
Scaling Machine 
Learning Performance 

with Moore’s Law

Kunle	Olukotun
Stanford	University

CS	and	EE



The DAWN Project

Peter Bailis
Streaming & 

Databases

Matei 
Zaharia
Co-Creator of
Spark and Mesos

Kunle 
Olukotun

Father of Multicore
Domain Specific 

Languages

Chris Ré
MacArthur Genius
Databases + ML



It’s the Golden Era of Data

n Incredible advances in image recognition, 
natural language processing, planning, 
info retrieval

n Society-scale impact: autonomous 
vehicles, personalized medicine, human 
trafficking

n No end in sight for advances in ML

*

*for the best-funded, best-trained 
engineering teams



The DAWN Proposal

n What if anyone with domain 
expertise could build their own 
production-quality ML products?
n Without a PhD in machine learning
n Without being an expert in DB + systems
n Without understanding the latest 

hardware



DAWN Goals

n Speed up machine learning by 100x
n 1000x improvement in performance/watt

n Enable real-time/interactive ML on big 
data
n Data center
n Mobile

n Full stack approach:                 
Algorithms + PL/Compilers + Hardware



Approach 1

Hardware aware ML algorithms 
that provide significant 

improvements in efficiency



Incremental Gradient Methods

min x f (x, yi )
i=1

N

∑Lots of machine learning
can be written as:

xk+1 = xk −αN∇f (xk, yj )

Solving large-scale problems: 
Stochastic Gradient Descent (SGD)

Select one term, 
j, and estimate 

gradient
Billions of tiny sequential iterations: how to parallelize?

N (number of yis, data) typically in the billions
E.g.: Classification, Recommendation, Deep Learning

Loss function

Model

Data



Iterative	Machine	Learning:	
Two	Kinds	of	Efficiency

• Statistical	efficiency:	how	many	iterations	do	
we	need	to	get	a	quality	result?
– Depends	on	the	problem	and	implementation

• Hardware	efficiency:	how	long does	it	take	to	
run	each	iteration?
– Depends	on	the	hardware	and	implementation

trade	off	hardware	and	statistical	efficiency
to	maximize	performance



Everything	You	Learned	About	Parallel	
Computing	is	Wrong	for	Machine	

Learning!



The HOGWILD!	Strategy

• Run	multiple	worker	threads	without	locks
– Threads	work	together	and	modify	a	single	copy	
of	the	model creating	many	data	races

– Improves	hardware	efficiency

• What	about	the	race	conditions?
– Races	introduce	errors	we	can	model	as	noise
– Below	existing	noise	floor	à negligible	effect	on	
statistical	efficiency



Applications	of	HOGWILD!

• Optimization:	stochastic	gradient	descent
– Theory:	[Niu,	Recht,	Ré,	Wright:	NIPS	2011]
– HOGWILD! SGD	is	a	well-tested,	popular	technique
– Near-linear	speedups	in	terms	of	#	of	threads
– Used	in	many	real	systems	in	industry

• Sampling	&	inference:	Gibbs	sampling
– Theory:	[De	Sa,	Olukotun,	Ré:	ICML	2016,	ICML	Best	
Paper]



The BUCKWILD!	Strategy

• Use	8- or	16-bit	fixed	point	numbers	for	
computing	rather	than	32-bit	floating	point
– Fewer	bits	of	data	à better	hardware	efficiency
– Stochastic	roundingà keeps	statistical	efficiency
– Theory:	[De	Sa,	Zhang,	Olukotun,	Ré:	NIPS	2015]

• What	about	the	quantization	error?
– Round-off	error	can	be	modeled	as	noise.
– Below	existing	noise	floor	à negligible	effect	on	
statistical	efficiency



BUCKWILD!	Statistical	vs.
Hardware	Efficiency

Same	statistical	
efficiency

Improved	hardware	
efficiency

• 8-bit	gives	about	3x speed	
up!

• Even	lower	precision	is	
possible

• Good	for	specialized	or		
reconfigurable	HW?

BUCKWILD! has	same	statistical	efficiency	with
greater	hardware	efficiency

0.01

0.1

1

10

0 10 20

Lo
ss

#	Iterations

n32-bit

n8-bit

Logistic	Regression	using	SGD	



Low	Precision	for	CNN

0

10

20

30

40

50

60

2 4 6 8 10 12 14 16

pe
rc
en

t	e
rr
or

bits	of	model	precision

Test	Error	on	LeNet

MNIST

CIFAR10

We	can	go	down	below	8-bits	of	precision	without	
sacrificing	accuracy



Relax,	It’s	Only	Machine	Learning

• Relax	synchronization:	data	races	are	better
• Relax	precision:	small	integers	are	better
• Relax	coherence:	incoherence	is	better

Better	hardware	efficiency
with	negligible	impact	on	statistical	efficiency



Microprocessor Trends












        
































Moore’s	Law

Power	Wall

Sequential	performance
plateau



Accelerators to the Rescue

Cluster

Multicore
Multi-socket

Graphics
Processing
Unit (GPU)

Programmable
Logic

10s of cores

> 1 TFLOPS

1000s of nodes

Accelerators



MPI
Map Reduce

Verilog
VHDL

CUDA
OpenCL

Threads
OpenMP

Needs Expert Parallel Programming

Cluster

Multicore CPU
Muti-socket

Graphics
Processing
Unit (GPU)

Programmable
Logic

10s of cores

> 1 TFLOPS

1000s of nodes

Custom computing

MPI: Message Passing Interface



Approach 2

Write one machine learning 
program and run it efficiently on 
all these architectures



Applications

Libraries + DSLs

Heterogeneous
Hardware

Multicore
NUMA

GPU Cluster

Parallel	patterns
Parallel	data

Optimization	Framework FPGAParallel Pattern IRs
Parallel	patterns
Control	patterns
Memory	Hierarchy
Optimization	Frame.

FPGA

Data
Analytics Machine Learning Graph

Analysis

High-level DSLs

OptiML

Existing Libs.
NumPy
Pandas
Spark

TensorFlow

Low-level DSL

Spatial

ISA based architectures Configuration based 
architectures

Delite Spatial	CompilerWeld

Tiling

Meta-
pipelinning

Scaling Machine Learning with 
Moore’s Law



OptiML: Overview

n Provides a familiar (MATLAB-like) language and 
API for writing ML applications
n Ex. val c = a * b (a, b are Matrix[Double]) 

n Implicitly parallel data structures
n Base types

n Vector[T], Matrix[T], Graph[V,E], Stream[T]
n Subtypes

n TrainingSet, IndexVector, Image, …

n Implicitly parallel control structures
n sum{…}, (0::end) {…}, gradient { … },  untilconverged { … }
n Allow anonymous functions with restricted semantics to be 

passed as arguments of the control structures



K-means Clustering in OptiML

untilconverged(kMeans, tol){kMeans =>
val clusters = samples.groupRowsBy { sample =>

kMeans.mapRows(mean => dist(sample, mean)).minIndex
}
val newKmeans = clusters.map(e => e.sum / e.length)
newKmeans

}

calculate 
distances to 
current means

assign each 
sample to the 
closest mean

move each cluster centroid to the 
mean of the points assigned to it

• No explicit map-reduce, no key-value pairs
• No distributed data structures (e.g. RDDs)
• No annotations for hardware design
• Efficient multicore and GPU execution
• Efficient hardware implementation



Delite Overview

Key elements
n DSLs embedded in 

Scala

n IR created using 
type-directed 
staging

n Domain specific 
optimization

n General parallelism 
and locality 
optimizations

n Optimized mapping 
to HW targets

Opti{Wrangler,	QL,	ML,	Graph}

Optimized	Code	Generators

Scala C++ CUDA OpenCL MPI HDL

Generic	analyses
&	

transformations

parallel data Parallel
patterns

K. J. Brown et. al., “A heterogeneous parallel 
framework for domain-specific languages,” PACT, 2011.

Domain	specific	
analyses	&	

transformationsdomain data

domain ops

DSL 1

•••
domain data

domain ops

DSL n



Parallel Patterns

n Data-parallel functional operators
n Capture the common loop-based programming 

patterns
n All take functions as arguments and abstract over the 

actual loop implementation (control flow)
n Generate a new collection by transforming an 

existing one 
n Map, Filter, FlatMap

n Combine collection elements into a single value
n Reduce, Fold

n Reorder elements in a collection
n GroupBy, Sort

n Combine multiple collections into one collection
n ZipWith, Join



Applications

Libraries + DSLs

Heterogeneous
Hardware

Multicore
NUMA

GPU Cluster

Parallel	patterns
Parallel	data

Optimization	Framework FPGAParallel Pattern IRs
Parallel	patterns
Control	patterns
Memory	Hierarchy
Optimization	Frame.

FPGA

Data
Analytics Machine Learning Graph

Analysis

High-level DSLs

OptiML

Existing Libs.
NumPy
Pandas
Spark

TensorFlow

Low-level DSL

Spatial

Delite Spatial	CompilerWeld

Tiling

Meta-
pipelinning

Scaling Machine Learning with 
Moore’s Law

✓ ✓ ✓



FPGA Accelerators?
n FPGAs based accelerators

n Recent commercial interest from AWS, Baidu, Microsoft, and 
Intel

n Key advantage: Performance, Performance/Watt
n Key disadvantage: lousy programming model

n Verilog and VHDL poor match for software 
developers
n High quality designs

n High level synthesis (HLS) tools with C interface
n Medium/low quality designs
n Need architectural knowledge to build good accelerators
n Not enough information in compiler IR to perform access 

pattern and data layout optimizations
n Cannot synthesize complex data paths with nested 

parallelism



Optimized Approach to HW 
Generation

Helps	Productivity

Improves	Data	Locality

Exploits	Nested	Parallelism

Generates	VHDL,	bitstream

Delite

Pattern	Transformations
Tiling

Parallel	Patterns

Tiled	Parallel	Patterns

Bitstream	Generation

FPGA	Configuration

Hardware	Generation
Metapipeline	Analysis

MaxJ

Spatial
Design	Space	Exploration
Latency,	Area	Estimation

Captures	Design	Space

Explores	Design	Space



How Beneficial is Tiling and 
Metapipelining?

n Speedup	with	tiling:	up	to	15.5x

n Speedup	with	tiling	+	metapipelining:	up	to	39.4x

n Minimal	(often	positive!)	impact	on	resource	usage
n Tiled	designs	have	fewer	off-chip	data	loaders	and	storers



Generated k-means Hardware

n High quality hardware design
n Hardware similar to Hussain et al. Adapt. HW & Syst. 2011

n “FPGA implementation of k-means algorithm for bioinformatics application”
n Implements a fixed number of clusters and a small input dataset 

n Tiling analysis automatically generates buffers and tile load units to 
handle arbitrarily sized data

n Parallelizes across centroids and vectorizes the point distance 
calculations



Applications

Libraries + DSLs

Heterogeneous
Hardware

Multicore
NUMA

GPU Cluster

Parallel	patterns
Parallel	data

Optimization	Framework FPGAParallel Pattern IRs
Parallel	patterns
Control	patterns
Memory	Hierarchy
Optimization	Frame.

FPGA

Data
Analytics Machine Learning Graph

Analysis

High-level DSLs

OptiML

Existing Libs.
NumPy
Pandas
Spark

TensorFlow

Low-level DSL

Spatial

Delite Spatial	CompilerWeld

Tiling

Meta-
pipelinning

Scaling Machine Learning with 
Moore’s Law Today

✓ ✓ ✓ ✓



Applications

Libraries + DSLs

Heterogeneous
Hardware

Multicore
NUMA

GPU Cluster

Parallel	patterns
Parallel	data

Optimization	Framework FPGAParallel Pattern IRs
Parallel	patterns
Control	patterns
Memory	Hierarchy
Optimization	Frame.

FPGA

Data
Analytics Machine Learning Graph

Analysis

High-level DSLs

OptiML

Existing Libs.
NumPy
Pandas
Spark

TensorFlow

Low-level DSL

Spatial

Delite Spatial	CompilerWeld

Tiling

Meta-
pipelinning

Specialized Hardware for Machine 
Learning

✓ ✓ ✓

SDH

✓



Image Classification using CNNs

Source:  Accelerating Large-scale data center services, Andrew Putnam, Microsoft

❖

⦿

MOPS/mW

*Projected results

0.6106 0.54 0.148



Programmability vs. Energy Efficiency 

CPUs

Dedicated

1	 2					3					4						5						6			 7						8						9					10					11					12					13					14					15					16	
Chip	Number

0.1

1

10

100

1000

10000

En
er
gy
	E
ffi
ci
en

cy
	[M

O
PS
/m

W
]

CPUs+GPUs

With CNN MOPS/mW numbers from previous slide

1000x
GPU⦿

FPGA

❖CPU
more                              less                                              not

programmable             programmable                         programmable



Approach 3

Design hardware that provides 
programmability of CPUs and 

energy efficiency of ASICs



Software Defined Hardware (SDH)

n All(Just) the advantages of conventional accelerators
n Flexibility of FPGAs
n Programmability of GPUs
n Efficiency of ASICs

n SDH Goals
n 100x performance/Watt  vs. CPU
n 10x performance/Watt  vs. FPGAs/GPUs
n 1000x programmability vs. FPGAs

n SDH key elements
n Configurability
n Specialization
n Spatial programming language



Parallel Patterns à Reconfigurable HW

Map Fold FlatMap HashReduce

Compute Pipeline	compute
SIMD	lanes

On-Chip
Memory

Distributed register	files
n-buffers

Banked scratchpads Banked	FIFOs CAM	(sparse)
Scratchpad	(dense)

Off-Chip
Memory

Burst	access	for	sequential	reads/writes
Gather/Scatter access	for	random	reads/writes

Interconnect Reduction tree Coalescing

Control Counter	chains	for	generating indices
Reconfigurable	control	for	metapipelining



The Plasticine SDH Architecture

PCU:	Pattern	Compute	Unit
MCU:	Memory	Compute	Unit
DI:		DRAM	Interface
S:				Switch

S

S

S

S

MCU

S

S

S

S

PCU

S

S

S

S

MCU

S

S

S

S

PCU

S

S

S

S

PCU

S

S

S

S

MCU

S

S

S

S

PCU

S

S

S

S

MCU

S

S

S

S

MCU

S

S

S

S

PCU

S

S

S

S

MCU

S

S

S

S

PCU

S

S

S

S

PCU

S

S

S

S

MCU

S

S

S

S

PCU

S

S

S

S

MCU

DI

DI

DI

DI

FIFO
RF RF

RF RF

ControlToken	in Token	out

Data	outData	In

PCU

ControlToken	in Token	out

Data	out

RF RF RF

MCU
Bank0

Bank1De
co
de

rData	in



Plasticine vs. FPGA

Benchmark Speedup Normalized	Power Normalized	Perf/W
Black-Scholes	(dense) 5.3			 3.0 1.8
TPCH-Query	6	(dense) 8.9 3.9 2.3
GEMM	(dense) 54.6 3.3 16.6
GDA	(dense) 28.5 3.2 9.0
SGD	(sparse) 84.9 3.3 25.8
Kmeans (mixed) 226.4 3.5 64.2
CNN	(dense) 40.5 4.0 10.1
SMDV	(mixed) 73.8 3.9 18.8
PageRank	(sparse) 54.1 3.8 14.1
BFS	(sparse) 28.0 3.8 7.3
Average 60.7 3.6 17.0

n In 28 nm technology: 1 GHz SDH (coarse grain) vs. 150 MHz FPGA (fine grain)
n 64 PCU/MCU, cycle-accurate simulation with same DRAM bandwidth
n More FLOPS with 8K dedicated FPUs in PCU
n Scatter-gather in DI benefits sparse applications
n Support for stencil applications



Accelerator Performance and Power 
Comparison for CNNs

Platform
Phi	
7250

Titan	
X

Tegra
K1 A-Eye

Arria-
10

DaDi-
anNao EIE

Eye-
riss

Year 2016 2015 2014 2015 2015 2014 2015 2016

Platform	Type CPU GPU mGPU FPGA FPGA ASIC ASIC ASIC

Technology 14nm 28nm 28nm - 20nm 28nm 45nm 65nm

Throughput	
(GOP/s) 3046 6100 365 188 1200 5580 102 84

Power	(W) 215 250 8.0 9.63 40 15.97 0.59 0.450

Efficiency
(MOP/s/mW) 14.2 24.4 45.6 19.5 30.0 349.4 172.9 186.7

Plasticine =	247	MOP/s/mW in	28nm



Software Defined Hardware

CPUs

Dedicated

1	 2					3					4						5						6			 7						8						9					10					11					12					13					14					15					16	
Chip	Number

0.1

1

10

100

1000

10000

En
er
gy
	E
ffi
ci
en

cy
	[M

O
PS
/m

W
]

CPUs+GPUs

1000x
GPU⦿

FPGA

❖CPU
more                              less                                              not

programmable             programmable                         programmable

✾
SDH



We Can Have It All!

n Power

n Performance

n Programmability

n Portability

Accelerators
(GPU, FPGA, SDH)

High Performance DSLs
(OptiML, …)

High Level Compiler

Algorithms
(Hogwild!, Buckwild!)

App Developer


