
Functional Safety in ISO
26262 and IEC 61508

Functional safety refers to the concept
that an overall system will remain
dependable and function as intended
even in the event of an unplanned
or unexpected occurrence. The IEC
61508 specification codified this
concept into a standard, from which
the automotive industry then derived
the ISO 26262 standard. Compliance to
these standards is now a requirement
flowing from OEMs to Tier 1
integrators and to semiconductor
providers. The benefit from imple-
menting a functional safety method-
ology is a more dependable design
that can improve all products.

Compliance with these safety
standards consists of three elements
identified in Figure 1.

The first element is quality processes,
including requirements tracing and
the tool confidence level (TCL).
Requirements tracing connects enter-
prise requirements systems to the
test input and result output from
the verification process at all levels
of abstraction through the semicon-
ductor development flow, to document

that all the design requirements were
implemented and tested. The TCL
assesses the error injection risk of each
tool in the flow to document the confi-
dence level for the data processing of
each tool.

The second element is the quality
measurement for both the overall
design function and the function of
the safety systems. Design function
employs digital and analog/mixed-

signal functional verification at multiple
levels of abstraction. Safety verifi-
cation inherits much of the functional
verification environment to measure
the response of the safety systems to
injected errors.

The third element integrates all of the
data from the first two into a safety
manual that is provided with each
semiconductor and/or integrated
system.

Part of the Cadence® System Development Suite, the Incisive® Functional Safety Simulator injects
faults to verify the ability of your design to handle unexpected events. It can execute with
the Incisive vManager™ solution to provide a comprehensive requirements tracing, functional
verification, and safety verification solution.

Incisive Functional Safety Simulator
Fault injection capability for RTL and gate-level simulation supporting a comprehensive
functional safety solution for ISO 26262 and IEC 61508

Requirem
ents

TCL

Functional
Verification

Safety
Verification

Safety Manual

ISO 26262 / IEC 61508

Figure 1: Elements of functional safety standards

www.cadence.com 2

Incisive Functional Safety Simulator

Functional Safety Simulation

Simulation requires a new mechanism
measure how a design responds to
unexpected events. Those events can
be modeled as faults. A fault is an error
injected into the design to either tempo-
rarily or permanently change a logic
value at any time during the simulation.
Traditional fault simulators implemented
for design for test (DFT) applications
typically support part of this requirement.
The traditional fault simulators may have
IEEE language support limitations, timing
(SDF) annotation issues, lack of mixed-
signal support, and more.

The Incisive Functional Safety Simulator
implements the fault models required
by ISO 26262 and IEC 61508 within a
modern verification flow. At elaboration
time, it extracts a fault dictionary that can
be localized to a particular hierarchy. A
script or Incisive vManager solution is then
used to iterate through the fault dictionary
injecting permanent and temporary faults.
The Incisive Functional Safety Simulator
supports the stuck-at (SA0/1), single event
upset (SEU), and single event transient
(SET) models, in compliance with the ISO
26262 standard.

The simulation proceeds normally until the
injection time is reached; the simulation
will proceed from this time with the
altered (injected) value and progate it
through the design. Since the under-
lying simulator is the Incisive Enterprise
Simulator, the fault can propagate through
any element it can simulate, including
analog transistor models, digital mixed-
signal models, SystemC, assertions, etc.
Strobe points are set to be able to detect
the fault propagation. The value in the
faulted or “bad machine” is compared
to the value at the same strobe point in
the “good machine” until a difference is
detected or the simulation finishes. This
process is repeated for the whole fault
dictionary.

This is where the work in safety verifi-
cation begins. As indicated in Figure 2,
the detection condition for each fault
is reported. Faults that are reported
as undetected or potentially detected
need further debug before they can
be classified.

Undetected faults occur when the
simulation finishes without any logic
difference detected at the strobe point.
Potentially detected faults occur when the
logic state at the strobe point becomes
unknown (X) or high impedance (Z).

Both undetected and potentially detected
faults may be dangerous, so the debug
task is to identify the reason for the
detection condition. For example, a fault
may be undetected if the combinatorial
logic masks the fault. A fault may also
be undetected if fault node is either not
controllable from the stimulus or the
stimulus used fails to exercise the logic
at the faulted node. In each case, further
simulation or formal analysis is needed.
If the fault is masked or not controllable,
it may be removed from the ratio calcu-
lation as safe. If it shows that the stimulus
does cause the fault to propagate but the
strobe fails to detect the fault, then the
fault is designated as dangerous.

Faults of the third condition may also
be designated as dangerous regardless
of whether the simulation finishes ON_
TIME, DELAYED, or PREMATURE. The
actual designation occurs based on the
processing between the strobe point and
the safety system output. For example, if
the ECC fails to correct the fault due to
accumulated error or if the time between
the fault insertion and detection by the
comparator exceeds the safety goal, the
fault could be dangerous-undetected. A
SystemVerilog, PSL, or OVL assertion at
the safety system output can contribute
to automating the designation of
detected faults.

The goal of the safety verification process
is to identify the dangerous-detected and
dangerous faults. The ratio of dangerous-
detected faults to the total dangerous and
dangerous-detected faults in the system
is then used to calculate the Automotive
Safety Integrity Level (ASIL).

0 1 X Z

0 U D P P

1 D U P P

X U U U U

Z U U U U

Bad Machine

Good
Machine

Key:
D = Detected P = Potentially Detected U = Undetected

Type Fault Run Finished…

ON_TIME At same time as good run

DELAYED After good run

PREMATURE Before good run

TIMEOUT When specified timeout
was reached

STOPPED Due to the simulator
stopping the run

Fault Simulation Finish Types Fault Detection Conditions

Figure 2: Temporal fault classification semantics

Incisive Functional Safety Simulator

Cadence Design Systems enables global electronic design innovation and plays an essential role in the
creation of today’s electronics. Customers use Cadence software, hardware, IP, and expertise to design
and verify today’s mobile, cloud, and connectivity applications. www.cadence.com

© 2015 Cadence Design Systems, Inc. All rights reserved worldwide. Cadence, Incisive, and the Cadence logo are registered trademarks and
vManager is a trademark of Cadence Design Systems, Inc. in the United States and other countries. Open SystemC, Open SystemC Initiative,
OSCI, SystemC, and SystemC Initiative are trademarks of Open SystemC Initiative, Inc. in the United States and other countries and are used with
permission. All other trademarks are the property of their respective owners. 4111 02/15 SA/DM/PDF

Comprehensive Solution
for Safety

In a relatively small design—for example,
under a few hundred thousand logic
gates plus any analog circuitry—it may
be possible to run safety verification
using sampled input for the testbench
and manually analyze the results. As
system complexity increases, however, a
more efficient methodology is needed.
Safety verification should become part
of the functional verification flow (Figure
3) so that sophisticated testbenches in
modern functional verification can be
used to control the fault injection and
to support the debug process. Similarly,
the same simulator should be used
to eliminate the efficiency loss due to
debugging result differences caused by
the use of a modified DUT or a different
simulation engine.

Given that the safety simulation process
may involve hundreds of thousands
or even millions of temporal faults,
automated regression verification as
established by metric-driven verification
can both increase the efficiency of identi-
fying the undetected and potentially
detected fault simulations and automati-
cally aggregate the safe from unsafe
faults. Taken together, these techniques
can reduce the effort for safety verification
by up to 50%.

Benefits and Features

•	 Fault injection occurs on un-altered
design after elaboration

•	 Faults can be injected on RTL or
gate-level nets coded in Verilog
or VHDL

•	 Stimulus is provided by the un-altered
functional testbench in SystemVerilog,
e, SystemC, or other languages

•	 Faults can propagate through any
design structure that runs in the
Incisive Enterprise Simulator, including
SystemVerilog, VHDL, SystemC, analog
transistor level, analog behavioral level,
digital mixed signal models, and more

•	 Fault dictionary can be generated for
the complete design or for a selected
hierarchy

•	 Fault injection time can be randomized
using the SystemVerilog engine in the
Incisive Enterprise Simulator

•	 SA0 and SA1 faults force that value at
any point in simulation time

•	 SEU faults modeled as a bit-flip at any
point in simulation time

•	 SET faults modeled as a bit-flip and
force at any point in simulation time

Multiple Fault Types for ISO 26262
• Single event upset (SEU)
• Stuck at 0 or 1 (SA0/SA1)
• Single event transient (SET)

Automates Safety Verification
• Efficiently executed fault

simulations in modern
regression environments

• Highlights potentially
detected and undetected
faults runs for further debug

Verification Environment Reuse
• Supports SystemVerilog/UVM,

SystemC, e

Simulates Unaltered DUT
• Fault identification during elaboration
• Faults injected during simulation
• Support Verilog/VHDL for gates/RTL
• Faults can propagate through mixed-signal,

low-power, assertions, etc.

Figure 3: Functional verification and safety verification flow

