
Requirements for SoC
Verification

While the bottom-up approach
offered by UVM-constrained random
and coverage-driven verification
revolutionized IP and unit-
level testing, it doesn’t
meet the requirements
for SoC-level verification.
To fully address SoC-level
verification, a solution
must allow not only for
vertical (IP to SoC) reuse
and horizontal (cross-
platform) reuse, but
most importantly it must
provide a way to capture
and share use cases and
deliver a top-down verifi-
cation approach. As
shown in Figure 1, the
Perspec System Verifier
addresses these three
key requirements for SoC
verification and creation
of portable stimulus.
By offering an abstract
model-based approach,
the Perspec System Verifier
not only enables capture
of use cases, but through

abstraction makes reuse and sharing
of the use cases easy. In order to
deliver real tests, a solver is required to
automate the creation of concrete use
cases either through randomization or
if requested through coverage filling.

These concrete use cases can be used
to automatically generate C tests that
can be run natively and at speed on
any of the platforms depicted in the
figure.

Cadence® Perspec™ System Verifier is a software-driven system-on-chip (SoC) verification solution.
The Perspec System Verifier improves SoC quality and saves time by reducing development
effort for complex SoC-level use cases, creating coverage-driven automation of system use-case
generation, and shrinking the time required to reproduce, debug, and fix complex SoC-level bugs.

Perspec System Verifier
Use-case-driven SoC verification

Figure 1: Perspec System Verifier Technology

Platform

User

Architect Hardware
Developer

Software
Developer

Verification
Engineer

Software Test
Engineer

Post-Silicon
Validation
Engineer

Ve
rt

ic
al

 R
eu

se

Horizontal Reuse

Use Case Reuse

Scope
(Integration)

IP

Sub-System

OS and Drivers

Bare-Metal Software

SoC
(Hardware + Software)

Middleware
(Graphics,

Audio,etc..)

3D
GFX

DSP
A/V

Boot
Proc

Comm
Procs

Multi-Cluster
Apps Processors

Many Cores
Firmware / HAL

Multi-Core Microkernel

Software

Virtual Platform Simulation Emulation FPGA Prototype Silicon Board

C Test C Test C Test C Test

Abstract Model Enabling Reusable Use Cases, Solvers,
and Automatically Generated Software Tests

Interprocessor Communication,
Multi-Task Scheduling

www.cadence.com 2

Perspec System Verifier

Product Overview

Today, the verification of electronic
systems (SoCs) and subsystems is
generally achieved using C tests. There
are several reasons for this, including:

• A need to exercise system use cases
from a programmer’s view

• Portability across platforms (including
post-silicon execution)

• Widespread knowledge of the C
language and the availability of C
compilers

• Ever-growing software layers that
need to be verified with the hardware
components (both test software and
production-level software are likely
to be used as part of the verification
process)

• The challenge to emulate real-life
scenarios in synthetic testbenches

C tests are typically created manually
or by basic code generators, and lag far
behind the automation that has become
mainstream for hardware functional
verification. The effort of test creation

and maintenance, test reuse that spans
subsystems and systems, and leveraging
these tests for future system derivatives,
are not addressed properly by manually
creating tests.

Furthermore, the overall flow—defining
goals, automating stimuli creation,
launching tests to meet the goals, and
collecting the results into a concise and
intuitive dashboard—are challenges for
productive system validation.

The Perspec System Verifier is a model-
based, goal-directed SoC verification
product developed to meet these
challenges. Developed in conjunction with
key customers, the Perspec System Verifier
was released to production in 2013,
and since has been used in production
projects with several customers. The
Perspec usage flow includes the following
steps:

1. Capture the SoC actions needed
to create a desired use case, if not
already captured

2. Compose the desired use case

3a. Use the Perspec System Verifier to
solve the abstract use case to create
concrete use case or scenario

3b. The Perspec System Verifier generates
C tests for the concrete scenario
mapped to specific execution platform

4. Run the tests on the targeted platform

5. Debug the test and review coverage
results

The Perspec System Verifier supports the
capture of abstract models of system
actions and resources using the Perspec
System Verifier’s System-Level Notation
(SLN) (Step 1). The abstract models
are visualized using Unified Modeling
Language (UML)-based graphical notation
to simplify creation, modification, and
use of complex use cases or scenarios
(Step 2).

The Perspec System Verifier includes a
constraint solver that generates concrete
scenarios from user-directed, random-
selection, or coverage-driven fills of both
data and control flow from the abstract
scenario and can show both legal and
illegal concrete scenarios based upon the

Solver: Constrained
Random Data and
Control Flow

Select a video format that
can be converted to mpeg4,
and place in an accessible
memory location

Distribute available
computing resources and
sync as needed

Randomize other video
stream attributes

UML Style DiagramRandomize a way to
get a video buffer

Randomize a display
that can show mpeg4

Figure 2: Abstract Use Case >> Solver >> Concrete Solution

www.cadence.com 3

Perspec System Verifier

rules defined in the models (Step 3a). In
addition, the coverage for the scenario
is calculated at generation (gen-time
coverage) and can be compared with
actual execution results once tests are
run (runtime coverage). In Figure 2, the
abstract scenario is shown on the left
and a concrete solution, a UML activity
diagram, is shown on the right. The solver
fills in everything needed to create an
executable scenario. The callouts identify
some of the choices made by the solver.

From a concrete scenario, the Perspec
System Verifier automates the generation
of a C test that fulfills the scenario,
including the interprocessor communi-
cation and multi-task scheduling required
(Step 3b). The C tests can run natively at
speed on simulation, emulation, FPGA
prototype, and even post-silicon boards
and can also be expanded to take full
advantage of faster platforms (Step 4).
When the test runs, it generates a log
that can be used to debug the test with
Cadence’s Incisive® Debug Analyzer and
coverage results can be analyzed in the
context of the verification plan using the
Incisive vManager™ solution (Step 5).

Connecting It Together

As shown above, the combination of
abstract system actions with a constrained
random solver that can randomize both
control and data offers significant produc-
tivity improvement over manual creation
of tests, but the real value is the ability to
capture complex SoC-level use cases that
would otherwise go unverified and to find
bugs in the implementation that would
go undetected until the problem occurs in
actual use.

To illustrate, let’s consider how to verify a
use case where multiple cache coherent
processors are operating on different
tasks and where you need to verify that
the cache coherency is maintained even
when powering some of the processors
on and off. Most customers today
avoid tackling the development of a
directed test for this type of complex use
case because of the level of expertise
required in both coherency and power
management and the complexity of the
software required to create this use case.
Instead, they rely on their production
software to validate these types of

complex use cases as best they can. With
the Perspec System Verifier, it is easy to
take advantage of use cases developed
by domain experts and to create new,
more complex SoC use cases by mixing
use cases.

Figure 3 highlights how the Perspec
System Verifier not only makes it possible
to create the complex use case of mixing
power shutdown and coherency, but
as depicted allows other users to take
advantage of use cases created by domain
experts without needing to become a
domain expert. In addition, the Perspec
System Verifier automates the generation
of the complex C tests for any target
platform.

Features

Capture composer GUI

• Defines use cases in goal-oriented
terms using a UML-like GUI editor

• Allows reviewing and sharing use cases
and system flows between teams

• For advanced use cases:

User1

User2

Coherency

Power Shutdown

User3

Mixed Scenario

1. Cache Transactions

2. Power Down

3. Cache Transactions

4. Power Up

5. Cache Transactions

C Test

C Test

C Test

C Test

Virtual
Platform

Simulation
Platform

Hardware
Acceleration
Emulation
Platform

FPGA Silicon
Platform

Coherency Use Case

Power Shutdown
Use Case

Figure 3: Creating SoC-Level Mixed Scenarios

Perspec System Verifier

Cadence Design Systems enables global electronic design innovation and plays an essential role in the
creation of today’s electronics. Customers use Cadence software, hardware, IP, and expertise to design
and verify today’s mobile, cloud, and connectivity applications. www.cadence.com

© 2014 Cadence Design Systems, Inc. All rights reserved worldwide. Cadence, the Cadence logo, and Incisive are registered trademarks and Perspec
and vManager are trademarks of Cadence Design Systems, Inc. in the United States and other countries. All other trademarks are the property of
their respective owners. 3551 12/14 SA/DM/PDF

 – Enables composition of sub-scenarios
to create advanced use cases and
flows

 – Scalable solution supports thousands
of actions

 – Allows definition of reusable flows
for test construction

 – Supports operators for random
scenario selection, generation-
time repetition/filling and run-time
repetition (for long tests).

Advanced constraint solver

• Randomizes both system control flow
and data

• Automatic memory management and
planning of legal resource distribution

• Randomizes hard-to-achieve scenarios
and also spans multiple dimensions
around them with fill capability

• Maximizes technology for accelerated
coverage closure

Multi-core microkernel

• Allows runtime synchronization of
multiple heterogeneous cores and
parallel testbench activities

• Emulates multi-threading on single
thread cores

• Dynamic runtime management of
resources to enable efficient and
concise tests

• Exports messages from
embedded cores

Coverage metric goals to ensure
completeness

• Supports both generation-time for
regression planning and runtime
coverage

• Collects functional coverage on
all platforms including simulation,
acceleration, emulation, FPGAs, and
post-silicon

• Includes explicit user-defined coverage
goals and implicit exhaustive coverage
definitions

• Delivers interval utility to enable
coverage of hardware and software
events, latency, and event shmooing

• Plan-driven approach enables the
user to select the desired verification
plan goal and the tool generates an
optimized set of tests to fill it in

Checking

• Enables both runtime and post
simulation checking

• Allows creation of assertions involving
both hardware and software events
around latency, expected value
comparison, and end-to-end tests

Abstract debug capabilities

• Supports automatic synchronization of
C test message log, UML-based graph
nodes, and waveform transactions

• Supports adding messages, abstract
transactions, and waveforms based on
events and intervals

Related Products

Incisive Debug Analyzer

The Perspec System Verifier’s automated
C tests are generated to include built-in
logging information. This information
can be viewed using the Cadence Incisive
Debug Analyzer, which provides post-
process debug from any platform used
to execute the tests. In addition, the
post-process debug uses the same UML
activity diagram to provide the same
use-case-focused debug perspective that
the Perspec System Verifier uses to speed
creation of use cases.

Incisive vManager Solution

Cadence’s Incisive vManager solution
enables a plan-driven approach for SoC
verification. The user can select a section
in the hierarchical verification plan
and call the Perspec System Verifier to
create an optimized subset of tests that
will address the sub-section goals. The
Perspec System Verifier is also integrated
to provide uniform management and
analysis of the coverage resulting from the
C tests executed. The Incisive vManager
solution can display both the calculated
coverage created at the time of test
generation and the end coverage based
upon results from the test execution. The
coverage can also be merged with HDL,
HVL, and assertion-based coverage. As
with debug, the logging of the coverage
points in the Perspec System Verifier
is embedded in the C tests and can be
post-processed to show the results from
the test.

