
Functional Safety in ISO 
26262 and IEC 61508

Functional safety refers to the concept 
that an overall system will remain 
dependable and function as intended 
even in the event of an unplanned 
or unexpected occurrence. The IEC 
61508 specification codified this 
concept into a standard, from which 
the automotive industry then derived 
the ISO 26262 standard. Compliance to 
these standards is now a requirement 
flowing from OEMs to Tier 1 
integrators and to semiconductor 
providers. The benefit from imple-
menting a functional safety method-
ology is a more dependable design 
that can improve all products.

Compliance with these safety 
standards consists of three elements 
identified in Figure 1. 

The first element is quality processes, 
including requirements tracing and 
the tool confidence level (TCL). 
Requirements tracing connects enter-
prise requirements systems to the 
test input and result output from 
the verification process at all levels 
of abstraction through the semicon-
ductor development flow, to document 

that all the design requirements were 
implemented and tested. The TCL 
assesses the error injection risk of each 
tool in the flow to document the confi-
dence level for the data processing of 
each tool. 

The second element is the quality 
measurement for both the overall 
design function and the function of 
the safety systems. Design function 
employs digital and analog/mixed-

signal functional verification at multiple 
levels of abstraction. Safety verifi-
cation inherits much of the functional 
verification environment to measure 
the response of the safety systems to 
injected errors. 

The third element integrates all of the 
data from the first two into a safety 
manual that is provided with each 
semiconductor and/or integrated 
system.

Part of the Cadence® System Development Suite, the Incisive® Functional Safety Simulator injects 
faults to verify the ability of your design to handle unexpected events. It can execute with 
the Incisive vManager™ solution to provide a comprehensive requirements tracing, functional 
verification, and safety verification solution.

Incisive Functional Safety Simulator 
Fault injection capability for RTL and gate-level simulation supporting a comprehensive 
functional safety solution for ISO 26262 and IEC 61508
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Figure 1: Elements of functional safety standards
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Incisive Functional Safety Simulator 

Functional Safety Simulation

Simulation requires a new mechanism 
measure how a design responds to 
unexpected events. Those events can 
be modeled as faults. A fault is an error 
injected into the design to either tempo-
rarily or permanently change a logic 
value at any time during the simulation. 
Traditional fault simulators implemented 
for design for test (DFT) applications 
typically support part of this requirement. 
The traditional fault simulators may have 
IEEE language support limitations, timing 
(SDF) annotation issues, lack of mixed-
signal support, and more.

The Incisive Functional Safety Simulator 
implements the fault models required 
by ISO 26262 and IEC 61508 within a 
modern verification flow. At elaboration 
time, it extracts a fault dictionary that can 
be localized to a particular hierarchy. A 
script or Incisive vManager solution is then 
used to iterate through the fault dictionary 
injecting permanent and temporary faults. 
The Incisive Functional Safety Simulator 
supports the stuck-at (SA0/1), single event 
upset (SEU), and single event transient 
(SET) models, in compliance with the ISO 
26262 standard.

The simulation proceeds normally until the 
injection time is reached; the simulation 
will proceed from this time with the 
altered (injected) value and progate it 
through the design. Since the under-
lying simulator is the Incisive Enterprise 
Simulator, the fault can propagate through 
any element it can simulate, including 
analog transistor models, digital mixed-
signal models, SystemC, assertions, etc. 
Strobe points are set to be able to detect 
the fault propagation. The value in the 
faulted or “bad machine” is compared 
to the value at the same strobe point in 
the “good machine” until a difference is 
detected or the simulation finishes. This 
process is repeated for the whole fault 
dictionary.

This is where the work in safety verifi-
cation begins. As indicated in Figure 2, 
the detection condition for each fault 
is reported. Faults that are reported 
as undetected or potentially detected 
need further debug before they can 
be classified. 

Undetected faults occur when the 
simulation finishes without any logic 
difference detected at the strobe point. 
Potentially detected faults occur when the 
logic state at the strobe point becomes 
unknown (X) or high impedance (Z).

Both undetected and potentially detected 
faults may be dangerous, so the debug 
task is to identify the reason for the 
detection condition. For example, a fault 
may be undetected if the combinatorial 
logic masks the fault. A fault may also 
be undetected if fault node is either not 
controllable from the stimulus or the 
stimulus used fails to exercise the logic 
at the faulted node. In each case, further 
simulation or formal analysis is needed. 
If the fault is masked or not controllable, 
it may be removed from the ratio calcu-
lation as safe. If it shows that the stimulus 
does cause the fault to propagate but the 
strobe fails to detect the fault, then the 
fault is designated as dangerous. 

Faults of the third condition may also 
be designated as dangerous regardless 
of whether the simulation finishes ON_
TIME, DELAYED, or PREMATURE. The 
actual designation occurs based on the 
processing between the strobe point and 
the safety system output. For example, if 
the ECC fails to correct the fault due to 
accumulated error or if the time between 
the fault insertion and detection by the 
comparator exceeds the safety goal, the 
fault could be dangerous-undetected. A 
SystemVerilog, PSL, or OVL assertion at 
the safety system output can contribute 
to automating the designation of 
detected faults.

The goal of the safety verification process 
is to identify the dangerous-detected and 
dangerous faults. The ratio of dangerous-
detected faults to the total dangerous and 
dangerous-detected faults in the system 
is then used to calculate the Automotive 
Safety Integrity Level (ASIL).
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Type Fault Run Finished…

ON_TIME At same time as good run

DELAYED After good run

PREMATURE Before good run

TIMEOUT When specified timeout 
was reached

STOPPED Due to the simulator 
stopping the run

Fault Simulation Finish Types Fault Detection Conditions

Figure 2: Temporal fault classification semantics
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Comprehensive Solution 
for Safety

In a relatively small design—for example, 
under a few hundred thousand logic 
gates plus any analog circuitry—it may 
be possible to run safety verification 
using sampled input for the testbench 
and manually analyze the results. As 
system complexity increases, however, a 
more efficient methodology is needed. 
Safety verification should become part 
of the functional verification flow (Figure 
3) so that sophisticated testbenches in 
modern functional verification can be 
used to control the fault injection and 
to support the debug process. Similarly, 
the same simulator should be used 
to eliminate the efficiency loss due to 
debugging result differences caused by 
the use of a modified DUT or a different 
simulation engine. 

Given that the safety simulation process 
may involve hundreds of thousands 
or even millions of temporal faults, 
automated regression verification as 
established by metric-driven verification 
can both increase the efficiency of identi-
fying the undetected and potentially 
detected fault simulations and automati-
cally aggregate the safe from unsafe 
faults. Taken together, these techniques 
can reduce the effort for safety verification 
by up to 50%.

Benefits and Features

•	 Fault injection occurs on un-altered 
design after elaboration

•	 Faults can be injected on RTL or 
gate-level nets coded in Verilog 
or VHDL

•	 Stimulus is provided by the un-altered 
functional testbench in SystemVerilog, 
e, SystemC, or other languages

•	 Faults can propagate through any 
design structure that runs in the 
Incisive Enterprise Simulator, including 
SystemVerilog, VHDL, SystemC, analog 
transistor level, analog behavioral level, 
digital mixed signal models, and more

•	 Fault dictionary can be generated for 
the complete design or for a selected 
hierarchy

•	 Fault injection time can be randomized 
using the SystemVerilog engine in the 
Incisive Enterprise Simulator

•	 SA0 and SA1 faults force that value at 
any point in simulation time

•	 SEU faults modeled as a bit-flip at any 
point in simulation time

•	 SET faults modeled as a bit-flip and 
force at any point in simulation time

Multiple Fault Types for ISO 26262
• Single event upset (SEU)
• Stuck at 0 or 1 (SA0/SA1)
• Single event transient (SET)

Automates Safety Verification
• Efficiently executed fault 

simulations in modern 
regression environments

• Highlights potentially 
detected and undetected 
faults runs for further debug

Verification Environment Reuse
• Supports SystemVerilog/UVM, 

SystemC, e

Simulates Unaltered DUT
• Fault identification during elaboration
• Faults injected during simulation
• Support Verilog/VHDL for gates/RTL
• Faults can propagate through mixed-signal, 

low-power, assertions, etc.

Figure 3: Functional verification and safety verification flow


