cadence

Automating Root-Cause Analysis to Reduce Time
to Find Bugs by Up to 50%

By Kishore Karnane and Corey Goss, Cadence Design Systems

If you're spending more than 50% of your verification effort in debug, you're not alone. For many design,
verification, and embedded software engineers as well as engineers verifying complex standard protocols,
debug is the primary bottleneck in verification. Most debug today is completed using the traditional
methodology of print statements paired with waveforms. Given that today’s designs have grown significantly
in complexity, the traditional debug approach is no longer adequate. This paper introduces a new way

to debug that uses innovative debug concepts such as automated root-cause analysis (RCA), “Big Data”
capture, and a unified apps-based debug analysis platform. Together, these advanced technologies can help
you uncover bugs 50% faster than with traditional debug approaches.

Introduction

Contents Whether you are designing intellectual property (IP) blocks or full systems on

1 chip (SoCs), debug has been an onerous and tedious process in the project
cycle because, traditionally, it is manual and time-consuming. Most engineers
today are using post-process register-transfer level (RTL) waveform inspection
paired with log files for message analysis. Since this methodology requires the
engineer to know, up front, where to add print statements and what signals to
record, it leaves the engineer vulnerable to running multiple debug iterations if
the right information is not present at the end of the run.

Introduction..........cccoooeviiiiiein...
What is Debug Performance?....... 2

Limitations in Root-Cause
Analysis (RCA) Today 3

Big Data Capture and Analysis3
On average, it takes engineers three to five cycles through the debug loop
(code->simulate->debug) to isolate and fix a bug'. There are also several
classes of procedural code failures such as infinite loops, null pointers, and
scoreboard data mismatches that cannot easily be debugged using waveforms
and log files alone.

Integrated, Unified Platform for
Uncovering Underlying Bugs 4

Synchronized Testbench
and RTL Debugccccevvvreinnn. 5

Embedded Software/Hardware Re-running simulations multiple times just to obtain more debug information

Integration Debug........................

Visualization of Protocol Traffic
and Events............ooooiiii

SUMMATY i
For Further Information................

Footnotesccceeviiiiiiiinn

significantly hampers overall debug performance and throughput. As shown
in Figure 1, today's designs are causing engineers, on average, to spend 50%
of their overall verification effort in debug, which includes triaging failures and
analyzing simulation output.

Verification Effort

. Debug

. Coverage Analysis
. Test Planning

10% 5%

50%

Test Creation
. Test Execution

Figure 1. Engineers are spending at least 50% of their verification effort in debug.
Source: Interviews with Cadence® customers

Automating Root-Cause Analysis to Reduce Time to Find Bugs by Up to 50%

A key reason for the increase in debug time seen over the past decade is that today’s designs are orders of
magnitude larger, more complex, and involve sophisticated object-oriented programming- (OOP-) based
testbenches, third-party IP, and embedded software running on many cores. Today's testbenches are typically
created in hardware verification languages (HVLs) like SystemVerilog, e, and SystemC. Test cases are highly
randomized with many moving parts. When an issue arises, identifying the origin of the bug can be quite
challenging. Is it in the testbench? In the RTL? Or the VIP? Perhaps it is in the analog components or some other
aspect of the chip? A substantial amount of analysis time is needed to understand the “big picture” as well as
narrow down the area of the bug prior to identification.

Given the complexity of today’s designs, you might assume that debug methodology has advanced as well.
However, this has not been the case. Interestingly, most verification engineers are still using the same traditional
debug flow (as shown in Figure 2 below) that has been used for more than 20 years. Particularly with larger or
more complex designs, where debug data comes from many sources, this traditional debug flow can be very ineffi-
cient. Making matters worse, much of the data captured from run to run tends to be redundant, as the engineer
incrementally changes probes to tease out just the right information from their verification engine. Significant
changes and improvements are urgently needed to allow engineers to keep pace with today’s shrinking project
schedules and improve overall debug performance.

@ Sim Wavhe;orm Debug
. Text
Traditional Debug Flow

" n,
@‘{ o ’m\v - 'm\‘s - '«;\é = V

EJ

W

f\

Iteration 1 Iteration 2 Iteration ...N
Text
Logs

Figure 2: A traditional debug flow involves several debug iterations to collect more data

What is Debug Performance?

Before we discuss how we can improve debug performance, let's first define what debug performance is. Since
debugging is a highly manual task involving analysis, code modification, and simulation, the time required to
identify and fix a bug is not as easy to measure as the performance of a simulation run. We must consider a more
holistic approach, involving two key aspects, when measuring debug performance:

e Verification engine cycles: Simulation throughput on a given server
e Engineer cycles: Amount of time an engineer spends analyzing debug data to isolate the bug

Verification engine cycles are always an important aspect of any project. However, as design complexity continues
to increase, verification engine performance becomes a smaller part of the overall debug performance equation,
since simulations can be executed in the background of an engineer’s other day-to-day tasks. Analysis, on the other
hand, requires focused attention and, as a result, is increasingly becoming the bottleneck that must be addressed
to increase debug performance. The number one goal in increasing debug performance is to use engineer cycles

as efficiently as possible. Engineers are, after all, much more expensive to any company than purchasing a faster
server for running simulations.

In the next two sections, let’s take a look at some of the debug techniques used today, along with their limitations
when it comes to debugging complex SoCs.

www.cadence.com 2

Automating Root-Cause Analysis to Reduce Time to Find Bugs by Up to 50%

Limitations in Root-Cause Analysis (RCA) Today

Typically, an engineer runs a simulation and an erroneous output gets detected by a checker within the verification
environment. Using a traditional debug approach, the source of the bug could potentially be identified using debug
techniques available today, such as:

e Print statements / probing
e Signal tracing
e Breakpoints /single stepping

In order to use the above techniques, the engineer reruns the simulation to collect debug information and/or set
breakpoints to allow for interactive debug. The user may also modify the design to add more print statements or,
perhaps, probe all of the relevant signals. After this step, the engineer would have to re-run the simulation yet
again. This cycle of iterations might be repeated several times until the engineer actually records enough infor-
mation to find the bug. In a normal scenario, each simulation iteration can last minutes to hours. For example,
consider the diagram shown below in Figure 3. This environment has digital, analog, VIP and embedded software
all simulating together. Today’s debug methodologies typically have the engineer recording a subset of detailed
debug information for the digital portions of the design only, leaving the remaining portions of the design to

be debugged using limited information available within log files. What if we had a packet with an integer for

the security code and a security code calculator with an integer as well? The actual code must be 16 bits. In our
testing, we inject random values into the digital portion of the design and happen to get a few unexpected values
at the output, which causes failures. During debug, we trace the failure back to what we think was the bug within
the digital code that generated the erroneous values and we make a fix to the code and re-run. Surprisingly, the
errors are still appearing. What we failed to recognize is that the underlying bug is, in fact, due to the complex
interaction between the software, the VIP, and the digital portions of the design. It just so happens that, with
today’s debug methodologies, the most debug information is available for the digital portions of the design.
Without recording enough debug information from all portions of a verification environment, engineers are, essen-
tially, debugging in the dark, which leads to many unnecessary debug iterations and very manual and tedious
debug efforts.

Assumed Bug

Software

Detected
/ Failure

Actual Bug

Figure 3: RCA as defined today. A bug could erroneously
be attributed, masking the real problem.

Big Data Capture and Analysis

The term “Big Data” is being used all around us. Generally it refers to a fairly passive collection of a complete set
of data points that allows for powerful and detailed analysis at a very low cost. This is in contrast to a traditional
sampling-based approach, which focuses on a small, tightly constrained, and carefully selected set of data points
for analysis. A sampling-based approach requires upfront thought, while offering limited analysis. By contrast, a Big
Data approach requires little upfront effort with much more opportunities for advanced analysis after collection.

When it comes to verification, without a Big Data approach, engineers must rely on the traditional sampling-
based approach of making educated guesses at where to sample debug data (print statements + probing of
waveform signals). After sampling, they can only debug with the data points that they had the foresight to sample.
To ask further debug questions, they must rerun to collect more samples, which likely will cost the user another

www.cadence.com 3

Automating Root-Cause Analysis to Reduce Time to Find Bugs by Up to 50%

re-compile, elaboration, and simulation run penalty. A Big Data approach to debug samples the entire debug data
set once (messages, waveforms, source execution order, call stack, active threads, etc.), which allows engineers
(and debug tools) to analyze and play back the simulation time and again. The engineers can then:

e Ask deeper questions about what really happened during the run
¢ Highlight causality
e And, possibly, point out correlations that would otherwise go unnoticed through a sampling-based approach

Additionally, traditional approaches of print statement plus waveform often cause the engineer to do a lot of
context switching from the log to the wave. If not enough information is available, the engineer also may have to
edit to the source to add print statements, re-run, and re-ramp. Imagine the time savings of having a complete

set of recorded information available for analysis from a single GUI, as illustrated in Figure 4. You would no longer
need to deal with context switching. Instead, you could seamlessly move from debugging testbench issues to RTL
issues with equivalent details recorded for each. With this approach, you could potentially find bugs in minutes,
instead of hours or even days. By decreasing the number of debug iterations, you could also take better advantage
of your existing set of simulation licenses. Rather than running many debug iterations, you can use those licenses to
hunt for new bugs through increasing regressions.

Now that we've examined RCA and Big Data, let’s discuss how new technology integrates these capabilities into a
unified, apps-driven platform that guides engineers in finding the root cause of the bug with a single iteration.

Indago Debug Analyzer Flow
Waveform DB

Message DB

v/

Code
Execution DB

aaa

Debug “Big Data”

Figure 4: Big Data flow records complete data set for entire simulation run, not just waves

Integrated, Unified Platform for Uncovering Underlying Bugs

Cadence’s new Indago™ Debug Platform, developed with patented, automated RCA technology and Big Data
capture techniques, raises the level of debug abstraction to reduce the time to identify bugs by up to 50% vs.
traditional debug methods. The platform supports IP-level to SoC-level debug. It works with Cadence and third-
party verification engines to provide a unified, consistent debug platform for RTL, testbench, verification IP, and
hardware/software debug. Because the platform is unified and synchronized, ramp-up is minimized when moving
from debugging one aspect of your environment to another. The platform comes with three built-in apps:

¢ Indago Debug Analyzer App, which extends RCA from RTL to the e testbench (IEEE 1647) to SystemVerilog
(IEEE 1800) and provides interactive post-process capabilities, along with synchronized debug of RTL and the
testbench.

¢ Indago Embedded Software Debug App, which synchronizes software and hardware source code debug to
resolve bugs associated with embedded software applications. This app is optimized for the Cadence Incisive®
simulation platform and the Cadence Palladium® XP emulation platform.

e Indago Protocol Debug App, which provides intuitive debugging by using Cadence verification IP (VIP) to
visualize advanced protocols such as DDR4, ARM® AMBA® AXI, and ARM AMBA ACE

Most engineers find that the most natural way to debug an issue is to start from the failure point and work
backwards from there. For example, when debugging why an RTL signal transitioned to a particular value,
engineers typically trace the drivers of the signals back through time and space to find the first occurrence of that
value. Unlike most debug solutions today that are limited to RTL for RCA, the Indago Debug Platform applies RCA
to both RTL and testbench, so you can debug a failure that originates in your SystemVerilog or e testbench just as
easily as an RTL failure.

www.cadence.com 4

Automating Root-Cause Analysis to Reduce Time to Find Bugs by Up to 50%

For example, if you encounter a UVM error message during simulation, you might ask what conditions led to this
error message or why the variables within the failure message took on their values. Through Big Data capture and
analysis, the Indago Debug Platform uses powerful algorithms to analyze each debug point as you navigate. At
each point, the platform identifies causal relationships for the most typical debug questions, which are presented
to you in an intuitive RCA GUI component. Using the RCA component, you can intuitively click your way through
the complete failure scenario, seamlessly diving into the testbench or RTL code to quickly diagnose the root cause
of the failure. To ensure that you can retrace your debug steps, each debug decision taken in the RCA component
is saved in an investigation tree.

As Indago Debug Platform records the complete execution order of your source code, you can examine, at each
point in the RCA process, the complete call stack, active threads, local variable values, as well as single step
forward or backward to replay the simulation result. With the platform’s set of RCA tools, you're equipped to
better understand the complete failure scenario and diagnose bugs much more quickly than with traditional
approaches.

Key features of the Indago Debug Platform include:

e Root-Cause Analyzer, an intuitive, flow-oriented debug component that presents you with options as to where
you should look to debug

e SmartlLog, a dynamic, integrated message viewer with fast filtering of messages from many sources, including
HDL, testbench, C/C++, SystemC, and assertions

e Reverse debugging, which allows single stepping forward or backward in time and the ability to add print
statements to the SmartLog directly from the source

e Multi-engine data analysis, which allows debug data to be read from the testbench, RTL, embedded software,
third-party simulations, or verification IP

¢ Debug handoff, which allows you to highlight values, set bookmarks, write notes, and save for a quick handoff
to another engineer to continue the debug process

e Time tables, which allow you to select any line or variable and query for all- access throughout the entire
simulation. Results are presented as a table.

e Powerful searching, with hyperlinked search results organized by source, value, type, and log

e Variables, whereby variables, type, and value are presented to you as you are debugging

e Call stack analysis, which enables you to understand the full calling tree at any point during debug
e Memory viewer, which lets you view RTL as well as the software memory view

In the next sections, we'll take a closer look at each of the platform’s built-in apps.

Synchronized Testbench and RTL Debug

The Indago Debug Analyzer App is used for synchronized debug of the testbench and RTL. As shown in Figure

5, when you initially launch the App, the GUI opens to display SmartLog, an interactive log analysis tool that is
hyperlinked back to the source code. If errors are present within the log, they are identified via a unique icon and
automatically bookmarked. To save time, the GUI will open with the first error already highlighted, so you can
begin debug immediately. As discussed in our previous section, the source browser displays the error message and
allows you to step forward/backward through the recorded data to “play back” the bug scenario from any inter-
esting point. Direct access buttons allow you to immediately jump the debugger to points of interest, such as the
last time a line was executed or the last time a value was assigned to a variable.

www.cadence.com 5

Automating Root-Cause Analysis to Reduce Time to Find Bugs by Up to 50%

2 @Fies. - £ RIER aa
I cdr = _monitor.sv x uvm_report_catcher.svh
to erbostty = (@8 | Domain [/ e 45V et ety me narne] @
Keep - Message - ol W11 $sformatf(*slave transfer collected \n%s",
" o wd @ transfer.sprint()), UVM_HIGH)
[T [Simulat [lessass v 122 @ if (checks_enable) [variaties
[@e & m 6% ived muli transaction 8| 2q@ perform_checks(transfer);
if (coverage_enable) = casua
ze Value perform_coverage():
or - @7247 num_col+-+; E
be 64 690 Bl =
endtask : collect_response (wa T8 Tabtew
@e o mesn
Ty rom
transfer cdn_muli transfer - @7247 Q sexchrenas
begin_time time 64 690 1
end_time time 64 690 M e
((mowmeso UVM_ERROR - received transfer with Wrong Party - cdn_multislave_monitor cdn_multi_slave_ p _checks(cdn_multi_transfer tr);
B e
BT T I 50 bit [7:0] expected_parity:
iR G 139 @ | expected_parity = tr.calc_parity(cdn_cfo);
wd @ T T @ cresivorts
Do m 60 < 141c] B4 “uvm_error(get_type_name().$psprintf{*received transfer with Wrong Pariy -]
Bl e ¢ m6s0 A Disgrostics
Bl e ¢ m 6% endfunction : perform_checks
B e < m 690 Bught WMERRORTBPOItS : 0 | e | | it N
Ble ¢ m 6% . h !
. @ 690
e meso
. m 690
e meso
. m 690 o]
e of
) [JMstch case

Hyperlinked Error Message Direct Access Buttons Error Highlighted in Source Code
to Source Code

Figure 5: Indago Debug Analyzer App opens with error already highlighted for the user to begin debug immediately
As you debug, there are always questions to be asked for every line of code or variable being examined. For
example:
e Why was this line executed?
e Why did a variable on this line have a specific value?

By analyzing the recorded debug data collected, the Indago Debug Analyzer App can provide a list of causal
relationships that answer the most common debug questions, as shown in Figure 6. The relationships are presented
in a list format that allows you to click your way through the results, seamlessly traversing from testbench code to
RTL, to very quickly arrive at the root cause of the investigated value.

Causal Relationships to Guide
Engineer to Find the Bug

v Indago - Debug Analyzer App =0

dix Help cadence’
4 K)

a

=l BFies.. - £ B

[cdn_muti_slave_monitor.sv x

[0] Reached control (ine 141)

B 0] Reached if (ine 140) Co rol

B0 70] Valus of expected_parity = 'hSa Coto Assianment

B0 0] Valus of Parameter tr = cdn_multi_pkg:cdn_multi_transfer®7249_2 Coto Assianment

1220/ [if (checks_enable)
1230 [perform_checks(transfer);
1240 @ if (coverage enable)

1250 @ perform_coverage(

12 Send transfer to write() B[8701 Valuz of tum_parity = 'h7A Goto Assionrment A
calsta

1270 @ num_col++; OTHER LEADS (1)

128 sud ¢ 701 Executed control (ine 141) Goto Contral

endtask: collect_response

[ame yee
per ecks ! [
137 function void cdn_multi_slave_monitor:perform _checks(cdn mult_transfer tr); L z & y
- Wit T st s, » @ wum test top top.parity test top.parity_test@3026.3)
LOBE et e » 8 this cdn_mlti pkgricdn_. pgzcdn_mult_slave_ monitor@327¢
1400 [= == - 7 > &tr cdn_mutti_pkg::cdn_. g:cdn_multi_transfer®7249_2
I 1410 *uvm_error(get_type_name(),$psprintft‘recieved transfer with Wrong Parity - ‘] HRSRTcnee coay, biIZ:0]
o » @ cdn cfg caln_regs_pkgicdn_r... Workdib.cln_regs_plgzcdn_regs_cfg@3155_6
v e psvfovm,checy @ trm parity bit(7:0] ox7a #n Disgrostcs
104
15
146]
147 =
148
149 ple the
150
151 =

re

B Thread #68 1 cdn_multi_pkgdn_multi_slave_monftor& 0P #4417

Error Highlighted in Source Code

Figure 6: Indago Debug Analyzer App provides the user with causal relationships to allow
the user to quickly get to the root cause of any issue within a few clicks.

www.cadence.com

Automating Root-Cause Analysis to Reduce Time to Find Bugs by Up to 50%

Using traditional debug tools, it is quite common for engineers to become “lost” in the tens of investigative
decisions they have made while debugging. As shown in Figure 7, the Root Cause Analyzer window of the Indago
Debug Analyzer App saves your decision tree, so you can quickly walk backward or forward through the entire
debug path, or launch a new investigation from any node in the debug path.

®: Root Cause Analyzer &
Reached control (line 141) #1 = 4rE

¥ [Cause ‘;
4B 8701 Reachad control (line 141) [=]
& »B1 8701 Reached if (line 140)
o r 8701 Value of expected_parity = 'hS5a
fid » [8701 Value of Parameter tr = cdn_multi_pkg:cdn_multi_transfer@®7249_2
o 4 r 8701 Value of t.m_parity = 'h7A

[[staticl Wired Signals vif oo top.cdn_multi_if

[[static] Wired Signals vif.sig_parity = top.dut_inst.m_parity
fid 408 8511 Value of m_parity = 0x7a
fud 3 L 8511 Value of parity_out = 0x7a

[=]
Showing 8 items

Figure 7: The Root Cause Analyzer window of the Indago Debug Analyzer App saves
the debug path information, allowing users to review their debug steps
and launch new investigations from any decision tree node.

While debugging, if you find a value of interest, you can highlight it within the GUI. This highlight is applied to
every location where this value appears, including in the waveform window. This helps cut debug time when
switching between various contexts and comparing lengthy values (such as a 64-bit hex value). You can also query
any variable to quickly understand when and where its value was updated or query for when specific source lines
were executed throughout the recorded window. So, now, if we apply the patented RCA technology and the Big
Data concept to the original problem as described in Figure 3, we may find out that the root cause was probably
hidden in the OOP testbench code where, using traditional debug methods, we had to deal with very limited
debug capabilities. Using the Indago Debug Analyzer App, the engineer would be able to run just one verification
iteration and, using the analysis tools provided in the App, easily identify the root cause of the problem.

Embedded Software/Hardware Integration Debug

Embedded software delivers functionality on most of today’s SoCs and is an important tool for software-driven
verification. This growing software dependence creates demand for an efficient way to develop and debug these
different types of software as well as any hardware bugs identified by the software. The Indago Embedded
Software Debug App provides a software-centric environment to shorten the time to find the root cause of both in
software and hardware bugs.

Since embedded software is developed for a range of needs, from software-driven verification to production
operating systems and applications, embedded software debug must be available across a variety of platforms. It

is important to consider both the performance and the model accuracy for both the development and application
of the embedded software. For example, when developing software for hardware verification, it can be valuable

to develop the software on a fast platform to improve developer productivity. However, because the software is
testing the hardware, it will ultimately need to be run on a fully accurate platform. The Indago Embedded Software
Debug App meets these requirements, providing a consistent debug environment across platforms and processor
model abstractions.

In addition to the performance and accuracy tradeoff, another key characteristic is hardware visibility and
hardware/software synchronization. Typically, the level of functionality and visibility into software is good, but
when doing detailed debug of hardware and software interaction, the critical factors are the visibility of the
hardware activities and how the hardware activity is synchronized with the software. As shown in Figure 8, the
Indago Embedded Software Debug App uses post-process analysis of hardware and software trace information

to provide the most accurate combined views of the hardware and software. The App leverages the core Indago
technology to manage and visualize the “Big Data” of a complete multicore/multicluster software trace per core to
arrive at the root cause more quickly. Having the complete context of software execution makes it easier to locate
the origin of a problem.

www.cadence.com 7

Automating Root-Cause Analysis to Reduce Time to Find Bugs by Up to 50%

Hardware and Software
in Lock Step Memory View

Flle View Radix

[¢

Help

4« K » fr B B M sotverew.- [N

= ke - 2 QEREDD 2 < [TEITEia] ‘
(EERECERN o vortc « QEEEEE Sxe M & x uartcas x uatcel x uatc80 x UAaS? x wated? x UartaST x ¢ b o Y
¥ c] RN 00 | 0x1 | 0x2 | 0x3 | Oxt | 0x5 | 0x6 | Ox2 | | (7] ey frime) Core Name #op base_address Variable Name
wwe < v U o . ¢ s}
e oxes0 | b o n e [& 1.765.960.0... a53_core0 #2545 0x 10001000 5| baseaddress [T
1 - S [6 32630000, 253 cored #3687 0¢10005000 st 14 =
e e e LA oseea Bt 47402000, 253 core2 s13s 0x10006000 uartreg acdr gy
2 case 1 - AN Blele D] £ 6.381.240,0... 253 corel #6418 0x 10002000 &
850| (1 base_address = UART1_BASE; 0x898 t o °
86 D] break; 0x8a0
case =
880 @ base_address = UART2_BASE; Plu|e e g -
890 [t o 2
case 3] @
910 M| base_address = UART3_BASE; o
920 M@ break; Pou o3 8 g :x:}
defautt : 5
base.address = UARTO_BASE
2 oxsen
oxsen
= uare wit_eg(base_acress, UART_CR_OFFSET, 0403
uar_wrie_rea(case_adcress, UART MR_OFFSET 00} oseed
uarwrie_reg(case_adcress, UART_BAUDGEILOFFSET,0<5D) oxsen L
uart_write._reg(base_address, UART_BAUDDIV _OFFSET, 0xF oxen o @) o
101 O RIR yar write reathace address |IART CR_OFFSET 0x3¥ c]]
o o | R 5 S s Stonng 3 nem:
B Oyatch case _| = callstack i cores 33 Time Tab.. [] variables

Fle Edit View Explore Fomat Verfication Windows Help

19, Time~ = 3,263,000,0(] s~ ;-,\H e

@ ssene=0

o [cusor o~ (I

S0t top_confg?
Findt Siringe] = i

Show crtens 1 th seecor o]

baud_o T Baud_rate_div_ent]
3 baud_rate_v15:0) <l dk

e e a e R e 5

M Clck ang add o waveform area,

Figure 8: Synchronized hardware/software view in Indago Embedded Software Debug App

Visualization of Protocol Traffic and Events

Verifying the standard interfaces in IP blocks and SoCs can be one of the most resource-intensive tasks for verifi-
cation teams. Popular interface specification families such as ARM AMBA, DDR, MIPI, and others have undergone
major expansions in recent years. Verification engineers seldom have more than a couple weeks to ramp up on a
new protocol before they have to start verifying designs incorporating it. Commercial VIP helps offload part of the
verification effort, but engineers still need a window into the protocol-specific interactions between the design, the
VIP, and the testbench to find the root causes of bugs.

Such a window is provided by the Indago Protocol Debug App, which presents a holistic picture of the verification
environment in four views (see Figure 9):

e Channel Viewer
e State Machine Viewer
e Life Story

e SmartlLog

www.cadence.com 8

Automating Root-Cause Analysis to Reduce Time to Find Bugs by Up to 50%

cadence

= JEIE 3% uife story.
Y- Lfe Story ofs LTSSM@14 Yy
to 2 5[rime ns) Description I
(eep - Messags - +H EEE I [i
1 B Simation = Peeeese @ o 55 (TSsMstate = L0 8
| s) | *|@o sesz LTSSMstate = Recovery Revrlock
© 11,86010255 6.0UT PL (A% Lane_0) 0c-balance <hanges S(151 (G6h) to dah B @ o s14s LTSSM.state = Recovery Rowrcfy
© 11,46010255 t0.0UT FuLane 0] [5e51d6] 10 DatoBeforescrambler(e 7f 97 43 53 ec 67 %0 7c of _ | @ @ 8772 UTSsMstate = Recovery.Speed
© 1148010255 t0.0UT Rutane (L] (7f1af0] 10 DataBeforescrasbler{ le 71 5617 78 40 63 b1 f2 ca'’ | [& 9,660.31085 {TsSH.state - RecoveryRevriock u
® 11,480.10255 th.0UT RuLane[2] [0d78c1] 10 DataBeforeScrambler{ le 45 44 93 08 f5 33 Oe 25 G @ & 9.676.55935 LTSSM.state = Recovery.Equalization
© 1148010255 tb.0UT PL (R lane_3) DC-balance changes S[15] (G8h) 10 dah il I FL A e s O T [T TS (ol [y
© 1148010255 th.0UT ReLane(3] (7262311 10 DataBeforescramblerd 1o 34 12 82 7e bS b bS €2 cb %g P = ::::xz:‘l:“g
© 1148010255 to.0UT Fulanela] [3csab2l 10 DataBeforescrasblerd o 76 ¢f 64 20 50 18 78 fa 12 [B & FEEEOER bl
® 1142010255 to.OUT RiLane 5] [4036931 10 DstaBeforescranblerd Lo 42 1F 6050 00 a0 7 20 do [o 8 2 TPTEEC i
® 1142010255 th.0UT PL (R Lane_6) c-balance changes SILS] (F7h) to 4sh bie SieiE R e
® 1148010255 th0UT Ruane (6] 15673451 10 Datadeforescranbler(le dc % 24 72 42 dc sc 33 bc | 3] fy 33,005.67885 LTSSM.state = R LOS.Entry/Tk LOs 1dle
© 1146010255 th.0UT FuLane (7] [254626] 10 DataBeforeScrasbler(1e Oc <7 ce 25 ac 4 21 bb 65 | [v 3382212755 LTSSM.state = R L0s. dle/Tr Los.idle
® 1145010255 th.DUT ycle 2312 RX[0:7] { sync 101010 10 10 10 10 16} [& 4220645675 LTSSM state = R L0s, die/Ty LOS.FTS
® 11,480.10255 th.OUT Cycle 2312 RXI®:71 { O 1e le le le le le le le} B & 42,271.45155 LTSSM.state = Rx LOs.FTS/Tx L0s.FTS
- ® 1148010255 th.DUT Cycle 2312 RXIO:7] { 1 00 60 00 00 00 00 00 00} IZIB E ﬁ :::i: :ifiz iif:fi‘: "R: Los ATDCLy) g

Shoning 53395 Eheorestine,

th.0uT th.DUTLTSSM
[rime ins) Lrsen T Blocks o S 2
~ Block | Datablocklol DataBlockill DataSlock(2f
17,39
17,401
DataBlock(o) Dataflockill Data-Block(2)
17,40
17.41
. DataBlockio] DataBlockill, DataBlock(2l,
O — o]
Content » @ | content rm
okt type Lpkt_bytecnt callback Lpkt,data PL_frame YT pl-pans Value F
PLLP UPDATE FCNP Sevayy pcie pip 8 FOE Ch FLTX and bk (140,172 1485048 100.720) .
1 syn ymbo\ 4] symbu\[s] symbn\ 18] symbu\n] Symhv"ﬂ] syml EELLG Recovery.RomLock
Datadlockial 24 Symbal(l] 2y b Start Time (ns) 11,463.91635
| End Time (ns) 11,593.90505
ol] (51| Transition Reason ReHTSUEC--0) f
shoming 4 tama

Figure 9: Indago Protocol Debug App showing (counter-clockwise from bottom-left) Channel Viewer,
State Machine Viewer, Life Story, and SmartLog.

The Channel Viewer portrays the communication between the design and VIP with a lab equipment-style view
showing the sequence of transactions with protocol-specific labeling. The State Machine Viewer shows a graphical
view of the state machines within the VIP components along with the causes of state transitions. The Life History
and SmartLog provide detailed views of all events pertaining to simulation objects and smart filtering of messages.
Together, these views present an integrated picture of the design and verification environment to simplify the
debugging process.

Summary

Debug has long been a verification bottleneck, commonly taking half of the verification project time. As SoCs have
grown in complexity, debug is now more challenging than ever. There are now many more components and layers
to debug, and traditional debug methodologies are falling short. The Indago Debug Platform offers new patented,
automated RCA technology, a Big Data approach, and a unified debug environment for RTL/testbench, hardware/
software, and VIP protocol debug that has demonstrated the ability to reduce the time to find bugs by 50%. This
technology is essentially taking the guesswork and excessive iterations out of the debug equation and improving
the overall debug productivity.

For Further Information

Learn more about the Cadence Indago Debug Platform at: www.cadence.com/products/fv/
indago _debug_platform/pages/default.aspx.

Footnotes

' As found through Cadence customer interviews.

- ® . . Lo . . .
c a d e n c e Cadence Design Systems enables global electronic design innovation and plays an essential role in the
creation of today’s electronics. Customers use Cadence software, hardware, IP, and expertise to design
and verify today’s mobile, cloud and connectivity applications. www.cadence.com

http://www.cadence.com/products/fv/indago_debug_platform/pages/default.aspx
http://www.cadence.com/products/fv/indago_debug_platform/pages/default.aspx

