Stanford | ENGINEERING

Electrical Engineering Computer Science

Scaling Machine Learning Performance with Moore's Law

Kunle Olukotun Stanford University

CS and EE

The DAWN Project

Peter Bailis Streaming & Databases

Chris Ré MacArthur Genius Databases + ML

Kunle Olukotun Father of Multicore Domain Specific Languages

Matei Zaharia Co-Creator of Spark and Mesos

It's the Golden Era of Data *

- Incredible advances in image recognition, natural language processing, planning, info retrieval
- Society-scale impact: autonomous vehicles, personalized medicine, human trafficking
- No end in sight for advances in ML

*for the best-funded, best-trained engineering teams

The DAWN Proposal

- What if anyone with domain expertise could build their own production-quality ML products?
 - Without a PhD in machine learning
 - Without being an expert in DB + systems
 - Without understanding the latest hardware

DAWN Goals

- Speed up machine learning by 100x
 1000x improvement in performance/watt
- Enable real-time/interactive ML on big data
 - Data center
 - Mobile
- Full stack approach: Algorithms + PL/Compilers + Hardware

Approach 1

Hardware aware ML algorithms that provide significant improvements in efficiency

Incremental Gradient Methods

Lots of machine learning $\min_{x} \sum_{i=1}^{N} f(x, y_i)$ Dat can be written as:

N (number of y_is, data) typically in the billions E.g.: Classification, Recommendation, Deep Learning

Solving large-scale problems: Stochastic Gradient Descent (SGD)

$$x^{k+1} = x^k - \alpha N \nabla f(x^k, y_j)$$

Select one term, j, and estimate gradient

Loss function

Billions of tiny sequential iterations: how to parallelize?

Iterative Machine Learning: Two Kinds of Efficiency

 Statistical efficiency: how many iterations do we need to get a quality result?

– Depends on the problem and implementation

- Hardware efficiency: how long does it take to run each iteration?
 - Depends on the hardware and implementation

trade off hardware and statistical efficiency to maximize performance Everything You Learned About Parallel Computing is Wrong for Machine Learning!

The Hogwild! Strategy

- Run multiple worker threads without locks
 - Threads work together and modify a single copy of the model creating many data races
 - Improves hardware efficiency
- What about the **race conditions**?
 - Races introduce errors we can model as noise
 - Below existing noise floor → negligible effect on statistical efficiency

Applications of HOGWILD!

- **Optimization**: stochastic gradient descent
 - Theory: [Niu, Recht, Ré, Wright: NIPS 2011]
 - HOGWILD! SGD is a well-tested, popular technique
 - Near-linear speedups in terms of # of threads
 - Used in many real systems in industry
- Sampling & inference: Gibbs sampling
 - Theory: [De Sa, Olukotun, Ré: ICML 2016, ICML Best Paper]

The BUCKWILD! Strategy

- Use 8- or 16-bit fixed point numbers for computing rather than 32-bit floating point
 - Fewer bits of data \rightarrow better hardware efficiency
 - − Stochastic rounding → keeps statistical efficiency
 - Theory: [De Sa, Zhang, Olukotun, Ré: NIPS 2015]
- What about the **quantization error**?
 - Round-off error can be modeled as noise.
 - Below existing noise floor → negligible effect on statistical efficiency

BUCKWILD! Statistical vs. Hardware Efficiency

Same statistical efficiency

Improved hardware efficiency

- 8-bit gives about 3x speed up!
- Even lower precision is possible
- Good for specialized or reconfigurable HW?

BUCKWILD! has same **statistical efficiency** with greater **hardware efficiency**

Low Precision for CNN

We can go down below 8-bits of precision without sacrificing accuracy

Relax, It's Only Machine Learning

- Relax synchronization: data races are better
- Relax precision: small integers are better
- Relax coherence: incoherence is better

Better hardware efficiency with negligible impact on statistical efficiency

Microprocessor Trends

Accelerators to the Rescue

Needs Expert Parallel Programming

Approach 2

Write one machine learning program and run it efficiently on all these architectures

Scaling Machine Learning with Moore's Law

OptiML: Overview

- Provides a familiar (MATLAB-like) language and API for writing ML applications
 - Ex. val c = a * b (a, b are Matrix[Double])

Implicitly parallel data structures

- Base types
 - Vector[T], Matrix[T], Graph[V,E], Stream[T]
- Subtypes
 - TrainingSet, IndexVector, Image, ...

Implicitly parallel control structures

- sum{...}, (0::end) {...}, gradient { ... }, untilconverged { ... }
- Allow anonymous functions with restricted semantics to be passed as arguments of the control structures

Delite Overview

K. J. Brown et. al., "A heterogeneous parallel framework for domain-specific languages," *PACT*, 2011.

Parallel Patterns

- Data-parallel functional operators
- Capture the common loop-based programming patterns
 - All take functions as arguments and abstract over the actual loop implementation (control flow)
- Generate a new collection by transforming an existing one
 - Map, Filter, FlatMap
- Combine collection elements into a single value
 - Reduce, Fold
- Reorder elements in a collection
 - GroupBy, Sort
- Combine multiple collections into one collection
 - ZipWith, Join

Scaling Machine Learning with Moore's Law

FPGA Accelerators?

FPGAs based accelerators

- Recent commercial interest from AWS, Baidu, Microsoft, and Intel
- Key advantage: Performance, Performance/Watt
- Key disadvantage: lousy programming model

Verilog and VHDL poor match for software developers

High quality designs

High level synthesis (HLS) tools with C interface

- Medium/low quality designs
- Need architectural knowledge to build good accelerators
- Not enough information in compiler IR to perform access pattern and data layout optimizations
- Cannot synthesize complex data paths with nested parallelism

Optimized Approach to HW Generation

How Beneficial is Tiling and Metapipelining?

- Speedup with tiling: up to 15.5x
- Speedup with tiling + metapipelining: up to 39.4x
- Minimal (often positive!) impact on resource usage
 - Tiled designs have fewer off-chip data loaders and storers

Generated *k*-means Hardware

High quality hardware design

- Hardware similar to Hussain et al. Adapt. HW & Syst. 2011
 - "FPGA implementation of k-means algorithm for bioinformatics application"
 - Implements a fixed number of clusters and a small input dataset
- Tiling analysis automatically generates buffers and tile load units to handle arbitrarily sized data
- Parallelizes across centroids and vectorizes the point distance calculations

Scaling Machine Learning with Moore's Law Today

Specialized Hardware for Machine Learning

Image Classification using CNNs

Platform	Library/OS	ImageNet 1K Inference Throughput	Peak TFLOPs	Effective TFLOPs	Estimated Peak Power for CNN Computation	Estimated MOPS/mW (assuming peak power)
CPU 💸 16-core, 2-socket Xeon E5-2450, 2.1GHz	Caffe + Intel MKL Ubuntu 14.04.1	106 images/s	0.54T	0.148T (27%)	~225W	~0.6
FPGA Arria 10 GX1150	Windows Server 2012	369 images/s ~ <mark>880 images/s</mark>	1.366T	0.51 T (38%) ~1.2T (89%)	~37W ~40W	~12.8 ~ <mark>30.6</mark>
GPU NervanaSys-32 on NVIDIA Titan X	NervanaSys-32 on Ubuntu 14.0.4	4129 images/s	6.1T	5.75T (94%)	~250W	~23.0

Source: Accelerating Large-scale data center services, Andrew Putnam, Microsoft

*Projected results

Programmability vs. Energy Efficiency

Approach 3

Design hardware that provides programmability of CPUs and energy efficiency of ASICs

Software Defined Hardware (SDH)

All(Just) the advantages of conventional accelerators

- Flexibility of FPGAs
- Programmability of GPUs
- Efficiency of ASICs

SDH Goals

- 100x performance/Watt vs. CPU
- 10x performance/Watt vs. FPGAs/GPUs
- 1000x programmability vs. FPGAs

SDH key elements

- Configurability
- Specialization
- Spatial programming language

Parallel Patterns → Reconfigurable HW

The Plasticine SDH Architecture

Plasticine vs. FPGA

Benchmark	Speedup	Normalized Power	Normalized Perf/W
Black-Scholes (dense)	5.3	3.0	1.8
TPCH-Query 6 (dense)	8.9	3.9	2.3
GEMM (dense)	54.6	3.3	16.6
GDA (dense)	28.5	3.2	9.0
SGD (sparse)	84.9	3.3	25.8
Kmeans (mixed)	226.4	3.5	64.2
CNN (dense)	40.5	4.0	10.1
SMDV (mixed)	73.8	3.9	18.8
PageRank (sparse)	54.1	3.8	14.1
BFS (sparse)	28.0	3.8	7.3
Average	60.7	3.6	17.0

- In 28 nm technology: 1 GHz SDH (coarse grain) vs. 150 MHz FPGA (fine grain)
- 64 PCU/MCU, cycle-accurate simulation with same DRAM bandwidth
- More FLOPS with 8K dedicated FPUs in PCU
- Scatter-gather in DI benefits sparse applications
- Support for stencil applications

Accelerator Performance and Power Comparison for CNNs

Platform	Phi 7250	Titan X	Tegra K1	A-Eye	Arria- 10	DaDi- anNao	EIE	Eye- riss
Year	2016	2015	2014	2015	2015	2014	2015	2016
Platform Type	CPU	GPU	mGPU	FPGA	FPGA	ASIC	ASIC	ASIC
Technology	14nm	28nm	28nm	-	20nm	28nm	45nm	65nm
Throughput (GOP/s)	3046	6100	365	188	1200	5580	102	84
Power (W)	215	250	8.0	9.63	40	15.97	0.59	0.450
Efficiency (MOP/s/mW)	14.2	24.4	45.6	19.5	30.0	349.4	172.9	186.7

Plasticine = 247 MOP/s/mW in 28nm

Software Defined Hardware

We Can Have It All!

Algorithms (Hogwild!, Buckwild!)

- Power
- Performance

High Performance DSLs (OptiML, ...)

App Developer

- Programmability
- Portability

(GPU, FPGA, SDH)