
Introduction

The functional verification landscape has changed beyond all recognition over
the last 10 years, and while design paradigms have become mature and stable,
verification methodologies and technologies have continued to evolve with
new flows and tools being invented. Against this rapidly changing background,
designs have been steadily growing to gigascale dimensions, with more intel-
lectual property (IP) and more complex IP being integrated into larger and
larger system-on-chip (SoC) designs.

Realizing silicon in the face of these challenges requires new approaches
and a very flexible workforce capable of adapting and changing on a regular
basis. This paper outlines a deterministic approach to managing verification
complexity—MDV—and a valuable resource to back up this approach, the
Incisive Verification Kit. Together, MDV and the Incisive Verification Kit will
enable you to plan and embrace new methodologies and approaches in a safe
and controlled way, with a step-wise progression to the ultimate in verification
productivity—plan-based MDV. The kit provides clear and realistic examples at
each stage to guide you and your teams in their new projects.

Failing to Plan = Planning to Fail

Any management process needs clear and measurable goals, and verification
is no exception. Failing to capture these goals at the outset of a project means
that there is no clear definition against which to measure either progress or
closure. You can only gauge improvement by what you can clearly measure.
An example of this problem is seen in directed testing. Huge lists were drawn
up to define the verification process, but the lists were not executable or
maintainable. This open-ended nature led to big project slips and huge stresses
on project teams.

Maximizing Verification Effectiveness Using MDV
By Nick Heaton, Distinguished Engineer, Cadence Design Systems, Inc.

This paper introduces the Cadence® Incisive® Verification Kit as a golden example of how to maximize
verification effectiveness by applying metric-driven verification (MDV) in conjunction with the Universal
Verification Methodology (UVM). MDV provides an overarching approach to the verification problem
by transforming an open-ended, open-loop verification process into a manageable, repeatable,
deterministic, and scalable closed-loop process. Through this transformation, verification project teams
and managers greatly increase their chances of consistently delivering working designs at improved
quality levels in less time with fewer human resources.

Contents

Introduction..................................1

Failing to Plan = Planning to Fail....1

MDV Overview.............................3

Building a Strong RTL Testbench

Foundation...................................4

Simulation Isn’t the Only Way.......5

SDV Overview...............................6

Low Power Isn’t Just the

Designer’s Problem.......................7

Reuse Isn’t Just About Testbench

Components.................................7

Does Speed Matter?.....................8

How Does MDV Scale?.................9

How Do I Get Up to Speed

with All this New Stuff?.............. 10

Summary.................................... 11

Further Information.................... 11

In addition, there is often confusion about the definition of what constitutes a verification plan and what consti-
tutes a test plan. Let’s make our definition clear right away: a test plan defines a fully elaborated list of tests that
will be created, and the completion of this list defines completion of verification. A test plan alone however tends
to be a poor mechanism since it already contains decisions about the execution of the process. In contrast, a verifi-
cation plan captures the “what” that must be verified but does not define the execution—the “how.” This “what”
versus “how” is a crucially important distinction as it is expected that verification is performed by multiple people
using multiple technologies. We refer to the “what” as the “features” or “goals” that must be verified—the design
intention. When planning a project, you should not presume the underlying tool by which a feature is verified.
It will most likely come from several sources, with the results represented by various forms of coverage. Luckily,
this top-down approach is not the only way to begin, and starting bottom up, with automation of the test plan,
provides instant value in and of itself.

A verification plan should capture the goals of the verification process in a way that the signoff criteria and
milestones are clearly identified. An example of such a milestone is RTL code freeze, which a team might define as
the point when 75% of all features are covered. In addition to capturing goals upfront, a verification plan should
be executable. In other words, it is essential that progress toward project closure can be easily and automatically
measured. Typically, the goals get refined as a project progresses, which means the verification plan is a living
document that matures over the lifetime of a project.

Lastly, the human factors in verification planning must be accounted for up front. People are humans who make
mistakes and learn from those mistakes. Changes happen, and a good verification planning methodology should
be part of the overall verification process, although, sadly, in most cases it is not. Codifying the planning method-
ology within tooling can help with everything from capturing brainstorm results, to knowing what has changed in
the specification, to setting goals and owners.

Figure 1 shows a sample of a verification plan for the UART block in the Incisive Verification Kit environment, which
has the verification planning methodology codified within the tool. As the example shows, the verification plan can
start as a regular Microsoft Excel spreadsheet that uses a predefined format to identify test structure and specific
features. In addition or alternatively, users can utilize a specific-purpose planning environment, in our case, the
vPlanner™ feature, a functionality fully encapsulated within the Incisive vManager™ solution.

Figure 1: vPlanner feature for specific-purpose verification planning

The vPlanner feature is used to identify abstract features and hierarchies of features that closely resemble the
hierarchy of the specification. While not mandatory, a verification plan is often a useful convenience that helps
designers and verification engineers communicate. Verification plans can be hierarchical and integrate other
(sometimes commercially supplied) verification plans.

In the case of the Incisive Verification Kit—the UART has an ARM® AMBA® APB interface and, therefore, the plan
includes an APB verification plan. This mechanism enables reuse of plans that relate to standard interfaces or
perhaps blocks of IP that are reused across multiple projects. It can also be useful for segregating information such
as from block level to system level, or at different milestones where different goals are required at various devel-
opment stages.

www.cadence.com 2

Maximizing Verification Effectiveness Using MDV

The vPlanner feature creates executable verification plans or vPlans. Plans become executable when they are able
to re-direct the verification activities, and when they are a dynamically updated thru the verification process. This
approach allows resource decisions to be made in an informed way such that progress toward closure proceeds
according to items with the highest priority. The coverage is accumulated from any number of runs of a verification
flow and from a variety of verification engines (formal, simulation, acceleration, emulation, or other).

MDV Overview

As shown in Figure 2, the metrics in MDV can start as simple “test case coverage” and extend to plan-based
closure of design features using the notions of an executable verification plan. As one would expect, increasing
investment in automation provides equally increasing productivity benefits from the perspective of time saved or
product quality. The key point is being able to start when the project starts, with something completely automatic
and unobtrusive, and grow the verification features according to need.

Constrained
Random

Coverage
Driven

Re
la

tiv
e

Au
to

m
at

io
n

Ef
fo

rt

Productivity Benefits

Test
Coverage

Code
Coverage

Plan
Driven

Weeks Months

X

2X

3X

Assertion/
Checks

Advanced Verification

Days

Plan

Construct

Execute

Measure/
Analyze

Test-Driven Verification

Figure 2: MDV investment alternatives for RTL verification

Test-driven verification is RTL-based and design-centric. It is a very automatic and unobtrusive way to collect test
coverage, by measuring which tests have passed and which have failed, and performing failure analysis (first failure,
route cause, failure modes). Next, adding code coverage is as simple as turning on a switch, but now you have
visibility to see which parts of the code have been exercised, improving the overall quality of the Verilog or VHDL
design. There are many ways that the RTL code structure can be automatically analyzed, from block coverage,
toggle coverage, expression coverage and finite state machine coverage. Finally, adding assertion-based functional
testing with PSL or SVA is a natural fit for additional testing of functionality. Test-driven verification environments
also adds the ability to instantly have reports with tracking progress over time, providing substantial benefits over
the traditional spreadsheet-based tracking of verification progress.

Advanced RTL verification techniques combine constrained random coverage and plan-based techniques to the RTL
verification effort. Constrained random testing has been proven to be able to identify more bugs faster. However, it
is difficult to see what has been actually tested because the testbench is by definition randomized. Coverage driven
is added to visibly see what is tested and what is not during this randomization process. While relatively easy to
add functional coverage, it can produce huge amounts of coverage data, which can be overwhelming when trying
to analyze which design features belong to which coverage points. This overwhelming amount of data is why
coverage driven has many limitations that affect its usability and scalability.

Plan-based MDV broadens the scope of what is captured and measured to include checks, assertions, software,
and time-based data points that are encompassed in the term “metrics.” The plan-based notation means that you
can organize your verification plans by features, by milestones, by design hierarchy, or all of the above including
your own definitions.

www.cadence.com 3

Maximizing Verification Effectiveness Using MDV

MDV creates feature hierarchies organized by the executable verification plan (vPlan). This plan helps manage the
wealth of data captured by all the tools involved in the execution of a verification project. It also supports the
notion of many-to-many relationships that occur within a feature and how that feature is covered with various
testing mechanisms. This traceability is especially important in requirement management flows, such as the
automotive international standard ISO 26262, where tracking to requirements is an essential attribute.

For reference, we can see how metrics are gathered at the UART level from multiple runs. Figure 3 shows this
executable vPlan that comprises metrics from a number of different environments and different verification
engines.

Figure 3: vPlan with coverage metrics

Building a Strong RTL Testbench Foundation

All of the high-level capabilities of MDV that deliver the abstracted and filtered view of the verification process
amount to nothing without a common framework under which verification environments can be constructed and
reused. The UVM has become the de-facto standard for the construction of verification environments. The UVM
is based on its popular predecessor, Open Verification Methodology (OVM), itself an evolution from the e Reuse
Methodology (eRM), which has been in widespread use since 2002 on thousands of projects. The UVM supports
both e and SystemVerilog and enjoys industry-wide support for both.

The Incisive Verification Kit completely adopts the UVM and includes real-world testbench examples in both e and
SystemVerilog. The kit itself includes all aspect of the UVM Reference Flow, but adds many valuable capabilities.
At the block level, the kit shows how MDV can be applied to the verification of a UART design. It shows how a
verification plan can be constructed upfront, how a UVM environment can be rapidly constructed using Universal
Verification Components (UVCs), and how simulations can be run and coverage annotated against the verification
plan to monitor and manage the verification process.

Figure 4 details the architecture of one of the kit testbenches, showing the hook-up of the UVCs to the UART DUT.
One of the major strengths of the UVM is its approach to reuse. Improving productivity is all about writing complex
testbench elements—once and only once—and thereafter reusing these components as widely as possible. One of
the dimensions of reuse engineered into the UVM is from block to cluster.

www.cadence.com 4

Maximizing Verification Effectiveness Using MDV

UVC for APB Interface UVC for Serial Interface

Coverage

BFM

Seq

SeqCoverage

BFM

APB Serial TX/RX

UART

Seq

Seq

Monitor Sequencer Monitor Sequencer

Figure 4: Details of a kit testbench architecture

Figure 5 shows the cluster-level testbench for the kit APB subsystem, clearly illustrating the large amount of reused
content. Notice the reused serial interface UVCs and the reused APB UVCs.

UVC for Serial Interface

Coverage

BFM

UART #1 UART #2 SDIO AHB

APB

APB-Subsystem

Seq

Seq

Monitor Sequencer

UVC for Serial Interface

Coverage

BFM

Seq

Seq

Monitor Sequencer

UVC for SDIO Interface

Coverage

BFM

Seq

Seq

Monitor Sequencer

UVC for AHB Interface

Coverage

BFM

Seq

Seq

Monitor Sequencer

UVC for APB Interface

Coverage

BFM

Seq

Seq

Monitor Sequencer

Figure 5: Cluster-level testbench for the kit APB subsystem

One of the key purposes of the kit is to accelerate understanding of UVM concepts, with testbench architecture
diagrams, workshops, and hands-on labs. The modular, layered approach also forms the basis for reuse. In addition
to the creation of plug-and-play hardware and software verification components that can be reused from block to
cluster to chip to system, UVM components can also be reused across multiple projects and platforms.

As there is a frequent need for verification components for standard interfaces such as USB, PCI Express®, AMBA
AXI, and so on, Cadence has created a comprehensive portfolio of commercial verification IP (VIP) components.
These components are of particular interest when it comes to “compliance testing” (ensuring that the design’s
interfaces fully comply with their associated specifications). Furthermore, each of these VIP components comes
equipped with its own pre-defined executable verification plan that can be quickly and easily incorporated into a
master plan. A subset of the VIP portfolio is demonstrated within the Incisive Verification Kit for reference.

Simulation Isn’t the Only Way

MDV uses a generic approach that doesn’t mandate any specific verification execution engine; in other words,
simulation isn’t the only tool you can choose to use for establishing design correctness. Figure 6 illustrates how
plan-based MDV executes across verification engines, providing coverage interoperability, plan interoperability, and
transparent verification interoperability.

www.cadence.com 5

Maximizing Verification Effectiveness Using MDV

Formal Simulation Acceleration Emulation

SoC Verification (Hardware and Software)

Software-Driven VerificationSoftware-Driven VerificationSoftware-Driven VerificationSoftware-Driven VerificationRTL Verification (Hardware Only)

Figure 6: MDV across heterogeneous verification engines

For example, formal tools are another means by which design correctness can be established. Formal properties in
the form of assertions are captured and the tools attempt to exhaustively prove that, for all possible circuit states,
the property is true. While the user typically writes these assertions manually, automatically extracted assertions
and assertion libraries can also accelerate the verification process. The Incisive Verification Kit provides examples of
these flows and shows how the checks and assertion coverage points are easily included in the verification plan.
The results from the formal process are then annotated onto the plan.

MDV seamlessly provides verification engineers and managers with a consistent view of the verification progress,
regardless of where the results are coming from. While exhaustively proving assertions is a goal, there are
frequently occasions where the tools need additional guidance to complete their proof. Typically, the user writes
additional assertions that define constraints. These assertions narrow the scope of the formal proof, and the tools
are then able to complete the proof. The question is: how do you know that these assertions are valid?

Assertions are not only used for formal proof, but will also execute in simulation. By reusing the constraints in
your simulation runs, you have a means of cross-checking whether the assertions you made still hold true in your
simulation models. This mechanism isn’t watertight, as users might not exhaustively simulate the environment in all
possible scenarios. However, if you adopt constrained-random simulation as espoused by the UVM, you increase
your chances of hitting the corner-case where the assumptions are incorrect.

MDV provides a mechanism for users to include the coverage of the constraints, which, at a minimum, will identify
that a constrained condition was triggered. You always have visibility into failures, so the coverage you get gives
you a useful cross-check of these constraints. These techniques from both the planning and execution side are
included as workshops within the kit.

SDV Overview

As embedded software content and complexity grows, there is more demand that deeply embedded products
should work reliably while powered on over longer and longer periods. The impact of software quality on product
reliability will continue to rise in the same way that hardware quality has become mandatory for any new SoC
design. Deeply embedded software quality is a major concern for complex SoC products, especially as multi-core
designs become more prevalent. Thus, the application of a rigorous, scalable quality measure such as MDV will
become the norm.

Utilizing the MDV methodology for RTL verification is well proven and utilized by most chip suppliers. It operates
without the need for a processor to be present, allowing IP teams to start verifying long before the processor is
available. Unlike RTL verification, software-driven verification (SDV) utilizes a top-down software-based approach
for verification of the chip functionality, or verification of the embedded software functionality. This approach
takes advantage of the fact that the processor is available to stimulate the design. C or C++ tests are run to mimic
the various use cases the SoC is required to execute, transactions from the processor are monitored, and both RTL
coverage and software coverage can be collected.

The same MDV concepts of randomization, planning, coverage and regressions can apply equally from RTL-based
bottom-up to top-down SDV approaches. SDV complements RTL hardware verification by more closely exercising
the user view of the application. SDV can use RTL or transaction-level models (TLMs) for improved execution
performance, and can also utilize higher performance acceleration or emulation engines. The Cadence MDV
approach supports these notions of multiple heterogeneous engines and different levels of design abstraction, as
well as different stimulus and collection interfaces to the design.

www.cadence.com 6

Maximizing Verification Effectiveness Using MDV

Low Power Isn’t Just the Designer’s Problem

Low-power design is no longer a “nice to have,” but is mandatory even for non-mobile applications, and it is a
crucial “must have” for all “green” products. But as a verification engineer, why should you care about low power?

The low-power verification challenge has two new dimensions. Firstly, the physical implementation changes can
introduce functional bugs as a side effect. These bugs can only manifest themselves during cornercase scenarios.
Secondly, the interaction between the power-management software and the hardware requires accurate verifi-
cation to ensure that all power modes and power-mode transitions have been verified in all operating circum-
stances. Even a design with just a few pieces of IP that can be powered down can have thousands of operational
states and power transitions that need exercising.

The Incisive Verification Kit provides comprehensive material and examples covering verification of a hardware
platform containing a realistic set of power management features. It also contains workshops on how to use an
MDV approach to hardware/software co-verification. Figure 7 shows a simplified architecture diagram of the kit
platform including a power control module (PCM).

APB

Bridge

OR1K SMC

UART #1 UART #2 SDIO GPIO

Power Shut-Off Control

0.6V – 1.2V

HCLK

ALUT

ENET

Bridge
APB-Subsystem #1

Chip-Level Platform

APB

VCO

AHB

PCM
APB-Subsystem #2

Figure 7: Architecture diagram of the kit platform including a PCM

Reuse Isn’t Just About Testbench Components

Reusable UVCs perform a vital role in accelerating testbench development. These components can comprise
complex developments, and commercial availability of UVCs for standard protocols provides substantial leverage for
assembling complex testbenches. In all of this detail, engineers sometimes overlook the fact that many other pieces
of the verification process can be reused in multiple dimensions.

UVCs provide project-to-project reuse at multiple levels. They also provide block-to-cluster reuse, which substan-
tially boosts productivity when assembling a testbench for a hardware platform for which sub-component
testbenches exist. Not only can the components be reused, but also sequence libraries, register definitions, and
verification plans. The Incisive Verification Kit has comprehensive cluster-level environments that fully illustrate how
to apply these reuse techniques. Figure 8 shows the architectural overview of a chip-level testbench and its corre-
sponding chip-level vPlan, showing all of its verification plan reuse.

www.cadence.com 7

Maximizing Verification Effectiveness Using MDV

APB

Bridge

OR1K SMC

UART #1 UART #2 SDIO GPIO

Power Shut-off Control

0.6V – 1.2V

Automatic vPlan creation

HCLK

ALUT

ENET

Bridge

APB

VCO

AHB

PCM
APB-Subsystem #2

Chip vPlan

vPlan

APB Subsystem
vPlan

vPlan

APB Subsystem
vPlan

vPlan

Ethernet
vPlan

CPF or UPF File

vPlan

Low Power
vPlan

vPlan

Chip-Level Platform

UART
vPlan

vPlan

UART
vPlan

vPlan

APB
vPlan

vPlan

APB
vPlan

vPlan

APB-Subsystem #1

Figure 8: Architectural overview of a chip-level testbench and its corresponding chip-level vPlan

Does Speed Matter?

As a verification engineer, which of the following does your manager care more about: how fast your simulator
runs or whether you achieve coverage closure on schedule? MDV enables sophisticated analysis of the coverage
from the complete regression runs and allows you to correlate the results for a particular feature against the
execution of the verification. In other words, MDV helps you answer the question, “Which simulations should I
re-run in order to quickly test feature Y in two hours?”

Effective verification is not about running the most simulations in the least time. It is about running the most
effective simulations as much of the time as possible. Simulations that add to coverage are the most valuable, as
they are more likely to hit corner-case scenarios and therefore find bugs. MDV enables you to identify the random
seeds and tests that contribute the most overall coverage, or coverage for a particular feature or group of features.
Running the whole regression suite more and more is like using a sledgehammer—eventually you will hit the target
but it will take a lot of effort. Conversely, MDV is like putting a laser in the hands of the verification engineer; it can
be focused and fired into specific areas where coverage holes exist. Figure 9 shows the analysis of coverage contri-
bution for each run of a regression against a specific vPlan feature.

www.cadence.com 8

Maximizing Verification Effectiveness Using MDV

Figure 9: Analysis of coverage contribution for each run of a regression against a specific vPlan feature

The Incisive Verification Kit provides workshops on how to use the analysis features of MDV so you can quickly get
up to speed with this powerful capability.

How Does MDV Scale?

One of the key lessons learned in the development of the UVM is the power of automatic test generation. By
having constrained-random tests, each time a test scenario is run with a new seed, it is potentially going to find
new bugs as it traverses new states in the design. This scalability has massive potential when allied with infra-
structure that supports vast processing farms. Huge numbers of concurrent simulations can be launched by one
person, all potentially hunting bugs without the need for engineers to write hundreds and hundreds of directed
test cases. This ability to scale the verification task is very compelling as it truly starts to automate the progress
toward verification closure.

Figure 10 shows an example of how MDV was applied to a real customer project. Using MDV, the customer
not only reduced the project timeframe from 12 months to 5 months but also found more bugs and used less
manpower.

www.cadence.com 9

Maximizing Verification Effectiveness Using MDV

1 2 3 4 5 6 7 8 9 10 11 12

Man Months

Improvement in Verification Efficiency

Traditional HDL TB

TapeoutVerification Started

MDV Env
First Project

MDV Env
Second Project

MDV Env
Third Project

Resource Limited

Verification
Environment

Test
Creation

Run
Tests

Verification
Environment

Test
Creation

Run Regression
Tests

Verification
Environment

Test
Creation

Run (Massive)
Regression Tests

License LimitedTCVE Run (Massive)
Regression Tests

Figure 10: Example of MDV applied to a real customer project

For formal verification, a large set of formal properties traditionally comprise the verification task, and as the design
grows and the suite of properties grow, so does the length of formal runtime needed to complete the proof. New
features within Incisive Formal Verifier have enabled a scaled “regression” approach to complete these large formal
proofs through the use of compute farms. Incisive Formal Verifier has the ability to split a large proof “deck” into a
number of distributed smaller proofs, and thereby run the entire regression in a much shorter time. As these types
of tasks tend to be run repeatedly as chip signoff approaches, the option of reducing runtime by a factor of 10 or
20 can make the difference between hitting a schedule or not.

How Do I Get Up to Speed with All this New Stuff?

So this new methodology and technology is great, you might say. But how on earth do you get my entire team up
to speed in a realistic timeframe that doesn’t impact the schedule?

The Incisive Verification Kit contains a large number of comprehensive hands-on workshops, including all the
slides and lab instructions, so you can walk through a specific topic in your own time, or perhaps ask a Cadence
Application Engineer to run through it with you. The fact that these workshops are pre-packaged and delivered
with the tools greatly enhances your ability to manage the ramp-up of teams on selected methodologies, all based
on a realistic example SoC.

The current range of Incisive Verification Kit workshops include the following topics:

•	 Low-power simulation

•	 Coverage

•	 UVM

•	 SystemVerilog design

•	 Digital mixed signal

•	 Assertion-based verification

•	 Verification debug

•	 VIP

•	 MDV

www.cadence.com 10

Maximizing Verification Effectiveness Using MDV

Additionally, Cadence has extended many parts of the Incisive Verification Kit to be online with a smaller, more
consumable subset of information to get up to speed more rapidly. The Cadence Rapid Adoption Kits covers this
subset of workshops and smaller topics thru Cadence Online support.

Summary

MDV is a powerful layer of methodology that sits above the UVM testbench. The Incisive Verification Kit provides
a comprehensive set of examples of how MDV can be applied across an entire range of verification technologies
in a coherent and consistent way. Once applied, MDV puts powerful capabilities in the hands of engineers and
managers. These MDV capabilities, complemented by SDV capabilities, make the crucial difference; they improve
verification effectiveness and, hence, managers and engineers alike can maximize their utilization of resources, use
the breadth and depth of technology available, improve project visibility, and reduce the number of engineering
man months.

Further Information

•	 Incisive Verification Kit: www.cadence.com/products/fv/iv_kit/Pages/default.aspx

•	 MDV Overview: www.cadence.com/products/fv/Pages/mdv_flow.aspx

•	 Incisive vManager Solution: www.cadence.com/products/fv/vmanager/pages/default.aspx

•	 Requirements Management Flow: http://www.cadence.com/products/fv/Pages/requirements_management_
flow.aspx

Cadence Design Systems enables global electronic design innovation and plays an essential role in the
creation of today’s electronics. Customers use Cadence software, hardware, IP, and expertise to design
and verify today’s mobile, cloud and connectivity applications. www.cadence.com www.cadence.com

© 2014 Cadence Design Systems, Inc. All rights reserved. Cadence, the Cadence logo, and Incisive are registered trademarks and vManager and
vPlanner are trademarks of Cadence Design Systems, Inc. ARM and AMBA are registered trademarks of ARM Limited (or its subsidiaries) in the EU
and/or elsewhere. All others are properties of their respective holders. 1906 02/14 SA/DM/PDF

Maximizing Verification Effectiveness Using MDV

www.cadence.com/products/fv/iv_kit/Pages/default.aspx
http://www.cadence.com/products/fv/Pages/mdv_flow.aspx
http://www.cadence.com/products/fv/vmanager/pages/default.aspx
http://www.cadence.com/products/fv/Pages/requirements_management_flow.aspx
http://www.cadence.com/products/fv/Pages/requirements_management_flow.aspx

