www.multicorewareinc.com

Targeting CNNs for Embedded Platforms

Anshu Arya, Solution Architect @ MulticoreWare

MULTICORE
WARE

» Founded 2009

» Core Competency: Heterogeneous Computing
» HQ: Silicon Valley

» Seven Location [US, China, India, and Taiwan]

» 225+ Employees

-
@)
:;3
D)
-]
{®]
o
¢,
4
-
—
=
S
s
@)
@)

BUSINESS UNITS
Machine Learning/Neural Networks
Image Processing [OpenCV] Performance
: Optimization
Video Codecs [x265] e
Compilers [LLVM, OpenCL]
\7‘ Canada Kl'.:lr;ﬁg:n
3 = ; »_-/\‘\
L_/ *Spaln
or_th United States North j
‘Ce!afwlnc 5 Atlantic ‘
' N N Ocean e 'S
o Algeria |
Mexico h_H T\,g S
"'ij;{_‘ X o ILAM—

N\l e A O s
Lo T R e Niaeria < _/ ¥ T

German —
AL §

‘Saudi Arabia/ e \ 45
'\‘ L = v ’ ! Thalland
Sudan F@—")
d /‘.f——ﬂ\ \ /“!ﬁ
-5 3

Global Customers and Partners

AMDZ1 ARM Biright

Technologi es

cadence G() gle B8 Microsoft

imagination
Movidius % «2

NVIDIA.

PEGASYS QUALCONW\"

psorenson SYNOPSYS' telestreamn § XILINX.

=
o \vj\

S ~
4 o P

z
,NA L /VW\NV\;(; \\/L = s x
Ukraine- 7 Vs \A .= = W ,v
—0\ B i Kazakhstan 5 \ 4
Lf £ Y / Mongolla
~ BN 2 '\') N

-~ > N —" [
. ~ | S Y Ao

B >
Turkey Y R (&

Ya, Japan
- ﬁr\/ e O AL China South Korea
{ Afghanlstan

' Vs Ira\q \ lran ' 7 ~~7A

Egypt Q3 ‘/Paklﬁtan N jg_, 'f)

LY

<

Automotive & ADAS Video Quality
> Pedestrian Detection
» Vehicle Detection

» Traffic Sign Recognition

» Audio/Video Lip Sync
» Subtitle Sync
» Text ROl Detection

MulticoreWare

Neural Network

Focus Areas

Action Detection Other

» Facial Expressions

» Medical Tool Recognition
» Sports Pose Detection

RS ¥ — .-
\ Y
»
- ’ e
;
—y - - — —_ — = i
1 i i -- - — - - =

b

Vehicles & Pedestrians

Video Quality

» Audio/Video Lip Sync
» Subtitle Sync
» Text ROl Detection

MulticoreWare

Neural Network
Focus Areas

Action Detection Other

» Facial Expressions

» Medical Tool Recognition
» Sports Pose Detection

Lip Frob = 1.0
Face Prob =.0.998557 Audio/Video Sync

-

—‘—g_\s

o

Sy | =]
_;,M’W

\3peech Prova = 0.999971

MulticoreWare

Neural Network
Focus Areas

Action Detection Other

» Facial Expressions » Medical Tool Recognition
» Sports Pose Detection

\\\ . -~_-~ l{“,—“i

//‘ Vehicles & Pedestrians

= | Lip Prob = 1.0
Face Prob =.0.998557 Audio/Video Sync

MulticoreWare

Neural Network
Focus Areas

Other

» Medical Tool Recognition

| Neural Network Services |

Data Labeling

Curate and label image or video data for input into neural
network training.

» In-house team of data labelers to perform any type of labeling
task confidentially

» Proprietary machine-assisted labeling tool to increase
productivity by an order of magnitude

Design & Training

Design a neural network architecture and train it using
labeled data.

» Neural network architecture chosen to fit within constraints of
target hardware platform

» Training is done on MulticoreWare GPU-accelerated
workstations

Deployment & Upgrades

Integrate the neural network engine into your application
and receive on-going upgrades.

» Build an application or integrate a neural network engine into
your existing code

» Improve the accuracy of the neural network as you collect
more training data

Platform Optimization

Iterate on the neural network architecture and perform
hardware-specific optimizations.

» Performance and memory optimizations for target hardware
platform

» Code rewrites using hardware intrinsics, assembly, RTL,
OpenCL, CUDA, etc.

AW

yTanl HN mz
ADAS Detectlo

\

s@strian
Ve
Vehidld

099* /

J /

ff-—"

| Mobile/Embedded Platforms |

What platform(s) will dominate? Current Examples
» GPUs » NVIDIA Drive PX 2 & Xavier
» FPGAs » Xilinx Zynq UltraScale+
» Vision DSPs » Cadence VP5 & VP6
» Custom ASICs » Synopsys DesignWare EV6x

» MobileEye EyeQ 4
Price Capability

Usability Power

A\\\

[Challenges for Embedded CNNs |

Performance / Power / Memory Quality

» Need fast detection (not just classification) » Predict accurate bounding boxes

A\\\

[Challenges for Embedded CNNs |

Performance / Power / Memory Quality
» Need fast detection (not just classification) » Predict accurate bounding boxes
» Need “smaller” CNN architectures » General advice: use a network with as
» Fewer parameters many parameters/layers as you can reliably
» Fewer operations train
» Lower intermediate memory usage

A\\\

Need Fast Detection

| Typical Detection |

: 5]

Read Image Create Proposal Pre-Process Run Classifier
- Sliding Window - Greyscale
- Pyramidal - Warp
- Selective Search

= Read image
= Create object proposals (e.g. Pyramidal, Sliding Window, etc.)

= For each proposal.:
= Crop from frame

= Pre-process (e.g. warp)
= Run CNN classifier

= Post-process (NMS)

A\\\

| Typical Detection |

AW

| Typical Detection |

SAS

Potentially hundreds to thousands of proposals needed to get tight bounding boxes

A\\\

[Typical Detection - Cycles |

Generate
Proposals
39%

CNN Classifier
53%

Crop Proposals
8%

[Fast Detection — “Fast R-CNN” |

= Change the pipeline

= No need to run classifier on each
proposal

= Re-use convolution feature map
across proposals

= Requires Rol Pooling layer

= Extracts proposal features from full
frame map

= Still need to generate proposals
via Selective Search (SS)

= Now even more limited by SS speed

*Image from Girshick, “Fast R-CNN”

utpls bbox
softmax regressor

Rol FC FC
pooling
layer
Rol feature
feature map VECtOr .. eoch Ror

Figure 1. Fast R-CNN architecture. An input image and multi-
ple regions of interest (Rols) are input into a fully convolutional
network. Each Rol is pooled into a fixed-size feature map and
then mapped to a feature vector by fully connected layers (FCs).
The network has two output vectors per Rol: softmax probabilities
and per-class bounding-box regression offsets. The architecture is
trained end-to-end with a multi-task loss.

Generate
Proposals
91%

AW

| Fast Detection — “Fast

= State-of-the-Art Localization + Classification

= 26+ implementations by 2015 & 2016 ImageNet
competitors

= ALl winners use some variation

= Use a CNN to create proposals
= RPN (region proposal network)

= Re-use convolution feature map for localization &
classification

= Uses pre-defined “anchor” boxes to determine
bounding box dimensions

» Must be trained in 4 stages

= Eliminates the need for prior object proposals
= No more Selective Search or EdgeBoxes

*Image from Ren et al., “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks”

R-CNN” |

~. classifier

propoy /
S\ ‘

Region Proposal Network g

feature maps

conv layers /

P 7 R A
g 2

L S SRy e

Figure 2: Faster R-CNN is a single, unified network
for object detection. The RPN module serves as the
‘attention” of this unified network.

AW

Typical Detection

= Read image
= Create object proposals

= For each proposal:
» Crop from frame

= Pre-process
= Run CNN classifier

= Post-process (NMS)

| Fast Detection — Pipeline Evolution |

Fast R-CNN

= Read image
= Create object proposals

= Foreach-prepoesat:
= Crop-from-frame

= Pre-process
Run-CNN-classif

= Run CNN classifier

» Take as input a list of proposals
= Use Rol pooling layer

= Post-process (NMS)

Faster R-CNN

= Read image
= Create-objectproposals
= Run CNN classifier

= Take as input a list of proposals

= Generate proposals using feature map and
region proposal network

» Re-use feature map for classification

= Post-process (NMS)

A\\\

| Fast Detection — Fully Convolutional |

R-FCN

» Adopts RPN network from
Faster-RCNN

Rols

» Replaces all fully-connected
layers conv

» Inherits training difficulty of

Faster-RCNN
per-Rol
» Comparable quality, but better e
inference speed @]_ R
» Showed RPNs can outperform f poet
i eature
Selective-Search and maps
EdgeBox proposals : i : .
Figure 2: Overall architecture of R-FCN. A Region Proposal Network (RPN) [18] proposes candidate
» Can be integrated with Rols, which are then applied on the score maps. All learnable weight layers are convolutional and are
existing network architectures computed on the entire image; the per-Rol computational cost is negligible.

*Image from Dai et al., “R-FCN: Object Detection via Region-based Fully Convolutional Networks” AW

| Even Faster Detection |

YOLO/YOLOv2

» No explicit region proposals or RPN

» v2 is fully-convolutional ‘5;: { ;ﬁ
At
» Uses k-means to determine best shapes B . i Bound.ng bk b b dasics

for bounding boxes

» Multi-scale training allows trade-off for | ﬂl@d[ﬂ%lg Iy
. . s | N | i i - L .
lower resolution input and speed vs. S x S grid on input !"llrﬂi Final detections
higher resolution and accuracy T
» Has problems detecting b

small/overlapping objects

Class probability map

Figure 2: The Model. Our system models detection as a regres-
sion problem. It divides the image into an S X S grid and for each
grid cell predicts B bounding boxes, confidence for those boxes,
and C class probabilities. These predictions are encoded as an
S x 8 x (B=x5+ C) tensor.

*Image from Redmon et al., “You Only Look Once: Unified, Real-time Object Detection” AW

SSD

» Adds convolutional layers
to predict bounding boxes
of various scales/aspect
ratios

» Fully convolutional

» Performance & Quality
>YOLO & <YOLOV2

| Even Faster Detection |

SqueezeDet

Uses “convdet” layers
inspired by YOLO

Uses anchor boxes inspired
by Faster R-CNN, but uses
k-means to improve them

Fully convolutional

Performance & Quality
comparable to YOLOV2

YOLO/YOLOvV2

!

Simultaneous Classification and Detection [FAST]

Faster R-CNN
R-FCN

!

Explicit Proposals [ACCURATE]

A\\\

Need “Smaller’” Architectures

“Don’t be a hero”

- Sage advice from cs231, Andrej Karpathy

Top-Down Design

» Start with top architectures on ILSVRC

AW

[CNN Architecture Design — What Already Works? |

224 T ——\ o). 3|
5| : 3 |- > >
Nt L - i N RN 13 dense | |dense
N s \ 1000
Mot 192 192 128 Max - |
P . 2048 2048
224\ltStride Max 128 Max pooling
“of 4 pooling pooling
3 48

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and

the number of neurons in the network’s remaining layers is given by 253,440-186,624-64,896-64,896—43,264—
4096—-4096-1000.

AlexNet Available on Challenges:
Requirement Embedded

Parameter

» Reduce weight space ~400x
Weight Space ~250 MB 128 —512 Kb » Reduce compute by ~100x
» Retain high accuracy
Operations for 30FPS VGA ~2400 GMAC/s 24 - 32 GMAC/s

Image attribution: Krizhevsky, et. al

AW

Top-Down Design

» Start with top architectures on ILSVRC

» “Shrink™ it:
» Remove layers (especially FC layers)
» Reduce # of convolution filters
» Decrease convolution filter size
» Made easier if fewer detection classes

AW

| CNN Architecture Design — Top Down |

Toy Example: Detecting Faces

> 1 class
> AlexNet is clearly overkill
» Similar accuracy with smaller network

Weight Space ~250MB (500x)
Layers 10 (7 CV + 3 FC)
Compute Time 640x

Operations per input 832 MMACs

|
“!

<¢

<512Kb (1x)
5(3CV+2FQ)
1x

1.3 MMACs

AW

Top-Down Design

» Start with top architectures on ILSVRC

» “Shrink™ it:
» Remove layers (especially FC layers)
» Reduce # of convolution filters
» Decrease convolution filter size
» Made easier if fewer detection classes

» Reduce until it fits into your target
compute/memory constraints

» Structured approaches:
» SVD
» Pruning

AW

Top-Down Design

» Start with top architectures on ILSVRC

» “Shrink™ it:
» Remove layers (especially FC layers)
» Reduce # of convolution filters
» Decrease convolution filter size
» Made easier if fewer detection classes

» Reduce until it fits into your target
compute/memory constraints

» Structured approaches:
» SVD
» Pruning

Bottom-Up Design

AW

“Don’t be a hero”

- Sage advice from cs231, Andrej Karpathy

Top-Down Design

» Start with top architectures on ILSVRC

» “Shrink™ it:
» Remove layers (especially FC layers)
» Reduce # of convolution filters
» Decrease convolution filter size
» Made easier if fewer detection classes

» Reduce until it fits into your target
compute/memory constraints

» Structured approaches:
» SVD
» Pruning

Bottom-Up Design

» Consider target hardware and its
compute/memory constraints

» Assemble architecture layer-by-layer

» Use top ILSVRC architectures as a guideline
» Mimic structure/layer patterns
» Inception modules (Szegedy, et al.)

» Error-prone, could end up with something
“untrainable”, leave to the experts

Il |

11T

;‘
./ ’ ol ‘ J
, | ‘.ﬁl'll‘\‘,'ml'(r||('ﬁ'yh“ \|' , hh '
, ' [Wl ﬁm ,~
| I i (I ? !
| Wl (!
| ”:11 \) o _'_'\‘
)

A
.il o e,
W |

| CNN Architecture Design |

SqueezeNet Darknet-19
» Back-bone of “SqueezeDet” » Backbone of “YOLOvV2”
» Fully convolutional » Fully convolutional
» “Fire Modules” use 1x1 » Uses 1x1 convolutions to
convolutions to ”squeeze” a compress feature maps
layer before feeding into a between 3x3 convolutions

mixed 1x1 and 3x3 layer

SqueezeNet-Type Darknet-Type

Weight Space 4MB 100MB
Runtime Memory 100MB 500MB
Operations per input 3.6 GMACs 1.4 GMACs

AW

| More To Do |

» Energy-Aware Pruning (Yang, et al.)

»Deep Compression (Han, et al.)
» SqueezeNet shown to compress effectively

» Shortcut Connections (He, et al.)
» DenseNets, Highway

A\\\

[Challenges for Embedded CNNs |

Performance / Power / Memory Progress
» Need fast detection (not just classification) » Simultaneous classification and detection
» Need “smaller” CNN architectures » Pruning, 1x1 convolutions, Bottom-up
» Fewer parameters design with hardware considered
» Fewer operations
» Lower intermediate memory usage

A\\\

Contact Me

Anshu Arya
anshu@multicorewareinc.com

AW

