

 Calibre UK Ltd 2007

CALIBRE

PCI90 I2C Communications Adapter

Issue 1.1
06/03/2007

CALIBRE

Issue 1.1 Page i
06/03/2007

Welcome to the Calibre PCI90 fixed voltage I2C adapter. This adapter provides full I
2
C bi-

directional compatibility as either a master or slave from within a Windows 95/98 or Windows
NT or Windows 2000 or Windows XP environment.

If you have any queries relating to this or any other I2C product supplied by Calibre please visit
our web site www.calibreuk.com.

For technical support please e-mail techsupport@calibreuk.com or send your queries by fax to
(44) 1274 730960, for the attention of our I2C Technical Support Department.

COPYRIGHT

This document and the software described within it are copyrighted with all rights reserved. Under
copyright laws, neither the documentation nor the software may be copied, photocopied, reproduced,
translated, or reduced to electronic medium or machine readable form, in whole or in part, without
prior written consent of Calibre UK Ltd ("Calibre"). Failure to comply with this condition may result in
prosecution.
 Calibre does not warrant that this software package will function properly in every
hardware/software environment. For example, the software may not work in combination with
modified versions of the operating system or with certain network adapter drivers.
 Although Calibre has tested the software and reviewed the documentation, CALIBRE MAKES
NO WARRANTY OR REPRESENTATION, EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS SOFTWARE OR DOCUMENTATION, THEIR QUALITY, PERFORMANCE,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE. THIS SOFTWARE AND
DOCUMENTATION ARE LICENSED 'AS IS', AND YOU, THE LICENSEE, BY MAKING USE
THEREOF, ARE ASSUMING THE ENTIRE RISK AS TO THEIR QUALITY AND PERFORMANCE.
 IN NO EVENT WILL CALIBRE BE LIABLE FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO
USE THE SOFTWARE OR DOCUMENTATION, even if advised of the possibility of such damages.
In particular, and without prejudice to the generality of the foregoing, Calibre has no liability for any
programs or data stored or used with Calibre software, including costs of recovering such programs or
data.

Copyright Calibre UK Ltd
(c) 2007 Cornwall House, Cornwall Terrace
 Bradford, BD8 7JS. UK.
 E-mail: sales@calibreuk.com
 Web site www.calibreuk.com
 All World-wide Rights Reserved

Issue 1.1 06/03/2007

All trade marks acknowledged

Calibre operates a policy of continued product improvement, therefore specifications are subject to
change without notice as products are updated or revised.

E&OE.

CALIBRE

Issue 1.1 Page ii
06/03/2007

Contents
INTRODUCTION 1

1.1. General Introduction 1
1.2. Packing List 1
1.3. Configuring the Adapter 1
1.4. Bus Termination and Protection 1
1.5. Connecting the Adapter to your System 2
1.6. Bus Capacitance Limitations/Cable Choice 2
1.7. +5V Power Supply 2

INSTALLING THE ADAPTER UNDER WINDOWS 9x 3
2.1. Introduction 3
2.2. Installing the Adapter 3
2.3. Windows 95 Versions 950 and 950a 3
2.4. Windows 95 Versions 950b and 950c 3
2.5. Windows 98 3
2.6. Plug and Play Does Not Find Hardware 4
2.7. Windows 9x File Location 4

INSTALLING THE ADAPTER UNDER WINDOWS NT4 5
3.1. Introduction 5
3.2. Installing the Adapter 5
3.3. Installing the Device Driver 5
3.4. WinNT4 File Location 5

INSTALLING THE ADAPTER UNDER WINDOWS 2000 and XP 6
4.1. Introduction 6
4.2. Installing the Adapter 6
4.3. Installing the Device Driver 6

LIBRARIES FOR PROGRAMMING IN MICROSOFT WINDOWS ENVIRONMENTS 7
5.1. Introduction 7
5.2. Function Prototypes 7
5.3. Function Description 7
5.3.1. setup 7
5.3.2. sendaddress 8
5.3.3. writebyte 8
5.3.4. readbyte 8
5.3.5. sendstop 9
5.3.6. restart 9
5.3.7. getstatus 10
5.3.8. recover 10
5.3.9. slavelastbyte 10

The Real-Time Bus Monitor 11
Appendix A I

2
C Communications Adapter Status Codes 12

THE MOST COMMONLY ASKED I2C QUESTIONS 13
General Questions 13
Windows Questions 13

CALIBRE

Issue 1.1 Page 1

06/03/2007

INTRODUCTION

1.1. General Introduction

The I
2
C Communications Adapter is a PCI bus PC interface card designed to fit any IBM PC compatible.

Based on the Philips PCF8584 bus controller, it features full I
2
C bi-directional compatibility as either a

master or slave. I
2
C connections are made via a 9 way “D” socket. This product complies with the

requirements of EEC Directive 89/336 for EMC and is CE marked.

1.2. Packing List

Your I2C Communications Adapter is supplied with the following items:-
 A. I2C CD ROM
 B. The PCI90 plug-in card (the actual adapter)

1.3. Configuring the Adapter

NOTE
MANY COMPONENTS ON THE ADAPTER CARD ARE STATIC SENSITIVE. OBSERVE NORMAL
STATIC SENSITIVE PRECAUTIONS WHEN HANDLING THE CARD!

The adapter is supplied in a standard configuration which should suit most applications. However, some

features are link selectable. Read the following section to change the configuration.

1.4. Bus Termination and Protection

In 2006 the PCI I2C adapters were redesigned so that they complied with the RoSH Directive PCBs
earlier than 2.1 are not RoHS compliant version 2.1 and later are. At this time improvements were made
to the manufacturability of the product and to the output protection. None of the changes made to the
I2C adapters in anyway functionally alters the product, but the jumper settings are different this section
details both settings please check the PCB to determine which version of PCB you have. If you are
unsure please contact you sales representative.

PCB Issue up to and including 2.0

Normally the system to which the I2C Communications Adapter is to be connected should already have

master pull up resistors fitted to the SCL and SDA lines. If this is not the case, LK10 and LK12 can be

used to connect 4K7 pull up resistors to the 5V supply on these lines. The standard configuration is with

these resistors disconnected.

The SCL and SDA lines are protected by 100R series resistors before exiting the adapter via the 9 way

“D” socket. Upstream of the series resistors, the SCL and SDA lines are pulled up with high value

resistors (10K). These resistors can be linked out via links 9 and 11 although to ensure that the I2C Bus

is in a defined state even if no other devices are connected the links should be left on. This is the

standard configuration.

LK13 and LK14 connect optional protection diodes to the SCL and SDL lines. When selected, these

lines are clamped to the 0V and +5V lines giving protection against transients. If these diodes are

connected, the external I2C system will not function if the adapter is connected but not powered up. The

standard configuration is with these diodes disconnected.

PCB Issue 2.1 and later

Normally the system to which the I2C Communications Adapter is to be connected should already have

master pull up resistors fitted to the SCL and SDA lines. If this is not the case, LK5 and LK6 can be

used to connect 4K7 pull up resistors to the 5V supply on these lines. The standard configuration is with

these resistors disconnected.

The SCL and SDA lines are protected by 100R series resistors before exiting the adapter via the 9 way

“D” socket. Upstream of the series resistors, the SCL and SDA lines are pulled up with high value

resistors (10K). These resistors can be linked out via links 3 and 4 although to ensure that the I2C Bus is

in a defined state even if no other devices are connected the links should be left on. This is the standard

configuration.

CALIBRE

Issue 1.1 Page 2

06/03/2007

1.5. Connecting the Adapter to your System

All external connections are made via a 9 way “D” socket:
Pin Normal Mode
1 0V
2 0V
3 0V

4 0V
5 0V
6 SDA (Bi-directional)
7 +5V

8 SCL (Bi-directional)
9 NC

1.6. Bus Capacitance Limitations/Cable Choice

The maximum allowable capacitance on the I
2
C bus in normal mode depends on the value of the SCL

and SDA master pull-ups, but never exceeds 400pF. Refer to Phillips Technical Handbook Book 4 Parts

12a and 12b for further details. Care should be taken in choosing a length and type of interconnecting

cable, which will not exceed this limit.

For most systems with a distance of a few metres between the I
2
C Communications Adapter and the

target system, screened cable is NOT recommended, as it is likely to introduce too much capacitance.

However, the EMC performance of an unscreened cable is always potentially poorer than a screened

one. The Adapter's EMC performance even with an unscreened cable is good - but this may not be true

of the target system! If you are in any doubt at to the best way to connect up your system with EMC in

mind please contact your supplier or Calibre for advice.

1.7. +5V Power Supply

Pin 7 on the “D” connector is connected directly to the PC +5V power rail. Power for external circuitry

can be drawn from here, but care should be taken never to short it to 0V or to exceed 250mA loading. It

is short circuit and overload protected by a self-resetting thermal fuse but prolonged shorting could

cause the ICA90 to generate an excessive amount of heat inside your computer.

CALIBRE

Issue 1.1 Page 3

06/03/2007

INSTALLING THE ADAPTER UNDER WINDOWS 9x

2.1. Introduction

This section details the installation of the PCI90 I2C communications adapter under Windows 95® /

98®.

The appearance of the dialog boxes during the installation of new hardware varies depending on the

version of Windows 95 and Windows 98. Consequently this section is slit into 3 parts

Windows 95 versions 950 and 950a

Windows 95 version 950b and 950c

Windows 98

Which version of Windows you have installed on your machine by click on the My Computer icon with

the right mouse button and then selecting Properties.

2.2. Installing the Adapter

Turn off your computer and disconnect it from the mains power supply. Remove the PC cover and then

a PCI slot blanking plate.

Insert the card into the PCI slot, ensure that it is fully home and screw the adapter panel into the PC.

Replace the PC cover and reconnect the PC to the mains power supply. Turn the PC on.

2.3. Windows 95 Versions 950 and 950a

When Windows 95 restarts it should detect the new hardware (if this is not so see section 2.6), select

“Driver from disk provided by hardware manufacturer” then click OK

When you see the Install from Disk screen, insert the CD_ROM into the drive. Select the drive letter

appropriate to your CD – ROM drive (usually D) browse the CD for the \cd_pci directory. The click OK,

Windows will install the drivers for the adapter.

NOW SHUTDOWN YOUR PC

On restarting you PC click on the My Computer icon with the right mouse button and then selecting

Properties. Select Device Manager, expand the CaDrv and the select I2C Driver for PCI Devices

Click on Properties is the installation was successful the Device Status will say “This device is
working properly”.

2.4. Windows 95 Versions 950b and 950c

When Windows 95 restarts it should detect the new hardware (if this is not so see section 2.6), and the

Driver Wizard should be displayed.

Insert the CD_ROM into the drive. Follow the wizard instructions, if the wizard fails to find the driver

select Other Location. Then follow the wizard instructions to install the unknown device from the CD

ROM.

NOW SHUTDOWN YOUR PC

On restarting you PC click on the My Computer icon with the right mouse button and then selecting

Properties. Select Device Manager, expand the CaDrv and the select I2C Driver for PCI Devices

Click on Properties is the installation was successful the Device Status will say “This device is
working properly”.

2.5. Windows 98

When Windows 98 restarts it should detect the new hardware (if this is not so see section 2.6), and the

Driver Wizard should be displayed.

Select Search for the best driver for your device and click Next.

When the next screen is displayed select CD-ROM drive and Specify a location. Browse the CD for

the \cd_pci directory, select the CaDrv.inf file and click Next.

The next screen tells you that Windows has found the driver click Next. On the final screen click Finish.

CALIBRE

Issue 1.1 Page 4

06/03/2007

NOW SHUTDOWN YOUR PC

On restarting you PC click on the My Computer icon with the right mouse button and then selecting

Properties. Select Device Manager, expand the CaDrv and the select I2C Driver for PCI Devices

Click on Properties is the installation was successful the Device Status will say “This device is
working properly”.

2.6. Plug and Play Does Not Find Hardware

From the Control Panel select Add New Hardware. Follow the instruction and when prompted choose

Other Devices and Have Disk. Browse the CD for the \cd_pci directory select the Cadrv.inf then

continue to follow the displayed instruction.

When the installation is complete SHUTDOWN THE PC.

On restarting you PC click on the My Computer icon with the right mouse button and then selecting

Properties. Select Device Manager, expand the CaDrv and the select I2C Driver for PCI Devices

Click on Properties is the installation was successful the Device Status will say “This device is
working properly”.

2.7. Windows 9x File Location

If you are going to use the dynamic link library to write your I2C protocol software click on the

PCI_UTILS follow the instructions to unzip the files (if you do not have an unlock code please contact

sales@calibreuk.com). Then

 1)Copy the Cali2c32.Lib from the \lib directory into your compilers \lib

 2)Copy the cali2c32.Dll from the \lib directory into \WINDOWS\SYSTEM

CALIBRE

Issue 1.1 Page 5

06/03/2007

INSTALLING THE ADAPTER UNDER WINDOWS NT4

3.1. Introduction

This section details the installation of the PCI90 I2C communications adapter under Windows NT4.

3.2. Installing the Adapter

Turn off your computer and disconnect it from the mains power supply. Remove the PC cover and then

a PCI slot blanking plate.

Insert the card into the PCI slot, ensure that it is fully home and screw the adapter panel into the PC.

Replace the PC cover and reconnect the PC to the mains power supply. Turn the PC on.

3.3. Installing the Device Driver

TO INSTALL A DRIVER YOU MUST HAVE ADMINISTRATOR PRIVILAGES.

Copy all the following files from the CD (located in the \cd_pci directory, to c:\winnt\system32\drivers
1) CaDrv.sys - The device driver
2) CaDrv.ini - The device driver initialisation file
3) Regini.exe - This a Microsoft registration program

From a DOS window, change the directory to the \system32\drivers (usually c:\winnt\system32\drivers).

Then type regini cadrv.ini <CR> this will register the driver.

NOW SHUTDOWN YOUR PC

3.4. WinNT4 File Location

If you are going to use the dynamic link library to write your I2C protocol software click on the

PCI_UTILS follow the instructions to unzip the files (if you do not have an unlock code please contact

sales@calibreuk.com). Then

 1)Copy the Cali2c32.Lib from the \lib directory into your compilers \lib

 2)Copy the cali2c32.Dll from the \lib directory into \WINNT\SYSTEM

CALIBRE

Issue 1.1 Page 6

06/03/2007

INSTALLING THE ADAPTER UNDER WINDOWS 2000 and XP

4.1. Introduction

This section details the installation of the PCI90 I2C communications adapter under Windows 2000 and

XP. The drivers for these operating systems are located in the \CD_PCI\W2k Drivers and \CD_PCI\XP

DRIVERS folders on the CD. You MUST use the driver appropriate to you operating system DO NOT try

to us the Windows NT or Windows 98 drivers these will not work.

Both these operating systems are plug and play you must NOT run the regini applications on these

operating systems.

4.2. Installing the Adapter

Turn off your computer and disconnect it from the mains power supply. Remove the PC cover and then

a PCI slot blanking plate.

Insert the card into the PCI slot, ensure that it is fully home and screw the adapter panel into the PC.

Replace the PC cover and reconnect the PC to the mains power supply. Turn the PC on.

4.3. Installing the Device Driver

TO INSTALL A DRIVER YOU MUST BE THE ADMINISTRATOR.

Wait for the wizard to find the new hardware, if the operating system does not recognise new hardware
select add new hardware via the control panel.

VERY IMPORTANT: Sometimes the wizard selects an unsuitable driver option found a
c:\windows\inf\oem1.inf this file is nothing to do with Calibre and MUST NOT be used.

The solution is to select the "Display list" option. From the next page select Have Disk select the
CAWDM13.INF file located on the CD in \CD_PCI

CALIBRE

Issue 1.1 Page 7

06/03/2007

LIBRARIES FOR PROGRAMMING IN MICROSOFT WINDOWS ENVIRONMENTS

5.1. Introduction

Each utility is documented in a standard format which lists its name, usage, function and effect on the
adapter is given. The adapter should be setup prior to any data transfer.

5.2. Function Prototypes

If you are using ‘C’ or ‘C++’ copy the file CALI2C32.H into the directory containing your project and add

the line:

 #include "CALI2C32.H"

The following functions are implemented in the windows libraries:-
extern __declspec(dllimport) int WINAPI setup (int, int, int);

extern __declspec(dllimport) int WINAPI sendaddress (int, int, int);

extern __declspec(dllimport) int WINAPI writebyte(int, int);

extern __declspec(dllimport) int WINAPI readbyte(int, int);

extern __declspec(dllimport) int WINAPI sendstop(int);

extern __declspec(dllimport) int WINAPI restart (int, int, int);

extern __declspec(dllimport) int WINAPI getstatus(int);

extern __declspec(dllimport) int WINAPI recover(int);

extern __declspec(dllimport) int WINAPI slavelastbyte(int);

extern __declspec(dllimport) int WINAPI dllissue(void);

If you are using Visual Basic copy the file CALI2C32.BAS into the directory containing your project and

add the file CALI2C32.BAS to your project:

The following functions are implemented in the windows libraries:-

Public Declare Function setup% Lib "cali2c32.dll" (ByVal Board%, ByVal

OwnAddress%, ByVal Sclk%)

Public Declare Function sendaddress% Lib "cali2c32.dll" (ByVal Board%, ByVal

slaveaddress%, ByVal Setnack%)

Public Declare Function restart% Lib "cali2c32.dll" (ByVal Board%, ByVal

slaveaddress%, ByVal Setnack%)

Public Declare Function writebyte% Lib "cali2c32" (ByVal Board%, ByVal

wrdata%)

Public Declare Function readbyte% Lib "cali2c32.dll" (ByVal Board%, ByVal

Setnack%)

Public Declare Function sendstop% Lib "cali2c32.dll" (ByVal Board%)

Public Declare Function getstatus% Lib "cali2c32.dll" (ByVal Board%)

Public Declare Function recover% Lib "cali2c32.dll" (ByVal Board%)

Public Declare Function slavelastbyte% Lib "cali2c32.dll" (ByVal Board%)

Public Declare Function dllversion% Lib "cali2c32.dll" ()

NOTE A type is defined in cali2c32.bas to help passing parameters to the DLL, if you do not
wish to use this local variables MUST be declared as static
5.3. Function Description

5.3.1. setup

Function specification int setup(int board, int ownaddress, int sclk)

Parameters are: int board

 This parameter .is reserved for future use and should always be set to zero (0).

 int ownaddress

 This is the I2C address to which the adapter is to respond in slave mode. This

forms the upper 7 bits of the 8 bit address, the lowest bit being the read(1) or

write(0) bit. This means that if ownaddress = 57H the card will respond to a

write address of AEH and a read address of AFH.

 int sclk

 This is the clock rate (bit rate for the I2C serial bus) when operating as a

master.

CALIBRE

Issue 1.1 Page 8

06/03/2007

Value of sclk Approximate SCL-kHz

0 90

1 45

2 11

3 1.5

Parameters returned If the software fails to find the driver error code 9000H is returned otherwise the

status is returned.

Prerequisites None.

Functional description This function characterises the PC and initialises adapter ready for I2C

transfers.

5.3.2. sendaddress

Function specification Int sendaddress(int board, int slaveaddress, int setnack)

Parameters are: int board

 This parameter .is reserved for future use and should always be set to zero (0).

 int slaveaddress

 This is the address to be accessed via the I2C, e.g. A0H.

int setnack
 This controls whether the adapter transmits an acknowledge down the I2C bus

on reception of a byte. The last byte received during a transfer must not be
acknowledged, in all other cases acknowledge must be enabled. If setnack = 0
then acknowledge is enabled, if setnack = 1 then acknowledge is disabled.
Therefore, if a read (odd numbered) address is being sent AND only 1 Byte is
to be read, setnack should be set to = 1; in all other cases it must be clear = 0.

Parameters returned int ErrCode.

 If the transfer time out occurs error code 8001H is returned otherwise the

status is returned.

Prerequisites The adapter must be configured by running setup.

Functional description The function waits for the bus to be free. Then sends the slave address with the

appropriate acknowledge.

 The acknowledge is set ready for the data transfer after the address and hence

in read mode (odd address being sent) if only one byte is to be read the

setnack parameter must equal 1. If more than one byte is to be read or if in

write mode (even address being sent) then setnack must equal 0.

 The function waits for the address to be sent. Should a time-out occur during

the sending of an address then an error code 8001H is returned, otherwise the

status is returned.

5.3.3. writebyte

Function specification Int writebyte(int board, int wrData)

Parameters are: int board

 This parameter .is reserved for future use and should always be set to zero (0).

int wrData

 This is the byte of data to be written.

Parameters returned int ErrCode.

 If the transfer time out occurs error code 8004H is returned otherwise the

status is returned.

Prerequisites Adapter must be configured using setup, start and write address sent by

sendaddress.

Functional description The function writes the data to the adapter and then waits for it to be sent.

Should a time-out occur during the sending of the data then error code 8004H

is returned, otherwise the status is returned.

 Writebyte is compatible with both master write and slave write modes.

5.3.4. readbyte

Function specification Int readbyte(int board, int setnack)

Parameters are: int board

CALIBRE

Issue 1.1 Page 9

06/03/2007

 This parameter .is reserved for future use and should always be set to zero (0).

int setnack
 This controls whether the adapter transmits an acknowledge down the I2C bus

on reception of a byte. The last byte received during a transfer must not be
acknowledged, in all other cases acknowledge must be enabled. If setnack = 0
then acknowledge is enabled, if setnack = 1 then acknowledge is disabled.
Therefore, if the LAST BUT ONE byte is to be read, setnack should be set to
=1; in all other cases it is to be set = 0 (in the case of reading 1 byte only, the
acknowledge will have been disabled by sendaddress and so should now be
enabled again after reading the data, hence setnack = 0 for reading a single
byte of data).

 The first read from the adapter following a write to it will result in the data that
was written being returned. This data MUST be read and discarded before real
data can be read, DO NOT count this extra read when considering whether or
not to acknowledge.

Parameters returned int I2CData

 If a time-out occurs the ErrCode 8005H is returned, otherwise the data is

returned.

Prerequisites Adapter must be configured using setup, start and read address sent by

sendaddress.

Functional description If setnack is 1 the function writes 40H to the control register to establish the

correct acknowledge procedure.

 The data is read from the adapter.

 Readbyte is compatible with both master read and slave read modes.

5.3.5. sendstop

Function specification Int sendstop(int board)

Parameters are: int board

 This parameter .is reserved for future use and should always be set to zero (0).

Parameters returned int ErrCode.

 If the transfer time out occurs error code 8002H is returned otherwise the

status is returned.

Prerequisites Adapter must be configured using setup. Should normally only be used at the

end of a transmission. Correct acknowledge sequence must have been applied

if the transmission was a read.

Functional description Instructs the adapter to send a stop code and wait for it to be sent.

 Should a time-out occur during the sending of a stop then an error code 8002H

is returned, otherwise the status is returned.

5.3.6. restart

Function specification Int restart(int board, int slaveaddress, int setnack)

Parameters are: int board

 This parameter .is reserved for future use and should always be set to zero (0).
 int slaveaddress
 The address to be accessed via the I2C, e.g. A1H.
 int setnack
 This controls whether the adapter transmits an acknowledge down the I2C bus

on reception of a byte. The last byte received during a transfer must not be
acknowledged, in all other cases acknowledge must be enabled. If setnack = 0
then acknowledge is enabled, if setnack = 1 then acknowledge is disabled.
Therefore, if a read (odd numbered) address is being sent AND only 1 Byte is
to be read, setnack should be set to = 1; in all other cases it must be clear = 0.

Parameters returned int ErrCode

 If the transfer time out occurs error code 8003H is returned otherwise the

status is returned.

Prerequisites Adapter must be configured using setup. A start and slave address must have

previously been sent using sendaddress.

 Usually a data pointer would already have been written using writebyte.

CALIBRE

Issue 1.1 Page 10

06/03/2007

Functional description Sends a start code and the slave address specified and presets the

acknowledge status depending on the value of setnack.

 The acknowledge is set ready for the data transfer after the address and hence

in read mode (odd address being sent) if only one byte is to be read the

setnack parameter must equal 1. If more than one byte is to be read or if in

write mode (even address being sent) then setnack must equal 0.

 The function waits for the address to be sent. Should a time-out occur during

the sending of an address then an error code 8003H is returned, otherwise the

status is returned.

5.3.7. getstatus

Function specification: Int getstatus(int board)

Parameters are: int board

 This parameter .is reserved for future use and should always be set to zero (0).

Parameters returned int I2Cstatus

The current value of the bus status is returned.

Prerequisites Adapter must be configured using setup.

Functional description The function reads status word from the adapter and returns it.

5.3.8. recover

Function specification Int recover(int board)

Parameters are: int board

 This parameter .is reserved for future use and should always be set to zero (0).

Parameters returned int ErrCode.

 If the bus recovery failed error code 8006H is returned otherwise the status is

returned.

Prerequisites Adapter must be configured using setup.

Functional description This function issues two consecutive stop commands on the bus, with a delay

in between. It then clears the adapter registers and reads the status. This

should normally set the adapter into a known idle state when a bus error or

other problem has occurred.

 If the status does not indicate bus free or the Bus Error bit is still set then

8006H is returned otherwise the status is returned.

5.3.9. slavelastbyte

Function specification int slavelastbyte(int board)

Parameters are: int board

 This parameter .is reserved for future use and should always be set to zero (0).

Parameters returned The function always returns 0.

Prerequisites Adapter must be configured using setup. This function would normally only be

called following the end of a transmission in slave write mode - when the

adapter is being read as a slave, by another master, not when writing to a slave

using the adapter.

Functional description This function is used when the adapter is a slave being read by a master

elsewhere on the bus - the adapter is in slave write mode. The function must be

called immediately after the master indicates the last byte has been read (by

not acknowledging that byte). This function is required to clear the I2C data

lines so that the master can send a stop signal.

CALIBRE

Issue 1.1 Page 11

06/03/2007

The Real-Time Bus Monitor

Before attempting to run the monitor program ensure that the device drivers are installed correctly in

accordance with this manual.

The program WINMONITOR.EXE runs in a DOS window and is a completely non-invasive real-time bus

monitor which records activity on an I
2
C-bus, post-processes the data and stores the results in an ASCII

file. This file can be printed out or examined with a word-processor as required.

During the monitoring of the I2C bus the program may miss part of a transfer this is due to the operating

system servicing other hardware and / or applications. To minimise the amount of data missed we

recommend that you close as many windows applications as possible especially all windows messaging

applications, e-mail and FindFast. We also recommend that you run the application from a PII 350MHz

PC (or better), note the application will run on a lesser specification PC but you are likely to miss more

data.

The following mnemonics are used by the monitor program in the ASCII file which it produces.

SaXX Start code followed by address, acknowledged.

SnXX Start code followed by address, not acknowledged.

DaXX Data byte, acknowledged.

DnXX Data byte, not acknowledged.

STOP Stop code.

BUS ERROR A bus error has occurred. This is non-fatal to the monitor but a small amount of data

may have been lost whilst recovery was taking place.

CALIBRE

Issue 1.1 Page 12

06/03/2007

Appendix A I
2
C Communications Adapter Status Codes

This is an eight bit register, read using the getstatus routine. Each individual bit has its own meaning as

follows:

Bit 7 (MSB) - The PIN Bit

The PIN bit “Pending Interrupt Not” is a read-only flag which is used to synchronise serial

communication. Each time a serial data transmission is initiated (by sendaddress routine or setting STA

bit) the PIN will be set (= 1) automatically. After successful transmission of one byte (9 clock pulses,

including acknowledge), this bit will be automatically reset (= 0) indicating a complete transmission.

When the ENI bit (enable interrupt) is also set, the PIN triggers an external interrupt via the selected

IRQ line when PIN is reset. When in receiver mode, the PIN is also reset on completion of each

received byte. In polled applications, the PIN bit is tested (using the getstatus routine) to determine

when a serial transmission has been completed. In receiver mode, the PIN bit is tested (using the

readbyte function). When the PIN becomes set all other status bits will be reset, with the exception of

the BB (not Bus Busy) bit.

In short, when transmitting data, if PIN = 0 then the data has been sent, if PIN = 1 then it has not. When

receiving data, if PIN = 0 then there is unread received data ready to read, if PIN = 1 then either the data

received has already been read, or no data has yet been received.

Bit 6 - Not Used This bit is not currently used and will always = 0.

Bit 5 - The STS Bit

When in slave-receiver mode (i.e. transmission initiated by a master elsewhere on the I2C bus), the flag

STS = 1 when an externally generated Stop condition is detected, otherwise STS = 0. This flag is used

only in slave-receiver mode.

Bit 4 - The BER Bit

The BER (Bus Error) bit. BER = 1 when a misplaced Start or Stop has been detected, otherwise BER =

0. This can be quite serious since the I2C devices on the bus may be left in an undefined state after a

bus error has occurred - in some circumstances the only way to get the bus going again may be to reset

all the I2C devices on it.

Bit 3 - The LRB/ADO Bit

The LRB (Last received Bit) / ADO (Address 0 “General Call” Address Received) bit. This dual function

status bit holds the value of the last received bit over the I2C bus when AAS (Bit 2) = 0. Normally this will

be the value of the slave acknowledge; thus checking for slave acknowledgement is done via testing of

the LRB bit. When AAS (Bit 2) = 1 (“Addressed As Slave”), the I2C Communications Adapter has been

addressed as a slave and the ADO bit will = 1 if the slave address received was the “General Call”

address. For further information on the “General Call” Address, see the Philips data books referenced in

Section 8 of this User Manual.

Bit 2 - The AAS Bit

The AAS (“Addressed As Slave”) bit. When acting as a slave-receiver, this flag is set = 1 when an

incoming address over the I2C bus matches the value defined by the setup routine, or if the slave

address received was the I2C bus “General Call” address (00 Hex). In all other circumstances, AAS = 0.

Bit 1 - The LAB Bit

The LAB (Lost Arbitration) bit. This bit is set = 1 when, in multimaster operation (more than one master

present on the I2C bus) arbitration is lost to another master on the I2C bus. In all other circumstances,

LAB = 0.

Bit 0 - The BB Bit

The BB (not Bus Busy) bit. This is a read-only flag indicating when the I2C bus is in use. BB = 0

indicates that the bus is busy, and access is not possible (unless of course it is busy because the I2C

Communications Adapter itself has control of the bus). This bit is set = 1 by Stop conditions and reset =

0 by Start conditions. In short, BB = 1 means that the bus is free and a new transmission can be started.

CALIBRE

Issue 1.1 Page 13

06/03/2007

THE MOST COMMONLY ASKED I2C QUESTIONS

 General Questions

Question Will my adapter run I2C clock speeds greater than 90KHz?
Answer At the moment your adapter is limited by the Bus Controller chip fitted, to a maximum of

90KHz as a master and 100KHz as a slave.

Question I get corrupted transfers why is this?
Answer The most likely reason for corrupted transfers is either incorrect bus termination or

excessive capacitance - see the manual for details.

Question Do you have software to talk to my........?
Answer Unfortunately there are too many I2C devices for us to be able to offer complete

solutions - although we can supply a windows based application called WINI2C which is
designed for those just starting I2C or wishing to perform simple I2C tasks, please
contact our sales team or look on our web site, www.calibreuk.com for further
information.

Question I am trying to read from a device, the first time my software works fine but when I
try again I can't get anything what's wrong?

Answer Please check that you are changing the value of Setnack in accordance with the
manual, it is likely that you have not made Setnack 1 for the last AND last but one bytes
being read.

 Windows Questions

Question My software cannot find the adapter. Your Windows software reports that it
cannot configure the adapter. Why is this?

Answer Have you registered the device driver?.

Question I think I have registered the driver how can I find out if I have?
Answer You need to inspect the registry as follows

Windows 95 START - Run regedit
HKEY_LOCAL_MACHINE

|
|--SYSTEM

|
|--CurrentControlSet

|
|--Services

|
|--Class

|
|--Cadrv

|
|--0000

Windows NT START - Run regedit
HKEY_LOCAL_MACHINE

|
|--SYSTEM

|
|--CurrentControlSet

|
|--Services

|
|--CaDrv

|
|--Eum
|--Parameters

Question I have read the manual and still cannot get the communications to run. What do I
do next?

CALIBRE

Issue 1.1 Page 14

06/03/2007

Answer Check that you have fully implemented the protocol between the adapter and the other
I2C devices see the device manufacturers data sheet for details.

Check that the software you have written is logically and syntactically correct - this is
probably the most common cause of software faults we have to deal with.

Send us the following details:-
 1)The link settings of the adapter.
 2)A sketch of the relevant I2C hardware including the location of bus termination.
 3)The type and speed of processor within your PC and which operating system, you are

running.
 4)Brief software listings, or which Calibre software you are running.
 5)The serial number of your I2C adapter, or when you purchased it.

 PLEASE EMAIL YOUR QUERY TO: techsupport@calibreuk.com
 OR FAX YOUR QUERY TO: 44-1274-730960

We will endeavour to help you.

