Efficient Methods and Hardware for Deep Learning

Song Han

Stanford University DeePhi

Models are Getting Larger

Dally, NIPS'2016 workshop on Efficient Methods for Deep Neural Networks

Problem of Large DNN Model: Difficult to Deploy

App developers suffers from the model size

Microsoft Excel will not download until you connect to Wi-Fi.

Phones

Drones

Robots

Glasses

Self Driving Cars

- Limited Computation Resource
- Battery Constrained
- Cooling Constrained

Hardware engineer suffers from the model size larger model => more memory reference => more energy

			Relative Energy Cost					
Operation	Energy [pJ]	Relative Cost						
32 bit int ADD	0.1	1						
32 bit float ADD	0.9	9						
32 bit Register File	1	10						
32 bit int MULT	3.1	31						
32 bit float MULT	3.7	37						
32 bit SRAM Cache	5	50						
32 bit DRAM Memory	640	6400						
			1	10	100	1000	1000	

Figure 1: Energy table for 45nm CMOS process. Memory access is 2 orders of magnitude more energy expensive than arithmetic operations.

Hardware engineer suffers from the model size larger model => more memory reference => more energy

				Relative Energy Cost			
Operation	Energy [pJ]	Relative Cost					
32 bit int ADD	0.1	1					
32 bit float ADD	0.9	9					
32 bit Register File	1	10					
32 bit int MULT	3.1	31					
32 bit float MULT	3.7	37					
32 bit SRAM Cache	5	50					
32 bit DRAM Memory	640	6400					
			1	10	100	1000	

Figure 1: Energy table for 45nm CMOS process. Memory access is 2 orders of magnitude more energy expensive than arithmetic operations.

10000

Given the power budget, Moore's law is no longer providing more computation

Improve the Efficiency of Deep Learning by Algorithm-Hardware Co-Design

Proposed Paradigm

Agenda

+ Model Compression (size)

- Pruning / Quantization
- Ternary Net

+ Hardware Acceleration (speed, energy)

- EIE Accelerator (ASIC)
- ESE Accelerator (FPGA)

Efficient Training (<u>accuracy</u>)

• Dense-Sparse-Dense Regularization

Acceleration

Regularization

Agenda

Model Compression

- Pruning / Quantization
- Ternary Net

+ Hardware Acceleration

- EIE Accelerator (ASIC)
- ESE Accelerator (FPGA)

+ Efficient Training

• Dense-Sparse-Dense Regularization

Deep Compression Pipeline

- Network Pruning: Less Number of Weights
- Trained Quantization:
 Reduce Storage for Each Remaining Weight
- Huffman Coding: Entropy of the Remaining Weights

Acceleration

Regularization

Pruning

Han et al. Learning both Weights and Connections for Efficient Neural Networks, NIPS'15

Huffman Coding

Pruning

Trained Quantization

Pruning: Motivation

Age	Number of Connections	Stage			
at birth	50 Trillion	newly formed			
1 year old	1000 Trillion	peak			
10 year old	500 Trillion	pruned and stabilized			

Table 1: The synapses pruning mechanism in human brain development

- At birth, Trillions of synapses
- 1 year old, peaked at 1000 trillion
- Pruning begins to occur.
- 10 years old, pruned to nearly 500 trillion synapses
- This "pruning" mechanism removes redundant connections in the brain.

[1] Christopher A Walsh. Peter Huttenlocher (1931-2013). Nature, 502(7470):172–172, 2013.

AlexNet & VGGNet

Han et al. Learning both Weights and Connections for Efficient Neural Networks, NIPS 2015

Pruning Trained Quantization

Huffman Coding

Trained Quantization

Han et al. Deep Compression, ICLR 2016 Best Paper Award

Pruning Trained

Trained Quantization

Huffman Coding

Bits Per Weight

Han et al. Deep Compression, ICLR 2016 Best Paper Award

Pruning Trained Quantization

Huffman Coding

Even Fewer Bits: Trained Ternary Quantization

Zhu, Han, Mao, Dally. Trained Ternary Quantization, ICLR'17

Trained Ternary Quantization — Learn both Centroid and Grouping

Learn Centroids:

0 stays 0, positive weight gets larger negative weight gets smaller

Zhu, Han, Mao, Dally. Trained Ternary Quantization, ICLR'17

Ternary Net is Sparse

Zhu, Han, Mao, Dally. Trained Ternary Quantization, ICLR'17

Visualization of the TTQ Kernels

Pruning

TTQ: Accuracy

Figure 4: Training and validation accuracy of AlexNet on ImageNet

Zhu, Han, Mao, Dally. Trained Ternary Quantization, ICLR'17

Model Compression Means

- Complex DNNs can be put in mobile applications (<10MB total)
 - -500MB with-FC network (125M weights) becomes 10MB
 - 10MB all-CONV network (2.5M weights) becomes 1MB
- Memory bandwidth reduced by 10-50x
 - Particularly for FC layers in real-time applications with no reuse

Regularization

Stanford University

- Good for distributed training => less communication overhead
- Memory working set fits in on-chip SRAM
 - 5pJ/word access v.s. 640pJ/word

Acceleration

Compression

Challenges

Online de-compression while computing

- Special purpose logic

Computation becomes irregular

- Sparse weight
- Sparse activation
- Indirect lookup

Parallelization becomes challenging

- Synchronization overhead.
- -Load imbalance issue.
- Scalability

Agenda

- + Deep Compression (size)
 - Pruning
 - Trained Quantization
 - Huffman Coding

Hardware Acceleration (speed, energy)

- EIE Accelerator (ASIC)
- ESE Accelerator (FPGA)

Efficient Training (accuracy) Dense-Sparse-Dense Regularization

Acceleration

Regularization

Related Work

Eyeriss, MIT

TPU, Google

Nervana

Compression

Acceleration

Regularization

Agenda

+ Model Compression

- Pruning / Quantization
- Ternary Net

Hardware Acceleration

- EIE Accelerator (ASIC)
- ESE Accelerator (FPGA)

+ Efficient Training

Dense-Sparse-Dense Regularization

EIE: Inference on Sparse, Compressed Model

logically

physically

Virtual Weight	W _{0,0}	W _{0,1}	W _{4,2}	W _{0,3}	W _{4,3}
Relative Index	0	1	2	0	0
Column Pointer	0	1	2	3	

Han et al. "EIE: Efficient Inference Engine on Compressed Deep Neural Network", ISCA 2016, Hotchips 2016

PE Architecture

Acceleration

Compression

Han et al. "EIE: Efficient Inference Engine on Compressed Deep Neural Network", ISCA 2016, Hotchips 2016

Regularization

Sparse Matrix

90% static sparsity
in the weights,
10x less computation,
5x less memory footprint

Han et al. "EIE: Efficient Inference Engine on Compressed Deep Neural Network", ISCA 2016, Hotchips 2016

Acceleration

Regularization

Sparse Matrix

90% static sparsity
in the weights,
10x less computation,
5x less memory footprint

Sparse Vector

70% *dynamic* sparsity in the activation3x less computation

Han et al. "EIE: Efficient Inference Engine on Compressed Deep Neural Network", ISCA 2016, Hotchips 2016

Acceleration

Regularization

Sparse Matrix

90% static sparsity
in the weights,
10x less computation,
5x less memory footprint

Sparse Vector

70% *dynamic* sparsity in the activation3x less computation

Weight Sharing

4bits weights 8x less memory footprint

Han et al. "EIE: Efficient Inference Engine on Compressed Deep Neural Network", ISCA 2016, Hotchips 2016

Acceleration

Regularization

Sparse Matrix

90% static sparsity
in the weights,
10x less computation,
5x less memory footprint

Sparse Vector

70% *dynamic* sparsity in the activation3x less computation

Weight Sharing

4bits weights 8x less memory footprint

Fully fits in SRAM

120x less energy than DRAM

Han et al. "EIE: Efficient Inference Engine on Compressed Deep Neural Network", ISCA 2016, Hotchips 2016

Sparse Matrix

90% static sparsity
in the weights,
10x less computation,
5x less memory footprint

Acceleration

Compression

Sparse Vector

70% *dynamic* sparsity in the activation3x less computation

Weight Sharing

4bits weights 8x less memory footprint

Stanford University

Fully fits in SRAM

120x less energy than DRAM

Han et al. "EIE: Efficient Inference Engine on Compressed Deep Neural Network", ISCA 2016, Hotchips 2016

Regularization

Speedup of EIE

Compression

Acceleration

Regularization
d NT-LSTM Geo Mean Energy Efficiency of EIE

Compression

Acceleration

Regularization

Scalability

#PEs ~ Speedup

- 64PEs: 64x
- 128PEs: 124x
- 256PEs: 210x

Han et al. "EIE: Efficient Inference Engine on Compressed Deep Neural Network", ISCA 2016, Hotchips 2016

Regularization

Load Balancing

- Imbalanced non-zeros among PEs degrades system utilization.
- This load imbalance could be solved by FIFO.
- With FIFO depth=8, ALU utilization is > 80%.

Han et al. "EIE: Efficient Inference Engine on Compressed Deep Neural Network", ISCA 2016, Hotchips 2016

Acceleration

Regularization

Remaining Questions

- Can we do better with load imbalance?
- Feedforward => Recurrent neural network?

Compression

Acceleration

Regularization

Agenda

- Deep Compression (size)
 - Pruning
 - Trained Quantization
 - Huffman Coding

+ Hardware Acceleration (speed, energy)

- EIE Accelerator (ASIC)
- ESE Accelerator (FPGA)

Efficient Training (accuracy) Dense-Sparse-Dense Regularization

Acceleration

Regularization

Accelerating Recurrent Neural Networks

speech recognition

Compression

Acceleration

image caption

visual question answering

Stanford University

The recurrent nature of RNN/LSTM produces complicated <u>data dependency</u>, which is more challenging than feedforward neural nets.

Regularization

Rethinking Model Compression

Compression

Acceleration

Regularization

Rethinking Model Compression

Han et, al, "ESE: Efficient Speech Recognition Engine for Compressed LSTM", NIPS'16 workshop; FPGA'17

Acceleration

Regularization

Compression

Pruning Lead to Load Imbalance

Compression

Acceleration

Regularization

Load Balance Aware Pruning

Compression

Acceleration

Regularization

Load Balance Aware Pruning: Same Accuracy

Compression

Acceleration

Regularization

Load Balance Aware Pruning: Better Speedup

Han et, al, "ESE: Efficient Speech Recognition Engine for Compressed LSTM", NIPS'16 workshop; FPGA'17

From Compression to Acceleration

+ Challenge 1:

memory access is expensive.

✓ **Deep Compression**:

10x-49x smaller, no loss of accuracy

+ Challenge 2:

sparsity, indirection, load balance.

✓ EIE / ESE Accelerator:

energy-efficient accelerated inference

What about Training? Compressed Model Size: Same accuracy => Original Model Size: Higher accuracy

Compression

Acceleration

Regularization

Agenda

- + Deep Compression (size)
 - Pruning
 - Trained Quantization
 - Huffman Coding
- + Hardware Acceleration (speed, energy)
 - EIE Accelerator (ASIC)
 - ESE Accelerator (FPGA)

Efficient Training (<u>accuracy</u>)

• Dense-Sparse-Dense Regularization

DSD: Dense Sparse Dense Training

DSD produces same model architecture but can find better optimization solution, arrives at better local minima, and achieves higher prediction accuracy across a wide range of deep neural networks on CNNs / RNNs / LSTMs.

Regularization

Han et al. "DSD: Dense-Sparse-Dense Training for Deep Neural Networks", ICLR 2017

Acceleration

Compression

DSD: Intuition

Learn the trunk first

Then learn the leaves

Related Work

• Dropout and DropConnect

- Dropout use a *random* sparsity pattern.
- DSD training learns with a *deterministic* data driven sparsity pattern.

Distillation

- Transfer the knowledge from the cumbersome model to a small model
- Both DSD and Distillation don't incur architectural changes.

Han et al. "DSD: Dense-Sparse-Dense Training for Deep Neural Networks", ICLR 2017

DSD is General Purpose: Vision, Speech, Natural Language

Table 1: Overview of the neural networks, data sets and performance improvements from DSD.

Neural Network	Domain	Dataset	Туре	Baseline	DSD	Abs. Imp.	Rel. Imp.
GoogLeNet	Vision	ImageNet	CNN	$31.1\%^{1}$	30.0%	1.1%	3.6%
VGG-16	Vision	ImageNet	CNN	$31.5\%^{1}$	27.2%	4.3%	13.7%
ResNet-18	Vision	ImageNet	CNN	$30.4\%^{1}$	29.3%	1.1%	3.7%
ResNet-50	Vision	ImageNet	CNN	$24.0\%^{1}$	23.2%	0.9%	3.5%
NeuralTalk	Caption	Flickr-8K	LSTM	16.8^{2}	18.5	1.7	10.1%
DeepSpeech	Speech	WSJ'93	RNN	$33.6\%^{3}$	31.6%	2.0%	5.8%
DeepSpeech-2	Speech	WSJ'93	RNN	14.5% ³	13.4%	1.1%	7.4%

DSD Model Zoo is online: <u>https://songhan.github.io/DSD</u>

The beseline results of AlexNet, VGG16, GoogleNet, SqueezeNet are from Caffe Model Zoo. The baseline results of ResNet18, ResNet50 are from fb.resnet.torch.

Compression

Acceleration

Regularization

DSD on Caption Generation

Baseline model: Andrej Karpathy, Neural Talk model zoo. Han et al. "DSD: Dense-Sparse-Dense Training for Deep Neural Networks", ICLR 2017

Acceleration

Regularization

A. Supplementary Material: More Examples of DSD Training Improves the Performance of NeuralTalk Auto-Caption System DSD on Caption Generation

- Baseline: a boy is swimming in a pool. **Sparse**: a small black dog is jumping into a pool.
- **DSD**: a black and white dog is swimming in front of a building. in a pool.

Baseline: a group of people are standing in front of a building. **Sparse**: a group of people are standing

DSD: a group of people are walking in a park.

- **Baseline**: two girls in bathing suits are **Baseline**: a man in a red shirt and playing in the water.
- sand.
- ,**DSD**: two children are playing in the sand.

jeans is riding a bicycle down a street. **Sparse**: two children are playing in the **Sparse**: a man in a red shirt and a woman in a wheelchair. **DSD**: a man and a woman are riding on a street.

Baseline: a group of people sit on a bench in front of a building. **Sparse**: a group of people are standing in front of a building. **DSD**: a group of people are standing in a fountain.

- **xBaseline**: a man in a black jacket and a black jacket is smiling.
- xSparse: a man and a woman are standing Sparse: a group of football players in a DSD: a white and brown dog is running in front of a mountain.
- **DSD**: a man in a black jacket is standing next to a man in a black shirt.

- **Baseline**: a group of football players in **Baseline**: a dog runs through the grass. red uniforms.
- field.
- **DSD**: a group of football players in red and white uniforms.

Sparse: a dog runs through the grass. through the grass.

Han et al. "DSD: Dense-Sparse-Dense Training for Deep Neural Networks"as@brandrej Karpathy, Neural Talk model zoo.

Acceleration

Regularization

Summary

+ Deep Compression (size)

- Pruning
- Trained Quantization
- Huffman Coding

Hardware Acceleration (speed, energy)

- EIE Accelerator (ASIC)
- ESE Accelerator (FPGA)

+ Efficient Training (<u>accuracy</u>)

• Dense-Sparse-Dense Regularization

Acceleration

Regularization

Summary

Algorithm

Hardware

Compression

Acceleration

Regularization

Acceleration

Regularization

Acceleration

Regularization

Acceleration

Regularization

Acceleration

Regularization

Summary

Compression

Acceleration

Regularization

Detection with Low Precision

ESE for Speech Recognition

Efficient Speech Recognition Engine on Sparse LSTM

Outlook: the Path for Computation

PC

Mobile-First

AI-First

Sundar Pichai, Google IO, 2016

Thank you!

stanford.edu/~songhan

Model Compression

[1]. Han et al. "Learning both Weights and Connections for Efficient Neural Networks", NIPS 2015
[2]. Han et al. "Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding", Deep Learning Symposium, NIPS 2015; ICLR 2016, (best paper award)
[3]. Chen, Han, et.al, "Trained Ternary Quantization", ICLR 2017

Model Regularization

[3]. Han et al. "DSD: Regularizing Deep Neural Networks with Dense-Sparse-Dense Training ", ICLR 2017

Hardware Acceleration

[6]. Han et al. "EIE: Efficient Inference Engine on Compressed Deep Neural Network", ISCA 2016

- [7]. Han et al. "ESE: Efficient Speech Recognition Engine for Compressed LSTM", NIPS'16 workshop; FPGA 2017
- [8]. Guo et al. "Angel-Eye: A Complete Design Flow for Mapping CNN onto Customized Hardware", ISVLSI 2016
- [9]. Guo, Han et al. "Software-Hardware Co-Design for Efficient Neural Network Acceleration", IEEE Micro, 2017

CNN Design Space Exploration

[4]. landola, Han, et al. "SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size" arXiv'16 [5]. Yao, Han, et al. "Hardware-friendly convolutional neural network with even-number filter size" ICLR 2016 workshop