
Anshu	Arya,	Solution	Architect	@	MulticoreWare

www.multicorewareinc.com

Targeting CNNs for Embedded Platforms



Co
m

pa
ny

 In
tr

od
uc

ti
on Ø Founded	2009

Ø Core	Competency:	Heterogeneous	Computing

Ø HQ:	Silicon	Valley

Ø Seven	Location	[US,	China,	India,	and	Taiwan]

Ø 225+	Employees

BUSINESS	UNITS

Machine	Learning/Neural	Networks

Image	Processing	[OpenCV]

Video	Codecs	[x265]

Compilers	[LLVM,	OpenCL]

Performance	
Optimization
Services

Global Customers and Partners



MulticoreWare

Neural Network
Focus Areas

Automotive	&	ADAS

Ø Pedestrian	Detection
Ø Vehicle	Detection
Ø Traffic	Sign	Recognition

Video	Quality

Ø Audio/Video	Lip	Sync
Ø Subtitle	Sync
Ø Text	ROI	Detection

Action	Detection

Ø Facial	Expressions
Ø Sports	Pose	Detection

Other

Ø Medical	Tool	Recognition



Automotive	&	ADAS

Ø Pedestrian	Detection
Ø Vehicle	Detection
Ø Traffic	Sign	Recognition

Video	Quality

Ø Audio/Video	Lip	Sync
Ø Subtitle	Sync
Ø Text	ROI	Detection

Action	Detection

Ø Facial	Expressions
Ø Sports	Pose	Detection

Other

Ø Medical	Tool	Recognition

MulticoreWare

Neural Network
Focus Areas

Vehicles & Pedestrians



Automotive	&	ADAS

Ø Pedestrian	Detection
Ø Vehicle	Detection
Ø Traffic	Sign	Recognition

Video	Quality

Ø Audio/Video	Lip	Sync
Ø Subtitle	Sync
Ø Text	ROI	Detection

Action	Detection

Ø Facial	Expressions
Ø Sports	Pose	Detection

Other

Ø Medical	Tool	Recognition

MulticoreWare

Neural Network
Focus Areas

Vehicles & Pedestrians Audio/Video Sync



Automotive	&	ADAS

Ø Pedestrian	Detection
Ø Vehicle	Detection
Ø Traffic	Sign	Recognition

Video	Quality

Ø Audio/Video	Lip	Sync
Ø Subtitle	Sync
Ø Text	ROI	Detection

Action	Detection

Ø Facial	Expressions
Ø Sports	Pose	Detection

Other

Ø Medical	Tool	Recognition

MulticoreWare

Neural Network
Focus Areas

Vehicles & Pedestrians

Facial Expressions

Audio/Video Sync



Data Labeling
Curate and label image or video data for input into neural 
network training.

Ø In-house team of data labelers to perform any type of labeling 
task confidentially

Ø Proprietary machine-assisted labeling tool to increase 
productivity by an order of magnitude

Design & Training
Design a neural network architecture and train it using 
labeled data.

Ø Neural network architecture chosen to fit within constraints of 
target hardware platform

Ø Training is done on MulticoreWare GPU-accelerated 
workstations

Platform Optimization
Iterate on the neural network architecture and perform 
hardware-specific optimizations.

Ø Performance and memory optimizations for target hardware 
platform

Ø Code rewrites using hardware intrinsics, assembly, RTL, 
OpenCL, CUDA, etc.

Deployment & Upgrades
Integrate the neural network engine into your application 
and receive on-going upgrades.

Ø Build an application or integrate a neural network engine into 
your existing code

Ø Improve the accuracy of the neural network as you collect 
more training data

[ Neural Network Services ]



ADAS Detection Classes



What platform(s) will dominate?

Ø GPUs

Ø FPGAs

Ø Vision DSPs

Ø Custom ASICs

Current Examples

Ø NVIDIA Drive PX 2 & Xavier

Ø Xilinx Zynq UltraScale+

Ø Cadence VP5 & VP6

Ø Synopsys DesignWare EV6x

Ø MobileEye EyeQ 4

[ Mobile/Embedded Platforms ]

Price Capability

PowerUsability



Performance / Power / Memory

Ø Need fast detection (not just classification)

Quality

Ø Predict accurate bounding boxes

[ Challenges for Embedded CNNs ]



Performance / Power / Memory

Ø Need fast detection (not just classification)

Ø Need “smaller” CNN architectures
Ø Fewer parameters
Ø Fewer operations
Ø Lower intermediate memory usage

Quality

Ø Predict accurate bounding boxes

Ø General advice: use a network with as 
many parameters/layers as you can reliably 
train

[ Challenges for Embedded CNNs ]



Need Fast Detection



[ Typical Detection ]

Read	Image Create	Proposal
- Sliding	Window

- Pyramidal
- Selective	Search

Pre-Process
- Greyscale
- Warp

Run	Classifier

§ Read image
§ Create object proposals (e.g. Pyramidal, Sliding Window, etc.)
§ For each proposal:

§ Crop from frame
§ Pre-process (e.g. warp)
§ Run CNN classifier

§ Post-process (NMS)



[ Typical Detection ]

.

.

.

.

.

.

.

.

.



[ Typical Detection ]

Potentially	hundreds	to	thousands	of	proposals	needed	to	get	tight	bounding	boxes



[ Typical Detection - Cycles ]

Generate	
Proposals

39%

Crop	Proposals
8%

CNN	Classifier
53%



[ Fast Detection – “Fast R-CNN” ]

§ Change the pipeline
§ No need to run classifier on each 

proposal
§ Re-use convolution feature map 

across proposals

§ Requires RoI Pooling layer
§ Extracts proposal features from full 

frame map

§ Still need to generate proposals 
via Selective Search (SS)
§ Now even more limited by SS speed

*Image	from	Girshick,	“Fast	R-CNN”

Generate	
Proposals

91%

CNN	Classifier
8%



[ Fast Detection – “Faster R-CNN” ]

§ State-of-the-Art Localization + Classification
§ 26+ implementations by 2015 & 2016 ImageNet 

competitors
§ All winners use some variation

§Use a CNN to create proposals
§ RPN (region proposal network)
§ Re-use convolution feature map for localization & 

classification
§ Uses pre-defined “anchor” boxes to determine 

bounding box dimensions

§Must be trained in 4 stages

§ Eliminates the need for prior object proposals 
§ No more Selective Search or EdgeBoxes

*Image	from	Ren	et	al.,	“Faster	R-CNN:	Towards	Real-Time	Object	Detection	with	Region	Proposal	Networks”



[ Fast Detection – Pipeline Evolution ]

§ Read image
§ Create object proposals
§ For each proposal:

§ Crop from frame
§ Pre-process
§ Run CNN classifier

§ Post-process (NMS)

§ Read image
§ Create object proposals
§ For each proposal:

§ Crop from frame
§ Pre-process
§ Run CNN classifier

§ Run CNN classifier
§ Take as input a list of proposals
§ Use RoI pooling layer

§ Post-process (NMS)

§ Read image
§ Create object proposals
§ Run CNN classifier

§ Take as input a list of proposals
§ Generate proposals using feature map and 

region proposal network
§ Re-use feature map for classification

§ Post-process (NMS)

Typical Detection Fast R-CNN Faster R-CNN



[ Fast Detection – Fully Convolutional ]

R-FCN
Ø Adopts RPN network from 

Faster-RCNN

Ø Replaces all fully-connected 
layers

Ø Inherits training difficulty of 
Faster-RCNN

Ø Comparable quality, but better 
inference speed

Ø Showed RPNs can outperform 
Selective-Search and 
EdgeBox proposals

Ø Can be integrated with 
existing network architectures

*Image	from	Dai	et	al.,	“R-FCN:	Object	Detection	via	Region-based	Fully	Convolutional	Networks”



[ Even Faster Detection ]

YOLO/YOLOv2
Ø No explicit region proposals or RPN

Ø v2 is fully-convolutional

Ø Uses k-means to determine best shapes 
for bounding boxes

Ø Multi-scale training allows trade-off for 
lower resolution input and speed vs. 
higher resolution and accuracy

Ø Has problems detecting 
small/overlapping objects

*Image	from	Redmon et	al.,	“You	Only	Look	Once:	Unified,	Real-time	Object	Detection”



SSD
Ø Adds convolutional layers 

to predict bounding boxes 
of various scales/aspect 
ratios

Ø Fully convolutional

Ø Performance & Quality      
> YOLO & < YOLOv2

[ Even Faster Detection ]

SqueezeDet
Ø Uses “convdet” layers 

inspired by YOLO

Ø Uses anchor boxes inspired 
by Faster R-CNN, but uses 
k-means to improve them

Ø Fully convolutional

Ø Performance & Quality 
comparable to YOLOv2

YOLO/YOLOv2 Faster R-CNN
R-FCN

Explicit	Proposals	[ACCURATE]Simultaneous	Classification	and	Detection	[FAST]



Need “Smaller” Architectures



“Don’t be a hero”
- Sage advice from cs231, Andrej Karpathy



Top-Down Design

Ø Start with top architectures on ILSVRC



[ CNN Architecture Design – What Already Works? ]

Image	attribution:	Krizhevsky,	et.	al

Parameter AlexNet
Requirement

Available	on	
Embedded

Weight Space ~250	MB 128	– 512	Kb

Operations	for	30FPS	VGA ~2400	GMAC/s 24	- 32	GMAC/s

Challenges:

Ø Reduce	weight	space	~400x
Ø Reduce	compute	by	~100x
Ø Retain	high	accuracy



Top-Down Design

Ø Start with top architectures on ILSVRC

Ø “Shrink” it:
Ø Remove layers (especially FC layers)
Ø Reduce # of convolution filters
Ø Decrease convolution filter size
Ø Made easier if fewer detection classes



[ CNN Architecture Design – Top Down ]

Classifier AlexNet Type Shrunk	Network

Weight Space ~250MB	(500x) <512Kb	(1x)

Layers 10	(7	CV +	3	FC) 5	(3	CV	+	2	FC)

Compute Time 640x 1x

Operations	per	input 832	MMACs 1.3	MMACs

Toy Example: Detecting Faces

Ø 1 class
Ø AlexNet is clearly overkill
Ø Similar accuracy with smaller network



Top-Down Design

Ø Start with top architectures on ILSVRC

Ø “Shrink” it:
Ø Remove layers (especially FC layers)
Ø Reduce # of convolution filters
Ø Decrease convolution filter size
Ø Made easier if fewer detection classes

Ø Reduce until it fits into your target 
compute/memory constraints

Ø Structured approaches:
Ø SVD
Ø Pruning



Top-Down Design Bottom-Up Design

Ø Start with top architectures on ILSVRC

Ø “Shrink” it:
Ø Remove layers (especially FC layers)
Ø Reduce # of convolution filters
Ø Decrease convolution filter size
Ø Made easier if fewer detection classes

Ø Reduce until it fits into your target 
compute/memory constraints

Ø Structured approaches:
Ø SVD
Ø Pruning



“Don’t be a hero”
- Sage advice from cs231, Andrej Karpathy



Top-Down Design Bottom-Up Design

Ø Start with top architectures on ILSVRC

Ø “Shrink” it:
Ø Remove layers (especially FC layers)
Ø Reduce # of convolution filters
Ø Decrease convolution filter size
Ø Made easier if fewer detection classes

Ø Reduce until it fits into your target 
compute/memory constraints

Ø Structured approaches:
Ø SVD
Ø Pruning

Ø Consider target hardware and its 
compute/memory constraints

Ø Assemble architecture layer-by-layer

Ø Use top ILSVRC architectures as a guideline
Ø Mimic structure/layer patterns
Ø Inception modules (Szegedy, et al.)

Ø Error-prone, could end up with something 
“untrainable”, leave to the experts

???



[ CNN Architecture Design ]

SqueezeNet
Ø Back-bone of “SqueezeDet”

Ø Fully convolutional

Ø “Fire Modules” use 1x1 
convolutions to ”squeeze” a 
layer before feeding into a 
mixed 1x1 and 3x3 layer

Darknet-19
Ø Backbone of “YOLOv2”

Ø Fully convolutional

Ø Uses 1x1 convolutions to 
compress feature maps 
between 3x3 convolutions

Classifier SqueezeNet-Type Darknet-Type

Weight Space 4MB 100MB

Runtime	Memory 100MB 500MB

Operations	per	input 3.6	GMACs 1.4	GMACs



[ More To Do ]

ØEnergy-Aware Pruning (Yang, et al.)

ØDeep Compression (Han, et al.)
ØSqueezeNet shown to compress effectively

ØShortcut Connections (He, et al.)
ØDenseNets, Highway



Performance / Power / Memory

Ø Need fast detection (not just classification)

Ø Need “smaller” CNN architectures
Ø Fewer parameters
Ø Fewer operations
Ø Lower intermediate memory usage

Progress

Ø Simultaneous classification and detection

Ø Pruning, 1x1 convolutions, Bottom-up 
design with hardware considered

[ Challenges for Embedded CNNs ]



Contact Me

Anshu Arya
anshu@multicorewareinc.com

[ End ]


