www.multicorewareinc.com

01

Targeting CNNs for Embedded Platforms

Anshu Arya, Solution Architect @ MulticoreWare

MULTICORE WARE

- Founded 2009
- Core Competency: Heterogeneous Computing
- HQ: Silicon Valley
- Seven Location [US, China, India, and Taiwan]
- > 225+ Employees

BUSINESS UNITS

Machine Learning/Neural NetworksPerformanceImage Processing [OpenCV]OptimizationVideo Codecs [x265]ServicesCompilers [LLVM, OpenCL]Video Laboration

Automotive & ADAS

- Pedestrian Detection
- Vehicle Detection
- Traffic Sign Recognition

Action Detection

- Facial Expressions
- Sports Pose Detection

Video Quality

- Audio/Video Lip Sync
- > Subtitle Sync
- Text ROI Detection

Other

Medical Tool Recognition

Vehicles & Pedestrians

Action Detection

- Facial Expressions
- Sports Pose Detection

MulticoreWare **Neural Network Focus Areas**

3E98

Video Quality

- > Audio/Video Lip Sync
- Subtitle Sync
- Text ROI Detection

Other

Medical Tool Recognition

Vehicles & Pedestrians

Lip Prob = 1.0Face Prob = 0.999587

3E98

MulticoreWare

Neural Network

Focus Areas

Action Detection

Facial ExpressionsSports Pose Detection

Speech Prob = 0.999971

Audio/Video Sync

Other

Medical Tool Recognition

Vehicles & Pedestrians

3157

3E98

MulticoreWare

Neural Network

Focus Areas

Lip Prob = 1.0Face Prob = 0.999587

Speech Prob = 0.999971

Audio/Video Sync

Other

Medical Tool Recognition

Facial Expressions

Laugh

[Neural Network Services]

Data Labeling

Curate and label image or video data for input into neural network training.

- In-house team of data labelers to perform any type of labeling task confidentially
- Proprietary machine-assisted labeling tool to increase productivity by an order of magnitude

Deployment & Upgrades

Integrate the neural network engine into your application and receive on-going upgrades.

- Build an application or integrate a neural network engine into your existing code
- Improve the accuracy of the neural network as you collect more training data

Design & Training

Design a neural network architecture and train it using labeled data.

- Neural network architecture chosen to fit within constraints of target hardware platform
- Training is done on MulticoreWare GPU-accelerated workstations

Platform Optimization

Iterate on the neural network architecture and perform hardware-specific optimizations.

- Performance and memory optimizations for target hardware platform
- Code rewrites using hardware intrinsics, assembly, RTL, OpenCL, CUDA, etc.

[Mobile/Embedded Platforms]

What platform(s) will dominate?

≻ GPUs

➢ FPGAs

Vision DSPs

Custom ASICs

Price	Capability
Usability	Power

Current Examples

- ➢ NVIDIA Drive PX 2 & Xavier
- Xilinx Zynq UltraScale+
- ➤ Cadence VP5 & VP6
- Synopsys DesignWare EV6x
- MobileEye EyeQ 4

[Challenges for Embedded CNNs]

Performance / Power / Memory

Need fast detection (not just classification)

Quality

Predict accurate bounding boxes

[Challenges for Embedded CNNs]

Performance / Power / Memory

Need fast detection (not just classification)

- ➢ Need "smaller" CNN architectures
 - > Fewer parameters
 - > Fewer operations
 - Lower intermediate memory usage

Quality

Predict accurate bounding boxes

General advice: use a network with as many parameters/layers as you can reliably train

Need Fast Detection

[Typical Detection]

- Read image
- Create object proposals (e.g. Pyramidal, Sliding Window, etc.)
- For each proposal:
 - Crop from frame
 - Pre-process (e.g. warp)
 - Run CNN classifier
- Post-process (NMS)

[Typical Detection]

•

•

•

•

.

•

•

[Typical Detection]

Potentially hundreds to thousands of proposals needed to get tight bounding boxes

[Typical Detection - Cycles]

[Fast Detection – "Fast R-CNN"]

- Change the pipeline
 - No need to run classifier on each proposal
 - Re-use convolution feature map across proposals
- Requires Rol Pooling layer
 - Extracts proposal features from full frame map
- Still need to generate proposals via Selective Search (SS)
 - Now even more limited by SS speed

Figure 1. Fast R-CNN architecture. An input image and multiple regions of interest (RoIs) are input into a fully convolutional network. Each RoI is pooled into a fixed-size feature map and then mapped to a feature vector by fully connected layers (FCs). The network has two output vectors per RoI: softmax probabilities and per-class bounding-box regression offsets. The architecture is trained end-to-end with a multi-task loss.

[Fast Detection – "Faster R-CNN"]

- State-of-the-Art Localization + Classification
 - 26+ implementations by 2015 & 2016 ImageNet competitors
 - All winners use some variation
- Use a CNN to create proposals
 - RPN (region proposal network)
 - Re-use convolution feature map for localization & classification
 - Uses pre-defined "anchor" boxes to determine bounding box dimensions
- Must be trained in 4 stages
- Eliminates the need for prior object proposals
 - No more Selective Search or EdgeBoxes

Figure 2: Faster R-CNN is a single, unified network for object detection. The RPN module serves as the 'attention' of this unified network.

*Image from Ren et al., "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks"

[Fast Detection – Pipeline Evolution]

Typical Detection

- Read image
- Create object proposals
- For each proposal:
 - Crop from frame
 - Pre-process
 - Run CNN classifier
- Post-process (NMS)

Fast R-CNN

- Read image
- Create object proposals
- For each proposal:
 - Crop from frame
 - Pre-process
 - Run CNN classifier
- Run CNN classifier
 - Take as input a list of proposals
 - Use Rol pooling layer
- Post-process (NMS)

Faster R-CNN

Read image

- Create object proposals
- Run CNN classifier
 - Take as input a list of proposals
 - Generate proposals using feature map and region proposal network
 - Re-use feature map for classification
- Post-process (NMS)

[Fast Detection – Fully Convolutional]

R-FCN

- Adopts RPN network from Faster-RCNN
- Replaces all fully-connected layers
- Inherits training difficulty of Faster-RCNN
- Comparable quality, but better inference speed
- Showed RPNs can outperform Selective-Search and EdgeBox proposals
- Can be integrated with existing network architectures

Figure 2: Overall architecture of R-FCN. A Region Proposal Network (RPN) [18] proposes candidate RoIs, which are then applied on the score maps. All learnable weight layers are convolutional and are computed on the entire image; the per-RoI computational cost is negligible.

*Image from Dai et al., "R-FCN: Object Detection via Region-based Fully Convolutional Networks"

[Even Faster Detection]

YOLO/YOLOv2

- > No explicit region proposals or RPN
- ➢ v2 is fully-convolutional
- Uses k-means to determine best shapes for bounding boxes
- Multi-scale training allows trade-off for lower resolution input and speed vs. higher resolution and accuracy
- Has problems detecting small/overlapping objects

Figure 2: The Model. Our system models detection as a regression problem. It divides the image into an $S \times S$ grid and for each grid cell predicts *B* bounding boxes, confidence for those boxes, and *C* class probabilities. These predictions are encoded as an $S \times S \times (B * 5 + C)$ tensor.

[Even Faster Detection]

SSD

- Adds convolutional layers to predict bounding boxes of various scales/aspect ratios
- Fully convolutional
- Performance & Quality > YOLO & < YOLOv2</p>

SqueezeDet

- Uses "convdet" layers inspired by YOLO
- Uses anchor boxes inspired by Faster R-CNN, but uses k-means to improve them
- Fully convolutional
- Performance & Quality comparable to YOLOv2

YOLO/YOLOv2

Faster R-CNN R-FCN

Simultaneous Classification and Detection [FAST]

Explicit Proposals [ACCURATE]

Need "Smaller" Architectures

"Don't be a hero"

- Sage advice from cs231, Andrej Karpathy

Top-Down Design

Start with top architectures on ILSVRC

[CNN Architecture Design – What Already Works?]

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts at the bottom. The GPUs communicate only at certain layers. The network's input is 150,528-dimensional, and the number of neurons in the network's remaining layers is given by 253,440–186,624–64,896–64,896–43,264–4096–4096–1000.

Parameter	AlexNet Requirement	Available on Embedded
Weight Space	~250 MB	128 – 512 Kb
Operations for 30FPS VGA	~2400 GMAC/s	24 - 32 GMAC/s

Challenges:

- Reduce weight space ~400x
- Reduce compute by ~100x
- Retain high accuracy

Top-Down Design

- Start with top architectures on ILSVRC
- ➤ "Shrink" it:
 - Remove layers (especially FC layers)
 - Reduce # of convolution filters
 - Decrease convolution filter size
 - Made easier if fewer detection classes

[CNN Architecture Design – Top Down]

Toy Example: Detecting Faces

- ➤ 1 class
- AlexNet is clearly overkill
- Similar accuracy with smaller network

Classifier	AlexNet Type	Shrunk Network
Weight Space	~250MB (500x)	<512Kb (1x)
Layers	10 (7 CV + 3 FC)	5 (3 CV + 2 FC)
Compute Time	640x	1x
Operations per input	832 MMACs	1.3 MMACs

Top-Down Design

- Start with top architectures on ILSVRC
- ➤ "Shrink" it:
 - Remove layers (especially FC layers)
 - Reduce # of convolution filters
 - Decrease convolution filter size
 - Made easier if fewer detection classes
- Reduce until it fits into your target compute/memory constraints
- Structured approaches:
 - > SVD
 - > Pruning

Top-Down Design

Bottom-Up Design

- Start with top architectures on ILSVRC
- ➤ "Shrink" it:
 - Remove layers (especially FC layers)
 - Reduce # of convolution filters
 - Decrease convolution filter size
 - Made easier if fewer detection classes
- Reduce until it fits into your target compute/memory constraints
- Structured approaches:
 - > SVD
 - > Pruning

"Don't be a hero"

- Sage advice from cs231, Andrej Karpathy

Top-Down Design

- Start with top architectures on ILSVRC
- ➤ "Shrink" it:
 - Remove layers (especially FC layers)
 - Reduce # of convolution filters
 - Decrease convolution filter size
 - Made easier if fewer detection classes
- Reduce until it fits into your target compute/memory constraints
- Structured approaches:
 - > SVD
 - > Pruning

Bottom-Up Design

- Consider target hardware and its compute/memory constraints
- Assemble architecture layer-by-layer
- Use top ILSVRC architectures as a guideline
 Mimic structure/layer patterns
 - Inception modules (Szegedy, et al.)
- Error-prone, could end up with something "untrainable", leave to the experts

[CNN Architecture Design]

SqueezeNet

- Back-bone of "SqueezeDet"
- Fully convolutional
- "Fire Modules" use 1x1 convolutions to "squeeze" a layer before feeding into a mixed 1x1 and 3x3 layer

Darknet-19

- ➢ Backbone of "YOLOv2"
- Fully convolutional
- Uses 1x1 convolutions to compress feature maps between 3x3 convolutions

Classifier	SqueezeNet-Type	Darknet-Type
Weight Space	4MB	100MB
Runtime Memory	100MB	500MB
Operations per input	3.6 GMACs	1.4 GMACs

[More To Do]

Energy-Aware Pruning (Yang, et al.)

Deep Compression (Han, et al.)SqueezeNet shown to compress effectively

Shortcut Connections (He, et al.)DenseNets, Highway

[Challenges for Embedded CNNs]

Performance / Power / Memory

Need fast detection (not just classification)

- ➢ Need "smaller" CNN architectures
 - > Fewer parameters
 - > Fewer operations
 - Lower intermediate memory usage

Progress

Simultaneous classification and detection

Pruning, 1x1 convolutions, Bottom-up design with hardware considered

[End]

Contact Me

Anshu Arya anshu@multicorewareinc.com

