Efficient Methods and Hardware for Deep Learning

Song Han

Stanford University
DeePhi

Stanford University



Models are Getting Larger
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Dally, NIPS’2016 workshop on Efficient Methods for Deep Neural Networks
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Problem of Large DNN Model: Difficult to Deploy
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Large DNN Model: Difficult to Deploy

«~+  App developers suffers from the model size

This item is over 100MB.

Microsoft Excel will not download
until you connect to Wi-Fi.

Cancel OK
_
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Large DNN Model: Difficult to Deploy
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Drones Robots

» Limited Computation
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 Cooling Constrained

Glasses Self Driving Cars

Stanford University



Large DNN Model: Difficult to Deploy

‘& @

— Hardware engineer suffers from the model size
larger model => more memory reference => more energy

Relative Energy Cost
Operation Energy [pJ] Relative Cost
32 bit int ADD 0.1 1
32 bit float ADD 0.9 9
32 bit Register File | 10
32 bit int MULT 3.1 31
32 bit float MULT 3.7 37
32 bit SRAM Cache 5 50
32 bit DRAM Memory 640 6400

1 10 100 1000 10000

Figure 1: Energy table for 45nm CMOS process. Memory access is 2 orders of magnitude more
energy expensive than arithmetic operations.
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Given the power budget,
Moore’s law is no longer
providing more computation
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Improve the Efficiency of Deep Learning
by Algorithm-Hardware Co-Design
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Proposed Paradigm

Conventional

Inference

)

Accelerated
Inference

Proposed it

Compression

Pruning
Quantization

Han et al ISCA'16
Han et al FPGA'17

Han et al ICLR’17

Han et al NIPS’15
Han et al ICLR'16
(best paper award)
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Agenda

+Model Compression (size) @
* Pruning / Quantization -
Compression
* Ternary Net N

+Hardware Acceleration (speed, energy)
* EIE Accelerator (ASIC) 0
 ESE Accelerator (FPGA) Accelerated

Inference

+ Efficient Training (accuracy)
» Dense-Sparse-Dense Regularization

Ucaligle

Compression Acceleration Regularization Stanford University



Agenda

+Model Compression
* Pruning / Quantization
e Ternary Net
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Deep Compression Pipeline

* Network Pruning:
Less Number of Weights

* Trained Quantization:
Reduce Storage for Each Remaining Weight

 Huffman Coding:
Entropy of the Remaining Weights

Compression Acceleration Regularization Stanford University



Pruning

before pruning after pruning

pruning
synapses

pruning
neurons

R

Han et al. Learning both Weights and Connections for Efficient Neural Networks, NIPS’15
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Pruning: Motivation

Age Number of Connections  Stage

at birth | 50 Trillion | newly formed

1 year old peak

10 year old | 500 Trillion | pruned and stabilized

Table 1: The synapses pruning mechanism in human brain development

At birth, Trillions of synapses

1 year old, peaked at 1000 trillion

Pruning begins to occur.

10 years old, pruned to nearly 500 trillion synapses

This “pruning” mechanism removes redundant connections in the brain.

Pruning Stanford University



AlexNet & VGGNet
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Han et al. Learning both Weights and Connections for Efficient Neural Networks, NIPS 2015
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Trained Quantization

weights cluster index fine-tuned
(32 bit float) (2 bit uint) centroids centroids
-0.98 3 0 2 1 3:. -
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E> 0 3 1 0 11 0.00 Q -0.04
3 1 2 2 0:| -1.00 xIr |-0.97
gradient
o
rcle;lf;e 0.02
-0.02 0.04
-0.03

Han et al. Deep Compression, ICLR 2016 Best Paper Award
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Bits Per Weight
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Han et al. Deep Compression, ICLR 2016 Best Paper Award
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Even Fewer Bits:
Trained Ternary Quantization

: Trained
Normalized Int diate T Weiaht . . Final T Weight
Full Precision Weight Full Precision Weight niermediate lernary vveig Quantization Final Ternary Weig
. _—
-1 0 1 T -1 4 0t 1 -1 0 1
----------------------------- gradients
— Feed Forward *---- Back Propagate Inference Time

Zhu, Han, Mao, Dally. Trained Ternary Quantization, ICLR'17
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Trained Ternary Quantization
— Learn both Centroid and Grouping

— res3.2/conv2/Wn — res3.2/conv2/Wp

3
3 2
. g M
Learn Centroids: £
O stays 0, positive weight gets larger § 0
negative weight gets smaller = -1 M\
o -2
-3

M Negatives M Zeros M Positives
100%

75%

Learn Grouping:

more weights grouped to zero (red)

less grouped to positive (green)
less grouped to negative (blue) 0%
80% sparse in the end 0 50 100 150

Epochs
Zhu, Han, Mao, Dally. Trained Ternary Quantization, ICLR'17
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Ternary Net is Sparse
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Sparsity: percentage of zero weights
Figure 5: Accuracy v.s. Sparsity on ResNet-20

Zhu, Han, Mao, Dally. Trained Ternary Quantization, ICLR’17
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Visualization of the TTQ Kernels
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TTQ: Accuracy

— DoReFa-Net — TWN — Ours --- Full precision (with Dropout)

Train Validation

0%

Figure 4: Training and validation accuracy of AlexNet on ImageNet

Zhu, Han, Mao, Dally. Trained Ternary Quantization, ICLR’17
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Model Compression Means

e Complex DNNs can be put in mobile applications (<10MB total)
—500MB with-FC network (125M weights) becomes 10MB
—10MB all-CONV network (2.5M weights) becomes 1MB

e Memory bandwidth reduced by 10-50x
— Particularly for FC layers in real-time applications with no reuse
— Good for distributed training => less communication overhead

e Memory working set fits in on-chip SRAM
—5pd/word access v.s. 640pJd/word

Compression Acceleration Regularization Stanford University



Challenges

e Online de-compression while computing
— Special purpose logic

« Computation becomes irregular
— Sparse weight
— Sparse activation
— Indirect lookup

* Parallelization becomes challenging
— Synchronization overhead.
—Load imbalance issue.
— Scalability

Compression Acceleration Regularization Stanford University



Agenda

+Hardware Acceleration (speed, energy)
e EIE Accelerator (ASIC)
 ESE Accelerator (FPGA)
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Related Work

On-Chip | Spatial PE Array

3D Memory(HBM)  gjjicon die
A [ PKG Substrate

Base die

Eyeriss, MIT TPU, Google Nervana

Acceleration Stanford University



Agenda

+Hardware Acceleration
* EIE Accelerator (ASIC)
 ESE Accelerator (FPGA)
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EIE: Inference on Sparse, Compressed Model
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Han et al. “EIE: Efficient Inference Engine on Compressed Deep Neural Network”, ISCA 2016, Hotchips 2016
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PE Architecture
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\Actlndex e oded NZero
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Han et al. “EIE: Efficient Inference Engine on Compressed Deep Neural Network”, ISCA 2016, Hotchips 2016
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Where are the savings from?

Sparse Matrix
90% static sparsity

in the weights,
10x less computation,
5x less memory footprint

Han et al. “EIE: Efficient Inference Engine on Compressed Deep Neural Network”, ISCA 2016, Hotchips 2016

Acceleration Stanford University



Where are the savings from?

Sparse Matrix § Sparse Vector
90% static sparsity 70% dynamic sparsity

in the weights, in the activation

10x less computation, 3x less computation
5x less memory footprint

Han et al. “EIE: Efficient Inference Engine on Compressed Deep Neural Network”, ISCA 2016, Hotchips 2016
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Where are the savings from?

Sparse Matrix § Sparse Vector | Weight Sharing

90% static sparsity 70% dynamic sparsity 4bits weights

in the weights, in the activation 8x less memory

10x less computation, 3x less computation footprint
5x less memory footprint

Han et al. “EIE: Efficient Inference Engine on Compressed Deep Neural Network”, ISCA 2016, Hotchips 2016
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Speedup of EIE

B CPU Dense (Baseline) ®CPU Compressed GPU Dense EGPU Compressed ®EmGPU Dense ®mGPU Compressed BEIE

1018x 618x

1000x 507x
248x X 189x

10x

Alex-6 Alex-7 Alex-8 VGG-6 VGG-7 VGG-8 NT-We NT-wd NT-LSTM Geo Mean

189x (/’*) /

48X
15

3X

1X

Baseline:
» Intel Core i7 5930K: MKL CBLAS GEMV,
MKL SPBLAS CSRMV

* NVIDIA GeForce GTX Titan X: CuBLAS : i il i —
GEMV, cuSPARSE CSRMV CPU GPU mGPU EIE

» NVIDIA Tegra K1: cuBLAS GEMV, 37 32 =
cuSPARSE CSRMV %.'i E%-’i ;-igi%i
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Energy Efficiency of EIE

SpMat B CPU Dense (Baseline) BCPU Compressed ©EGPU Dense GPU Compressed BEmGPU Dense BmGPU Compressed BEIE
61,533x 119,797x 76,784x

34,522x 24,207x

14,826x 11,828x 9,485x 10,904x 8,053x

Act 0 Act_1
Ptr_Even  Arithm- Ptr_Odd

SpMat

Alex-6 Alex-7 Alex-8 VGG-6 VGG-7 VGG-8 NT-We NT-wd NT-LSTM | Geo Mean

24,207x / ) /

23X
6x /X
Baseline: S
 Intel Core i7 5930K: MKL CBLAS GEMYV, 1x §
MKL SPBLAS CSRMV - N
e NVIDIA GeForce GTX Titan X: cuBLAS t it it i—
GEMV, cuSPARSE CSRMV CPU GPU mGPUEIE
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Scalability

m1PE 2PEs u4PEs u 8PEs m 16PEs u 32PEs M 64PEs m 128PEs = 256PEs
100
o
=2
o
® 10 o i "
o
(/7]
1
Alex-6 Alex-7 Alex-8 VGG-6 VGG-7 VGG-8 NT-We NT-Wd NT-LSTM
#PEs ~ Speedup
- 64PEs: 64x

- 128PEs: 124x
- 256PEs: 210x

Han et al. “EIE: Efficient Inference Engine on Compressed Deep Neural Network”, ISCA 2016, Hotchips 2016
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Load Balancing

FIFO=1 FIFO=2 ®FIFO=4 ®mFIFO=8 ®FIFO=16 ®FIFO=32 ®FIFO=64 ®FIFO=128 ®FIFO=256

100%
80%
60%
40%
20%
0%

Load Balance

Alex-6 Alex-7 Alex-8 VGG-6 VGG-7 VGG-8 NT-We NT-Wd NT-LSTM

- Imbalanced non-zeros among PEs degrades system utilization.
-+ This load imbalance could be solved by FIFO.
-« With FIFO depth=8, ALU utilization is > 80%.

Han et al. “EIE: Efficient Inference Engine on Compressed Deep Neural Network”, ISCA 2016, Hotchips 2016
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Remaining Questions

« Can we do better with load imbalance?

 Feedforward => Recurrent neural network?

Compression Acceleration Regularization Stanford University



Agenda

+Hardware Acceleration (speed, energy)

 ESE Accelerator (FPGA)

Compression Acceleration Regularization Stanford University



Accelerating Recurrent Neural Networks

% m

speech recognition

“straw” “hat” END

START "StraW" llhat"

image caption

Google
3 Translate 5. =
machine translation visual question answering

The recurrent nature of RNN/LSTM produces complicated data dependency,
which is more challenging than feedforward neural nets.

Compression Acceleration Regularization Stanford University



Rethinking Model Compression

1 YN

Accelerated

Compression Inference

Pruning
Quantization

Acceleration Stanford University



Rethinking Model Compression

2 BN L

Accelerated
Inference

Compression
Pruning

Quantization load balance-aware

pruning

Han et, al, “ESE: Efficient Speech Recognition Engine for Compressed LSTM”, NIPS'16 workshop; FPGA'17
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Pruning Lead to Load Imbalance

PEO s 0 og)
PFE1 O| 0 (Wiz| O
PE?2 0O (W21 O W23
PES3 O] 00O
01O (W 4,&4,3}
Wsol O | O | O
We,0 ‘9__ O [Wsg3
\[ o W) 0 [0/
@ Unbalanced
PEO 5 cycles
PFE1 2 cycles
PE?2 4 cycles
PE3 1 cycle

Overall: 5 cycles
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Load Balance Aware Pruning

PEQ PEQ
PE1 PE1
PE?2 PE?2
PE3 PE3

(B

‘*»/) Unbalanced A(**% ) Balanced
PEOQ 5 cycles PEQ 3 cycles
PE1 2 cycles PFE1 3 cycles
PE2 4 cycles PE2 3 cycles
PE3 1 cycle PE3 3 cycles

Overall: 5 cycles Overall: 3 cycles

Acceleration
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Load Balance Aware Pruning:
Same Accuracy

O with load balance 4 without load balance
28.0%

26.5% J?

25.0%

sweet
23.5% pOI nt

22.0%

Phone Error Rate

20.5% ¢

?

19.0%
0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Parameters Pruned Away
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Load Balance Aware Pruning:
Better Speedup

O with load balance #4 without load balance

6.2x speedup
over dense

5.5x speedup
over dense

Speedup

2X

1X

0x

0% 10%  20%  30%  40% 50% 60%  70%  80%  90%
Parameters Pruned Away

Han et, al, “ESE: Efficient Speech Recognition Engine for Compressed LSTM”, NIPS'16 workshop; FPGA'17
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From Compression to Acceleration

+ Challenge 1:
memory access is expensive.

v Deep Compression:
10x-49x smaller, no loss of accuracy

+ Challenge 2:
sparsity, indirection, load balance.

v EIE / ESE Accelerator:
energy-efficient accelerated inference

Compression Acceleration Regularization Stanford University



What about Training?
Compressed Model Size: Same accuracy

=> Original Model Size: Higher accuracy

Compression Acceleration Regularization Stanford University



Agenda

+ Efficient Training (accuracy)
* Dense-Sparse-Dense Regularization

Compression Acceleration Regularization Stanford University



DSD: Dense Sparse Dense Training

Dense Sparse

Pruning

>
Sparsity Constraint

DSD produces same model architecture but can find better optimization solution,
arrives at better local minima, and achieves higher prediction accuracy across a wide
range of deep neural networks on CNNs / RNNs / LSTMs.

Han et al. “DSD: Dense-Sparse-Dense Training for Deep Neural Networks”, ICLR 2017
Stanford University
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DSD: Intuition

\/(/%

Learn the trunk first Then learn the leaves

Stanford University



Related Work

e Dropout and DropConnect
- Dropout use a random sparsity pattern.

- DSD training learns with a deterministic data
driven sparsity pattern.

e Distillation

- Transfer the knowledge from the cumbersome
model to a small model

- Both DSD and Distillation don’t incur architectural
changes.

Stanford University



Weight Distribution

Train on Dense (D)
6400

4800

3200

Count

1600

-0.05 0.05

0
Weight Value

(a)

Han et al. “DSD: Dense-Sparse-Dense Training for Deep Neural Networks”, ICLR 2017
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Weight Distribution

Train on Dense (D) Pruning the Network
6400 6400
4800 4800¢
£ £
3 3200 3 3200
(&) (&)
1600 1600(
" 005 .0 0.05 0 505 .0 0.05
Weight Value Weight Value
(a) (b)

Han et al. “DSD: Dense-Sparse-Dense Training for Deep Neural Networks”, ICLR 2017
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Weight Distribution

Train on Dense (D)

Pruning the Network Train on Sparse (S)
6400 6400 6400
4800 4800 4800
£ £ £
3 3200 3 3200 3 3200
(& (&) (&)
1600 1600( 1600
0 005 .0 0.05 0 505 .0 0.05 0 005 0 0.05
Weight Value Weight Value Weight Value
(a)

(b) (c)

Han et al. “DSD: Dense-Sparse-Dense Training for Deep Neural Networks”, ICLR 2017
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Weight Distribution

Train on Dense (D) Pruning the Network Train on Sparse (S) Recover Zero Weights

6400 6400 6400 6400

4800 4800 4800 4800
£ £ £ £
3 3200 3 3200 3 3200 | 3 3200
(& (&) (&) (&)

1600 1600( 1600 {1600 |

0 005 .0 0.05 0 505 .0 0.05 0 005 0 0.05 0 005 .0 0.05
Weight Value Weight Value Weight Value Weight Value

(a) (b) (c) (d)

Han et al. “DSD: Dense-Sparse-Dense Training for Deep Neural Networks”, ICLR 2017
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Weight Distribution

Train on Dense (D) Pruning the Network Train on Sparse (S)

Recover Zero Weights Train on Dense (D)
6400 6400 6400 6400 6400
4800 4800 4800 4800 4800
3 3200 3 3200 3 3200 | 3 3200 3 3200
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1600 1600( 1600 {1600 I 1600
0 0

0 005 .0 0.05 0 505 .0 0.05 0 005 0 0.05 -005 0 0.05 -0.05 0.05
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0
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Han et al. “DSD: Dense-Sparse-Dense Training for Deep Neural Networks”, ICLR 2017
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DSD is General Purpose:
Vision, Speech, Natural Language

Table 1: Overview of the neural networks, data sets and performance improvements from DSD.

Neural Network Domain  Dataset Type Baseline DSD  Abs. Imp. Rel. Imp.

GoogleNet Vision  ImageNet CNN 31.1%' [30.0% 1.1% 3.6%
VGG-16 Vision ImageNet CNN 31.5%' [27.2% 4.3% 13.7%
ResNet-18 Vision  ImageNet CNN 30.4%' |29.3% 1.1% 3.7%
ResNet-50 Vision  ImageNet CNN 24.0%' |23.2% 0.9% 3.5%
NeuralTalk Caption Flickr-8K LSTM 16.82 18.5 1.7 10.1%
DeepSpeech Speech ~ WSJ’93 RNN 33.6%° | 31.6% 2.0% 5.8%
DeepSpeech-2 Speech ~ WSJ’93 RNN 14.5% 3 | 13.4% 1.1% 7.4%

DSD Model Zoo is online: https://songhan.qgithub.io/DSD

The beseline results of AlexNet, VGG16, GoogleNet, SqueezeNet are from Caffe Model Zoo.
The baseline results of ResNet18, ResNet50 are from fb.resnet.torch.

Compression Acceleration Regularization Stanford University




DSD on Caption Generation

X Baseline: a boy O Baseline: a \/&asghnc two XBaschnc a man and XBass:hne a person in

in a red shirt is  basketball player in dogs are playing a woman are sitting a red jacket is riding a
climbing a rock a red uniform is togetherinafield. @ on abench. bike through the
wall. playing with a ball. woods.

X Sparse: a young () Sparse: a basketball ./Sparse: two dogs OSparse: a man is\/Sparse: a car drives

girl is jumping off  player in a blue are playing in a sitting on a bench throughamudpuddle
a tree. uniform is jumping field. with his hands in the

over the goal. air. DSD: a car drives
/DSD: a young girl  ,DSD: a basketball }/DSD: two dogs are ()DSD: a man is sitting . /through a forest.
in a pink shirt is  player in a white playing in the on a bench with his
swinging on a  uniform is trying to grass. arms folded.
swing. make a shot.

Baseline model: Andrej Karpathy, Neural Talk model zoo.
Han et al. “DSD: Dense-Sparse-Dense Training for Deep Neural Networks”, ICLR 2017
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DSD on Captlon Generatlon

xBaseline: a boy is swimming in a pool. x&as_ell_ne a group of p.eople are xﬂas_.eli_I}Q: two girls in bathing suits are Baseline: a man in a red shirt and

“Sparse: a small black dog is jumping standing in front of a building. playing in the water. jeans is riding a bicycle down a street.
into a pool. )g_paxs_e: a group of people are standing \/S_p_aLs_e: two children are playing in the (Sparse: a man in a red shirt and a
DSD: a black and white dog is swimming in front of a building. sand.

woman in a wheelchair.
in a pool.

DSD: a man and a woman are riding on
a street.

DSD: a group of people are walking in a \/DSD: two children are playing in the
park. sand.

sBaseline: a group of people sit on a
bench in front of a building.
: a group of people are

xBaseline: a man in a black jacket and a

(Baseline: a group of football players in @Baselme a dog runs through the grass.
black jacket is smiling. red uniforms.

(OSparse: a dog runs through the grass.
xSpal:sc a man and a woman are standing @Spars_e a group of football players in a /DSD: a white and brown dog is running
standing in front of a building. in front of a mountain. field. through the grass.
: a group of people are standing : aman in a black jacket is standing vDSD a group of football players in red
in a fountain. next to a man in a black shirt. and white uniforms.

Han et al. “DSD: Dense-Sparse-Dense Training

for Deep Neural Networkd3:

4€0hdn04dI7Andrej Karpathy, Neural Talk model zoo.
Compression Acceleration Regularization
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Summary

+Deep Compression (size)
* Pruning
* Trained Quantization
* Huffman Coding

+Hardware Acceleration (speed, energy)
e EIE Accelerator (ASIC)
 ESE Accelerator (FPGA)

+ Efficient Training (accuracy)
* Dense-Sparse-Dense Regularization

Compression Acceleration Regularization Stanford University



Summary

Training Inference

Compression Acceleration Regularization Stanford University



Summary

Algorithm

Training Inference

Hardware
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Algorithm
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Hardware
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Summary

Algorithm
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Summary

Training

\
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Algorithm

Deep Compression

Smaller Size:

Inference
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Hardware

Compression
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Summary

Algorithm

Smaller Size:
Deep Compression

Training| @@ Inference

Better Speed,
Energy Efficiency:
EIE / ESE Accelerator

Hardware

\

A 4
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Summary

Algorithm

Higher Accuracy: Smaller Size:
DSD Regularization Deep Compression

Training}: @@ Inference

Better Speed,
Energy Efficiency:
EIE / ESE Accelerator

Hardware

A 4
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Detection with Low Precision
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ESE for Speech Recognition
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Efficient Speech Recognition Engine on Sparse LSTM
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