

#### Description

The GX Single Series of DC/DC converters provide precisely regulated dc outputs. The output voltage is fully isolated from the input, allowing the output to be positive or negative polarity and with various ground connections. The GX Single Series meets the most rigorous performance standards for data communications and process control applications.

The GX Single Series has added features that allow for master/slave frequency synchronization and load sharing without the need for external circuitry. The GX Single Series also includes remote sensing, output trim, and remote ON/OFF. Unthreaded through-holes are provided to allow easy mounting or the addition of a heat sink for extended temperature use.

#### **Features**

- Precisely regulated voltage
- Small size 2.4" x 2.28" x 0.55"
- Master/slave frequency synchronization
- Built in load sharing
- Excellent thermal performance with metal baseplate
- Volt-seconds clamp and fast over voltage protection
- Pulse-by-pulse current limiting, dead short shut down
- Over-temperature protection
- Auto-softstart
- Low noise
- Constant frequency during normal operation
- Remote sense
- Remote ON/OFF
- Output trim with very low temperature drift
- Water washable, wide humidity applications
- Good shock and vibration damping
- **RoHS** Compliant

| Selection Chart |                    |     |            |      |       |
|-----------------|--------------------|-----|------------|------|-------|
| Model           | Input Range<br>VDC |     | lin<br>ADC | Vout | lout  |
|                 | Min                | Max | TYP        | VDC  | ADC   |
| 28S15.13GX      | 16                 | 40  | 8.6        | 15   | 13.33 |
| 28S24.8GX       | 16                 | 40  | 8.4        | 24   | 8.33  |

1

Unless otherwise stated, these specifications apply for baseplate temperature TB=23±2°C, nominal input voltage, and rated full load. (1)

| Input Parameters                               |                   |                |           |                  |
|------------------------------------------------|-------------------|----------------|-----------|------------------|
| Model                                          |                   | 28S15.13GX     | 28S24.8GX | Units            |
| Voltage Range                                  | MIN<br>TYP<br>MAX | 16<br>28<br>40 |           | V                |
| Input Overvoltage (100 ms)                     | MAX               | 50             |           | V                |
| Input Ripple Rejection (30-1500Hz)             | TYP               | 40             |           | dB               |
| Undervoltage Lockout                           |                   | Yes            |           |                  |
| Input Reverse Voltage Protection               |                   | Yes            |           |                  |
| Input Current (14)<br>No Load<br>100% Load     | TYP<br>TYP        | 50<br>8.6      | 50<br>8.4 | mA<br>A          |
| Inrush Current                                 | MAX               | 0.5            |           | A <sup>2</sup> s |
| Reflected Ripple, 12µH<br>Source Impedance (3) | TYP               | 50             |           | mA p-p           |
| Efficiency                                     | TYP               | 83             | 85        | %                |
| Switching Frequency                            | TYP               | 255            |           | kHz              |
| Recommended Fuse                               |                   | (2)            |           | A                |

\* Absolute Maximum Ratings. Caution: Stresses in excess of the Absolute Maximum Ratings can cause permanent damage to the device (see Note 1.)

| Output Parameters                                                                                    |            |                |              |        |
|------------------------------------------------------------------------------------------------------|------------|----------------|--------------|--------|
| Model                                                                                                |            | 28S15.13GX     | 28S24.8GX    | Units  |
| Output Voltage                                                                                       |            | 15             | 24           | V      |
| Output Voltage<br>Setpoint Accuracy                                                                  | MAX        | ±2             |              | %      |
| Turn On Overshoot Min-Max Load                                                                       | TYP        |                | 0            | %      |
| Temperature Drift                                                                                    | TYP<br>MAX | 0.003<br>0.005 |              | %/°C   |
| Noise (8)                                                                                            | TYP        | 150            | 240          | mV p-p |
| Load Current                                                                                         | MIN<br>MAX | 0.00<br>13.33  | 0.00<br>8.33 | A      |
| Load Transient Overshoot (7)                                                                         | TYP        | 2              | 2.5          |        |
| Load Transient Recovery Time (6)                                                                     | TYP        | 100            |              | μs     |
| Load Regulation (5)<br>Min-Max Load                                                                  | TYP<br>MAX | 0.2<br>0.5     |              | %      |
| Line Regulation (4)<br>Vin = Min-Max                                                                 | TYP<br>MAX | 0.01<br>0.1    |              | %      |
| Overvoltage Protection (OVP)<br>Threshhold<br>OVP Type - Non-latching<br>Open Loop Overvoltage Clamp | MIN<br>MAX | 115<br>135     |              | %      |
| Output Current Limit<br>Vout = 90% of Vout-nom                                                       | TYP        | 120            |              | %      |
| Output Short Circuit Current<br>Vout = 0.25V                                                         | TYP        | 150            |              | %      |

| General Specifications                                 |                                      |             |           |  |
|--------------------------------------------------------|--------------------------------------|-------------|-----------|--|
| All Models                                             |                                      |             | Units     |  |
| ON/OFF Function                                        |                                      |             |           |  |
| HIGH Logic Level or<br>Leave ON/OFF Pin Open           | MIN                                  | 3.0         | VDC       |  |
| External Leakage Current<br>Allowed for Logic High (9) | MAX                                  | 10          | μA        |  |
| Input Diode Protection<br>Voltage                      | MAX                                  | 50          | VDC       |  |
| LOW Logic Level or<br>Tie ON/OFF Pin to -INPUT         | MAX                                  | 1.0         | VDC       |  |
| Sinking Current for Logic<br>Low                       | MAX                                  | 500         | μA        |  |
| Open Circuit Voltage at<br>ON/OFF Pin (10)             | TYP                                  | 2.3         | VDC       |  |
| Output Resistance                                      | TYP                                  | 3           | kΩ        |  |
| Idle Current<br>(Module is OFF)                        | TYP                                  | 40          | mADC      |  |
| Turn-on Time to 1% error                               | TYP                                  | 20          | ms        |  |
| Positive Logic                                         | HIGH - Module ON<br>LOW - Module OFF |             |           |  |
| Output Voltage Remote Se                               | nsing                                |             |           |  |
| Maximum Voltage Drops<br>on Leads                      | МАХ                                  | 0.5         | %         |  |
| Line Regulation under<br>remote sensing                | TYP<br>MAX                           | 0.02<br>0.1 | %         |  |
| Load Regulation under<br>remote sensing                | TYP<br>MAX                           | 0.05<br>0.2 | %         |  |
| Output Voltage Trim                                    |                                      |             |           |  |
| Trim Range                                             | MIN<br>MAX                           | -40<br>+10  | % of Vout |  |
| Input Resistance                                       | TYP                                  | 16.2        | kΩ        |  |
| Open Circuit Voltage                                   | TYP                                  | 2.5         | V         |  |
| Isolation                                              |                                      |             |           |  |
| Input to Output Isolation<br>10µA Leakage              | МАХ                                  | 1544        | VDC       |  |
| Input to Output Resistance                             | MIN                                  | 10          | MΩ        |  |
| Input to Output<br>Capacitance                         | TYP                                  | 1800        | pF        |  |
| Load Sharing                                           |                                      |             |           |  |
| Current Share Bus (16) TYP 0.75 VDC                    |                                      |             |           |  |
| Frequency Synchronization                              |                                      |             |           |  |
| Clock synchronization<br>frequency setpoint (15)       | MIN<br>MAX                           | -1<br>+1    | kHz       |  |
| Clock synchronization amplitude (15)                   | MIN<br>MAX                           | 3<br>5      | Vp-р      |  |

| General Specifications                                      |            |                      |       |  |
|-------------------------------------------------------------|------------|----------------------|-------|--|
| All Models                                                  |            |                      | Units |  |
| Environmental                                               |            |                      |       |  |
| Calculated MTBF, Bellcore<br>Method 1, Case 1               | >1,000,000 |                      | h     |  |
| Baseplate Operating<br>Temperature Range                    | MIN<br>MAX | -40<br>100           | °C    |  |
| Storage Temperature                                         | MIN<br>MAX | -40<br>120           | °C    |  |
| Thermal Impedance (11)                                      | TYP        | 7                    | °C/W  |  |
| Thermal Shutdown<br>Baseplate<br>Temperature (Auto Restart) | MIN<br>TYP | 100<br>110           | °C    |  |
| General                                                     |            |                      |       |  |
| Unit Weight                                                 | TYP        | 4.6/114              | oz/g  |  |
| Case Dimension                                              |            | 2.4" x 2.28" x 0.55" |       |  |
| Agency Approvals                                            |            |                      |       |  |

Designed to meet UL60950



| TOLERANCE: ALL DIMENSIONS ARE TYPICAL IN<br>INCHES UNLESS OTHERWISE NOTED: |        |  |  |
|----------------------------------------------------------------------------|--------|--|--|
| X.XX                                                                       | ±0.020 |  |  |
| X.XXX                                                                      | ±0.005 |  |  |

| Pin | Name       | Pin Dia. |
|-----|------------|----------|
| 1   | -INPUT     | 0.04"    |
| 2   | CASE       | 0.04"    |
| 3   | ON/OFF     | 0.04"    |
| 4   | +INPUT     | 0.04"    |
| 5   | -OUTPUT    | 0.08"    |
| 6   | -SENSE     | 0.04"    |
| 7   | TRIM       | 0.04"    |
| 8   | + SENSE    | 0.04"    |
| 9   | + OUTPUT   | 0.08"    |
| А   | Clock Sync | 0.04"    |
| С   | Load Share | 0.04"    |

#### Notes:

- (1) Refer to the CALEX Application Notes for the definition of terms, measurement circuits, and other information.
- (2)Refer to the CALEX Application Notes for information of fusing. For inrush current, refer to the specifications above.
- Connect a 100µF capacitor between the two "Input" pins. Then (3) connect a current sensor in series with 12µH inductor between the capacitor and the source. The reflected ripple current is measured over a 5Hz to 20MHz bandwidth (the current sensor is located between the converter input pin and the inductor).
- (4) Line regulation is defined as the output voltage changes when changing input (line) voltage from minimum to maximum.
- (5)Load Regulation is defined as the output voltage change when changing load current from 10% of maximum load to 90% of maximum load.
- (6) Load Transient Recovery Time is defined as the time for the output to settle from a 25% to 75% step load change to a 1% error band (rise time of step = 2µs).
- Load Transient Overshoot is defined as the peak overshoot (7)during a transient as defined in the Note 6 above.
- Noise is measured per the CALEX Application Notes. Output noise is measured with a 10µF tantalum capacitor in parallel with a 0.1µF ceramic capacitor connected across the output pins. Measurement bandwidth is 20MHz.
- When an external ON/OFF switch is used, such as an open (9)collector switch, logic high requires the switch to be highimpedance. Switch leakage currents greater than 10µA may be sufficient to trigger the ON/OFF to the logic-low state.
- (10) Most switches would be suitable for the logic ON/OFF control. In case there is a problem make the following estimations and then leave some margin. When open collector is used for logic high, "Open Circuit Voltage at ON/OFF Pin", "Output Resistance" and "External Leakage

Current Allowed for Logic High" are used to estimate the high impedance requirement of open collector. When switch is used for logic low, "Open Circuit Voltage at ON/OFF Pin". "Output Resistance" and "LOW Logic Level" are used to estimate the low impedance requirement of the switch.

- (11) Thermal impedance is tested with the converter mounted vertically and facing another printed circuit board 1/2 inch away. If the converter is mounted horizontally with no obstructions, thermal impedance is approximately 7°C/W.
- (12) Water Washability Calex DC/DC converters are designed to withstand most solder/wash processes. Careful attention should be used when assessing the applicability in your specific manufacturing process. Converters are not hermetically sealed.
- (13) Source impedance of these units needs to be kept to a minimum. The GX series operates between 16-40Vdc and requires a maximum source impedance of 0.44 ohms. It is recommended to have 5.0 µF of capacitance (low ESR) for every 1.0µH of inductance between the power source and the DC/DC converter. Inductance includes all sources and should take into account input power lines.
- (14) Power sources which drive the converter must be capable of sourcing the required amount of current for the converter to operate correctly. If there are any conditions that may keep the source from supplying the required amount of current, the user must incorporate shutdown circuitry and/or power shedding. The source voltage should be measured at the input pins of the DC/ DC converter. The primary referenced ON/OFF pin can be used to assist in implementing this function.
- (15) Frequency synchronization is obtained by tying pin A of all converters together. Driving the Sync pin with an external clock is not recommended. Synchronization may result in a slight reduction in an individual converter's efficiency. Failure of this pin will not compromise the performance of a free running unit.

(16) Load sharing is accomplished by tying the load share pins of each module directly to each other. This creates a load share bus with a typical voltage as listed. However, it will vary with varying loads. No external components are needed. It is well-known that accurate load sharing prevents good load regulation as well as trim functionality. In order to overcome these design constraints Calex has chosen an implementation that allows the user to choose which features are needed in a particular application. This is achieved by characterizing the

application in one of two modes of operation. Load sharing- When using the converter in a load sharing application the sense pins must be connected directly to the output pins. This connection MUST be as short as possible - preferably directly underneath the unit. The reason for this is related to the concept of load sharing, where each converter adjusts its voltage slightly to equalize the current distribution. In short, load sharing requires load regulation to be sacrificed. The sense pins of each unit in a load share configuration should NOT be connected to the sense pins of the other units in the configuration. Load and supply wires should be kept as short as possible and always at the same length between modules

Stand-alone - When the converter is used as a stand-alone power source the sense pins can be connect to the point-ofload to compensate for any line voltage drops. In addition, the trim function of the converter can be utilized to adjust the output voltage to the desired level. Overall load regulation is within the specified limit.

(17)The converter will continue normal operation even when the DC input voltage is superimposed with an AC signal of magnitude up to 10% of the Input Voltage as RMS Ripple Noise, as long as the peak voltages or frequencies do not exceed the specified parameters.

Due to the peak-to-peak amplitude of an AC signal, the specified minimum RMS ripple noise of the input voltage is only guaranteed a minimum attenuation of 40dB within the voltage range: 18VDC to 36VDC.

(18) RoHS Compliance means conformity to EU Directive 2002/95/EC of 27 January 2003, on the restriction of the use of certain hazardous substances in electrical and electronic equipment, lead, cadmium, mercury, hexavalent chromium, polybrominated biphenyls, and polybrominated diphenyl ethers are not present in quantities exceeding the following maximum concentrations in any homogeneous material, except for applicable exemptions.

0.1% (by weight of homogeneous material) lead, mercury, hexavalent chromium, polybrominated biphenyls, polybrominated diphenyl ethers, or 0.01% (by weight of homogeneous material) cadmium. The RoHS marking is as follows.

