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IMAGE RECOGNITION SPEECH RECOGNITION

Important Property of Neural Networks

Results get better with 

more data +
bigger models +

more computation

(Better algorithms, new insights and 
improved techniques always help, too!)

2012
AlexNet

2015
ResNet

152 layers
22.6 GFLOP
~3.5% error

8 layers
1.4 GFLOP
~16% Error

16X
Model

2014
Deep Speech 1

2015
Deep Speech 2

80 GFLOP
7,000 hrs of Data

~8% Error

10X
Training Ops

465 GFLOP
12,000 hrs of Data

~5% Error

Dally, NIPS’2016 workshop on Efficient Methods for Deep Neural Networks

Models are Getting Larger



Problem of Large DNN Model: Difficult to Deploy



App developers suffers from the model size

Large DNN Model: Difficult to Deploy



Phones Drones

Self Driving CarsGlasses

Robots

Large DNN Model: Difficult to Deploy

• Limited Computation  
Resource

• Battery Constrained
• Cooling Constrained



Figure 1: Energy table for 45nm CMOS process. Memory access is 2 orders of magnitude more 
energy expensive than arithmetic operations. 

Operation Energy [pJ] Relative Cost

32 bit int ADD 0.1 1
32 bit float ADD 0.9 9
32 bit Register File 1 10
32 bit int MULT 3.1 31
32 bit float MULT 3.7 37
32 bit SRAM Cache 5 50
32 bit DRAM Memory 640 6400

1 10 100 1000 10000

Relative Energy Cost 

Figure 1: Energy table for 45nm CMOS process [7]. Memory access is 3 orders of magnitude more
energy expensive than simple arithmetic.

To achieve this goal, we present a method to prune network connections in a manner that preserves the
original accuracy. After an initial training phase, we remove all connections whose weight is lower
than a threshold. This pruning converts a dense, fully-connected layer to a sparse layer. This first
phase learns the topology of the networks — learning which connections are important and removing
the unimportant connections. We then retrain the sparse network so the remaining connections can
compensate for the connections that have been removed. The phases of pruning and retraining may
be repeated iteratively to further reduce network complexity. In effect, this training process learns
the network connectivity in addition to the weights - much as in the mammalian brain [8][9], where
synapses are created in the first few months of a child’s development, followed by gradual pruning of
little-used connections, falling to typical adult values.

2 Related Work

Neural networks are typically over-parameterized, and there is significant redundancy for deep learn-
ing models [10]. This results in a waste of both computation and memory. There have been various
proposals to remove the redundancy: Vanhoucke et al. [11] explored a fixed-point implementation
with 8-bit integer (vs 32-bit floating point) activations. Denton et al. [12] exploited the linear
structure of the neural network by finding an appropriate low-rank approximation of the parameters
and keeping the accuracy within 1% of the original model. With similar accuracy loss, Gong et al.
[13] compressed deep convnets using vector quantization. These approximation and quantization
techniques are orthogonal to network pruning, and they can be used together to obtain further gains
[14].

There have been other attempts to reduce the number of parameters of neural networks by replacing
the fully connected layer with global average pooling. The Network in Network architecture [15]
and GoogLenet [16] achieves state-of-the-art results on several benchmarks by adopting this idea.
However, transfer learning, i.e. reusing features learned on the ImageNet dataset and applying them
to new tasks by only fine-tuning the fully connected layers, is more difficult with this approach. This
problem is noted by Szegedy et al. [16] and motivates them to add a linear layer on the top of their
networks to enable transfer learning.

Network pruning has been used both to reduce network complexity and to reduce over-fitting. An
early approach to pruning was biased weight decay [17]. Optimal Brain Damage [18] and Optimal
Brain Surgeon [19] prune networks to reduce the number of connections based on the Hessian of the
loss function and suggest that such pruning is more accurate than magnitude-based pruning such as
weight decay. However, second order derivative needs additional computation.

HashedNets [20] is a recent technique to reduce model sizes by using a hash function to randomly
group connection weights into hash buckets, so that all connections within the same hash bucket
share a single parameter value. This technique may benefit from pruning. As pointed out in Shi et al.
[21] and Weinberger et al. [22], sparsity will minimize hash collision making feature hashing even
more effective. HashedNets may be used together with pruning to give even better parameter savings.
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larger model => more memory reference => more energy
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Given the power budget,  
Moore’s law is no longer  

providing more computation  



Improve the Efficiency of Deep Learning 
by Algorithm-Hardware Co-Design 



Proposed Paradigm

Training
Accelerated 
InferenceCompression

Pruning 
Quantization

Conventional

Proposed

Han et al  NIPS’15 
Han et al  ICLR’16   
(best paper award) 

 

Han et al  ISCA’16 
Han et al  FPGA’17 

Training Inference

Han et al  ICLR’17 



Agenda

✦Model Compression (size)
• Pruning / Quantization 
• Ternary Net 

✦Hardware Acceleration (speed, energy)
• EIE Accelerator (ASIC) 
• ESE Accelerator (FPGA) 

✦Efficient Training (accuracy)
• Dense-Sparse-Dense Regularization

Compression Acceleration Regularization

Accelerated 
Inference

Compression
Pruning 

Quantization

Training



Agenda

Compression Acceleration Regularization

✦Model Compression
• Pruning / Quantization 
• Ternary Net 

✦Hardware Acceleration
• EIE Accelerator (ASIC) 
• ESE Accelerator (FPGA) 

✦Efficient Training
• Dense-Sparse-Dense Regularization



• Network Pruning:  
Less Number of Weights 

• Trained Quantization:  
Reduce Storage for Each Remaining Weight 

• Huffman Coding:  
Entropy of the Remaining Weights

Deep Compression Pipeline

Compression Acceleration Regularization



Pruning

Han et al. Learning both Weights and Connections for Efficient Neural Networks, NIPS’15

Pruning Trained Quantization Huffman Coding



Pruning: Motivation

• At birth, Trillions of synapses

• 1 year old, peaked at 1000 trillion 

• Pruning begins to occur.

• 10 years old, pruned to nearly 500 trillion synapses

• This “pruning” mechanism removes redundant connections in the brain.

[1] Christopher A Walsh. Peter Huttenlocher (1931-2013). Nature, 502(7470):172–172, 2013.  

Pruning Trained Quantization Huffman Coding



AlexNet & VGGNet

Han et al. Learning both Weights and Connections for Efficient Neural Networks, NIPS 2015

CONV: 3x FC: 10x

Pruning Trained Quantization Huffman Coding



Published as a conference paper at ICLR 2016

Figure 2: Representing the matrix sparsity with relative index. Padding filler zero to prevent overflow.
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Figure 3: Weight sharing by scalar quantization (top) and centroids fine-tuning (bottom).

We store the sparse structure that results from pruning using compressed sparse row (CSR) or
compressed sparse column (CSC) format, which requires 2a+n+1 numbers, where a is the number
of non-zero elements and n is the number of rows or columns.

To compress further, we store the index difference instead of the absolute position, and encode this
difference in 8 bits for conv layer and 5 bits for fc layer. When we need an index difference larger
than the bound, we the zero padding solution shown in Figure 2: in case when the difference exceeds
8, the largest 3-bit (as an example) unsigned number, we add a filler zero.

3 TRAINED QUANTIZATION AND WEIGHT SHARING

Network quantization and weight sharing further compresses the pruned network by reducing the
number of bits required to represent each weight. We limit the number of effective weights we need to
store by having multiple connections share the same weight, and then fine-tune those shared weights.

Weight sharing is illustrated in Figure 3. Suppose we have a layer that has 4 input neurons and 4
output neurons, the weight is a 4⇥ 4 matrix. On the top left is the 4⇥ 4 weight matrix, and on the
bottom left is the 4⇥ 4 gradient matrix. The weights are quantized to 4 bins (denoted with 4 colors),
all the weights in the same bin share the same value, thus for each weight, we then need to store only
a small index into a table of shared weights. During update, all the gradients are grouped by the color
and summed together, multiplied by the learning rate and subtracted from the shared centroids from
last iteration. For pruned AlexNet, we are able to quantize to 8-bits (256 shared weights) for each
CONV layers, and 5-bits (32 shared weights) for each FC layer without any loss of accuracy.

To calculate the compression rate, given k clusters, we only need log2(k) bits to encode the index. In
general, for a network with n connections and each connection is represented with b bits, constraining
the connections to have only k shared weights will result in a compression rate of:

r =
nb

nlog2(k) + kb
(1)

For example, Figure 3 shows the weights of a single layer neural network with four input units and
four output units. There are 4⇥4 = 16 weights originally but there are only 4 shared weights: similar
weights are grouped together to share the same value. Originally we need to store 16 weights each
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Han et al. Deep Compression, ICLR 2016 Best Paper Award

Trained Quantization

Pruning Trained Quantization Huffman Coding



Bits Per Weight

Pruning Trained Quantization Huffman Coding

Han et al. Deep Compression, ICLR 2016 Best Paper Award



Even Fewer Bits:  
Trained Ternary Quantization

Normalize

-1 0 1

Quantize

-1 0 1 -1 0 1

Scale

Wp
-Wn Wp-t t

Loss

Wn

Feed Forward Back Propagate Inference Time

Trained 
Quantization

0

Full Precision Weight
Normalized  

Full Precision Weight Final Ternary WeightIntermediate Ternary Weight

gradient1 gradient2

Pruning Trained Quantization Huffman Coding
Zhu, Han, Mao, Dally. Trained Ternary Quantization, ICLR’17



Learn Centroids:

Learn Grouping:

0 stays 0, positive weight gets larger 
negative weight gets smaller

more weights grouped to zero (red) 
less grouped to positive (green) 
less grouped to negative (blue) 

80% sparse in the end

Under review as a conference paper at ICLR 2017

Equation 2. We use scaled gradients for 32-bit weights:
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Note we use scalar number 1 as factor of gradients of zero weights. The overall quantization process
is illustrated as Figure 1. The evolution of the ternary weights from different layers during training is
shown in Figure 2. We observe that as training proceeds, different layers behave differently: for the
first quantized conv layer, the absolute values of W p

l and Wn
l get smaller and sparsity gets lower,

while for the last conv layer and fully connected layer, the absolute values of W p
l and Wn

l get larger
and sparsity gets higher.

We learn the ternary assignments (index to the codebook) by updating the latent full-resolution
weights during training. This may cause the assignments to change between iterations. Note that
the thresholds are not constants as the maximal absolute values change over time. Once an updated
weight crosses the threshold, the ternary assignment is changed.

The benefits of using trained quantization factors are: i) The asymmetry of W p
l 6= Wn

l enables
neural networks to have more model capacity. ii) Quantized weights play the role of "learning rate
multipliers" during back propagation.

3.2 QUANTIZATION HEURISTIC

In previous work on ternary weight networks, Li & Liu (2016) proposed Ternary Weight Networks
(TWN) using ±�l as thresholds to reduce 32-bit weights to ternary values, where ±�l is defined
as Equation 5. They optimized value of ±�l by minimizing expectation of L2 distance between
full precision weights and ternary weights. Instead of using a strictly optimized threshold, we adopt
different heuristics: 1) use the maximum absolute value of the weights as a reference to the layer’s
threshold and maintain a constant factor t for all layers:

�l = t⇥ max(|w̃|) (9)

and 2) maintain a constant sparsity r for all layers throughout training. By adjusting the hyper-
parameter r we are able to obtain ternary weight networks with various sparsities. We use the first
method and set t to 0.05 in experiments on CIFAR-10 and ImageNet dataset and use the second one
to explore a wider range of sparsities in section 5.1.1.
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Figure 2: Ternary weights value (above) and distribution (below) with iterations for different layers
of ResNet-20 on CIFAR-10.
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Trained Ternary Quantization  
— Learn both Centroid and Grouping

Pruning Trained Quantization Huffman Coding
Zhu, Han, Mao, Dally. Trained Ternary Quantization, ICLR’17



Ternary Net is Sparse

Zhu, Han, Mao, Dally. Trained Ternary Quantization, ICLR’17



Visualization of the TTQ Kernels

Pruning Trained Quantization Huffman Coding
Zhu, Han, Mao, Dally. Trained Ternary Quantization, ICLR’17



TTQ: Accuracy

Pruning Trained Quantization Huffman Coding
Zhu, Han, Mao, Dally. Trained Ternary Quantization, ICLR’17



• Complex DNNs can be put in mobile applications (<10MB total) 
– 500MB with-FC network (125M weights) becomes 10MB 
– 10MB all-CONV network (2.5M weights) becomes 1MB 

• Memory bandwidth reduced by 10-50x 
– Particularly for FC layers in real-time applications with no reuse 
– Good for distributed training => less communication overhead 

• Memory working set fits in on-chip SRAM 
– 5pJ/word access v.s. 640pJ/word

Model Compression Means

Compression Acceleration Regularization



Challenges 

• Online de-compression while computing 
– Special purpose logic 

• Computation becomes irregular 
– Sparse weight 
– Sparse activation 
– Indirect lookup 

• Parallelization becomes challenging  
– Synchronization overhead. 
– Load imbalance issue. 
– Scalability

Compression Acceleration Regularization



Agenda

✦Deep Compression (size)
• Pruning 
• Trained Quantization 
• Huffman Coding 

✦Hardware Acceleration (speed, energy)
• EIE Accelerator (ASIC) 
• ESE Accelerator (FPGA) 

✦Efficient Training (accuracy)
• Dense-Sparse-Dense Regularization

Compression Acceleration Regularization



TPU, GoogleEyeriss, MIT Nervana

Compression Acceleration Regularization

Related Work



Agenda

Compression Acceleration Regularization

✦Model Compression
• Pruning / Quantization 
• Ternary Net 

✦Hardware Acceleration
• EIE Accelerator (ASIC) 
• ESE Accelerator (FPGA) 

✦Efficient Training
• Dense-Sparse-Dense Regularization
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Compression Acceleration Regularization

EIE: Inference on Sparse, Compressed Model



PE Architecture
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Compression Acceleration Regularization



Sparse Matrix
90% static sparsity  

in the weights, 
10x less computation, 

5x less memory footprint

Han et al. “EIE: Efficient Inference Engine on Compressed Deep Neural Network”, ISCA 2016, Hotchips 2016

Where are the savings from?

Compression Acceleration Regularization
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 in the activation
3x less computation

Sparse Matrix
90% static sparsity  

in the weights, 
10x less computation, 

5x less memory footprint

Han et al. “EIE: Efficient Inference Engine on Compressed Deep Neural Network”, ISCA 2016, Hotchips 2016

Compression Acceleration Regularization

Where are the savings from?
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4bits weights 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Compression Acceleration Regularization

Where are the savings from?



Fully fits in SRAM
120x less energy than DRAM
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Compression Acceleration Regularization

Where are the savings from?



Fully fits in SRAM
120x less energy than DRAM

Sparse Vector
70% dynamic sparsity 

 in the activation
3x less computation

Sparse Matrix
90% static sparsity  

in the weights, 
10x less computation, 

5x less memory footprint

Weight Sharing
4bits weights 

8x less memory 
footprint

Han et al. “EIE: Efficient Inference Engine on Compressed Deep Neural Network”, ISCA 2016, Hotchips 2016

Fully fits in SRAM
Sparse Matrix Read Unit. The sparse-matrix read unit

uses pointers p
j

and p
j+1 to read the non-zero elements (if

any) of this PE’s slice of column I
j

from the sparse-matrix
SRAM. Each entry in the SRAM is 8-bits in length and
contains one 4-bit element of v and one 4-bit element of x.

For efficiency (see Section VI) the PE’s slice of encoded
sparse matrix I is stored in a 64-bit-wide SRAM. Thus eight
entries are fetched on each SRAM read. The high 13 bits
of the current pointer p selects an SRAM row, and the low
3-bits select one of the eight entries in that row. A single
(v, x) entry is provided to the arithmetic unit each cycle.

Arithmetic Unit. The arithmetic unit receives a (v, x)
entry from the sparse matrix read unit and performs the
multiply-accumulate operation b

x

= b
x

+ v ⇥ a
j

. Index
x is used to index an accumulator array (the destination
activation registers) while v is multiplied by the activation
value at the head of the activation queue. Because v is stored
in 4-bit encoded form, it is first expanded to a 16-bit fixed-
point number via a table look up. A bypass path is provided
to route the output of the adder to its input if the same
accumulator is selected on two adjacent cycles.

Activation Read/Write. The Activation Read/Write Unit
contains two activation register files that accommodate the
source and destination activation values respectively during
a single round of FC layer computation. The source and
destination register files exchange their role for next layer.
Thus no additional data transfer is needed to support multi-
layer feed-forward computation.

Each activation register file holds 64 16-bit activations.
This is sufficient to accommodate 4K activation vectors
across 64 PEs. Longer activation vectors can be accommo-
dated with the 2KB activation SRAM. When the activation
vector has a length greater than 4K, the M⇥V will be
completed in several batches, where each batch is of length
4K or less. All the local reduction is done in the register
file. The SRAM is read only at the beginning and written at
the end of the batch.

Distributed Leading Non-Zero Detection. Input acti-
vations are hierarchically distributed to each PE. To take
advantage of the input vector sparsity, we use leading non-
zero detection logic to select the first non-zero result. Each
group of 4 PEs does a local leading non-zero detection on
their input activation. The result is sent to a Leading Non-
zero Detection Node (LNZD Node) illustrated in Figure 4.
Each LNZD node finds the next non-zero activation across
its four children and sends this result up the quadtree. The
quadtree is arranged so that wire lengths remain constant as
we add PEs. At the root LNZD Node, the selected non-zero
activation is broadcast back to all the PEs via a separate
wire placed in an H-tree.

Central Control Unit. The Central Control Unit (CCU)
is the root LNZD Node. It communicates with the master,
for example a CPU, and monitors the state of every PE by
setting the control registers. There are two modes in the
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Figure 5. Layout of one PE in EIE under TSMC 45nm process.

Table II
THE IMPLEMENTATION RESULTS OF ONE PE IN EIE AND THE

BREAKDOWN BY COMPONENT TYPE (LINE 3-7), BY MODULE (LINE
8-13). THE CRITICAL PATH OF EIE IS 1.15 NS

Power (%) Area (%)(mW) (µm2)
Total 9.157 638,024
memory 5.416 (59.15%) 594,786 (93.22%)
clock network 1.874 (20.46%) 866 (0.14%)
register 1.026 (11.20%) 9,465 (1.48%)
combinational 0.841 (9.18%) 8,946 (1.40%)
filler cell 23,961 (3.76%)
Act queue 0.112 (1.23%) 758 (0.12%)
PtrRead 1.807 (19.73%) 121,849 (19.10%)
SpmatRead 4.955 (54.11%) 469,412 (73.57%)
ArithmUnit 1.162 (12.68%) 3,110 (0.49%)
ActRW 1.122 (12.25%) 18,934 (2.97%)
filler cell 23,961 (3.76%)

Central Unit: I/O and Computing. In the I/O mode, all of
the PEs are idle while the activations and weights in every
PE can be accessed by a DMA connected with the Central
Unit. This is one time cost. In the Computing mode, the
CCU repeatedly collects a non-zero value from the LNZD
quadtree and broadcasts this value to all PEs. This process
continues until the input length is exceeded. By setting the
input length and starting address of pointer array, EIE is
instructed to execute different layers.

V. EVALUATION METHODOLOGY

Simulator, RTL and Layout. We implemented a custom
cycle-accurate C++ simulator for the accelerator aimed to
model the RTL behavior of synchronous circuits. Each
hardware module is abstracted as an object that implements
two abstract methods: propagate and update, corresponding
to combination logic and the flip-flop in RTL. The simulator
is used for design space exploration. It also serves as a
checker for RTL verification.

To measure the area, power and critical path delay, we
implemented the RTL of EIE in Verilog. The RTL is verified
against the cycle-accurate simulator. Then we synthesized
EIE using the Synopsys Design Compiler (DC) under the
TSMC 45nm GP standard VT library with worst case PVT
corner. We placed and routed the PE using the Synopsys IC
compiler (ICC). We used Cacti [25] to get SRAM area and
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Figure 6. Speedups of GPU, mobile GPU and EIE compared with CPU running uncompressed DNN model. There is no batching in all cases.
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Figure 7. Energy efficiency of GPU, mobile GPU and EIE compared with CPU running uncompressed DNN model. There is no batching in all cases.

corner. We placed and routed the PE using the Synopsys IC
compiler (ICC). We used Cacti [25] to get SRAM area and
energy numbers. We annotated the toggle rate from the RTL
simulation to the gate-level netlist, which was dumped to
switching activity interchange format (SAIF), and estimated
the power using Prime-Time PX.

Comparison Baseline. We compare EIE with three dif-
ferent off-the-shelf computing units: CPU, GPU and mobile
GPU.

1) CPU. We use Intel Core i-7 5930k CPU, a Haswell-E
class processor, that has been used in NVIDIA Digits Deep
Learning Dev Box as a CPU baseline. To run the benchmark
on CPU, we used MKL CBLAS GEMV to implement the
original dense model and MKL SPBLAS CSRMV for the
compressed sparse model. CPU socket and DRAM power
are as reported by the pcm-power utility provided by Intel.

2) GPU. We use NVIDIA GeForce GTX Titan X GPU,
a state-of-the-art GPU for deep learning as our baseline
using nvidia-smi utility to report the power. To run
the benchmark, we used cuBLAS GEMV to implement
the original dense layer. For the compressed sparse layer,
we stored the sparse matrix in in CSR format, and used
cuSPARSE CSRMV kernel, which is optimized for sparse
matrix-vector multiplication on GPUs.

3) Mobile GPU. We use NVIDIA Tegra K1 that has
192 CUDA cores as our mobile GPU baseline. We used
cuBLAS GEMV for the original dense model and cuS-
PARSE CSRMV for the compressed sparse model. Tegra K1
doesn’t have software interface to report power consumption,
so we measured the total power consumption with a power-
meter, then assumed 15% AC to DC conversion loss, 85%
regulator efficiency and 15% power consumed by peripheral
components [26], [27] to report the AP+DRAM power for
Tegra K1.

Benchmarks.
We compare the performance on two sets of models:

uncompressed DNN model and the compressed DNN model.

Table III
BENCHMARK FROM STATE-OF-THE-ART DNN MODELS

Layer Size Weight% Act% FLOP% Description

Alex-6 9216, 9% 35.1% 3% Compressed4096
AlexNet [1] forAlex-7 4096, 9% 35.3% 3% large scale image4096
classificationAlex-8 4096, 25% 37.5% 10%1000

VGG-6 25088, 4% 18.3% 1% Compressed4096 VGG-16 [3] for
VGG-7 4096, 4% 37.5% 2% large scale image4096 classification and
VGG-8 4096, 23% 41.1% 9% object detection1000

NT-We 4096, 10% 100% 10% Compressed
600 NeuralTalk [7]

NT-Wd 600, 11% 100% 11% with RNN and
8791 LSTM for

NTLSTM 1201, 10% 100% 11% automatic
2400 image captioning

The uncompressed DNN model is obtained from Caffe
model zoo [28] and NeuralTalk model zoo [7]; The com-
pressed DNN model is produced as described in [16], [23].
The benchmark networks have 9 layers in total obtained
from AlexNet, VGGNet, and NeuralTalk. We use the Image-
Net dataset [29] and the Caffe [28] deep learning framework
as golden model to verify the correctness of the hardware
design.

VI. EXPERIMENTAL RESULT

Figure 5 shows the layout (after place-and-route) of
an EIE processing element. The power/area breakdown is
shown in Table II. We brought the critical path delay down
to 1.15ns by introducing 4 pipeline stages to update one
activation: codebook lookup and address accumulation (in
parallel), output activation read and input activation multiply
(in parallel), shift and add, and output activation write. Ac-
tivation read and write access a local register and activation
bypassing is employed to avoid a pipeline hazard. Using
64 PEs running at 800MHz yields a performance of 102
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Figure 7. Energy efficiency of GPU, mobile GPU and EIE compared with CPU running uncompressed DNN model. There is no batching in all cases.

energy numbers. We annotated the toggle rate from the RTL
simulation to the gate-level netlist, which was dumped to
switching activity interchange format (SAIF), and estimated
the power using Prime-Time PX.

Comparison Baseline. We compare EIE with three dif-
ferent off-the-shelf computing units: CPU, GPU and mobile
GPU.

1) CPU. We use Intel Core i-7 5930k CPU, a Haswell-E
class processor, that has been used in NVIDIA Digits Deep
Learning Dev Box as a CPU baseline. To run the benchmark
on CPU, we used MKL CBLAS GEMV to implement the
original dense model and MKL SPBLAS CSRMV for the
compressed sparse model. CPU socket and DRAM power
are as reported by the pcm-power utility provided by Intel.

2) GPU. We use NVIDIA GeForce GTX Titan X GPU,
a state-of-the-art GPU for deep learning as our baseline
using nvidia-smi utility to report the power. To run
the benchmark, we used cuBLAS GEMV to implement
the original dense layer. For the compressed sparse layer,
we stored the sparse matrix in in CSR format, and used
cuSPARSE CSRMV kernel, which is optimized for sparse
matrix-vector multiplication on GPUs.

3) Mobile GPU. We use NVIDIA Tegra K1 that has
192 CUDA cores as our mobile GPU baseline. We used
cuBLAS GEMV for the original dense model and cuS-
PARSE CSRMV for the compressed sparse model. Tegra K1
doesn’t have software interface to report power consumption,
so we measured the total power consumption with a power-
meter, then assumed 15% AC to DC conversion loss, 85%
regulator efficiency and 15% power consumed by peripheral
components [26], [27] to report the AP+DRAM power for
Tegra K1.

Benchmarks. We compare the performance on two sets
of models: uncompressed DNN model and the compressed
DNN model. The uncompressed DNN model is obtained
from Caffe model zoo [28] and NeuralTalk model zoo [7];
The compressed DNN model is produced as described

Table III
BENCHMARK FROM STATE-OF-THE-ART DNN MODELS

Layer Size Weight% Act% FLOP% Description

Alex-6 9216, 9% 35.1% 3% Compressed4096
AlexNet [1] forAlex-7 4096, 9% 35.3% 3% large scale image4096
classificationAlex-8 4096, 25% 37.5% 10%1000

VGG-6 25088, 4% 18.3% 1% Compressed4096 VGG-16 [3] for
VGG-7 4096, 4% 37.5% 2% large scale image4096 classification and
VGG-8 4096, 23% 41.1% 9% object detection1000

NT-We 4096, 10% 100% 10% Compressed
600 NeuralTalk [7]

NT-Wd 600, 11% 100% 11% with RNN and
8791 LSTM for

NTLSTM 1201, 10% 100% 11% automatic
2400 image captioning

in [16], [23]. The benchmark networks have 9 layers in total
obtained from AlexNet, VGGNet, and NeuralTalk. We use
the Image-Net dataset [29] and the Caffe [28] deep learning
framework as golden model to verify the correctness of the
hardware design.

VI. EXPERIMENTAL RESULTS

Figure 5 shows the layout (after place-and-route) of
an EIE processing element. The power/area breakdown is
shown in Table II. We brought the critical path delay down
to 1.15ns by introducing 4 pipeline stages to update one
activation: codebook lookup and address accumulation (in
parallel), output activation read and input activation multiply
(in parallel), shift and add, and output activation write. Ac-
tivation read and write access a local register and activation
bypassing is employed to avoid a pipeline hazard. Using
64 PEs running at 800MHz yields a performance of 102
GOP/s. Considering 10⇥ weight sparsity and 3⇥ activation
sparsity, this requires a dense DNN accelerator 3TOP/s to
have equivalent application throughput.

CPU GPU mGPU EIE

Sparse Matrix Read Unit. The sparse-matrix read unit
uses pointers p

j

and p
j+1 to read the non-zero elements (if

any) of this PE’s slice of column I
j

from the sparse-matrix
SRAM. Each entry in the SRAM is 8-bits in length and
contains one 4-bit element of v and one 4-bit element of x.

For efficiency (see Section VI) the PE’s slice of encoded
sparse matrix I is stored in a 64-bit-wide SRAM. Thus eight
entries are fetched on each SRAM read. The high 13 bits
of the current pointer p selects an SRAM row, and the low
3-bits select one of the eight entries in that row. A single
(v, x) entry is provided to the arithmetic unit each cycle.

Arithmetic Unit. The arithmetic unit receives a (v, x)
entry from the sparse matrix read unit and performs the
multiply-accumulate operation b

x

= b
x

+ v ⇥ a
j

. Index
x is used to index an accumulator array (the destination
activation registers) while v is multiplied by the activation
value at the head of the activation queue. Because v is stored
in 4-bit encoded form, it is first expanded to a 16-bit fixed-
point number via a table look up. A bypass path is provided
to route the output of the adder to its input if the same
accumulator is selected on two adjacent cycles.

Activation Read/Write. The Activation Read/Write Unit
contains two activation register files that accommodate the
source and destination activation values respectively during
a single round of FC layer computation. The source and
destination register files exchange their role for next layer.
Thus no additional data transfer is needed to support multi-
layer feed-forward computation.

Each activation register file holds 64 16-bit activations.
This is sufficient to accommodate 4K activation vectors
across 64 PEs. Longer activation vectors can be accommo-
dated with the 2KB activation SRAM. When the activation
vector has a length greater than 4K, the M⇥V will be
completed in several batches, where each batch is of length
4K or less. All the local reduction is done in the register
file. The SRAM is read only at the beginning and written at
the end of the batch.

Distributed Leading Non-Zero Detection. Input acti-
vations are hierarchically distributed to each PE. To take
advantage of the input vector sparsity, we use leading non-
zero detection logic to select the first non-zero result. Each
group of 4 PEs does a local leading non-zero detection on
their input activation. The result is sent to a Leading Non-
zero Detection Node (LNZD Node) illustrated in Figure 4.
Each LNZD node finds the next non-zero activation across
its four children and sends this result up the quadtree. The
quadtree is arranged so that wire lengths remain constant as
we add PEs. At the root LNZD Node, the selected non-zero
activation is broadcast back to all the PEs via a separate
wire placed in an H-tree.

Central Control Unit. The Central Control Unit (CCU)
is the root LNZD Node. It communicates with the master,
for example a CPU, and monitors the state of every PE by
setting the control registers. There are two modes in the
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Figure 5. Layout of one PE in EIE under TSMC 45nm process.

Table II
THE IMPLEMENTATION RESULTS OF ONE PE IN EIE AND THE

BREAKDOWN BY COMPONENT TYPE (LINE 3-7), BY MODULE (LINE
8-13). THE CRITICAL PATH OF EIE IS 1.15 NS

Power (%) Area (%)(mW) (µm2)
Total 9.157 638,024
memory 5.416 (59.15%) 594,786 (93.22%)
clock network 1.874 (20.46%) 866 (0.14%)
register 1.026 (11.20%) 9,465 (1.48%)
combinational 0.841 (9.18%) 8,946 (1.40%)
filler cell 23,961 (3.76%)
Act queue 0.112 (1.23%) 758 (0.12%)
PtrRead 1.807 (19.73%) 121,849 (19.10%)
SpmatRead 4.955 (54.11%) 469,412 (73.57%)
ArithmUnit 1.162 (12.68%) 3,110 (0.49%)
ActRW 1.122 (12.25%) 18,934 (2.97%)
filler cell 23,961 (3.76%)

Central Unit: I/O and Computing. In the I/O mode, all of
the PEs are idle while the activations and weights in every
PE can be accessed by a DMA connected with the Central
Unit. This is one time cost. In the Computing mode, the
CCU repeatedly collects a non-zero value from the LNZD
quadtree and broadcasts this value to all PEs. This process
continues until the input length is exceeded. By setting the
input length and starting address of pointer array, EIE is
instructed to execute different layers.

V. EVALUATION METHODOLOGY

Simulator, RTL and Layout. We implemented a custom
cycle-accurate C++ simulator for the accelerator aimed to
model the RTL behavior of synchronous circuits. Each
hardware module is abstracted as an object that implements
two abstract methods: propagate and update, corresponding
to combination logic and the flip-flop in RTL. The simulator
is used for design space exploration. It also serves as a
checker for RTL verification.

To measure the area, power and critical path delay, we
implemented the RTL of EIE in Verilog. The RTL is verified
against the cycle-accurate simulator. Then we synthesized
EIE using the Synopsys Design Compiler (DC) under the
TSMC 45nm GP standard VT library with worst case PVT
corner. We placed and routed the PE using the Synopsys IC
compiler (ICC). We used Cacti [25] to get SRAM area and

Baseline: 
• Intel Core i7 5930K: MKL CBLAS GEMV, 

MKL SPBLAS CSRMV 
• NVIDIA GeForce GTX Titan X: cuBLAS 

GEMV, cuSPARSE CSRMV 
• NVIDIA Tegra K1: cuBLAS GEMV, 

cuSPARSE CSRMV
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Figure 6. Speedups of GPU, mobile GPU and EIE compared with CPU running uncompressed DNN model. There is no batching in all cases.
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Figure 7. Energy efficiency of GPU, mobile GPU and EIE compared with CPU running uncompressed DNN model. There is no batching in all cases.

corner. We placed and routed the PE using the Synopsys IC
compiler (ICC). We used Cacti [25] to get SRAM area and
energy numbers. We annotated the toggle rate from the RTL
simulation to the gate-level netlist, which was dumped to
switching activity interchange format (SAIF), and estimated
the power using Prime-Time PX.

Comparison Baseline. We compare EIE with three dif-
ferent off-the-shelf computing units: CPU, GPU and mobile
GPU.

1) CPU. We use Intel Core i-7 5930k CPU, a Haswell-E
class processor, that has been used in NVIDIA Digits Deep
Learning Dev Box as a CPU baseline. To run the benchmark
on CPU, we used MKL CBLAS GEMV to implement the
original dense model and MKL SPBLAS CSRMV for the
compressed sparse model. CPU socket and DRAM power
are as reported by the pcm-power utility provided by Intel.

2) GPU. We use NVIDIA GeForce GTX Titan X GPU,
a state-of-the-art GPU for deep learning as our baseline
using nvidia-smi utility to report the power. To run
the benchmark, we used cuBLAS GEMV to implement
the original dense layer. For the compressed sparse layer,
we stored the sparse matrix in in CSR format, and used
cuSPARSE CSRMV kernel, which is optimized for sparse
matrix-vector multiplication on GPUs.

3) Mobile GPU. We use NVIDIA Tegra K1 that has
192 CUDA cores as our mobile GPU baseline. We used
cuBLAS GEMV for the original dense model and cuS-
PARSE CSRMV for the compressed sparse model. Tegra K1
doesn’t have software interface to report power consumption,
so we measured the total power consumption with a power-
meter, then assumed 15% AC to DC conversion loss, 85%
regulator efficiency and 15% power consumed by peripheral
components [26], [27] to report the AP+DRAM power for
Tegra K1.

Benchmarks.
We compare the performance on two sets of models:

uncompressed DNN model and the compressed DNN model.

Table III
BENCHMARK FROM STATE-OF-THE-ART DNN MODELS

Layer Size Weight% Act% FLOP% Description

Alex-6 9216, 9% 35.1% 3% Compressed4096
AlexNet [1] forAlex-7 4096, 9% 35.3% 3% large scale image4096
classificationAlex-8 4096, 25% 37.5% 10%1000

VGG-6 25088, 4% 18.3% 1% Compressed4096 VGG-16 [3] for
VGG-7 4096, 4% 37.5% 2% large scale image4096 classification and
VGG-8 4096, 23% 41.1% 9% object detection1000

NT-We 4096, 10% 100% 10% Compressed
600 NeuralTalk [7]

NT-Wd 600, 11% 100% 11% with RNN and
8791 LSTM for

NTLSTM 1201, 10% 100% 11% automatic
2400 image captioning

The uncompressed DNN model is obtained from Caffe
model zoo [28] and NeuralTalk model zoo [7]; The com-
pressed DNN model is produced as described in [16], [23].
The benchmark networks have 9 layers in total obtained
from AlexNet, VGGNet, and NeuralTalk. We use the Image-
Net dataset [29] and the Caffe [28] deep learning framework
as golden model to verify the correctness of the hardware
design.

VI. EXPERIMENTAL RESULT

Figure 5 shows the layout (after place-and-route) of
an EIE processing element. The power/area breakdown is
shown in Table II. We brought the critical path delay down
to 1.15ns by introducing 4 pipeline stages to update one
activation: codebook lookup and address accumulation (in
parallel), output activation read and input activation multiply
(in parallel), shift and add, and output activation write. Ac-
tivation read and write access a local register and activation
bypassing is employed to avoid a pipeline hazard. Using
64 PEs running at 800MHz yields a performance of 102
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Figure 6. Speedups of GPU, mobile GPU and EIE compared with CPU running uncompressed DNN model. There is no batching in all cases.
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Figure 7. Energy efficiency of GPU, mobile GPU and EIE compared with CPU running uncompressed DNN model. There is no batching in all cases.

energy numbers. We annotated the toggle rate from the RTL
simulation to the gate-level netlist, which was dumped to
switching activity interchange format (SAIF), and estimated
the power using Prime-Time PX.

Comparison Baseline. We compare EIE with three dif-
ferent off-the-shelf computing units: CPU, GPU and mobile
GPU.

1) CPU. We use Intel Core i-7 5930k CPU, a Haswell-E
class processor, that has been used in NVIDIA Digits Deep
Learning Dev Box as a CPU baseline. To run the benchmark
on CPU, we used MKL CBLAS GEMV to implement the
original dense model and MKL SPBLAS CSRMV for the
compressed sparse model. CPU socket and DRAM power
are as reported by the pcm-power utility provided by Intel.

2) GPU. We use NVIDIA GeForce GTX Titan X GPU,
a state-of-the-art GPU for deep learning as our baseline
using nvidia-smi utility to report the power. To run
the benchmark, we used cuBLAS GEMV to implement
the original dense layer. For the compressed sparse layer,
we stored the sparse matrix in in CSR format, and used
cuSPARSE CSRMV kernel, which is optimized for sparse
matrix-vector multiplication on GPUs.

3) Mobile GPU. We use NVIDIA Tegra K1 that has
192 CUDA cores as our mobile GPU baseline. We used
cuBLAS GEMV for the original dense model and cuS-
PARSE CSRMV for the compressed sparse model. Tegra K1
doesn’t have software interface to report power consumption,
so we measured the total power consumption with a power-
meter, then assumed 15% AC to DC conversion loss, 85%
regulator efficiency and 15% power consumed by peripheral
components [26], [27] to report the AP+DRAM power for
Tegra K1.

Benchmarks. We compare the performance on two sets
of models: uncompressed DNN model and the compressed
DNN model. The uncompressed DNN model is obtained
from Caffe model zoo [28] and NeuralTalk model zoo [7];
The compressed DNN model is produced as described

Table III
BENCHMARK FROM STATE-OF-THE-ART DNN MODELS

Layer Size Weight% Act% FLOP% Description

Alex-6 9216, 9% 35.1% 3% Compressed4096
AlexNet [1] forAlex-7 4096, 9% 35.3% 3% large scale image4096
classificationAlex-8 4096, 25% 37.5% 10%1000

VGG-6 25088, 4% 18.3% 1% Compressed4096 VGG-16 [3] for
VGG-7 4096, 4% 37.5% 2% large scale image4096 classification and
VGG-8 4096, 23% 41.1% 9% object detection1000

NT-We 4096, 10% 100% 10% Compressed
600 NeuralTalk [7]

NT-Wd 600, 11% 100% 11% with RNN and
8791 LSTM for

NTLSTM 1201, 10% 100% 11% automatic
2400 image captioning

in [16], [23]. The benchmark networks have 9 layers in total
obtained from AlexNet, VGGNet, and NeuralTalk. We use
the Image-Net dataset [29] and the Caffe [28] deep learning
framework as golden model to verify the correctness of the
hardware design.

VI. EXPERIMENTAL RESULTS

Figure 5 shows the layout (after place-and-route) of
an EIE processing element. The power/area breakdown is
shown in Table II. We brought the critical path delay down
to 1.15ns by introducing 4 pipeline stages to update one
activation: codebook lookup and address accumulation (in
parallel), output activation read and input activation multiply
(in parallel), shift and add, and output activation write. Ac-
tivation read and write access a local register and activation
bypassing is employed to avoid a pipeline hazard. Using
64 PEs running at 800MHz yields a performance of 102
GOP/s. Considering 10⇥ weight sparsity and 3⇥ activation
sparsity, this requires a dense DNN accelerator 3TOP/s to
have equivalent application throughput.

Sparse Matrix Read Unit. The sparse-matrix read unit
uses pointers p

j

and p
j+1 to read the non-zero elements (if

any) of this PE’s slice of column I
j

from the sparse-matrix
SRAM. Each entry in the SRAM is 8-bits in length and
contains one 4-bit element of v and one 4-bit element of x.

For efficiency (see Section VI) the PE’s slice of encoded
sparse matrix I is stored in a 64-bit-wide SRAM. Thus eight
entries are fetched on each SRAM read. The high 13 bits
of the current pointer p selects an SRAM row, and the low
3-bits select one of the eight entries in that row. A single
(v, x) entry is provided to the arithmetic unit each cycle.

Arithmetic Unit. The arithmetic unit receives a (v, x)
entry from the sparse matrix read unit and performs the
multiply-accumulate operation b

x

= b
x

+ v ⇥ a
j

. Index
x is used to index an accumulator array (the destination
activation registers) while v is multiplied by the activation
value at the head of the activation queue. Because v is stored
in 4-bit encoded form, it is first expanded to a 16-bit fixed-
point number via a table look up. A bypass path is provided
to route the output of the adder to its input if the same
accumulator is selected on two adjacent cycles.

Activation Read/Write. The Activation Read/Write Unit
contains two activation register files that accommodate the
source and destination activation values respectively during
a single round of FC layer computation. The source and
destination register files exchange their role for next layer.
Thus no additional data transfer is needed to support multi-
layer feed-forward computation.

Each activation register file holds 64 16-bit activations.
This is sufficient to accommodate 4K activation vectors
across 64 PEs. Longer activation vectors can be accommo-
dated with the 2KB activation SRAM. When the activation
vector has a length greater than 4K, the M⇥V will be
completed in several batches, where each batch is of length
4K or less. All the local reduction is done in the register
file. The SRAM is read only at the beginning and written at
the end of the batch.

Distributed Leading Non-Zero Detection. Input acti-
vations are hierarchically distributed to each PE. To take
advantage of the input vector sparsity, we use leading non-
zero detection logic to select the first non-zero result. Each
group of 4 PEs does a local leading non-zero detection on
their input activation. The result is sent to a Leading Non-
zero Detection Node (LNZD Node) illustrated in Figure 4.
Each LNZD node finds the next non-zero activation across
its four children and sends this result up the quadtree. The
quadtree is arranged so that wire lengths remain constant as
we add PEs. At the root LNZD Node, the selected non-zero
activation is broadcast back to all the PEs via a separate
wire placed in an H-tree.

Central Control Unit. The Central Control Unit (CCU)
is the root LNZD Node. It communicates with the master,
for example a CPU, and monitors the state of every PE by
setting the control registers. There are two modes in the

SpMat

SpMat

Ptr_Even Ptr_OddArithm
Act_0 Act_1

Figure 5. Layout of one PE in EIE under TSMC 45nm process.

Table II
THE IMPLEMENTATION RESULTS OF ONE PE IN EIE AND THE

BREAKDOWN BY COMPONENT TYPE (LINE 3-7), BY MODULE (LINE
8-13). THE CRITICAL PATH OF EIE IS 1.15 NS

Power (%) Area (%)(mW) (µm2)
Total 9.157 638,024
memory 5.416 (59.15%) 594,786 (93.22%)
clock network 1.874 (20.46%) 866 (0.14%)
register 1.026 (11.20%) 9,465 (1.48%)
combinational 0.841 (9.18%) 8,946 (1.40%)
filler cell 23,961 (3.76%)
Act queue 0.112 (1.23%) 758 (0.12%)
PtrRead 1.807 (19.73%) 121,849 (19.10%)
SpmatRead 4.955 (54.11%) 469,412 (73.57%)
ArithmUnit 1.162 (12.68%) 3,110 (0.49%)
ActRW 1.122 (12.25%) 18,934 (2.97%)
filler cell 23,961 (3.76%)

Central Unit: I/O and Computing. In the I/O mode, all of
the PEs are idle while the activations and weights in every
PE can be accessed by a DMA connected with the Central
Unit. This is one time cost. In the Computing mode, the
CCU repeatedly collects a non-zero value from the LNZD
quadtree and broadcasts this value to all PEs. This process
continues until the input length is exceeded. By setting the
input length and starting address of pointer array, EIE is
instructed to execute different layers.

V. EVALUATION METHODOLOGY

Simulator, RTL and Layout. We implemented a custom
cycle-accurate C++ simulator for the accelerator aimed to
model the RTL behavior of synchronous circuits. Each
hardware module is abstracted as an object that implements
two abstract methods: propagate and update, corresponding
to combination logic and the flip-flop in RTL. The simulator
is used for design space exploration. It also serves as a
checker for RTL verification.

To measure the area, power and critical path delay, we
implemented the RTL of EIE in Verilog. The RTL is verified
against the cycle-accurate simulator. Then we synthesized
EIE using the Synopsys Design Compiler (DC) under the
TSMC 45nm GP standard VT library with worst case PVT
corner. We placed and routed the PE using the Synopsys IC
compiler (ICC). We used Cacti [25] to get SRAM area and

Baseline: 
• Intel Core i7 5930K: MKL CBLAS GEMV, 

MKL SPBLAS CSRMV 
• NVIDIA GeForce GTX Titan X: cuBLAS 

GEMV, cuSPARSE CSRMV 
• NVIDIA Tegra K1: cuBLAS GEMV, 

cuSPARSE CSRMV
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Scalability
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Figure 11. System scalability. It measures the speedups with different numbers of PEs. The speedup is near-linear.

VII. DISCUSSION

Many engines have been proposed for Sparse Matrix-
Vector multiplication (SPMV) and the existing trade-offs
on the targeted platforms are studied [21], [31]. There
are typically three approaches to partition the workload
for matrix-vector multiplication. The combination of these
methods with storage format of the Matrix creates a design
space trade-off.

A. Workload Partitioning

The first approach is to distribute matrix columns to PEs.
Each PE handles the multiplication between its columns of
W and corresponding element of a to get a partial sum
of the output vector b. The benefit of this solutions is that
each element of a is only associated with one PE — giving
full locality for vector a. The drawback is that a reduction
operation between PEs is required to obtain the final result.

A second approach (ours) is to distribute matrix rows to
PEs. A central unit broadcasts one vector element a

j

to all
PEs. Each PE computes a number of output activations b

i

by
performing inner products of the corresponding row of W ,
W

j

that is stored in the PE with vector a. The benefit of this
solutions is that each element of b is only associated with
one PE — giving full locality for vector b. The drawback is
that vector a needs to be broadcast to all PEs.

A third approach combines the previous two approaches
by distributing blocks of W to the PEs in 2D fashion.
This solution is more scalable for distributed systems where
communication latency cost is significant [32]. This way
both of the collective communication operations ”Broadcast”
and ”Reduction” are exploited but in a smaller scale and
hence this solution is more scalable.

The nature of our target class of application and its
sparsity pattern affects the constraints and therefore our
choice of partitioning and storage. The density of W is
⇡ 10%, and the density of a is ⇡ 30%, both with random
distribution. Vector a is stored in normal dense format and
contains 70% the zeros in the memory, because for different
input, a

j

’s sparsity pattern differs. We want to utilize the
sparsity of both W and a.

The first solution suffers from load imbalance given that
vector a is also sparse. Each PE is responsible for a column.
PE

j

will be completely idle if their corresponding element
a
j

is zero. On top of the Idle PEs, this solution requires
across-PE reduction and extra level of synchronization.

Since the SPMV engine, has a limited number of PEs,
there won’t be a scalability issue to worry about. However,
the hybrid solution will suffer from inherent complexity and
still possible load imbalance since multiple PEs sharing the
same column might remain idle.

We build our solution based on the second distribution
scheme taking the 30% density of vector a into account. Our
solution aims to perform computations by in-order look-up
of nonzeros in a. Each PE gets all the non-zero elements of
a in order and performs the inner products by looking-up
the matching element that needs to be multiplied by a

j

, W
j

.
This requires the matrix W being stored in CSC format so
the PE can multiply all the elements in the j-th column of
W by a

j

.

B. Scalability

As the matrix gets larger, the system can be scaled up by
adding more PEs. Each PE has local SRAM storing distinct
rows of the matrix without duplication, so the SRAM is
efficiently utilized.

Wire delay increases with the square root of the number of
PEs, however, this is not a problem in our architecture. Since
EIE only requires one broadcast over the computation of the
entire column, which takes many cycles. Consequently, the
broadcast is not on the critical path and can be pipelined
because FIFOs decouple producer and consumer.

Figure 11 shows EIE achieves good scalability on all
benchmarks except NT-We. NT-We is very small (4096 ⇥
600). Dividing the columns of size 600 and sparsity 10% to
64 or more PEs causes serious load imbalance.

Figure 12 shows the number of padding zeros with
different number PEs. Padding zero occur when the jump
between two consecutive non-zero element in the sparse
matrix is larger than 16, the largest number that 4 bits can
encode. Padding zeros are considered non-zero and lead
to wasted computation. Using more PEs reduces padding
zeros, because the distance between non-zero elements get
smaller due to matrix partitioning, and 4-bits encoding a
max distance of 16 will more likely be enough.

Figure 13 shows the load balance with different number
of PEs, measured with FIFO depth equal to 8. With more
PEs, load balance becomes worse, but padding zero overhead
decreases, which yields efficiency for most benchmarks
remain constant. The scalability result is plotted in figure
11.

 
#PEs ~ Speedup 
• 64PEs:     64x 
• 128PEs: 124x 
• 256PEs: 210x

Han et al. “EIE: Efficient Inference Engine on Compressed Deep Neural Network”, ISCA 2016, Hotchips 2016
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Load Balancing

Table IV
WALL CLOCK TIME COMPARISON BETWEEN CPU, GPU, MOBILE GPU AND EIE. UNIT: µS

Platform Batch Matrix AlexNet VGG16 NT-
Size Type FC6 FC7 FC8 FC6 FC7 FC8 We Wd LSTM

CPU 1 dense 7516.2 6187.1 1134.9 35022.8 5372.8 774.2 605.0 1361.4 470.5

(Core sparse 3066.5 1282.1 890.5 3774.3 545.1 777.3 261.2 437.4 260.0

i7-5930k) 64 dense 318.4 188.9 45.8 1056.0 188.3 45.7 28.7 69.0 28.8
sparse 1417.6 682.1 407.7 1780.3 274.9 363.1 117.7 176.4 107.4

GPU 1 dense 541.5 243.0 80.5 1467.8 243.0 80.5 65 90.1 51.9

(Titan X)
sparse 134.8 65.8 54.6 167.0 39.8 48.0 17.7 41.1 18.5

64 dense 19.8 8.9 5.9 53.6 8.9 5.9 3.2 2.3 2.5
sparse 94.6 51.5 23.2 121.5 24.4 22.0 10.9 11.0 9.0

mGPU 1 dense 12437.2 5765.0 2252.1 35427.0 5544.3 2243.1 1316 2565.5 956.9

(Tegra K1)
sparse 2879.3 1256.5 837.0 4377.2 626.3 745.1 240.6 570.6 315

64 dense 1663.6 2056.8 298.0 2001.4 2050.7 483.9 87.8 956.3 95.2
sparse 4003.9 1372.8 576.7 8024.8 660.2 544.1 236.3 187.7 186.5

EIE Theoretical Time 28.1 11.7 8.9 28.1 7.9 7.3 5.2 13.0 6.5
Actual Time 30.3 12.2 9.9 34.4 8.7 8.4 8.0 13.9 7.5
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Figure 8. Load efficiency improves as FIFO size increases. When FIFO deepth>8, the marginal gain quickly diminishes. So we choose FIFO depth=8.

The total SRAM capacity (Spmat+Ptr+Act) of each EIE
PE is 162KB. The activation SRAM is 2KB storing ac-
tivations. The Spmat SRAM is 128KB storing the com-
pressed weights and indices. Each weight is 4bits, each
index is 4bits. Weights and indices are grouped to 8bits and
addressed together. The Spmat access width is optimized
at 64bits. The Ptr SRAM is 32KB storing the pointers in
the CSC format. In the steady state, both Spmat SRAM
and Ptr SRAM are accessed every 64/8 = 8 cycles. The
area and power is dominated by SRAM, the ratio is 93%
and 59% respectively. Each PE is 0.638mm2 consuming
9.157mW . Each group of 4 PEs needs a LNZD unit for
nonzero detection. A total of 21 LNZD units are needed for
64 PEs (16+4+1 = 21). Synthesized result shows that one
LNZD unit takes only 0.023mW and an area of 189um2,
less than 0.3% of a PE.

A. Performance

We compare EIE against CPU, desktop GPU and the
mobile GPU on 9 benchmarks selected from AlexNet, VGG-
16 and Neural Talk. The overall results are shown in Fig-
ure 6. There are 7 columns for each benchmark, comparing
the computation time of EIE on compressed network over
CPU / GPU / TK1 on uncompressed / compressed network.
Time is normalized to CPU. EIE significantly outperforms
the general purpose hardware and is, on average, 189⇥, 13⇥,
307⇥ faster than CPU, GPU and mobile GPU respectively.

EIE’s theoretical computation time is calculated by divid-
ing workload GOPs by peak throughput. The actual compu-
tation time is around 10% more than the theoretical compu-
tation time due to load imbalance. In Fig. 6, the comparison
with CPU / GPU / TK1 is reported using actual computation

time. The wall clock time of CPU / GPU / TK1/ EIE for all
benchmarks are shown in Table IV.

EIE is targeting extremely latency-focused applications,
which require real-time inference. Since assembling a batch
adds significant amounts of latency, we consider the case
when batch size = 1 when benchmarking the performance
and energy efficiency with CPU and GPU as shown in
Figure 6. As a comparison, we also provided the result for
batch size = 64 in Table IV. EIE outperforms most of the
platforms and is comparable to desktop GPU in the batching
case.

The GOP/s required for EIE to achieve the same appli-
cation throughput (Frames/s) is much lower than competing
approaches because EIE exploits sparsity to eliminate 97%
of the GOP/s performed by dense approaches. 3 TOP/s on
an uncompressed network requires only 100 GOP/s on a
compressed network. EIE’s throughput is scalable to over
256 PEs. Without EIE’s dedicated logic, however, model
compression by itself applied on a CPU/GPU yields only
3⇥ speedup.

B. Energy

In Figure 7, we report the energy efficiency comparisons
of M⇥V on different benchmarks. There are 7 columns
for each benchmark, comparing the energy efficiency of
EIE on compressed network over CPU / GPU / TK1 on
uncompressed / compressed network. Energy is obtained by
multiplying computation time and total measured power as
described in section V.

EIE consumes on average, 24, 000⇥, 3, 400⇥, and
2, 700⇥ less energy compared to CPU, GPU and the mobile
GPU respectively. This is a 3-order of magnitude energy sav-

• Imbalanced non-zeros among PEs degrades system utilization. 
• This load imbalance could be solved by FIFO. 
• With FIFO depth=8, ALU utilization is > 80%.

Han et al. “EIE: Efficient Inference Engine on Compressed Deep Neural Network”, ISCA 2016, Hotchips 2016
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Remaining Questions

• Can we do better with load imbalance?

• Feedforward => Recurrent neural network?

Compression Acceleration Regularization



Agenda

• Deep Compression (size) 
• Pruning 
• Trained Quantization 
• Huffman Coding 

✦Hardware Acceleration (speed, energy)
• EIE Accelerator (ASIC) 
• ESE Accelerator (FPGA) 

✦Efficient Training (accuracy)
• Dense-Sparse-Dense Regularization

Compression Acceleration Regularization



Accelerating Recurrent Neural Networks

Lecture 10 - 8 Feb 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 10 - 8 Feb 201651

Explain Images with Multimodal Recurrent Neural Networks, Mao et al.
Deep Visual-Semantic Alignments for Generating Image Descriptions, Karpathy and Fei-Fei
Show and Tell: A Neural Image Caption Generator, Vinyals et al.
Long-term Recurrent Convolutional Networks for Visual Recognition and Description, Donahue et al.
Learning a Recurrent Visual Representation for Image Caption Generation, Chen and Zitnick

Image Captioning

speech recognition image caption

visual question answeringmachine translation
The recurrent nature of RNN/LSTM produces complicated data dependency, 
which is more challenging than feedforward neural nets.
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Accelerated 
InferenceCompression

Pruning 
Quantization

Rethinking Model Compression

Compression Acceleration Regularization



Accelerated 
InferenceCompression

Pruning 
Quantization load balance-aware  

pruning

Han et, al, “ESE: Efficient Speech Recognition Engine for Compressed LSTM”, NIPS’16 workshop; FPGA’17

Rethinking Model Compression

Compression Acceleration Regularization
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Load Balance Aware Pruning
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Load Balance Aware Pruning: 
Same Accuracy

Compression Acceleration Regularization
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Compression Acceleration Regularization

Load Balance Aware Pruning: 
Better Speedup



From Compression to Acceleration

✦ Challenge 1: 
memory access is expensive.

✓ Deep Compression:  
10x-49x smaller, no loss of accuracy

✦ Challenge 2:  
sparsity, indirection, load balance.

✓ EIE / ESE Accelerator:  
energy-efficient accelerated inference  

Compression Acceleration Regularization



What about Training?  

Compressed Model Size: Same accuracy 

   => Original Model Size: Higher accuracy

Compression Acceleration Regularization



Agenda

✦Deep Compression (size)
• Pruning 
• Trained Quantization 
• Huffman Coding 

✦Hardware Acceleration (speed, energy)
• EIE Accelerator (ASIC) 
• ESE Accelerator (FPGA) 

✦Efficient Training (accuracy)
• Dense-Sparse-Dense Regularization

Compression Acceleration Regularization



Han et al. “DSD: Dense-Sparse-Dense Training for Deep Neural Networks”, ICLR 2017

DSD produces same model architecture but can find better optimization solution, 
arrives at better local minima, and achieves higher prediction accuracy across a wide 
range of deep neural networks on CNNs / RNNs / LSTMs.

Under review as a conference paper at ICLR 2017

Dense

Pruning

Sparsity Constraint

Sparse

Increase Model Capacity

 Re-Dense

Dense

Figure 1: Dense-Sparse-Dense Training Flow. The sparse training regularizes the model, and the final
dense training restores the pruned weights (red), increasing the model capacity without overfitting.

Algorithm 1: Workflow of DSD training

Initialization: W (0)
with W

(0) ⇠ N(0,⌃)
Output :W (t).
———————————————– Initial Dense Phase ———————————————–
while not converged do

W̃

(t) = W

(t�1) � ⌘

(t)rf(W (t�1);x(t�1));
t = t+ 1;

end
————————————————— Sparse Phase —————————————————-
// initialize the mask by sorting and keeping the Top-k weights.

S = sort(|W (t�1)|); � = S

ki ; Mask = 1(|W (t�1)| > �);
while not converged do

W̃

(t) = W

(t�1) � ⌘

(t)rf(W (t�1);x(t�1));
W̃

(t) = W

(t) ·Mask;
t = t+ 1;

end
————————————————- Final Dense Phase ————————————————–

while not converged do
W̃

(t) = W

(t�1) � ⌘

(t)rf(W (t�1);x(t�1));
t = t+ 1;

end
goto Sparse Phase for iterative DSD;

In contrast, simply reducing the model capacity would lead to the other extreme, causing a machine
learning system to miss the relevant relationships between features and target outputs, leading to
under-fitting and a high bias. Bias and variance are hard to optimize at the same time.

Model compression methods ( Han et al. (2016; 2015); Guo et al. (2016)) can reduce the model
size by 35x-49x or more without hurting prediction accuracy. Compression without losing accuracy
means there’s significant redundancy in the trained model. Since the compressed model can achieve
the same accuracy as the redundant uncompressed model, one hypothesis is that the model of the
original size should have the capacity to achieve higher accuracy. This shows the inadequacy of
current training methods since it fails to find the existing better solutions.

In order to find the expected higher accuracy, we propose a dense-sparse-dense training flow (DSD), a
novel training strategy that starts from a dense model from conventional training, then regularizes the
model with sparsity-constrained optimization, and finally increases the model capacity by restoring
and retraining the pruned weights. At testing time, the final model produced by DSD still has the
same architecture and dimension as the original dense model, and DSD training doesn’t incur any
inference overhead. We experimented DSD training on 7 mainstream CNN / RNN / LSTMs and
found consistent performance gains over its comparable counterpart for image classification, image
captioning and speech recognition.

2 DSD TRAINING FLOW

Our DSD training employs a three-step process: dense, sparse, dense. Each step is illustrated in
Figure 1 and Algorithm 1. The progression of weight distribution is plotted in Figure 2.

2

Compression Acceleration Regularization

DSD: Dense Sparse Dense Training



DSD: Intuition

Learn the trunk first Then learn the leaves
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Related Work

• Dropout and DropConnect  
- Dropout use a random sparsity pattern. 
- DSD training learns with a deterministic data 
driven sparsity pattern. 

• Distillation  
- Transfer the knowledge from the cumbersome 
model to a small model 

- Both DSD and Distillation don’t incur architectural 
changes.
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Figure 2: Weight distribution of the original GoogleNet (a), pruned GoogleNet (b), retrain the
sparsity-constrained GoogleNet (c), get rid of the sparisty constraint and recover the zero weights (d),
retrain the dense network (e).

Final Dense Training The final D step recovers the pruned connections, making the network dense
again. These previously-pruned connections are initialized to zero and retrained with 1/10 the original
learning rate (since the sparse network is already at a good local minima). Dropout ratios and weight
decay remained unchanged. Restoring the pruned connections increases the dimensionality of the
network, and more parameters make it easier for the network to slide down the saddle point to arrive
at a better local minima. This step adds model capacity and lets the model have less bias.

To visualize the DSD training flow, we plotted the progression of weight distribution in Figure 2.
The figure is plotted using GoogleNet inception_5b3x3 layer, and we found that this progression of
weight distribution is very representative for AlexNet, VGGNet, ResNet and SqueezeNet as well.

The original distribution of weights is centered on zero with tails dropping off quickly. Pruning is
based on absolute value so after pruning the large center region is truncated away. The network
parameters adjust themselves during the retraining phase, so in (c) the boundary becomes soft and
forms a bimodal distribution. In (d), all the pruned weights comes back again and reinitialized to
zero. Finally, in (e), the previously-pruned weights are retrained in the final dense training step. In
this step, comparing Figure (d) and (e), the old weights’ distribution almost remained the same, while
the new weights become more spread around zero,

3 Experiments

We applied DSD training to different kinds of neural networks on data-sets from different domains.
We found that DSD training improved the accuracy for all these networks and for all datasets
compared to neural networks that were not trained with DSD. The neural networks are chosen from
CNN, RNN and LSTMs; The data sets are chosen from image classification, speech recognition, and
caption generation. An overview of the networks and dataset we used are shown in Table 1.

Table 1: Overview of the deep neural networks used to experiment DSD training
Neural Network Domain Dataset #Parameters #Layers Type

AlexNet Vision ImageNet 60 Million 8 CNN
VGG-16 Vision ImageNet 138 Million 16 CNN

GoogleNet Vision ImageNet 13 Million 64 CNN
ResNet-50 Vision ImageNet 25 Million 54 CNN
SqueezeNet Vision ImageNet 1.2 Million 26 CNN
DeepSpeech Speech WSJ 8 Million 6 RNN
NeuralTalk Language Flickr-8K 6.8 Million 4 RNN+LSTM

3.1 AlexNet

We experimented with BVLC AlexNet obtained from Caffe Model Zoo [10]. It has 61 million
parameters across 5 convolutional layers and 3 fully connected layers. We pruned the network to
be 89% sparse, the same as in previous work [8]. Retraining the sparse network fully recovers
the original accuracy, as shown in Table 2. After re-dense training, AlexNet obtained absolute
improvements of 1.4% (Top-1) and 1.0% (Top-5) over the baseline.

3

Weight Distribution

Han et al. “DSD: Dense-Sparse-Dense Training for Deep Neural Networks”, ICLR 2017
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Figure 2: Weight distribution of the original GoogleNet (a), pruned GoogleNet (b), retrain the
sparsity-constrained GoogleNet (c), get rid of the sparisty constraint and recover the zero weights (d),
retrain the dense network (e).

Final Dense Training The final D step recovers the pruned connections, making the network dense
again. These previously-pruned connections are initialized to zero and retrained with 1/10 the original
learning rate (since the sparse network is already at a good local minima). Dropout ratios and weight
decay remained unchanged. Restoring the pruned connections increases the dimensionality of the
network, and more parameters make it easier for the network to slide down the saddle point to arrive
at a better local minima. This step adds model capacity and lets the model have less bias.

To visualize the DSD training flow, we plotted the progression of weight distribution in Figure 2.
The figure is plotted using GoogleNet inception_5b3x3 layer, and we found that this progression of
weight distribution is very representative for AlexNet, VGGNet, ResNet and SqueezeNet as well.

The original distribution of weights is centered on zero with tails dropping off quickly. Pruning is
based on absolute value so after pruning the large center region is truncated away. The network
parameters adjust themselves during the retraining phase, so in (c) the boundary becomes soft and
forms a bimodal distribution. In (d), all the pruned weights comes back again and reinitialized to
zero. Finally, in (e), the previously-pruned weights are retrained in the final dense training step. In
this step, comparing Figure (d) and (e), the old weights’ distribution almost remained the same, while
the new weights become more spread around zero,

3 Experiments

We applied DSD training to different kinds of neural networks on data-sets from different domains.
We found that DSD training improved the accuracy for all these networks and for all datasets
compared to neural networks that were not trained with DSD. The neural networks are chosen from
CNN, RNN and LSTMs; The data sets are chosen from image classification, speech recognition, and
caption generation. An overview of the networks and dataset we used are shown in Table 1.

Table 1: Overview of the deep neural networks used to experiment DSD training
Neural Network Domain Dataset #Parameters #Layers Type

AlexNet Vision ImageNet 60 Million 8 CNN
VGG-16 Vision ImageNet 138 Million 16 CNN

GoogleNet Vision ImageNet 13 Million 64 CNN
ResNet-50 Vision ImageNet 25 Million 54 CNN
SqueezeNet Vision ImageNet 1.2 Million 26 CNN
DeepSpeech Speech WSJ 8 Million 6 RNN
NeuralTalk Language Flickr-8K 6.8 Million 4 RNN+LSTM

3.1 AlexNet

We experimented with BVLC AlexNet obtained from Caffe Model Zoo [10]. It has 61 million
parameters across 5 convolutional layers and 3 fully connected layers. We pruned the network to
be 89% sparse, the same as in previous work [8]. Retraining the sparse network fully recovers
the original accuracy, as shown in Table 2. After re-dense training, AlexNet obtained absolute
improvements of 1.4% (Top-1) and 1.0% (Top-5) over the baseline.

3
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Han et al. “DSD: Dense-Sparse-Dense Training for Deep Neural Networks”, ICLR 2017
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Figure 2: Weight distribution of the original GoogleNet (a), pruned GoogleNet (b), retrain the
sparsity-constrained GoogleNet (c), get rid of the sparisty constraint and recover the zero weights (d),
retrain the dense network (e).

Final Dense Training The final D step recovers the pruned connections, making the network dense
again. These previously-pruned connections are initialized to zero and retrained with 1/10 the original
learning rate (since the sparse network is already at a good local minima). Dropout ratios and weight
decay remained unchanged. Restoring the pruned connections increases the dimensionality of the
network, and more parameters make it easier for the network to slide down the saddle point to arrive
at a better local minima. This step adds model capacity and lets the model have less bias.

To visualize the DSD training flow, we plotted the progression of weight distribution in Figure 2.
The figure is plotted using GoogleNet inception_5b3x3 layer, and we found that this progression of
weight distribution is very representative for AlexNet, VGGNet, ResNet and SqueezeNet as well.

The original distribution of weights is centered on zero with tails dropping off quickly. Pruning is
based on absolute value so after pruning the large center region is truncated away. The network
parameters adjust themselves during the retraining phase, so in (c) the boundary becomes soft and
forms a bimodal distribution. In (d), all the pruned weights comes back again and reinitialized to
zero. Finally, in (e), the previously-pruned weights are retrained in the final dense training step. In
this step, comparing Figure (d) and (e), the old weights’ distribution almost remained the same, while
the new weights become more spread around zero,

3 Experiments

We applied DSD training to different kinds of neural networks on data-sets from different domains.
We found that DSD training improved the accuracy for all these networks and for all datasets
compared to neural networks that were not trained with DSD. The neural networks are chosen from
CNN, RNN and LSTMs; The data sets are chosen from image classification, speech recognition, and
caption generation. An overview of the networks and dataset we used are shown in Table 1.

Table 1: Overview of the deep neural networks used to experiment DSD training
Neural Network Domain Dataset #Parameters #Layers Type

AlexNet Vision ImageNet 60 Million 8 CNN
VGG-16 Vision ImageNet 138 Million 16 CNN

GoogleNet Vision ImageNet 13 Million 64 CNN
ResNet-50 Vision ImageNet 25 Million 54 CNN
SqueezeNet Vision ImageNet 1.2 Million 26 CNN
DeepSpeech Speech WSJ 8 Million 6 RNN
NeuralTalk Language Flickr-8K 6.8 Million 4 RNN+LSTM

3.1 AlexNet

We experimented with BVLC AlexNet obtained from Caffe Model Zoo [10]. It has 61 million
parameters across 5 convolutional layers and 3 fully connected layers. We pruned the network to
be 89% sparse, the same as in previous work [8]. Retraining the sparse network fully recovers
the original accuracy, as shown in Table 2. After re-dense training, AlexNet obtained absolute
improvements of 1.4% (Top-1) and 1.0% (Top-5) over the baseline.
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Figure 2: Weight distribution of the original GoogleNet (a), pruned GoogleNet (b), retrain the
sparsity-constrained GoogleNet (c), get rid of the sparisty constraint and recover the zero weights (d),
retrain the dense network (e).

Final Dense Training The final D step recovers the pruned connections, making the network dense
again. These previously-pruned connections are initialized to zero and retrained with 1/10 the original
learning rate (since the sparse network is already at a good local minima). Dropout ratios and weight
decay remained unchanged. Restoring the pruned connections increases the dimensionality of the
network, and more parameters make it easier for the network to slide down the saddle point to arrive
at a better local minima. This step adds model capacity and lets the model have less bias.

To visualize the DSD training flow, we plotted the progression of weight distribution in Figure 2.
The figure is plotted using GoogleNet inception_5b3x3 layer, and we found that this progression of
weight distribution is very representative for AlexNet, VGGNet, ResNet and SqueezeNet as well.

The original distribution of weights is centered on zero with tails dropping off quickly. Pruning is
based on absolute value so after pruning the large center region is truncated away. The network
parameters adjust themselves during the retraining phase, so in (c) the boundary becomes soft and
forms a bimodal distribution. In (d), all the pruned weights comes back again and reinitialized to
zero. Finally, in (e), the previously-pruned weights are retrained in the final dense training step. In
this step, comparing Figure (d) and (e), the old weights’ distribution almost remained the same, while
the new weights become more spread around zero,

3 Experiments

We applied DSD training to different kinds of neural networks on data-sets from different domains.
We found that DSD training improved the accuracy for all these networks and for all datasets
compared to neural networks that were not trained with DSD. The neural networks are chosen from
CNN, RNN and LSTMs; The data sets are chosen from image classification, speech recognition, and
caption generation. An overview of the networks and dataset we used are shown in Table 1.

Table 1: Overview of the deep neural networks used to experiment DSD training
Neural Network Domain Dataset #Parameters #Layers Type

AlexNet Vision ImageNet 60 Million 8 CNN
VGG-16 Vision ImageNet 138 Million 16 CNN

GoogleNet Vision ImageNet 13 Million 64 CNN
ResNet-50 Vision ImageNet 25 Million 54 CNN
SqueezeNet Vision ImageNet 1.2 Million 26 CNN
DeepSpeech Speech WSJ 8 Million 6 RNN
NeuralTalk Language Flickr-8K 6.8 Million 4 RNN+LSTM

3.1 AlexNet

We experimented with BVLC AlexNet obtained from Caffe Model Zoo [10]. It has 61 million
parameters across 5 convolutional layers and 3 fully connected layers. We pruned the network to
be 89% sparse, the same as in previous work [8]. Retraining the sparse network fully recovers
the original accuracy, as shown in Table 2. After re-dense training, AlexNet obtained absolute
improvements of 1.4% (Top-1) and 1.0% (Top-5) over the baseline.
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Figure 2: Weight distribution of the original GoogleNet (a), pruned GoogleNet (b), retrain the
sparsity-constrained GoogleNet (c), get rid of the sparisty constraint and recover the zero weights (d),
retrain the dense network (e).

Final Dense Training The final D step recovers the pruned connections, making the network dense
again. These previously-pruned connections are initialized to zero and retrained with 1/10 the original
learning rate (since the sparse network is already at a good local minima). Dropout ratios and weight
decay remained unchanged. Restoring the pruned connections increases the dimensionality of the
network, and more parameters make it easier for the network to slide down the saddle point to arrive
at a better local minima. This step adds model capacity and lets the model have less bias.

To visualize the DSD training flow, we plotted the progression of weight distribution in Figure 2.
The figure is plotted using GoogleNet inception_5b3x3 layer, and we found that this progression of
weight distribution is very representative for AlexNet, VGGNet, ResNet and SqueezeNet as well.

The original distribution of weights is centered on zero with tails dropping off quickly. Pruning is
based on absolute value so after pruning the large center region is truncated away. The network
parameters adjust themselves during the retraining phase, so in (c) the boundary becomes soft and
forms a bimodal distribution. In (d), all the pruned weights comes back again and reinitialized to
zero. Finally, in (e), the previously-pruned weights are retrained in the final dense training step. In
this step, comparing Figure (d) and (e), the old weights’ distribution almost remained the same, while
the new weights become more spread around zero,

3 Experiments

We applied DSD training to different kinds of neural networks on data-sets from different domains.
We found that DSD training improved the accuracy for all these networks and for all datasets
compared to neural networks that were not trained with DSD. The neural networks are chosen from
CNN, RNN and LSTMs; The data sets are chosen from image classification, speech recognition, and
caption generation. An overview of the networks and dataset we used are shown in Table 1.

Table 1: Overview of the deep neural networks used to experiment DSD training
Neural Network Domain Dataset #Parameters #Layers Type

AlexNet Vision ImageNet 60 Million 8 CNN
VGG-16 Vision ImageNet 138 Million 16 CNN

GoogleNet Vision ImageNet 13 Million 64 CNN
ResNet-50 Vision ImageNet 25 Million 54 CNN
SqueezeNet Vision ImageNet 1.2 Million 26 CNN
DeepSpeech Speech WSJ 8 Million 6 RNN
NeuralTalk Language Flickr-8K 6.8 Million 4 RNN+LSTM

3.1 AlexNet

We experimented with BVLC AlexNet obtained from Caffe Model Zoo [10]. It has 61 million
parameters across 5 convolutional layers and 3 fully connected layers. We pruned the network to
be 89% sparse, the same as in previous work [8]. Retraining the sparse network fully recovers
the original accuracy, as shown in Table 2. After re-dense training, AlexNet obtained absolute
improvements of 1.4% (Top-1) and 1.0% (Top-5) over the baseline.
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DSD is General Purpose:  
Vision, Speech, Natural Language

DSD Model Zoo is online: https://songhan.github.io/DSD 

The beseline results of AlexNet, VGG16, GoogleNet, SqueezeNet are from Caffe Model Zoo.  
The baseline results of ResNet18, ResNet50 are from fb.resnet.torch.

Under review as a conference paper at ICLR 2017

Table 1: Overview of the neural networks, data sets and performance improvements from DSD.

Neural Network Domain Dataset Type Baseline DSD Abs. Imp. Rel. Imp.
GoogLeNet Vision ImageNet CNN 31.1%1 30.0% 1.1% 3.6%

VGG-16 Vision ImageNet CNN 31.5%1 27.2% 4.3% 13.7%
ResNet-18 Vision ImageNet CNN 30.4%1 29.3% 1.1% 3.7%
ResNet-50 Vision ImageNet CNN 24.0%1 23.2% 0.9% 3.5%
NeuralTalk Caption Flickr-8K LSTM 16.82 18.5 1.7 10.1%

DeepSpeech Speech WSJ’93 RNN 33.6%3 31.6% 2.0% 5.8%
DeepSpeech-2 Speech WSJ’93 RNN 14.5% 3 13.4% 1.1% 7.4%

1 Top-1 error. VGG/GoogLeNet baselines from Caffe model zoo, ResNet from Facebook.
2 BLEU score baseline from Neural Talk model zoo, higher the better.
3 Word error rate: DeepSpeech2 is trained with a portion of Baidu internal dataset with only max

decoding to show the effect of DNN improvement.

3 RELATED WORK

Dropout and DropConnect: DSD, Dropout ( Srivastava et al. (2014)) and DropConnnect ( Wan
et al. (2013)) can all regularize neural networks and prevent over-fitting. The difference is that,
Dropout and DropConnect use a random sparsity pattern at each SGD iteration, while DSD training
learns with a deterministic data driven sparsity pattern throughout sparse training. Our experiments
on VGG16, GoogLeNet and NeuralTalk show that DSD training can work together with Dropout.

Distillation: Model distillation ( Hinton et al. (2015)) is method that can transfer the knowledge
from the cumbersome model to a small model that is more efficient for deployment. This is another
method that allows for performance improvements in neural networks without architectural changes.
This also shows the inadequacy of current training methods to get good accuracy with small model.

Model Compression: Both model compression ( Han et al. (2016; 2015)) and DSD training use
network pruning ( LeCun et al. (1990); Hassibi et al. (1993)). The difference is that the focus of
DSD training goes beyond maintaining accuracy with aggressively pruned networks. DSD is able to
further improve the accuracy by considerable margins.

Similar to other model compression works ( Guo et al. (2016)), DSD uses binary sparsity mask
in pruning. However DSD training does not need an aggressively sparse mask or take additional
computation cost to update and possibly improve the binary sparsity mask in each epoch. Also unlike
model compression which aggressively prunes the network to achieve high compression rate, a simply
fixed modestly pruned network can work well in the S step of DSD.

Sparsity regularization and Compressed Sensing: Truncation-based sparse network has been
theoretically analyzed for learning a broad range of statistical models in high dimensions ( Langford
et al. (2009); Yuan & Zhang (2013); Wang et al. (2014)). Also sparsity regularized optimization
is heavily applied in methods such as Compressed Sensing ( Candes & Romberg (2007)) to find
optimal solutions of the inverse problems in highly under-determined systems based on the sparsity
assumption. These analysis shows that truncation-based procedure has provable advantage in statisti-
cal accuracy in comparison with their non-truncated counterparts, especially for high dimensions.
The conclusions of these works align well with our experimental observations.

4 EXPERIMENTS

We applied DSD training to different kinds of neural networks in different domains. We found that
DSD training improved the accuracy for ALL these networks compared to the baseline that were not
trained with DSD. The neural networks are chosen from CNN, RNN and LSTMs; the datasets are
chosen from image classification, speech recognition, and caption generation. Among other networks
trained for ImageNet, we focus on GoogLeNet, VGG, and ResNet, which are widely used in research
and production. An overview of the networks, dataset and accuracy results are shown in Table 1. For
the convolutional networks, we do not prune the first layer during the sparse phase, since it has only 3
channels and is very sensitive to pruning. The sparsity is the same for all the other layers, including
convolutional and fully-connected layers. We do not change any other training hyper-parameters and
the initial learning rate at each stage is decayed the same as conventional training. The epochs are
decided by when the loss converges.
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Baseline: a man and 
a woman are sitting 
on a bench. 

Sparse: a man is 
sitting on a bench 
with his hands in the 
air. 
DSD: a man is sitting 
on a bench with his 
arms folded.

Baseline:  two 
dogs are playing 
together in a field. 

Sparse:  two dogs 
are playing in a 
field. 

DSD: two dogs are 
p l a y i n g i n t h e 
grass.

Baseline:  a boy 
in a red shirt is 
climbing a rock 
wall. 
Sparse: a young 
girl is jumping off 
a tree. 

DSD: a young girl 
in a pink shirt is 
s w i n g i n g o n a 
swing.

Baseline:    a     
basketball player in 
a red uniform is 
playing with a ball. 
Sparse: a basketball 
player in a blue 
uniform is jumping 
over the goal. 
DSD: a basketball 
player in a white 
uniform is trying to 
make a shot.

Baseline:   a person in 
a red jacket is riding a  
b i k e t h r o u g h t h e   
woods. 
Sparse: a car drives 
through a mud puddle. 

DSD: a car drives 
through a forest.

�1

Figure 3: Visualization of DSD training improves the performance of image captioning.

the forest from the background. The good performance of DSD training generalizes beyond these
examples, more image caption results generated by DSD training is provided in the supplementary
material.

Table 7: DSD results on NeuralTalk
NeuralTalk BLEU-1 BLEU-2 BLEU-3 BLEU-4 Sparsity

Baseline 57.2 38.6 25.4 16.8 0%
Sparse 58.4 39.7 26.3 17.5 80%
DSD 59.2 40.7 27.4 18.5 0%

Improvement (abs) 2.0 2.1 2.0 1.7 -
Improvement (rel) 3.5% 5.4% 7.9% 10.1% -

3.7 DeepSpeech

We explore DSD training on speech data using the DeepSpeech network [16, 3]. DSD training
experiments are performed on the 5 layer model with 1 recurrent layer DeepSpeech network (DS1)
that contains approximately 8 million parameters. The DS1 model is described in Table 8. The
training data set used is Wall Street Journal (WSJ), which contains approximately 37,000 training
utterances (81 hours of speech). We benchmark DSD training on two test sets from the WSJ corpus of
read articles. The Word Error Rate (WER) reported on the test sets for the baseline model is different
from the those in DeepSpeech2 [3] due to two factors. The Deep Speech 2 models were trained using
much larger data sets containing approximately 12,000 hours of multi-speaker speech data. Secondly,
in Deep Speech 2, WER was evaluated with beam search and a language model; here the network
output is obtained using only max decoding to show improvement in the neural network accuracy.

Table 8: Deep Speech 1 Architecture
Layer ID Type #Params
layer 0 Convolution 1814528
layer 1 FullyConnected 1049600
layer 2 FullyConnected 1049600
layer 3 Bidirectional Recurrent 3146752
layer 4 FullyConnected 1049600
layer 5 CTCCost 29725

The baseline DS1 model is trained for 50 epochs on WSJ training data. The weights from this model
are pruned for the sparse iteration of DSD training. Weights are pruned in the FullyConnected layers
and the Bidirectional Recurrent layer only. Each layer is pruned to achieve 50% sparsity. This results
in overall sparsity of 32.2% across the entire network. This sparse model is re-trained on 50 epochs
of WSJ data. For the final dense training, the pruned weights are initialized to zero and trained again
on 50 epochs of WSJ training data. This step completes one iteration of DSD training. We use
Nesterov SGD to train the model, reduce the learning rate with each re-training, and keep all other
hyper parameters unchanged.

6

Baseline model: Andrej Karpathy, Neural Talk model zoo.

Compression Acceleration Regularization

DSD on Caption Generation

Han et al. “DSD: Dense-Sparse-Dense Training for Deep Neural Networks”, ICLR 2017



A Appendix: More Examples of DSD Training Improves the Captions
Generated by NeuralTalk (Images from Flickr-8K Test Set)

Baseline: a man in a red shirt and 
jeans is riding a bicycle down a street. 
Sparse: a man in a red shirt and a 
woman in a wheelchair. 
DSD: a man and a woman are riding on 
a street.

Baseline:  two girls in bathing suits are 
playing in the water. 
Sparse:  two children are playing in the 
sand. 
DSD: two children are playing in the 
sand.

Baseline:   a group of people are 
standing in front of a building. 
Sparse: a group of people are standing 
in front of a building. 
DSD: a group of people are walking in a 
park.

Baseline: a dog runs through the grass. 
Sparse: a dog runs through the grass. 
DSD: a white and brown dog is running 
through the grass.

Baseline:  a group of football players in 
red uniforms. 
Sparse:  a group of football players in a 
field. 
DSD: a group of football players in red 
and white uniforms.

Baseline:  a group of people sit on a 
bench in front of a building. 
Sparse: a group of people are 
standing in front of a building. 
DSD: a group of people are standing 
in a fountain.

Baseline: a man in a black jacket and a 
black jacket is smiling. 
Sparse: a man and a woman are standing 
in front of a mountain. 
DSD: a man in a black jacket is standing 
next to a man in a black shirt.

Baseline:a young girl in a red dress is 
holding a camera. 
Sparse: a little girl in a pink dress is 
standing in front of a tree. 
DSD: a little girl in a red dress is 
holding a red and white flowers.

Baseline:  a man in a red jacket is 
standing in front of a white building. 
Sparse:  a man in a black jacket is 
standing in front of a brick wall. 
DSD: a man in a black jacket is 
standing in front of a white building.

Baseline:  a man in a red shirt is 
standing on a rock. 
Sparse: a man in a red jacket is 
standing on a mountaintop. 
DSD: a man is standing on a rock 
overlooking the mountains.

Baseline:  a group of people are sitting in 
a subway station. 
Sparse: a man and a woman are sitting 
on a couch. 
DSD: a group of people are sitting at a 
table in a room.

Baseline: a soccer player in a red and 
white uniform is running on the field. 
Sparse: a soccer player in a red uniform 
is tackling another player in a white 
uniform. 
DSD: a soccer player in a red uniform 
kicks a soccer ball.

Baseline: a young girl in a swimming 
pool. 
Sparse:  a young boy in a swimming 
pool. 
DSD: a girl in a pink bathing suit 
jumps into a pool.

Baseline:  a soccer player in a red 
and white uniform is playing with a 
soccer ball. 
Sparse: two boys playing soccer. 
DSD: two boys playing soccer.

Baseline: a girl in a white dress is 
standing on a sidewalk. 
Sparse: a girl in a pink shirt is 
standing in front of a white building. 
DSD: a girl in a pink dress is walking 
on a sidewalk.

Baseline:  a boy is swimming in a pool. 
Sparse: a small black dog is jumping 
into a pool. 
DSD: a black and white dog is swimming 
in a pool.

A. Supplementary Material: More Examples of DSD Training Improves the Performance of 
NeuralTalk Auto-Caption System

�1
10
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Baseline model: Andrej Karpathy, Neural Talk model zoo.
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Summary

✦Deep Compression (size)
• Pruning 
• Trained Quantization 
• Huffman Coding 

✦Hardware Acceleration (speed, energy)
• EIE Accelerator (ASIC) 
• ESE Accelerator (FPGA) 

✦Efficient Training (accuracy)
• Dense-Sparse-Dense Regularization

Compression Acceleration Regularization
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Algorithm

Hardware
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Smaller Size:  
Deep Compression 

                      

Better Speed,  
Energy Efficiency:  

EIE / ESE Accelerator

Higher Accuracy:  
DSD Regularization
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Efficient Speech Recognition Engine on Sparse LSTM

ESE for Speech Recognition
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Sundar Pichai, Google IO, 2016

Outlook: the Path for Computation



Thank you!

84

Model Compression 
[1]. Han et al. “Learning both Weights and Connections for Efficient Neural Networks”, NIPS 2015 
[2]. Han et al. “Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huffman 
Coding”, Deep Learning Symposium, NIPS 2015; ICLR 2016, (best paper award) 
[3]. Chen, Han, et.al, “Trained Ternary Quantization”, ICLR 2017 

Model Regularization 
[3]. Han et al. “DSD: Regularizing Deep Neural Networks with Dense-Sparse-Dense Training ”, ICLR 2017 

Hardware Acceleration 
[6]. Han et al. “EIE: Efficient Inference Engine on Compressed Deep Neural Network”, ISCA 2016 
[7]. Han et al. “ESE: Efficient Speech Recognition Engine for Compressed LSTM”, NIPS’16 workshop; FPGA 2017 
[8]. Guo et al. “Angel-Eye: A Complete Design Flow for Mapping CNN onto Customized Hardware”, ISVLSI 2016 
[9]. Guo, Han et al. “Software-Hardware Co-Design for Efficient Neural Network Acceleration”, IEEE Micro, 2017 

CNN Design Space Exploration 
[4]. Iandola, Han, et al. “SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size” arXiv’16 
[5]. Yao, Han, et al. “Hardware-friendly convolutional neural network with even-number filter size” ICLR 2016 workshop 

stanford.edu/~songhan


