Figure 2: An example chip design flow with key milestones and dependencies.

A specification phase of 8 to 12 weeks is followed by a phase combining register transfer level (RTL) design, 
integration, and verification, with a major factor these days being the qualification of IP. The overall duration 
from RTL to GDSII at tapeout ranges from 49 to 83 weeks. A key point is that only small gate-level changes and 
engineering change orders (ECOs) are allowed in the last 10 to 12 weeks, as the focus of development shifts to 
silicon realization. The actual tapeout is followed by an 11 to 17 week production phase and 14 to 18 weeks of 
post-silicon validation.

The left axis indicates the hardware/software development stack. The SoC is integrating sub-systems and IP blocks 
and then operates within its system environment, i.e., the PCB board and package. Different types of software 
execute on the SoC, from bare-metal software that, together with its associated hardware, actually defines 
functionality of the chip, to drivers and operating systems (OSs) like Linux, Android, iOS, Windows, or real-time 
OSs like OSE or vxWorks. These OSs are hosting middleware for audio, video, graphics, and networking that in turn 
enable the end applications that define our end-user experiences.
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A couple of key dependency aspects are also indicated in Figure 2. As RTL matures during the design flow, there 
comes a point at which hardware functionality must be frozen as the focus shifts towards silicon implementation, 
and only changes at the gate level can be easily implemented. At that point, all the aspects of the chip within its 
system environment also must be verified, posing unique challenges to execution platforms for the RTL at that 
stage in the project. 

The other aspect relates to software development. Usually, the interactions at the hardware/software interfaces 
must be validated as early as possible and today proper boot of OSs has become a de-facto requirement to allow 
tapeout. Again, this requirement poses unique challenges for the RTL execution engines as a large number of 
cycles must be executed to get OSs to boot. While the actual execution will continue during the final phase prior to 
tapeout, decisions to hold the tapeout at that point due to software issues must be considered very carefully. Once 
the chip is back from production, software development can be finalized using the actual chip prototypes.

Core Execution Engines for Verification and Software Development

During the project phases mentioned earlier, verification and software development is mainly done on four 
different core execution engines—“virtual prototypes,” “RTL simulation,” “acceleration and emulation,” and 
“FPGA-based prototypes.”

 Virtual prototypes either architectural or software based. Architectural virtual prototypes are mixed-accuracy 
models that enable architecture decision making. The items in question—bus latency and contention, memory 
delays, etc.—are described in detail, maybe even as small portions of RTL. The rest of the system is abstracted as 
it may not exist yet. The main target users are system architects. Architecture virtual platforms are typically not 
functionally complete and they abstract environment functionality into traffic driving the architectural model. 
Specifically, the interconnect fabric of the previous examples is modeled in full detail, but the analysis is done per 
sub-system. Execution speed may vary greatly depending on the amount of timing accuracy, but normally is limited 
to 10s to low-100s of KHz. 

Software-based virtual prototypes run the actual software binary without re-compilation at speeds close to real 
time—50s to 100s of MHz. Target users are software developers, both apps developers and hardware-aware 
software developers. Depending on the need of the developer, some timing of the hardware may be more 
accurately represented. This prototype can be also used by hardware/software validation engineers who need to 
see both hardware and software details. Due to the nature of “just-in-time binary translation,” the code stream of 
a given processor can be executed very fast natively on the host. The fast execution makes virtual prototypes great 
for software development, but modeling other components of the example systems—like the 3D engines—would 
result in significant speed degradation.

RTL simulation executes the same hardware representation that is later fed into logic synthesis and implemen-
tation. This core engine is the main vehicle for hardware verification and it executes in the Hertz range, but it is 
fully accurate as the RTL becomes the golden model for implementation, allowing detailed debug.XVerification 
acceleration executes a mix of RTL simulation and hardware-assisted verification, with the testbench residing on 
the host and the design under test (DUT) executing in hardware. As indicated by the name, the primary use case 
is acceleration of simulation. This combination allows engineers to utilize the advanced verification capabilities of 
language-based testbenches with a faster DUT that is mapped into the hardware accelerator. Typical speed-ups 
over RTL simulation can reach or exceed 1000x but is typically limited to 10s of KHz.

Emulation executes the design using specialized hardware—verification computing platforms—into which the RTL 
is mapped automatically and for which the hardware debug is as capable as in RTL simulation. Interfaces to the 
outside world (Ethernet, USB, and so on) can be made using rate adapters. In-circuit emulation (ICE) takes the full 
design and maps it into the verification computing platform, allowing much higher speed-up into the MHz range, 
and enabling hardware/software co-development. While ICE typically does not consider testbenches but instead 
executes the design within its system environment, in-between verification acceleration and in-circuit emulation, so 
called synthesizable or embedded testbenches (STBs, ETBs) are mapping both the test environment and the design 
itself into the verification computing platform, allowing faster execution than verification acceleration itself.

FPGA-based prototyping uses an array of FPGAs into which the design is mapped directly. Due to the need to 
partition the design, re-map it to a different implementation technology, and re-verify that the result is still 
exactly what the incoming RTL represented, the re-targeting and bring-up of an FPGA-based prototype can be 
cumbersome and take months (as opposed to hours or minutes in emulation) and hardware debug is a difficult 
process. In exchange, speeds will go into the 10s of MHz range, making software development a realistic use case.
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Figure 3 illustrates the key upsides and downsides of the four core engines together with two additional flanking 
engines, software development kits (SDKs) in the front, and the actual silicon-based prototype after the four 
core engines.

SDKs typically do not run the actual software binary but require re-compilation of the software. The main target 
users are application software developers who do not need to look into hardware details. SDKs offer the best 
speed but lack accuracy. The software executing on the processors, as in the SoC examples given earlier, runs 
natively on the host first or executes on abstraction layers like Java. Complex computation, as used in graphics and 
video engines, is abstracted using high-level APIs that map those functions to the capabilities of the development 
workstation.

Silicon-based prototypes come in two incarnations. First, like the SDK in the pre-RTL case, the chip from the last 
project can still be used, especially for apps development. However, the latest features of the development for the 
new chip are not available until the appropriate drivers, OS ports, and middleware become available. Second, there 
is the actual silicon prototype once the chip is back from fabrication. Now users can run at real speeds, with all 
connections, but debug becomes harder as execution control is not trivial. At that level, the execution is also hard 
to control. Starting, stopping, and pausing execution at specific breakpoints is not as easy as in software-based 
execution, FPGA-based prototyping, and acceleration and emulation.
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Figure 3: Key characteristics of hardware/software development engines.

Key Users and Development Tasks Drive Sweet Spots of the Core Execution Engines

Let’s compare the main users, use models, and care-abouts that can be satisfied by the different characteristics of 
core execution engines.

Application software developers need a representation of the hardware as early as possible. It must execute as fast 
as possible and must be functionally accurate. This type of software developer would like to be as independent 
from the hardware as possible, and specifically does not need full timing detail. For example, detailed memory 
latency and bus delays are usually not of concern. 

Similarly, hardware-aware software developers, i.e., developers of low-level software like firmware, also would 
like representations of the hardware to be available as early as possible. However, they must see the details of the 
register interfaces and they expect the prototype to look exactly like the target hardware will look. Depending on 
their task, timing information may be required. In exchange, this type of developer is likely to compromise on speed 
to gain the appropriate accuracy.

System architects care about early availability of the prototype, as they must make decisions even before all the 
characteristics of the hardware are defined. They must be able to trade off hardware versus software and make 
decisions about resource usage. For them, the actual functionality counts less than some of the details. For 
example, functionality can be abstracted into representations of the traffic it creates, but for items like the inter-
connect fabric and the memory architecture, very accurate models are desirable. In exchange, this type of user is 
willing to compromise on speed and does not typically require complete functionality as the decisions are often 
made at a sub-system level.
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Hardware verification engineers typically do need precise timing accuracy of the hardware, at least on a clock 
cycle basis for the digital domain. Depending on the scope of their verification assignment, they must be able to 
model the impact of software as it interacts with the hardware. Accuracy definitely trumps speed, but the faster 
the prototype executes, the better the verification efficiency. This type of user also cares about being able to reuse 
testbenches once they have been developed.

Hardware/software validation engineers make sure the integration of hardware and software works as specified, 
and they need a balance of speed and accuracy to execute tests of significant length to pinpoint defects if they 
occur. This type of user especially must be able to connect to the environment of the chip and system to verify 
functionality in the system context.

The resulting key tasks to be performed by those users during the development include:

•	 System modeling and tradeoffs

•	 Early software development

•	 IP selection and design verification

•	 SoC and sub-system verification

•	 Gate-level timing and power signoff

•	 Hardware/software validation for SoC and bare-metal software

•	 Software integration and QA

•	 System and silicon validation

Figure 4 outlines the different engine sweet spots as an overlay on the main user tasks.

Applications
(Browser, file managers to

games like “Angry Birds”)

IP Blocks
(Peripherals like USB, PCI , 

interconnect, and processors)

Sub-System
(ARM big.Little, Tensilica Data-

Plane Processor)

Bare-Metal Software
(Defining functionality of 

hardware)

OS and Drivers
(Linux, Android, iOS, …)

SoC

Middleware
(Graphics, audio)

SoC in System

SoC and Sub-System
Verification

Hardware/Software
Validation:
SoC with

Bare Metal

IP Selection and
Design Verification

System
 M

odeling
and Tradeoffs

G
ate-Level Tim

ing
and Pow

er Signoff

Spec
Post SiNetlist to GDSII FabIP Qualification

RTL-Design, IP Integration and Verification

Early Software 
Development

Software Integration
and QA

System and
Silicon

Validation

RTL Simulation

Chip

Acceleration

Emulation FPGA-Based
Prototyping

Emulation/Virtual Prototyping Hybrid

Virtual
Prototyping

Figure 4: Sweet spots for execution engines to run verification and software development.

As indicated earlier, depending on whether models are available, virtual prototyping can enable software devel-
opment as early as a couple of weeks after the spec is available. It is fast, allows good software debug insight 
and execution control, and is typically the quickest way to bring up software on a new design. By itself, it does 
not allow detailed hardware debug, which is the strength of RTL simulation. Used initially for RTL development, IP 
integration, and design verification, RTL simulation can extend to the complexity of sub-systems and certainly is a 
sign-off criterion for gate-level simulation and timing sign-off. It allows the fastest turnaround time for new RTL 
and offers excellent hardware debug, but is typically too slow to execute meaningful amounts of software. 
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To better extend to sub-systems and the full SoC, simulation acceleration moves the DUT into hardware and can 
allow enough speedup for bare-metal software development. With its in-circuit capabilities, emulation extends 
the verification to the full chip and chip-in-system level by enabling connections to real system environments like 
PCI, USB, and Ethernet. The main advantage of processor-based emulation is fast turnaround time for bring-up, 
which makes it ideal for the project phase in which RTL is not quite yet mature. In addition, it allows multi-user 
access and excellent hardware debug insight in the context of real software that can be executed at MHz speeds, 
resulting in very efficient hardware/software debug cycles. Standard software debuggers can be attached using 
JTAG adaptors or virtual connections. FPGA-based emulators are typically weaker with respect to debug efficiency 
and turnaround time. 

FPGA-based prototyping allows the extension of the speed range into the 10s of MHz range and often offers the 
best cost per gate per MHz for software development and hardware regressions. In the project phase, the RTL is 
stable enough that fast turnaround time and hardware debug matter less. The downside to standard FPGA-based 
prototyping is the capacity limitations as well as longer bring-up due to the changes that must be made to map the 
RTL to FPGAs.

Productivity, Predictability, and Use-Model Versatility

To summarize, the key issues to consider when choosing a development platform fall into three main categories: 
productivity, preditability, and use-model versatility

Productivity

Productivity is a more general aspect not limited to execution speed. It includes other aspects like emulation 
capacity, debug visibility, the number of users that can use the emulator in parallel, available memory capacity, and 
bring-up time. Features like debug trace depth and the number of parallel possible users can mean that an offering 
with a buffer not big enough or that is accessible only by 1/16th of the users must run multiple times to get the 
same amount of debug information, very quickly eliminating any alleged advantages in power consumption as they 
must run multiple times to yield the same results, which also takes much longer. Specifically, our user feedback 
shows that the key care-about is the ability to remove bugs as fast and efficiently as possible, getting the design to 
a point that the confidence for its correctness is high enough that tapeout can take place. It all boils down to the 
loop of: (1) design bring-up, (2) execution of test, (3) efficient debug, (4) bug fix, and back to (1) to confirm that 
the bug has indeed been removed. To enable best-in-class productivity, the following care-abouts influence the 
user’s choice:

•	 Speed—How fast does the execution engine execute? Previous-generation chips and actual samples are 
executing at actual target speed. Software virtual prototypes without timing annotation are next in line, 
followed by FPGA-based prototypes and in-circuit emulation and acceleration. Speed is often seen as the main 
concern, but it must be balanced with accuracy, bring-up efforts, and debug insight.

•	 Accuracy—How detailed is the hardware that is represented compared to the actual implementation? Software 
virtual prototypes based on transaction-level models (TLMs), with their register accuracy, are sufficient for 
a number of software development tasks including driver development. However, with significant timing 
annotation, speed slows down so much that RTL in hardware-based prototypes often is actually faster.

•	 Capacity—How big can the executed design be? Here the different hardware-based execution engines 
differ greatly. Emulation is available in standard configurations of up to multiple billion gates, and standard 
products for FPGA-based prototyping are in the range of up to about 100 million gates, but often suffer speed 
degradation with larger designs when multiple boards are connected to enable higher capacity. Software-based 
techniques for RTL simulation and virtual prototypes are only limited by the memory capabilities of the executing 
host. Hybrid connections to software-based virtual platforms allow additional capacity extensions.

•	 Development cost and bring-up time—How much effort must be spent to build the execution engine on 
top of the traditional development flow? Virtual prototypes are still expensive because they are not yet part of 
the standard flow and often TLM models must be developed. Emulation is well understood and bring-up is very 
predictable, in the order of days/weeks. FPGA-based prototyping from scratch is still a much bigger effort, often 
taking several months. Significant acceleration is possible when the software front-end of emulation can be 
shared.
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•	 Software debug, hardware debug, and execution control—How easily can software debuggers be 
attached for hardware/software analysis and how easily can the execution be controlled? Debugger attachment 
to software-based techniques is straightforward using standard interfaces, and execution control is excellent 
as simulation can be controlled easily. However, the lack of speed in RTL simulation makes software debug 
feasible only for very low-level software. For hardware debug, the different hardware-based engines again vary 
greatly―hardware debug in emulation is very powerful and comparable to RTL simulation, while in FPGA-based 
prototyping it is very limited. Hardware insight into software-based techniques is great, but the lack of accuracy 
in TLMs limits what can be observed. With respect to execution control, software-based execution allows users 
to efficiently start and stop the design, and users can selectively run only a subset of processors enabling unique 
multi-core debug capabilities.

•	 System connections—How can the system environment be included? In hardware execution engines, rate 
adapters enable speed conversions and a large number of connections are available as standard add-ons. RTL 
simulation is typically too slow to connect to the actual environment. TLM-based virtual prototypes execute fast 
enough and have virtual I/O to connect to real-world interfaces like USB, Ethernet, and PCI, which has become a 
standard feature of commercial virtual prototyping environments.

Predictability

Predictability is important and relates to the partitioning aspects and compile-time required. Processor-based 
emulation is very predictable with a compiler, while FPGA-based prototyping and FPGA-based emulation have 
challenges due to complex FPGA routing and interconnect issues. 

•	 Development cost and bring-up time—From a development cost and bring-up time perspective, the key 
question is how much effort must be spent to build the execution engine on top of the traditional development 
flow? Here virtual prototypes are still expensive because they are not yet part of the standard flow and often 
TLM models must be developed. Emulation is well understood and bring-up is very predictable, in the order 
of weeks. FPGA-based prototyping from scratch is still a much bigger effort, often taking several months. 
Significant acceleration is possible when the software front-end of emulation can be shared.

•	 Time of availability during a project—When can I get the development engine after project start? Software 
virtual prototypes win here as the loosely timed TLM development effort is much lower than RTL development. 
When models are not easily available, then hybrid execution with a hardware-based engine alleviates 
re-modeling concerns for legacy IP that does not exist yet as a TLM. This is why hybrid use models with both 
acceleration and emulation and FPGA-based prototyping have gained popularity in the last couple of years.

Versatility

Versatility relates to the tasks that can be executed with hardware-assisted verification, which includes the choice 
of target designs (SoCs and CPUs), APIs to RTL and TLM simulation, availability of transactors and rate adaptors 
to connect to real-world interfaces, support for advanced verification-like coverage support, and native support 
for verification languages. In addition, hardware-assisted verification includes support for acceleration use models 
(transaction based, signal based, in-circuit acceleration, and gate-level acceleration), low-power verification, and 
emulation use models (in-circuit, synthesizable testbenches, dynamic power analysis, and hardware/software 
co-verification). 

The three traditional use models for in-circuit emulation and verification acceleration are:

•	 Functional verification

•	 Performance validation

•	 System emulation, including software development/validation for drivers, OS bring-up, and middleware

There are less conventional, but no-less-proven use models available:

•	 Regression runs

•	 Post-silicon debug

•	 Test pattern preparation

•	 Failure reproduction and analysis
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•	  Virtual silicon support making the “chip-to be” available to customers for early access

Two use models are very unique to the Cadence Palladium XP Platform due to its processor-based architecture and 
truly make Palladium’s versatility unmatched by alternative FPGA-based emulators:

•	 Gate-level acceleration—Something FPGA-based emulators cannot support due to the explosion in complexity 
in re-mapping the target technology to FPGA gates

•	 Dynamic low-power analysis—Power has become a crucial issue for most application. Can users run power 
analysis on the execution engine? How accurate is the power analysis? With accurate switching information at 
the RTL level, power consumption can be analyzed fairly accurately. Emulation adds the appropriate speed to 
execute long-enough sequences to understand the impact of software. At the TLM level, annotation of power 
information allows early power-aware software development, but the results are not nearly as accurate as at the 
RTL level.

All these care-abouts within the three basic categories of productivity, predictability and use-model versatility then 
must be compared to the actual cost, the cost of both replicating and operating the execution engine (not counting 
the bring-up cost and time). Pricing for RTL simulation has been under competitive pressure and is well understood. 
TLM execution is in a similar price range, but the hardware-based techniques of emulation and FPGA-based proto-
typing require more significant capital investment.

Different Configurations of Hardware Acceleration and Simulation

As the description above clearly shows, there is no one-size-fits-all engine. Users must carefully select the right 
engine for the task at hand. Not surprisingly, the engines are used more and more in hybrid combinations to 
make use of the combined advantages. For example, combinations between virtual prototypes and emulation can 
speed-up the OS bring-up significantly, and in exchange, enabling designers to get to tests intended for software-
driven verification much faster.
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Figure 5: Configurations of execution engines extend to hybrid-use models.
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As the different execution engines grow closer together, efficient transfer of designs from engine to engine with 
efficient verification reuse as well as hybrid execution of engines will gain further importance. Figure 5 shows some 
of the combinations possible today and a couple of reference examples can be found in [5].

Starting with RTL simulation in Figure 5 and going counter-clockwise, the different configurations can be summa-
rized as follows:

•	 RTL simulation is primarily used for IP and sub-system verification and extends to full chip and gate-level sign-off 
simulation. Given the need for accuracy for analysis of interconnect, it is also used as engine performance 
analysis. It runs in the Hz to KHz range

•	 Emulation is used for in-circuit emulation in which the full design is run in the emulator and connected to its 
actual system environment using rate-adaptors called Speed bridges to adjust for speed. Emulation is also used 
with synthesizable test-benches representing either actual tests for the hardware or representing the peripherals 
of the system environment mapped into the emulator as embedded test-bench. Emulation runs in the MHz range 
and is primarily used for hardware verification, early software development, OS and above software bring-up, 
and system validation on accurate, still maturing, and no-stable RTL.

•	 FPGA-based prototyping typically runs in the 10s of MHz range, which makes it suitable for software 
development with the design mapped into the prototype and software debugging using JTAG-attached software 
debuggers. The higher execution speed allows FPGA-based prototypes to directly interface to the system 
environment of the design. Given the longer time required to re-map the hardware into FPGAs, it is not used 
that much for hardware verification, given the emergence of automated front-end flows that can be shared 
between emulation and FPGA-based prototyping (like with the Cadence Palladium XP Series and Cadence RPP). 
FPGA-based prototypes find additional use as an adjacency for emulation to run hardware regressions. Its sweet 
spot is lower cost and faster pre-silicon software development and regressions and subsystem validation on 
mature and stable hardware with real-world interfaces.

•	 Emulation and FPGA-based prototypes can be combined, with the less mature portion of the RTL being used in 
the emulator utilizing the fast bring-up and re-used IP together with the already stable RTL in the FPGA-based 
prototype enjoying the higher speed range.

•	 Acceleration is the combination of RTL simulation and emulation, keeping the test-bench in RTL simulation 
on the host, enabling advanced debug and non-synthesizable test bench usage in combination with a higher 
speed for the DUT in emulation. Acceleration, as the other hybrids of hardware acceleration with simulation, is 
enabled using transactors as part of an Accelerated Verification IP (AVIP) portfolio. Acceleration is measured in 
speed differential to pure RTL simulation and users typically see between 25X and 1000X speed improvement, 
depending on their design.

•	 Virtual prototypes using TLMs find their sweet spot in pre-RTL software development and system validation. 
Together with RTL simulation, enabled by connections through AVIP, they can be used for driver verification 
with accurate peripherals represented in RTL. Typical speeds depend on the RTL/TLM partitioning, but can reach 
speeds of 10s of KHz or even faster if most of the design runs as TLM in the virtual prototype.

•	 Hybrids of virtual prototypes and emulation enable OS and above software bring-up as well as software-driven 
verification on accurate, still maturing, and non-stable RTL. Primary motivation is speed-up, which is measured as 
the differential of pure emulation and users typically see up to 60X speed improvement for OS bring-up and up 
to 10X speed-up for software-driven verification executing on top of an OS that is booted.

•	 Hybrids of virtual and FPGA-based prototypes are used for lower cost and faster pre-silicon software 
development and regressions and subsystem validation on mature and stable hardware. In contrast to hybrids 
with emulation, the primary motivation here is not speed but a better balance of capacity, which often poses 
a limitation to FPGA-based systems. Moving significant portions, such as a processor sub-system into a virtual 
prototype at the transaction-level, can save significant capacity and allow the overall design to fit into a hybrid of 
virtual prototype and FPGA-based prototypes.

Conclusion

As shown above, a specific return on investment of the different verification engines is hard to calculate, but as 
indicated earlier, the risk of a fatal bug slipping into final silicon has simply become unmanageable as the cost per 
bug simply bears too much risk. As a result, users require to run more and more verification cycles and make issues 

www.cadence.com 10

Productivity, Predictability, and Use-Model Versatility



like low-power optimization and software bring-up of OSs like Android, iOS, and Linux a gating requirement for 
tapeout. Hardware-assisted verification and prototyping has become a mandatory requirement to allow design 
teams to gain confidence that a chip tapeout can be initiated. 

The choice of the right hardware-accelerated engine is driven by its productivity, predictability, and use-model 
versatility, all impacting the key concern of users how to remove bugs. In a typical bug removal cycle, users first 
compile the design into the accelerator, then execute it until a bug has been identified, debug the root-cause issues 
for the bug, fix it and then start from the beginning again. The Palladium XP Platform’s best-in-class compile time, 
execution speed, software debug, hardware debug trace depth, and data transfer speed allow about 2.5X faster 
bug finding than with the closest competitor, allowing design teams to get to the point at which they are confident 
enough to tapeout much faster, often shaving of two to four months off development cycles.

Further Information

1. Qualcomm white paper—“Snapdragon S4 Processors: System on Chip Solutions for a New Mobile Age”: 
www.qualcomm.com/media/documents/files/snapdragon-s4-processors-system-on-chip-solutions-for-a-new-
mobile-age.pdf

2. Texas Instruments—OMAP 5 Processors: www.ti.com/lsds/ti/omap-applications-processors/omap-5-processors-
products.page

3. AnandTech—“NVIDIA Introduces Dual Cortex-A9-Based Tegra 2,” by Anand Lal Shimpi, 7 January 2010:  
www.anandtech.com/show/2911

4. AnandTech—“ST-Ericsson Announces Inclusion in Future Nokia Windows Phones,” by Brian Klug, 2 November 
2011: www.anandtech.com/show/5038/stericsson-announces-inclusion-in-future-windows-phones

5. “System to Silicon Verification—CDNLive Gives a Reality Check on How Hardware and Software Meet”:  
www.cadence.com/Community/blogs/sd/archive/2013/03/08/system-to-silicon-verification-a-reality-check-on-
how-hardware-and-software-meet.aspx?postID=1321185 
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